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Abstract 
Real-time MRI can be used to obtain videos that describe 
articulatory movements during running speech. For detailed 
analysis based on a large number of video frames, it is 
necessary to extract the contours of speech organs, such as the 
tongue, semi-automatically. The present study attempted to 
extract the contours of speech organs from videos using a 
machine learning method. First, an expert operator manually 
extracted the contours from the frames of a video to build 
training data sets. The learning operators, or learners, then 
extracted the contours from each frame of the video. Finally, 
the errors representing the geometrical distance between the 
extracted contours and the ground truth, which were the 
contours excluded from the training data sets, were examined. 
The results showed that the contours extracted using machine 
learning were closer to the ground truth than the contours 
traced by other expert and non-expert operators. In addition, 
using the same learners, the contours were extracted from 
other naive videos obtained during different speech tasks of 
the same subject. As a result, the errors in those videos were 
similar to those in the video in which the learners were trained. 
Index Terms: real-time MRI, machine learning, speech 
organs, articulatory movements 

1. Introduction 
Real-time MRI (rtMRI) can be used to record articulatory 
movements as a video during continuous speech and singing 
[1-4]. Unfortunately, the air-tissue boundary of the vocal tract, 
which is necessary for detailed analysis, is not always clearly 
identifiable because of issues such as noise. To overcome this 
problem, many intensive studies have been conducted to 
automatically or semi-automatically segment these tissues 
from the air [5-9]. A maximum temporal resolution of 100 
frames per second (fps) was reached in 2015 [10], and as a 
large number of frames are available for use, such 
segmentation methods may become increasingly important. 

In order to develop the rtMRI database of Japanese speech, 
the articulatory movements of Japanese subjects have been 
recorded by rtMRI since 2017 [11]. More than 50 videos were 
obtained for each subject, and approximately twenty bi-morae 
in a carrier sentence were included in each video. In the 
beginning, for certain analyses, the contours of speech organs 
such as the tongue, lips, and palates were manually traced in a 
limited number of frames. Each contour was represented by an 

open polygon and the number of points was fixed. This 
suggested to us that these frames and points could be used as 
training data sets for extracting contours. Accordingly, a 
machine learning library, Dlib [12], was introduced to conduct 
a preliminary contour extraction test. As a result, the extracted 
contours showed a promising level of accuracy for all the 
frames in the video, even in the case of small training data sets. 
Thus, it was expected that the machine learning method could 
be used to extract the same contours that a human operator 
could trace, if sufficient training data sets were built. 

The purpose of the present study is to evaluate the 
accuracy of the machine learning method in extracting the 
contours of the speech organs from a video, for a given subject. 
Furthermore, the availability of the learners used in the 
evaluation is also examined, in the case for which they are 
applied to other raw video data for the same subject. 

2. Materials and Methods 

2.1. rtMRI videos 

In this study, the subject was one male standard-Japanese 
speaker (63 years old). Fifty-five rtMRI videos were recorded 
in the midsagittal plane using a 3T MRI scanner (Siemens 
MAGNETOM Prisma fit 3T) that is installed in the Brain 
Activity Imaging Center, ATR-Promotions Inc. Note that each 
video had a serial number and “video N” indicates the video 
with serial number N.  

Each video consisted of 512 frames obtained during 37 s. 
Thus, the frame rate was approximately 13.8 fps. Each frame 
size was 256x256 pixels, the pixel resolution was 1 mm, and 
the slice thickness was 10 mm. During each video recording, 
the subject uttered approximately 20 bi-morae, embedded in 
the carrier sentence “Kore wa __ gata. (This is __.)”. For 
example, video 15 included the following bi-morae: /kuha/, 
/kuhi/, /kuhu/, /kuhe/, /kuho/, /kusa/, /kusi/, /kusu/, /kuse/, 
/kuso/, /kusha/, /kushu/, /kusho/, /kuma/, /kumi/, /kumu/, 
/kume/, /kumo/, /keka/, and /keki/. 

2.2. Training data sets 

The contours of the following five speech organs were the 
extraction targets: the tongue (tongue), the lips and lower jaw 
(lips), the soft and hard palates (palates), the posterior wall 
from the pharynx to the trachea (p-wall), the anterior wall 
from the epiglottis to the trachea (a-wall). Hereafter, these five 
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organs are referenced using the words in parentheses, as 
shown in Fig. 1. 

 
Figure 1: The targets for extraction: contours of the 

five speech organs. 

To build training data sets, three expert operators, A, B, 
and C, manually traced the contours of the five speech organs 
as open polygons from the frames of video 15, which included 
palatal plosives, palate-alveolar fricatives, and bilabial nasals. 
According to a pilot study, these phonemes should be included 
in the training data sets. These expert operators were 
undergraduate students, who have learned the anatomy of the 
speech organs and developed a tracing software [13]. The 
expert operators A, B, and C traced the contours of the tongue, 
those of the lips and palates, and those of the p-wall and a-wall, 
respectively. The tracing of each part required approximately 
20 minutes. 

The number of points forming the contour, the number of 
frames to be traced, and the phonemes to which the frames 
correspond are listed in Table 1 for each target speech organ. 
The frames were selected independently for each speech organ 
based on the variety of its shape and the number of patterns in 
which it was in contact with other speech organs. Thus, the 
number of frames for the tongue was the largest. In addition, 
because each phoneme was imaged over a few frames, the 
phonemes in Table 1 roughly represent the phonemes to which 
the selected frames correspond. Furthermore, not all frames 
are represented by the phonemes in Table 1, because certain 
frames were selected between two phonemes and during quiet 
breathing. 

Table 1: Training data sets for the five speech organs 

Speech 
organ 

points frames phonemes 

tongue 40 19 /a/, /i/, /o/, /g/, /h/, /k/, /n/, 
/r/, /t/, … 

lips 40 16 /a/, /e/, /u/, /m/, … 
palates 40 17 /a/, /e/, /u/, /h/, /k/, /s/, … 
p-wall 30 10 /a/, /e/, … 
a-wall 30 11 /a/, /e/, /o/, /r/, … 

2.3. Contour extraction by machine learning 

Tools for extracting facial landmarks in the machine learning 
library, Dlib [12], were introduced to extract contours for the 
five target speech organs from each frame. These tools were 
originally developed to extract facial landmarks such as eyes, 
nose, and lips as polygons using the random forest algorithm 
[14]. In the present study, those facial landmarks were 
replaced with the five speech organs. Thus, using the training 
data sets described above, five learners were trained 
independently for each speech organ. Using these learners, the 

contours of the five speech organs were extracted for each 
frame of the video, i.e., 28,160 frames in total. 

Using a PC with Intel Core i7-6500U (2.5 GHz, 4 cores) 
and 16 GB memory, approximately 90 seconds were required 
to build a learner from a training data set. Approximately 15 
seconds were necessary for each learner to extract the contours 
from 512 frames of a video. 

2.4. Accuracy of speech organ contour extraction 

In order to examine the accuracy of the contours for the five 
targets that were extracted through machine learning, the 
contours that were not included in the training data sets were 
randomly selected as the ground truth. The following number 
of contours were used for each speech organ: five for the 
tongue, three for the lips, five for the palates, six for the p-wall, 
and five for the a-wall. 

In the case of the frames in which the contours of the 
ground truth were traced, two other expert operators who were 
not assigned to that speech organ in building the training data 
sets and three non-expert operators manually traced the 
contours. Note that these non-expert operators were also 
undergraduate students, who were only gave basic instructions 
for this tracing procedure. For each speech organ, the error 
values relative to the ground truth were calculated for the 
contours extracted through machine learning and those traced 
by the expert and non-expert operators. The calculation 
method for the error value is described in the next paragraph. 
Hereafter, the mean error values of the two expert operators 
and the three non-expert operators are simply referred to as 
ex-operator and nex-operator errors, respectively. 

Figure 2 shows two contours for a speech organ: one is the 
ground truth, and the other is the evaluation target. The 
evaluation targets are the machine learning, ex-operator and 
nex-operator results. The shortest (vertical) distance in pixels 
from each point of the evaluation target to the nearest segment 
line of the ground truth can be calculated. In the present study, 
a mean value of the distances (∑ 𝑑𝑑𝑛𝑛/𝑁𝑁𝑁𝑁

𝑛𝑛=1 , 𝑁𝑁 : number of 
points) is defined as the error of the evaluation target in a 
frame for a given speech organ. This error value represents the 
geometrical distance between the ground truth and the 
evaluation target. Furthermore, for each speech organ, a mean 
value was calculated among the frames and operators. This 
value is defined as the error of the evaluation target for a given 
speech organ.  

 
Figure 2: Calculation of the error value for a given 

speech organ. 

2.5. Machine learning accuracy 

In order to examine the availability of the learners, whose 
training data sets were obtained only from video 15, the 
machine learning error values for the five speech organs were 
calculated for videos 5, 10, 15, 20, 25, 35, 45, and 55. For 
each video, frames 128, 256, and 384 were used in this 
evaluation. Note that in video 15, frames 128, 256, and 384 
were not used in building the training data sets. Thus, using a 
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total of 24 frames, three expert operators manually traced the 
contours of the same speech organs that were used for the 
training data set, and these contours were defined as the 
ground truth in this evaluation. For each speech organ in each 
video, a mean value for the three frames was calculated. 
Variations in the error values across the videos were then 
examined. 

3. Results and Discussions 

3.1. Error values for the five speech organs 

Figure 3 shows the error values for machine learning, the ex-
operators, and the nex-operators for the five speech organs. 
For all the speech organs, machine learning provided the 
lowest error, with an error value that was almost constant 
across the organs. However, the errors of the ex-operators and 
nex-operators increased in the following order: the tongue, lips, 
palates, p-wall, and a-wall. Consequently, the difference in the 
error between the machine learning and the nex-operators or 
ex-operators also increased in that order. For all speech organs 
other than the tongue, the machine learning error was 
significantly lower than that of the nex-operators. For the 
tongue, the contour was easy even for nex-operators to 
identify. In addition, for the a-wall, the error of machine 
learning was significantly lower than that of the ex-operators. 

 
Figure 3: Errors of machine learning, ex-operators, 
and nex-operators for the five target speech organs. 

(**p<0.01, Tukey’s multiple test) 

 

Figure 4: Contours of the a-wall. The solid line is the 
ground truth and the dots indicate the a-wall contours 

extracted by (a) machine learning, traced by (b) an 
ex-operator, and (c) a nex-operator in frame 112 of 

video 15. The error is indicated in each panel. 

For all the speech organs, the error of the ex-operators was 
lower than that of the nex-operators. According to the 
examination of the contours, the nex-operators tended to trace 
anatomically incorrect contours compared with the accuracy 
of the ex-operators. This could reflect their relative amounts of 
anatomical knowledge and tracing experience. This difference 
was particularly clear around the arytenoid region on the p-

wall, and thus, the error of the ex-operators was significantly 
lower than that of the nex-operators for that region.  

For the a-wall, even the ex-operators tended to incorrectly 
trace the contours, as shown in Fig. 4, and thus, the error was 
rather large. In fact, the contour of the a-wall was difficult to 
trace. This could be because the larynx tended to be blurred in 
the midsagittal image because of the partial volume effect [15]. 
In the present study, the slice thickness was set to 10 mm, 
which was large relative to the lateral dimension of the larynx. 
Thus, both the lateral and medial tissues were imaged together 
in the same frame, and two or more contours were found. 

The errors of the ex-operators and nex-operators varied 
because of the various difficulties related to tracing each organ. 
However, the machine learning approach was not affected by 
such difficulties and so the machine learning error was almost 
constant. This implies that machine learning is especially 
effective in regions for which the contours are difficult to trace. 

3.2. Machine learning error for different speech patterns 

Figure 5 presents the variations in machine learning error 
for each speech organ across eight videos (5, 10, 15, 20, 25, 36, 
45, and 55), which contained different speech. Note that the 
learners were derived only from video 15, and used to extract 
the contours for all these videos. 

For each speech organ, there was almost no significant 
error variation between the different videos. In comparison 
with the errors for video 15, only those of the lips in videos 25, 
35, and 55 were significantly large (p<0.01, t-test). This could 
be because the error for the lips in video 15 was the lowest 
(0.69) of the eight videos. These results suggest that the errors 
associated with the other videos were not significantly higher 
than those of video 15, even though the learners were trained 
using only video 15. Although this error analysis concerned 
only 3 of the 512 frames for each video, the contours were 
successfully extracted from the remaining frames, by visual 
judgement. These facts indicate that it is not necessary to build 
the learners for every individual video. 

 
Figure 5: Changes in machine learning error for each 

speech organ across the eight videos. 

Furthermore, there was no particular trend indicating an 
increase in error for videos that were temporally separated 
from video 15. For example, video 45 was taken 30 minutes 
and 37 seconds after video 15. This time lag included rtMRI 
recordings, the rest of the subject, and checking of the images. 
During this time period, the subject would involuntarily move 
the head and neck, even if the head was fixed by soft padding. 
Consequently, the head orientation would slightly change and 
thus, the learners could not extract the contours correctly. 
Although such changes were observed, the results indicated 
that they did not influence the learners. 
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Figure 6 shows the five contours that were extracted using 
machine learning (points), the ground truth (lines), and the 
errors (values) for frames 128, 256, and 384 of video 15. In 
these three frames, most points are located on or near the lines. 
Only around the arytenoid region of the p-wall in frame 128 
(Fig. 6b), the extracted points diverged from the ground truth 
line. Here, contours with errors of less than 1.0 pixel provide a 
good agreement with the ground truth.  

Two contours were sometimes overlapped because the 
machine learning approach involves independent extraction of 
contours for each speech organ. The contours of the palates 
and the p-wall were overlapped in this manner, as shown in 
Fig. 6b. This indicated that if two speech organs were in 
contact, it was difficult for the learner to extract the contours 
correctly. This tendency was common among the video frames. 
An important point is that this incorrect extraction was 
observed only in the palates, when the soft palate was in 
contact with the pharyngeal wall, and only in the tongue, when 
the tongue was in contact with the hard and soft palates. In 
other words, incorrect extraction occurred in one of the two 
organs that moved more drastically with speech. This problem 
could therefore be solved in post processing. One possible 
solution is that the contour of the two overlapping contours 
that corresponds to the organ that moves less drastically is 
fixed, and the overlapped points of the other contour are 
pushed back to the fixed contour.  

Figure 7 presents the extracted five contours, the ground 
truth, and errors for three frames of video 45. Although the 
learners were trained using video 15, they appear to extract the 
contours correctly. As described above, extracted contours 
with an error of less than 1.0 pixel seemed to well agree with 
the ground truth. 

 
Figure 6: Contours of the five target speech organs 

extracted from frames 128 (a), 256 (b), and 384 (c) in 
video 15 using machine learning. The solid line 

indicates the ground truth. The values in each panel 
indicate the error (in pixels). 

 
Figure 7: Contours of the five speech organs extracted 
from frames 128 (a), 256 (b), and 384 (c) in video 45 
using machine learning. The solid line indicates the 
ground truth. The values in each panel indicate the 

error (in pixels). 

4. Conclusions 
The present study extracted the contours of the tongue, lips, 
palates, p-wall, and a-wall, as open polygons from 512 frames 
of 55 rtMRI videos of a speaking subject using a machine 
learning library, Dlib [12]. The random forest learners [14] 
were built for each speech organ from contours traced by an 
expert operator in the frames of one video.  

Contour-extraction accuracy was first examined only for 
one video using machine learning, two expert operators (the 
third expert operator provided the training data sets), and three 
non-expert operators. As a result, the machine learning 
provided higher accuracy than the expert and non-expert 
operators for all the speech organs. In other words, the 
machine learning best reproduced the skills of the specific 
expert operator who provided the training data sets.  The 
specific expert operator would have developed better tracing 
skills for an assigned organ compared to the other two expert 
operators because they traced the contours in more than three 
times more frames than the others. In addition, the accuracy of 
machine learning was almost constant among the five speech 
organs, while that of the ex-operators and nex-operators varied. 
As discussed above, the errors of the ex-operators and nex-
operators could reflect difficulties related to tracing. This 
implies that machine learning is effective especially in the 
case of organs for which difficulties associated with manual 
tracing lead to a wide variation in the contours produced by 
different operators. 

The accuracy of the machine learning approach was 
investigated, testing whether learners trained using only one 
video could be applied to the other videos. The extraction 
accuracy was examined for eight of the fifty-five videos. As a 
result, there was almost no significant difference in extraction 
accuracy between the video that was used for training and the 
others. This indicates that the learners that were trained using 
one video can be applied to others with the same subject, even 
if the head orientation slightly changes during long-term 
rtMRI experiments. However, in the case of a subject whose 
head orientation changes drastically between videos, it may be 
better to build the training data sets using multiple videos. 

It is true that manual tracing is time consuming; however, 
the subsequent use of machine learning methods can save time. 
Although the difficulties related to tracing varied from one 
organ to another, an expert operator required approximately 
twenty minutes to trace a contour in a frame. Thus, building 
the training data sets required approximately twenty-two hours 
in total. However, once the data sets were obtained, the 
subsequent procedure required little time: each learner was 
built within 90 seconds and the learner extracted the contours 
of the 512 frames in a video in 15 seconds. Therefore, in only 
14 minutes, the learner could extract contours from all 55 
videos. As these contours consist of only a small number of 
points, they could be used in various analyses. 

The present study did not examine whether the learners 
could be applied to videos containing other subjects. This 
could be the subject of future work. This study indicates the 
effectiveness of the machine learning approach in mapping the 
contours of speech organs using rtMRI data. Further 
developments of this approach could allow the accurate 
tracking of articulatory movements during speech. 
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