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Abstract

Offshore structures are subjected to a harsh environment where the fluctuating waves continuously
strain the structures and these forces cause the initiation and propagation of cracks in the structures.
In other words, the structures accumulate fatigue damage, which eventually leads to structural failure.
To avoid fatigue failure, the operational lifetime of a structure is limited to a design lifetime in which
the structure is safe for operation. This design process is based on precautious stochastic assessments,
norms, and industry standards that simplify the actual structure and environment in such a manner that
it involves little risk of structural failure.

As many structures in the North Sea approach the end of their design lifetime, the owners are faced
with a dilemma: either abandon the field or replace the structures. Another option is the lifetime ex-
tension of the existing structures. This requires a reduction of the uncertainties in the design process -
such as the stress history in fatigue-critical location. Unfortunately, these locations are often inaccessible
or directly harmful to the sensors due to the hostile environment of the ocean. This thesis focuses on
virtual sensing to estimate the stress/strain response of offshore structures by indirect measurements.
The thesis addresses the state of the art and maps some essential issues within stress/strain estimation.
In this thesis, stress/strain estimation is applied to different test specimens to address certain scientific
issues. Parts of the thesis relate to the calibration of the system model for virtual sensing by operational
modal analysis.
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Resumé

Offshore-konstruktioner udsættes for et hårdt miljø, hvor de vekslende bølger kontinuerligt belaster
konstruktionerne, og disse kræfter medfører initiering og udbredelse af revner i strukturerne. Med andre
ord akkumulerer konstruktionerne skader i form af udmattelse af materialet, hvilket til sidst fører til
strukturel svigt. For at undgå udmattelsesbrud er driftslevetiden for en konstruktion begrænset til en
design-levetid, hvor konstruktionen er sikker under drift. Denne designproces er baseret på forsigtige
stokastiske vurderinger, normer og industristandarder, der forenkler den faktiske struktur og miljø på
en sådan måde, at det indebærer en lille risiko for konstruktionssvigt.

Da mange strukturer i Nordsøen nærmer sig afslutningen på designlevetiden, står ejerne over for et
dilemma: enten skal de forlade feltet eller erstatte strukturer. En helt anden mulighed er udvidelse af lev-
etiden af de eksisterende konstruktioner. Dette kræver en reduktion af usikkerheden fra designprocessen
- ligesom spændingshistorikken i kritiske lokationer for udmattelse. Desværre er disse placeringer ofte
utilgængelige eller direkte skadelige for sensorerne grundet det fjendtlige miljø, som opstår på grund
af havet. Denne afhandling fokuserer på virtuel sensing for at estimere spændinger/tøjninger af off-
shore konstruktioner ved indirekte målinger. Afhandlingen adresserer den aktuelle og nyeste teori og
anvendelsesmuligheder, og den kortlægger nogle væsentlige problemer indenfor spænding/tøjning es-
timering. I denne afhandling anvendes spænding/tøjning estimering på forskellige testeksempler for at
adressere visse videnskabelige problemer. Dele af afhandlingen vedrører kalibrering af systemmodellen
til virtuel sensing ved anvendelse af operationel modal analyse.
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Chapter 1

Introduction

�
Success is a science; if you have the con-
ditions, you get the result

�
Oscar Wilde

This chapter is an introduction to the background, motivation, aim, and outline of the Ph.D. project.

1.1 Background

The sea is a harsh and hostile environment for offshore structures that must withstand the severe forces
of the environment for the entirety of their service life, as shown in Fig. 1.1. Offshore structures are
subjected to an irregular load history of fluctuating environmental and operational forces. These forces
cause initiation and propagation of cracks in the structure, meaning, offshore structures accumulate fa-
tigue damage. This eventually leads to fatigue failure if a structure remains unchecked. Consequently,
the fatigue design along with an operational lifetime and planned inspections of the integrity should
prevent fatigue failures and ensure safe operations so an offshore structure meets its intended functions
throughout its lifetime.

From a design perspective, the load history of an offshore structure is, however, difficult to predict
and therefore quite uncertain. The practical design of offshore structures allows for these uncertainties
by considering the load as a stochastic process. The calculation of the load history is based on precau-
tious norms and standards and it represents a simplified version of the reality. The entire design process
of offshore structures is based on risk assessments due to high levels of uncertainties related to the en-
vironmental conditions and the material properties. Generally, fatigue life assessments entail significant
uncertainties [1]. These uncertainties accumulate during the design phase and they affect the estimated
lifetime of the structure [1, 2]. To ensure safety during operation, offshore structures have to be inspected
regularly [1]; however, subsea inspections are expensive and dangerous. Visual inspections are limited
since they are unable to detect ”root cracks” in welded joints before the cracks have grown through the
weld.

Furthermore, the numerical model applied in the design process is an approximation of the structure
under the actual conditions. The structure is made from materials with inherent errors of unknown
levels and the boundary condition must be estimated before construction. This approximation of the
actual structure creates uncertainty in the fatigue design.

A great deal of effort has been put into the field of structural health monitoring through the last
three decades [3, 4]. Unfortunately, there are several issues that complicate the monitoring of offshore
structures [3, 4]. The hostile environments make the platforms abstruse and this hinders inspections. The
corrosive salt water damages subsea sensors and platform machinery introduces noise, which causes a
non-stationary structural response. Furthermore, the system changes over time due to, for instance,
ingress of water, marine growth, fluid storage levels, and soil properties. The offshore platforms are
often connected with bridges, which introduce friction and nonlinear behaviour to the structures, and
the fuel tanks on the topside might act as liquid dampers.
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Figure 1.1: Operational offshore platform, L09-BF 2007, Dutch continental shelf, NAM and Shell UK Ltd, c©Aarhus University, Department of
Engineering, Structural Dynamics and Monitoring Group

1.2 Motivation

The motivation for this Ph.D. project hails from the lifetime extension of existing structures since many
offshore platforms in the North Sea are reaching the end of their design lifetime. These oil platforms are
expensive structures and the owners are faced with a potential loss of profit by either abandoning an oil
reservoir or building a new platform. Thus, there is a potential profit if the lifetime is increased. The
actual integrity of these structures is, however, largely unknown since the lifetime is based on norms,
standards, and visual inspections that are precautious and hold a high safety consideration. Due to these
precautions, there could be a significant reserve of fatigue lifetime that would enable a lifetime extension.
In other words, the actual fatigue damage could be lower than the nominal fatigue damage calculated
in the fatigue design. Here, monitoring of the actual conditions of the environment and the structural
integrity could access the fatigue damage and enable lifetime extension. There is a potential value in
virtual sensing, which is the research field of extending physical sensors through a system model to
quantities or measurements (virtual sensors) in unmeasured locations. Virtual sensing is applicable for
an estimation of the full-field stress history of an offshore structure, see Fig. 1.2, and this stress estimation
enables a fatigue assessment of the structure. A review of virtual sensing with respect to stress/strain
estimation is given in Chapter 3.

The principle of lifetime extension with virtual sensing is illustrated in Fig. 1.3. The designed lifetime,
T, of the structure is estimated based on the given risk assessment for the structure. We start monitoring
the structure at a certain time and we begin estimating the stress history of the structure. Based on these
stresses, we calculate the fatigue damage for the monitoring period. An appropriate forecasting model
is created to predict the accumulated fatigue damage so the expected lifetime will increase to T1. The
actual damage is assumed to be lower than the nominal damage. We assume the stresses are related to
the environmental conditions; therefore we develop a correlation model from the actual fatigue damage
and environmental conditions during our monitoring period. Based on past environmental conditions,
we estimate the actual damage at the start of our monitoring period and we combine the two forecasting
models of past and future to obtain a new predicted lifetime, T2.

https://eng.au.dk/en/
https://eng.au.dk/en/
https://eng.au.dk/en/research/civil-and-architectural-engineering/structural-engineering-and-mechanics/structural-dynamics-and-monitoring/
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Figure 1.2: The principle of stress/strain estimation studied in this Ph.D. thesis
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Figure 1.3: The principle of life extension using Palmgren-Miner rule for fatigue damage
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Far-field stress

Local stress

Figure 1.4: Definition of local stresses and far-field stresses (the target of this Ph.D. project)

1.3 Aim of Ph.D. project

Unsolved issues still exist for stress/strain estimation that must be addressed before lifetime extensions
can be realised. Therefore, this Ph.D. project is created to study selected issues for virtual sensing in-
tended for the lifetime extensions of offshore structures.

The Centre for Oil and Gas - DTU/Danish Hydrocarbon Research and Technology Centre (DHRTC)
funded this Ph.D. project, which is a part of a larger project. This Ph.D. project is performed in collab-
oration with the Technical University of Denmark (DTU), where the author, Marius Tarpø, collaborated
with fellow PhD student, Bruna Nabucco - DTU, as part of the "Stress Estimation" group. This Ph.D.
student, Marius Tarpø, researches operational modal analysis and stress estimation (virtual sensing).

In this project, we focus on virtual sensing to estimate the stress/strain history of offshore structures.
By installing a network of sensors above water, virtual sensing estimates the stress/strain history of
the entire structure. Ideally, this enables us to perform fatigue analysis of any fatigue-critical location
without sensors at the given location. The goal is not to obtain a perfect stress history but rather to
reduce the uncertainty compared to the fatigue life from the design process. It should be noted that we
limited the project to global structural stresses and not localised stresses. In other words, the project is
limited to far-field stress estimation and not local stresses (such as stress concentrations near welds), as
illustrated in Fig. 1.4.

This Ph.D. project has two research topics: 1) operational modal analysis for the estimation of reliable
modal parameters to update the system models, 2) virtual sensing for stress estimation of the structure.
ja

1.4 Outline of Ph.D. thesis

The first part of the thesis relates to the preliminaries, literature review, and the state of the art. The
second part includes the main research contribution conducted by the author during the Ph.D. project
and it is organised as appended papers whereby each chapter is dedicated to a scientific paper. Each
chapter introduces the reader to the topic/scientific problem, which the paper addresses, and it explains
its affiliation to the Ph.D. project. The following sections outline the contributions by the author to the
paper, summarise the main findings of the paper, and, finally, reflect on the contribution to the overall
Ph.D. project. Then each paper is appended in the end of the chapter where they appear identical to the
published/submitted versions - except for the page layout. The appended papers are intended to stand
alone outside the context of this thesis.

The research presented in this thesis is original and the results have been communicated to the re-
search community in the form of peer-reviewed articles in relevant international journals along with
conference papers and presentations of these papers at international conferences.
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Chapter 2

Basic theory

�
The essence of math is not to make simple
things complicated, but to make compli-
cated things simple

�
Stanley Gudder

In this chapter, we introduce the fundamental theory of structural dynamics and operational modal
analysis used throughout the Ph.D. thesis. We do not base this chapter on any appended papers but
it is based on established and well-documented theory. For more extensive explanations of the theory,
the reader is referred to textbooks on structural dynamics [1, 2], operational modal analysis [3, 4], and
fatigue [5–7].

2.1 Structural dynamics

The dynamic response of a linear and stationary system is calculated by the equation of motion (an
ordinary second-order differential equation) [1, 2].

Mÿ(t) + Cẏ(t) + Ky(t) = x(t) (2.1)

where M ∈ RN×N , C ∈ RN×N , and K ∈ RN×N are the mass, damping, and stiffness matrix, y(t) ∈ RN ,
ẏ(t) ∈ RN , and ÿ(t) ∈ RN are displacement, velocity, and acceleration of the system, x(t) ∈ RN is the
external load/excitation vector, and N is the total degrees-of-freedom (DOF) of the system.

In the case of proportional damping, we use the undamped equation of motion to set up an eigen-
value problem.

M−1Kφi = ω2
i φi (2.2)

where ωi is the angular frequency of the ith mode and φi ∈ RN is the undamped mode shape (normal
mode) for the ith mode.

N eigenvalues and linearly independent eigenvectors exist [8] if the mass and stiffness matrices are
symmetric and semi-positive definite matrices with full rank [2]. Thus, the modal matrix, Φ = [φ1, φ2, . . . , φN ]
∈ RN×N , span RN [2] and it is a basis of eigenvector for RN [8]. Therefore, any response, y(t), in RN is
a linear combination of these mode shapes and this is called the modal superposition.

y(t) =
N
∑

i=1
φiqi(t)

= Φq(t)
(2.3)

where q(t) ∈ RN is the modal coordinate (linear combination) of the modes and Φ is the modal ma-
trix containing the mode shapes as column vectors. This is a linear coordinate transformation from the
physical space into the modal space. These mode shapes decorrelate the equation of motion if we insert
Eq. (2.3) into Eq. (2.1) and premultiply with the transposed modal matrix, and apply the orthogonal
properties of the modal matrix to the mass and stiffness matrix [1, 2].

q̈(t) + [2ζiωi] q̇(t) +
[
ω2

i

]
q(t) =

[
1

mi

]
Φ>x(t) (2.4)
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This enables us to calculate the response as a superposition of independent modal coordinates. We
can use the Duhamel integral to calculate each modal coordinate [1, 2]

qi(t) =
t∫

0
hi(t− τ)φ>i x(τ)dτ , hi(t) ∗φ>i x(t) (2.5)

Thus, the total response is given as:

y(t) =
N
∑

i=1
φiφ

>
i

t∫
0

hi(t− τ)x(τ)dτ (2.6)

where hi(t) ∈ R1 is the impulse response function for mode ith.
We set up the impulse response function matrix, H(t) ∈ RN×N .

H(t) =
N
∑

i=1
φihi(t)φ>i (2.7)

Finally, the response of the entire system is the convolution of the impulse response function matrix
and the load.

y(t) =
t∫

0
H(t− τ)x(τ)dτ , H(t) ∗ x(t) (2.8)

2.2 Operational modal analysis

Operational modal analysis is an analysis of the random response of a system under operational con-
ditions and it enables an extraction of the modal parameters. Operational modal analysis is a multidis-
ciplinary research field that combines different fields: structural/mechanical dynamics, linear algebra,
statistics, and signal processing. We will focus on correlation-driven operational modal analysis where
we use the correlation function matrix of the response as free decays corresponding to the modes in the
system. In operational modal analysis, we assume that the excitation is white noise and the system is
linear and time invariant [3]. We have a finite time length of the random vibrations so the extraction
estimates the modal parameters [9] since all statistical properties have some uncertainty due to the finite
amount of data.

2.2.1 Correlation function matrix

The correlation function matrix is defined as [9]

Ryy(τ) , E
[
y(t)y>(t + τ)

]
(2.9)

where Ryy(τ) ∈ RN×N is the correlation function matrix of the response.
We insert the response from the Duhamel integral, Eq. (2.8).

Ryy(τ) = E

[
t∫

0

t∫
0

H(t− α)x(α)x(β)>H>(t− β)dαdβ

]
=

t∫
0

t∫
0

H(t− α)E
[
x(α)x(β)>

]
H>(t− β)dαdβ

(2.10)

Thus, we have the general theorem that describes the relationship between correlation function ma-
trix of input and output for multiple degree-of-freedom systems.

Ryy(τ) = H(−τ) ∗Rxx(τ) ∗H>(τ) (2.11)

where Rxx(τ) ∈ RN×N is the correlation function matrix of the excitation, x(t).
Brincker [10] calculated the analytical correlation function matrix for general damping.

Ryy(τ) = 2π
N
∑

i=1

(
γiφ

>
i eλiτ + γ∗i φ

H
i eλ∗i τ

)
, τ ≥ 0 (2.12)
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where γi ∈ CN is the modal participation vector, φi ∈ CN is the complex mode shape due to non-
proportional damping, and λi is the modal pole for ithmode. Therefore, the correlation function matrix
is equivalent to multiple free decays of the system.

2.3 Mechanics of material

2.3.1 Strain and stress

Stress is a measure of the internal forces within a material while strain is a relative deformation of the sys-
tem caused by the stress [11]. In general, the relationship between stress and strain is material dependent
and the stress-strain curve/diagram displays this by experimental material studies, see Fig. 2.1.

Stress, σ

Strain, ε

Elastic domain Plastic domain Strain hardening Necking

Figure 2.1: Stress-strain curve/diagram of typical structural steel

In the elastic domain at low levels of deformation, a linear relationship exists between stress and
strain through the modulus of elasticity, E, - called Hooke’s law [11].

σ = Eε (2.13)

where σ is the stress and ε is the strain.

2.3.2 Dynamic strain/stress

Since strain is a measure of the deformation of a material, a linear relationship exists between the vibra-
tions and the strain response of a system.

ε(t) = By(t) (2.14)

where ε(t) ∈ Rn is the strain response vector, B ∈ Rn×N is the displacement-to-strain transformation
matrix, and n is the number of DOFs for stress/strain in the system.

Next, we insert Eq. (2.3) into Eq. (2.14)

ε(t) = BΦq(t) (2.15)

We see that both the response, Eq. (2.3), and strain, Eq. (2.15), include the modal coordinates. There-
fore, we can find a basis for the strain response with the same linear combination as for the response.
This basis is called the strain mode shapes, Φε, where each strain mode shape is the static strain caused
by a deflection of a mode shape.

Φε = BΦ (2.16)

With the strain mode shape, we have a similar modal decorrelation for the strain response as for the
displacement.

ε(t) = Φεq(t) (2.17)
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Figure 2.2: An example of a derived SN curve based on experimental data [12]. The assumption of log-normal distribution for the SN curve is
illustrated to show how the 97.7% survival probability is obtained for the design fatigue strength.

2.4 Fatigue

This section will give a brief introduction to fatigue in materials science and the reader is referred to [5, 6]
for further elaboration on the topic. We refer to [6, 7] for extensive information on the recommended
practices for fatigue design of offshore steel structures.

The fluctuating stress, internally in a material, causes fatigue due to a fatigue action. In general, a
fatigue action is a load that causes fatigue in the material [7]. Often, a single fatigue action does not
cause yielding of the material but these actions are repetitive and cause fluctuating stress. In fatigue,
we deal with two phases: the crack initiation and the crack propagation. In the first phase, microcracks
are formed at the surface and they continuously propagate. In the end, fatigue failure occurs if crack
propagation is allowed. Fatigue failure is a fracture of a material caused by the cracks. The number of
stress cycles at fatigue failure is called the fatigue life and it primarily depends on the stress amplitude
(or stress range) and the mean stress [5]. The total fatigue life, Ntotal , equals the number of cycles in the
crack initiation phase, Ni, and the crack propagation phase, Np.

Ntotal = Ni + Np (2.18)

The fatigue design must ensure that the structure fulfils its intended functions in the entire fatigue
life in a safe manner. Furthermore, the calculated fatigue life forms the inspection plans for the structure
[7].

There are different fatigue analysis methods [5, 6]. In the offshore industry, the stress-life method is
the recommended practice for fatigue analysis [7], so we will focus on the stress-life method, where we
utilise the so-called SN curves for the fatigue analysis. Alternatively, we apply fracture mechanics to the
fatigue analysis when it is deemed appropriate [7]. In the SN curve, the fatigue life is expressed as the
following function

Niσ
m
i = C (2.19)

where Ni is the fatigue life for the given stress amplitude, σi, m is the "slope" of the SN curve, and C is
the fatigue capacity (or intercept on the N-axis at a stress amplitude of one).

The design SN curves are derived from fatigue tests where we assume that each fatigue life is log-
normal distributed to obtain 97.7% probability of survival, see Fig. 2.2.

For fatigue damage, the Palmgren-Miners rule defines partial damage as a consumption of the fatigue
life caused by a single stress cycle [5].

Di =
1
Ni

(2.20)
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where Di is the partial fatigue damage and Ni is the number of endurable cycles before fatigue failure
for the given stress range, ∆σi, and mean stress, σm,i of the stress cycle.

2.4.1 Variable amplitude loading

For offshore structures, the amplitude of the fatigue actions varies; thus, we must apply cycle counting
[5] such as rainflow counting [13]. For fatigue, the range or amplitude of the stress cycles is of bigger
importance than the frequency/period of the cycle.

The Palmgren-Miner rule states that the accumulated fatigue damage is a summation of all partial
damage caused by each stress cycle.

D =
ncycles

∑
i=1

Di =
ncycles

∑
i=1

1
Ni

(2.21)

where ncycles is the number of cycles.
We can also divide the stress cycles into nbin bins and calculate the fatigue damage.

D =
nbin
∑

i=1

ni
Ni

(2.22)

where ni is the number of cycles in the stress range corresponding to the given bin. Generally, we will
assume fatigue failure at D = 1 but there is high uncertainty regarding this value [5].

Additionally, we can rewrite the fatigue damage, from either Eq. (2.21) or (2.22), so the fatigue dam-
age is a function of the strain amplitudes by inserting Eqs. (2.13) and (2.19).

D =
N
∑

i=1

1
Ni

=
N
∑

i=1

σm
i
C

=
N
∑

i=1

Em

C
εm

i (2.23)

References

[1] R. W. Clough and J. Penzien. Dynamics of structures. CSI Computers & Structures, Inc., Berkeley,
Calif., 2nd revised edition, 2003.

[2] A.K. Chopra. Dynamics of Structures: Theory and Applications to Earthquake Engineering. Prentice Hall
International Series in Civil Engineering And. Pearson/Prentice Hall, 2007.

[3] Rune Brincker and Carlos Ventura. Introduction to operational modal analysis. John Wiley and Sons,
Inc., Chichester, West Sussex,UK, 2015.

[4] Carlo Rainieri and Giovanni Fabbroncio. Operational modal analysis of civil engineering : an introduc-
tion and guide for applications. Springer Science+Business, New York, USA, 2014.

[5] M.M. Pedersen. Introduction to metal fatigue - concepts and engineering approaches. Technical
report, Department of Engineering, Aarhus University, 2018.

[6] A. Almar-Naess. Fatigue Handbook: Offshore Steel Structures. Tapir Academic Press, Trondheim,
Norway, 3rd edition, 1985.

[7] DNVGL-RP-C203: Fatigue design of offshore steel structures. Recommended practise. Technical
report, 2016.

[8] Erwin Kreyszig, Herbert Kreyszig, and Edward J. Norminton. Advanced engineering mathematics.
John Wiley And Sons Ltd, Hoboken, NJ, 10th edition, 2011.

[9] Julius S. Bendat and Allan G. Piersol. Random data: analysis and measurement procedures. Wiley-
Blackwell, Hoboken, N.J., USA, 4th edition, 2010.

[10] Rune Brincker. On the application of correlation function matrices in oma. Mechanical Systems and
Signal Processing, 87:17–22, 2017.

[11] J.M. Gere and B.J. Goodno. Mechanics of materials. Cengage Learning, 7th edition, 2009.
[12] Gary Marquis and Jussi Solin. Long-life fatigue design of GRP 500 nodular cast iron components. Number

2043 in VTT Tiedotteita - Meddelanden - Research Notes. VTT Technical Research Centre of Finland,
Finland, 2000.

[13] C. Amzallag, J.P. Gerey, J.L. Robert, and J. Bahuaud. Standardization of the rainflow counting
method for fatigue analysis. International Journal of Fatigue, 16(4):287 – 293, 1994.





15

Chapter 3

Narrative literature review of
stress/strain estimation

�
It’s not enough to be up to date, you have
to be up to tomorrow

�
David Ben-Gurion

In this chapter, we review the literature on stress/strain estimation, create a new terminology for virtual
sensing, and discuss issues related to stress/strain estimation. This work is summarised in a baseline
that we have used for planning and framing the Ph.D. project.

3.1 Introduction to virtual sensing and stress/strain estimation

Stress or strain estimation is known by many names and terms: stress/strain prediction, reconstruction of
unmeasured stress/strain, fatigue prediction/estimation, hybrid modal analysis, full-strain fields, full-
field stress/strain estimation, full-field stress/strain distribution, virtual sensing, soft sensing, full-state
estimation, etc.. Generally, there is a lack of consensus and common terminology in the field. In this
chapter, we will use the term stress/strain estimation.

Stress/strain estimation is a subsection of virtual/soft/inferential sensing, which is the science of ex-
tending physical measurements to unmeasured locations [1–5]. We will use the term "virtual sensing"
but the reader should note that the two terms "virtual sensing" and "virtual sensors" are used inter-
changeably in the literature. Virtual sensing is a state observer and it has similarities to regression and
extrapolation, prediction, and forecasting analyses. A virtual sensor is an alternative to a physical sensor,
which directly measures a desired quantity of a system. We should, however, only apply virtual sensing
when it is advantageous in comparison to its alternative. Put simply, virtual sensing is advantageous
when we desire measurements of a quantity at a given location but the installation of physical sensors is
restricted and/or expensive or the quantity is undeterminable by direct measurements. Virtual sensing
creates virtual sensors, which indirectly measure/estimate this desired quantity by converting the phys-
ical sensors. Furthermore, virtual sensing is either model-based (analytical), data-based (empirical), or
any combination of the two.

Unfortunately, a common definition and terminology of virtual sensing are not widely accepted in
the literature. In the context of this Ph.D. project, we use the terminology from [1, 2] as baseline for the

Physical
sensors

System
model

Process
model

Virtual
sensors

Figure 3.1: Flowchart of virtual sensing
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Physical sensors

System model

Ω

Process
model Virtual sensor

Ω

Figure 3.2: Venn diagrams of virtual sensing

one created and applied in this chapter. In this terminology, we need three components to create virtual
sensors that we term: system model, physical sensors, and process model, as outlined in Fig. 3.1. The
system model could have any form and format but the model contains information on the system and
the sensors. In the terms of control theory, the model holds the different states, which the system can be
in. We describe the system model in section 3.3. The physical sensors measure physical quantities and
the term includes processing of the measurements, see section 3.4. The process model is a state estimator
that estimates the full-state of the system based on both the measurements from the physical sensors and
the system model. Here, the full-state is a set of state variables or principal components, which describe
the entire system. Through the full-state, virtual sensors are available for any desired quantity in the
entire system, see section 3.5 for process models in stress/strain estimation. Fig. 3.2 illustrates virtual
sensing in terms of Venn diagrams where the system model and the physical sensors each contain a
subset of states of the full set, Ω, and the process model estimates the full union of the system model and
sensors to enable virtual sensors. We should note that the term "virtual sensing techniques" is often used
interchangeably with the term "process model" in the literature.

In stress/strain estimation, the virtual sensing provides virtual sensors (strain gauges) in any loca-
tion of the system, thus, it enables full-field stress/strain estimation of a system. Stress/strain estimation
differs from many other applications of virtual sensing in one challenging aspect. The consequences of
errors are dire since they ultimately lead to an unexpected fatigue failure with potentially fatal implica-
tions. Thus, the margin of error is small compared to other applications.

In this chapter, we will review a wide range of literature on the topic of stress/strain estimation to
provide the state of the art, with a focus on the time period of 1995 to 2019. We, however, exclude
response estimation from this literature review even though stress/strain estimation closely relates to
this. Likewise, we neglect the different statistical methods for extreme stress prediction. The reader
should note that this review is a non-systematic/narrative literature review [6] since many papers use
their own terms. It was impossible to set up a few search keywords that cover the entire body of literature
on stress/strain estimation. Hence, it has been impossible to conduct a systematic review. Therefore,
the author continuously gathered the literature throughout the entire Ph.D. project, as new terms and
studies for stress/strain estimation were uncovered. The lack of consensus in the field indicates a need
for a literature review in the field. This review might, however, be incomplete due to a potential lack of
relevant articles but it has been performed to the best of the author’s ability.

We organise the chapter as follows: Section 3.2 sets out the history of stress/strain estimation. Then
the following three sections relate to the terminology of virtual sensing, see Fig. 3.1. Section 3.3 sum-
marises the system models, section 3.4 lists some of the most commonly utilised sensors, and section 3.5
introduces the most popular process models applied to stress/strain estimation. Finally, we point out
and discuss different problems for virtual sensing in section 3.6.
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3.2 History

In the literature of virtual sensing, stress/strain estimation is successfully applied on a wide range of
mechanical and civil structures. In this section, we will summarise the history of stress/strain estimation.

3.2.1 The beginning - 1950s to 1980s

Stress/strain estimation had its tentative beginnings during the 1950s when analytic relationships be-
tween response and strain for beams or plates were investigated. In this era, the researchers primarily
focused on analytic techniques under specific excitation [7]. At this time fatigue problems arose due to
broad-banded random vibration in the aerospace industry [7]; hence, analytical expressions and rela-
tionships between vibrations, stress/strain, and fatigue life were investigated [8]. In 1960, F. V. Hunt
[9] found that the strain response is proportional to the velocity for any elastic body and Stephen H.
Crandall [10] extended this relation between strain and velocity in 1962. The same year, Eric E. Ungar
[11] derived expressions on the relationship between maximum stress and modal displacement or modal
loadings for beams and plates vibrating at resonance. In 1970, S.M. Stearn [12] derived expressions and
relationships for the likely variance of mean square stress, strain, and acceleration. The included articles
merely form a small section of the literature from this era regarding the analytic expressions.

3.2.2 1990s

In 1995, an early version of the modal expansion was introduced for strain estimation by Okubo and Ya-
maguchi [13] where it was called displacement-to-strain transformation. It used a projection or transfor-
mation matrix that projects and transforms the response to the strain response. Although the formulation
is different to the later transformation termed ”modal expansion”, it works in a similar way - through
pseudo inverse matrices. In 1995, Koss and Karczub [14] used the analytic bending wave solution for
beams along with the frequency response function to estimate strain in beams. D. Karczub [7] wrote a
Ph.D. thesis on the prediction of dynamic strain in 1996 where he focused on analytic expressions for the
estimation process. In 1998, Seo et al. [15] applied the displacement-to-strain transformation in a manner
close to modal expansion. In 1999, Karczub and Norton [16] applied finite difference methods to predict
dynamic strain for a clamped beam and clamped plate in the laboratory.

3.2.3 2000s

In 2001, N. Sehlstedt, [17] proposed a method - hybrid modal analysis - for calculating the dynamic
strain tensor field that resembles the modal expansion technique in the frequency domain. Here, the
modal coordinates are called the Fourier coefficients.

In 2005, Hjelm et al. and Graugaard-Jensen et al. [18, 19] presented a full-field strain estimation
technique using the modal expansion and applied it to a laboratory structure and a lattice tower under
operational conditions using a finite element model (system model) and operational modal analysis. This
formulation of modal expansion is the first version of the algorithm used today. Furthermore, Hjelm et
al. [20] showed - for risk-based inspections - that the number of planned inspections depends on the
uncertainty of the load history and that stress estimation reduced the number of inspections by 50% for
the given case study.

In 2007, G. M. Lee [21] calculated the displacement-to-strain transformation matrix by the frequency-
response-function between the excitation force and the response on simulated data. Thus, the technique
requires information on the excitation. In 2009, Pelayo et al. [22] applied modal expansion to a cantilever
beam under random excitation in the laboratory using a finite element model (system model) and oper-
ational modal analysis where they showed that updating the system model corrected the amplitude of
the strain estimation.

3.2.4 2010s

As the first researchers to do so, Papadimitriou et al. [23] applied the Kalman filter to strain estimation
in numerical simulations in 2011. In a series of similar papers, Pingle et al. [24–27] applied modal
expansion to numerical studies to study the effect of the number of mode shapes and the number of
sensors for stress/strain estimation. They found that the set of mode shapes should span the majority
of the response, the number of sensors should allow for the least-squares minimisation process, and the
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position of sensors should result in a linearly independent set of truncated mode shapes (corresponding
to the position of sensors).

In 2012, Avitabile and Pingle [28] estimated the strain response on a test specimen in the laboratory.
Aenlle et al. [29] applied strain estimation on a scale model of a two-storey building in 2013. The same
year, Papadimitriou et al. [30] used the Kalman filter in the modal domain to estimate the strain response
of a steel beam in the laboratory. They found drift in the estimated displacement caused by the numerical
integration of the measured acceleration from accelerometers inside the Kalman filter. The drift was,
however, successfully removed by a high-pass filter. Avitabile et al. [31] used modal expansion and
strain estimation for damage detection in a numerical case study.

In 2014, Ren and Zhou [32] applied the Kalman filter on a simulated truss structure to estimate the
strain response. Erazo and Hernandez [33] proposed a model-based observer for state and stress esti-
mation (an adaptive filter) that resembles the Kalman filter in the modal domain. Jo and Spencer [34]
applied the Kalman filter with multi-metric (sensor fusion) to estimate the strain response of a numerical
truss structure.

In 2015, Palanisamy et al. [35] studied strain estimation in a numerical simulation using the Kalman
filter for non-zero mean excitation. They showed the potential of multimetric sensor networks where tilt
sensors and accelerometers were the best combination. Furthermore, they found that accelerometers are
inappropriate for the estimation of the quasi-static response near 0 Hz from the non-zero mean excitation.
In the same year, Maes et al. [36] applied a Kalman filter to the strain estimation of offshore monopile
wind turbines in the Belgian North Sea with high precision. This was one of the first times the Kalman
filter was applied to an actual structure outside a laboratory. In 2015, Pelayo et al. [37] applied modal
expansion on laboratory tests using expanded experimental mode shapes from an operational modal
analysis. Gevinski et al. [38] applied modal expansion in the frequency domain to a test plate in the
laboratory but they used the term hybrid modal analysis. Baqersad et al. [39] used modal expansion
with 3D point tracking to estimate the full-field dynamic strain on a wind turbine rotor in the laboratory.
They found that the set of mode shapes is a critical part of modal expansion. In a similar paper, Baqersad
et al. [40] applied stereophotogrammetry as the physical sensor for modal expansion on the same test
specimen. J. Kullaa [41] combined empirical and analytical virtual sensing for stress/strain estimation
using minimum square error estimation and modal expansion in a numerical study.

In 2016, Maes et al. [42] compared dynamic strain estimation using the Kalman filter, the joint input-
state estimation algorithm (an adaptive filter technique similar to the Kalman filter), and the modal
expansion on an offshore monopile wind turbine in the Belgian North Sea and applied data fusion to
combine accelerometers and strain gauges. They concluded that the three techniques are competitive
and interchangeable while the inclusion of strain gauges - sensor fusion - has minor improvements. In
the same year, J. Kullaa [43] applied dynamic substructuring in the system model for virtual sensing in
three numerical simulations. Due to the substructuring, only a part of the structure is needed, thus, re-
ducing the potential for modelling errors in the system model. Iliopoulos et al. [44] used three frequency
regions for modal expansion to estimate the strain response of an offshore wind turbine. For the quasi-
static response, they performed a static calculation of the deflection shape by a representative load. To
estimate the fatigue damage, Dertimanis et al. [45] integrated the dual Kalman filter with the unscented
Kalman filter and applied it on a numerical case study. Dertimanis et al. [46] applied an augmented
implementation of the unscented Kalman filter for fatigue estimation on a numerical case study.

In 2017, in order to study strain estimation on a wave-induced structure, Skafte et al. [47] applied
modal expansion with Ritz vectors (static deflection shapes) to account for the quasi-static response
caused by waves and estimated the strain response on a scale model of an offshore platform excited
with shakers mimicking a wave spectrum. Similarly and simultaneously, Iliopoulos et al. [48] applied a
multi-banded modal expansion on an offshore monopile wind turbine including the quasi-static strain
contributions from thrust loads by combining accelerometers and strain gauges. Palanisamy et al. [49]
studied multimetric sensor network (sensor fusion) for the Kalman filter using a simulated case study.
Ren and Zhou [50] compared the augmented Kalman filter and modal expansion technique on a sim-
ulated truss structure. In this study, the modal expansion gave "more satisfactory results" [50]; however,
Ren and Zhou concluded that the techniques are competitive and their performances are interchange-
able. In the work of Aenlle et al. [51], modal expansion is applied to a fatigue test of a cantilever beam.
Giagopoulos et al. [52] proposed a framework for the estimation of fatigue damage using the known
input/load and a high-fidelity finite element model, although, the paper revolves more around finite
element updating than stress/strain estimation. In a numerical study, J. Kullaa [53] used Bayesian em-
pirical virtual sensing to reduce noise from the physical sensors and modal expansion to estimate the
strain response.
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In 2018, Lu et al. [54] used pattern recognition (machine learning algorithms) for stress estimation on
the Shenzhen Bay Stadium. Stress values from a finite element were used to build the pattern library and
testing library while actual stress measurements from the structure were used for the observed library.
Thus, this virtual sensing technique requires training data to build up a library. The same year, Noppe
et al. [55] compared modal expansion with multiple frequency band-pass filters and the Kalman filter
on an offshore wind turbine from the wind farm Belwind. Both virtual sensing techniques have similar
strain estimates in the time domain but in the frequency domain the modal expansion technique has a
better correlation to the measured strain response than the Kalman filter. Luthe et al. [56] applied modal
expansion for strain estimation on a cantilever beam in the laboratory. Chen et al. [57] used modal
expansion for a test specimen submersed in a water tank with success. Lagerblad et al. [58] applied
Kalman filters to a full-scale fatigue test of a truck chassis in the laboratory. Here, the estimated fatigue
damage differed to the measured fatigue damage by 25% and they contributed this to modelling errors of
the complex truck component and tuning errors of the filters. Roberts et al. [59] used modal expansion
on a test specimen in the laboratory for strain estimation. Baqersad and Bharadwaj [60] used modal
expansion with strain gauges as physical sensors to estimate the full strain field of a cantilever beam in
both a numerical study and a laboratory test.

In 2019, Deng et al. [61] applied learning to modal expansion by machine learning. The technique
used the data from binocular cameras and strain gauges to self-learn the mode shapes of the structure and
they subsequently validated the technique with the same strain gauges. J. Kullaa [62] applied Bayesian
empirical (data-driven) virtual sensing to modal expansion to reduce measurement noise on sensors
and the technique was validated by simulations. Furthermore, Nabiyan et al. [63] applied the modal
expansion technique on a simulated wind turbine. Risaliti et al. [64] applied the augmented extended
Kalman filter to nonlinear mechanical systems by the means of the implicit equation of motion. The
process model was validated on a suspension test rig in the laboratory. Henkel et al. [65] applied modal
expansion with multiple frequency bands to estimate the strain response of the subsoil part of an offshore
wind turbine in the Belgian North Sea with good accuracy for wind velocities of 4-9 m/s. In 2019,
Pedersen et al. [66] compared the modal expansion with two adaptive filter algorithms - the Kalman
filter and the joint input-state estimation algorithm - where they studied the effect of the number of
sensors. Based on their laboratory test, the modal expansion was the preferred technique when the
number of sensors exceeds the number of applied modes, while the joint input-state estimation algorithm
was the preferred method when this was not the case. Bharadwaj et al. [67] used a transformation
matrix for strain estimation using digital image correlation to extract strain mode shapes. They found
that the set of mode shapes depends on the loading. Papadimitriou et al. [68] discussed a framework
for the remaining fatigue lifetime prognosis using stress/strain estimation. In two papers, Giagopoulos
et al. [69, 70] proposed a framework for updating the system model by applying a covariance matrix
adaptation evolution strategy to update a high-fidelity finite element model applied to fatigue damage
estimation. Utilising the updated finite element model and the known input/load, Giagopoulos et al.
[69, 70] calculated the strain of structure. Palanisamy et al. [71] applied the Kalman filter and a buffering
technique with sensor fusion to estimate the strain response of bottom-fixed offshore structures with
quasi-static and non-stationary excitation in a numerical and laboratory study with a circulating water
channel setup.

3.2.5 Discussion

Stress/strain estimation started with analytic expressions, then the displacement-to-strain transforma-
tion matrix started to gain momentum. In 2005, Hjelm et al. [18, 20] and Graugaard-Jensen et al. [19]
extended the transformation matrices into the formulation of modal expansion used today. Since Pa-
padimitriou et al. [23] introduced the Kalman filter to stress/strain estimation in 2011, many contribu-
tions have been made to the field using adaptive filters [33, 72–74]. In recent years, machine learning has
been introduced to stress/strain estimation. In the literature, the Kalman filter and the modal expansion
have been proven to be competitive and interchangeable in terms of performance [42, 50, 55, 66]. Fig. 3.3
shows the timeline of the literature in stress/strain estimation from 1995 to 2019 while Fig. 3.4 illustrates
the number of publications in the same time period. Based on the number of articles, the research activity
in the field has increased in the last decade.

The general formulation and theory of modal expansion are unchanged since the introduction in 2005
[18–20]. Ever since, however, the literature has introduced new, advanced, and complex process models
for stress/strain estimation and these include adaptive filters and machine learning techniques. At the
time of writing, they are not superior to modal expansion and, at best, these new process models are
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Figure 3.3: Timeline of literature for stress/strain estimation reviewed in this chapter from 1995 to 2019

competitive and interchangeable, performance-wise, to the modal expansion from 2005 [42, 50, 55, 66].
For stress/strain estimation, the accuracy of the process model is largely the same today as in 2005. Thus,
despite the increasing research activity in the field, stress/strain estimation has seen little progress since
2005 in terms of accuracy in the process model.

Generally, there is little consensus in the literature for stress/strain estimation and many papers uses
their own terminology. Unfortunately, some papers do not acknowledge or reference the previous rele-
vant literature on the subject or they claim to be the first to propose a stress/strain estimation technique.
This could be attributed to the many different terms and the general lack of consensus in the research
field. This results in independent and separated subfields that revolve around the same research topic:
stress/strain estimation. Moreover, this yields many similar articles that repeat or revise already pub-
lished research.

In the past two decades, stress/strain estimation has been successfully applied to a wide range of
test specimens and research has proven the feasibility under a controlled environment. We have anal-
ysed the distribution of application in the case studies in Fig. 3.5 and grouped the articles depending
on the application: numerical, laboratory, and operational (applications under actual conditions outside
the laboratory). Fig. 3.6 a) illustrates the distribution of all applications in the reviewed articles. Most
research relies on test specimens in a laboratory to validate and evaluate stress/strain estimation under
a controlled environment. The second biggest group is the numerical simulations, where all conditions
are modelled and controlled. These two groups of applications are highly controlled, hence, an evalua-
tion of stress/strain estimation misses the achievability and practicality of the techniques. Merely 13%
of the reviewed articles include applications on systems in operation under the actual conditions where
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Figure 3.6: Categorisations and distribution of the reviewed articles from 1995 to 2019 in pie charts. a) The distribution of all applications, and
b) the distribution of process model

the complexity tends to increase. Here, most articles involves wind turbines from the Belgian North
Sea while other real-world applications include a lattice tower and the Shenzhen Bay Stadium in China.
These applications test the achievability and practicality of the applied stress/strain estimation tech-
nique. At the technology readiness level of stress/strain estimation (at the time of writing), numerical
simulation and laboratory testing of linear and stationary systems add little value to the research field.
Based on this literature review, the readiness level of stress/strain estimation calls for real application in
an operational environment.

We have analysed the distribution of applied process models in Fig. 3.6 b). In the literature, the most
commonly applied process model is the modal expansion with 60% of applications while the various
versions of Kalman filters take up 27%. Thus, we will introduce and discuss these two process models in
section 3.5.

3.3 System model

Common for all virtual sensing techniques is that we need to add information regarding the measure-
ments and the system to the process model. The process models, however, might require different in-
formation depending on the formulation and theory of the process model. Generally, this information
is called the system model, mathematical model, or digital twin. The system model describes the sys-
tem using mathematical expressions (variables, functions, and/or equations) [75] and it holds the state
variables of the system. This model contains the general assumptions of the system and we term the
process of setting up this model as "mathematical modelling". For virtual sensing, a system model re-
lates the spatial-limited network of sensors to the system. Thus, it contains the geometrical information
of the system and sensors while the system model holds all essential physical properties of the system
required for the particular application and it could include information on the excitation. Furthermore,
the configuration of the system model depends on the implementation of the process model.

For stress/strain estimation, the most common system model is the finite element model of the sys-
tem, but it could take any form. It must, however, contain the necessary information required by the
process model. For example, the system model could consists of mathematical shape functions [76].

In the following subsections, we will introduce some key concepts for system models.

3.3.1 Model evaluation and calibration

The accuracy of the system model is essential to the success of virtual sensing. A system model, which
perfectly emulates the actual system, provides the optimal basis. Unfortunately, all mathematical models
are approximations of the actual system. These approximations result in modelling errors in the system
models that influence the quality of virtual sensing. We can apply model evaluation (validation) to access
the level of modelling errors where the evaluation criteria depend on the application of virtual sensing.

To reduce modelling errors, we must calibrate and update the system model to better resemble the
actual properties of the system. For stress/strain estimation, these properties are often modal parameters
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Figure 3.7: Venn diagram of model simplification, a) the full system model with redundant information and area of interest for the virtual
sensing application, and b) simplified system model with the essential information for the particular application

from modal analysis: either experimental modal analysis [77] or operational modal analysis [78]. See
[69, 70, 79, 80] for more on model updating using modal parameters as regards finite element models.

3.3.2 Model simplification

We merely need the essential information of the system in the system model for a successful applica-
tion of virtual sensing. This essential information is the smallest possible set of state variables, which
describes the desired behaviour of the system for the particular application. Therefore, we can apply
model simplification, which is the identification and removal of the redundant information in the sys-
tem model for the particular application. Thus, it reduces the set of possible states for the system. Fig.
3.7 illustrates this simplification of the system model in a Venn diagram. There is, however, a trade-off
between the simplicity and accuracy of a model. Due to the model simplification, we have an error that
is the absolute complement of the simplified system model.

A common model simplification is modal truncation, where the system is reduced to the contribution
of a few modes (principal components). It uses the modal superposition, Eq. (2.3) page 9, to reduce the
system model using different reduction techniques such as the System Equivalent Reduction-Expansion
Process (SEREP) [81]. The modal expansion technique is another example of modal truncation since
it requires this specific model simplification where the system model is simplified to a subset of mode
shapes.

Example 3.1 - Modal truncation on offshore platform
We create a finite element model of an offshore tripod platform in Ansys using shell elements so that

the model includes 57,456 DOFs. Let us say that we are interested in the global response. We simplify
the model to a cantilever beam with an angular mass at the end so the simplified system contains five
DOFs (neglecting the translational DOF along the beam): The two translational and three rotational
DOFs describe the response of the simplified system and they roughly correspond to the first five
modes. Here, the five mode shapes contain similar information regarding the system response as the
five DOFs. Thus, we reduce the finite element model to these five modes (principal components).
This system simplification - modal truncation - is illustrated in Fig. 3.8. Due to this simplification, we
neglect the local behaviour of the structure.

3.3.3 State-to-measurement, sensitivity, and observability

In virtual sensing, a process links the physical measurements to the system model so that the process
model is able to estimate the state of the system. In this chapter, we call this the "state-to-measurement-
process". Here, the system model is reduced to the active DOFs corresponding to the number and po-
sition of the physical sensors. In mathematical terms, this reduced system model is the intersection of
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Figure 3.10: Example 3.2 - Sensitivity of reduced offshore platform: The principle of sensitivity of system model where a network of sensors
(red dots) results in a sensitive reduced system model of nine degree-of-freedom: two iterations of added noise of low levels to the sensors and
the corresponding estimated deflection shapes. The sensors have same position in a) and b) but the estimated deflection shapes are different.

the system model and the physical sensors (system model ∩ physical sensors), see Fig. 3.9. The process
makes the reduced system model sensitive where the position and number of the physical sensors deter-
mine the sensitivity of the system model in the state-to-measurement-process. Here, we apply the term
"sensitivity" from linear algebra to describe how well the reduced system model distinguishes between
states of the system in the presence of noise. The term "observability" is, however, utilised in control the-
ory and it provides us with an indication of the state variables that we can observe in the measurements
[82]. In an unstable, reduced system model, the system is ill-conditioned and several states are equally
likely or noise might dominate so we are unable to correctly estimate the full set of state variables. In
such a case, the system is unobservable and tiny amounts of noise can completely change the estimated
states. Thus, it is important that the intersection of the system model and physical sensors exhibits all
the relevant and essential state variables for the given application.

Therefore, the level of sensitivity for a system model is essential for the accuracy and reliability of
the virtual sensors. A sensitive, reduced system model is easily corrupted or dominated by noise in
the process model so the virtual sensors become erroneous. In contrast a stable system model is less
inclined to result in erroneous estimation caused by noise. Given an unstable, reduced system model,
the actual state of the system is indistinguishable based on the measurement from the physical sensors.
The reader should, however, note that each process model deals differently with the sensitivity of the
reduced system model.

Example 3.2 - Sensitivity of reduced offshore platform
In this example, we will illustrate the sensitivity of a reduced system model. We will use the

system model from example 3.1 in section 3.3.2. We simplify the system model to the five mode
shapes, see Fig. 3.8. Let us say we have a network of sensors that measure nine translational DOFs
in three nodes of the finite element model, as seen in Fig. 3.10 a). The position of sensors, however,
results in an unstable, reduced system model where we are largely incapable of estimating the third
(torsional) mode. Here, the condition number of the reduced modal matrix is 490.12, which indicates
the instability of the reduced system model. Furthermore, we calculate the rank of the reduced modal
matrix to four by a tolerance of E−4, thus, the matrix is near deficient rank.

We give the model a deflection shape and estimate this shape based on the first five modes and
the sensor with additive white Gaussian noise in two iterations. This results in two widely different
deflection shapes, see Fig. 3.10. The position of sensors in Fig. 3.10 a) and b) is the same albeit with a
tiny error due to the added noise but the estimated deflection shapes are vastly different.

To increase the stability of the system model, we could exclude the third mode from the model so
the condition number decreases to 5.7 - consistent with the near rank deficiency of the reduced modal
matrix. This indicates that third mode is unobservable for the given network of sensors.
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3.3.4 Data-driven (empirical) system model

We can base the system model on the available data of the system where we have either fully data-driven
(empirical) system models or partial data-assisted system models [83, 84]. Data-driven system models
build relationships in the data while the data calibrate and assist the mathematical modelling for the
data-assisted system model. The hypothesis of these system models is that they contain less modelling
errors since they are based on the data of the system. The reader should note that the fully data-driven
system model is limited by the data upon which it is based. Thus, we are unable to extend the system
model beyond the data without adding information to the system model.

In the literature, the expansion of experimental mode shapes is applied to stress/strain estimation
[85]. Essentially, this is a data-assisted system model since it calibrates the system model where the
expanded experimental mode shapes are a calibration of the spatial solution of the system model. The
calibration, however, depends on the accuracy of the mode shape expansion. We refer the reader to
chapter 7 page 111 for more on expansion of experimental mode shapes.

3.4 Physical sensors

In this Ph.D. thesis, the term "physical sensors" for virtual sensing includes both the sensor and signal
processing of these sensors. In this section, we list and analyse the most commonly applied physical
sensors in the literature of stress/strain estimation. This section is intended as a brief introduction to
these sensors and we refer the reader to [86] for more extensive details and information on the sensors
and to [87] for signal processing.

Generally, physical sensors are capable of measuring the observable and physical quantities (such as
displacement, deformation, weight, and so forth) of a test specimen while they are incapable of directly
measuring the external load or internal stress. Some sensors, however, transform these physical quan-
tities into other quantities (e.g. load or stress) through transfer functions under specific assumptions
[86].

We evaluate all physical sensors in terms of range (also dead band), sensitivity (or resolution), re-
peatability, accuracy, and errors caused by misalignment and calibration [86]. Some errors, such as
calibration errors, lead to erroneous amplitude of the measurement while other sources of errors, like
misalignment of the sensors, blend the desirable quantity with an undesirable component.

The accelerometer is the most commonly applied sensor for stress/strain estimation. These sensors
measure the acceleration and they are beneficial for dynamic stress/strain estimation but they have lim-
itations at low-frequency, where they are largely insensitive. Furthermore, these sensors are incapable
of measuring the true Direct Current (DC) acceleration and they are prone to tilt (the effect of gravity)
[78], see chapter 9 page 153. In stress/strain estimation, the measured acceleration must be numerically
integrated into displacements and this introduces drift into the displacement.

The strain gauges are applied in stress/strain estimation as both the primary sensor and reference
sensor, where we apply the latter to access and verify the virtual sensors. The sensors are passive trans-
ducers and they transform relative change in resistance to strain response by a proportional relationship
between the relative change of resistance and the strain of the specimen. Unfortunately, a misalignment
of a strain gauge causes the sensor to measure a combination of the desired and the transverse strain
response, and thus we measure an erroneous strain response. Additionally, the strain gauge has a high
noise floor and a limited lifespan. Furthermore, the fibre Bragg grating sensor is applicable as strain
gauges and it is a fibre optic sensor.

There are other sensors applied to stress/strain estimation, although to a lesser degree than ac-
celerometers and strain gauges. The geophone measures velocity through voltage while the gyroscope
measures the orientation and the angular velocity. The Global Positioning System (GPS) measures po-
sition in time using a satellite-based radio-navigation system. There are also the optical sensors: digital
image correlation [28, 67] or 3D point tracking [39, 40].

3.5 Process models

The process model estimates the state of the system based on the physical sensors and the system model.
Therefore, the accuracy of the estimated state depends on the physical sensors, system model, and pro-
cess model. For stress/strain estimation, there are various process models available, where the modal
expansion technique and the Kalman filter are the most popular process models, see Fig. 3.6 b).
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subspace spanned by the mode shapes, φ1 and φ2, and obtain the truncated response, ŷ(t), where all of the response orthogonal to the
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3.5.1 Analytic expressions

There are wide range of analytic expressions for the relationship between displacement and stress/strain
[7–9, 9, 11, 12] that can be used for stress/strain estimation. Many of these are based on the well-known
theory of differential equations for beams and plates. Here, the system and process model blend together
since the process model is based directly on a known system and the corresponding theory, see the
flowchart of the analytic expressions as virtual sensing in Fig. 3.11.

3.5.2 Transformation matrices and modal expansion

Transformation matrices transform the response into the strain response through matrix calculations
as the process model. These techniques use least-square regression and/or linear algebra [82, 88] to
create virtual strain gauges. These techniques compress the system model into this transformation matrix
where the system model is reduced to the column space of the transformation matrix.

In the modern versions, the transformation matrix is estimated based on a subset of spatial limited
base functions (vectors), which approximately span the response of the system. The system model con-
tains the base functions and we reduced the model to the active DOFs corresponding to the position of
physical sensors. The technique uses a linear transformation that projects the response onto the sub-
space of the reduced system model spanned by the base functions [88]. This enables an expansion of
the measured response using the full spatial base functions. Thus, these transformation techniques work
as a subspace reduction that removes any noise or response perpendicular to the new subspace of the
base functions. Fig. 3.12 illustrates this subspace reduction with mode shapes as base functions (modal
expansion). The transformation techniques must avoid an ill-posed inverse problem so they require a
redundant sensor network - more physical sensors than base functions. In other words, transformation
techniques require an overdetermined reduced system model. This limitation could be bypassed by sep-
arating the response into frequency bands with a reduced subset of the base functions for each band
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Figure 3.14: Flowchart of the Kalman filter as virtual sensing

[47, 48, 89]. Similar to least-square regression, the base functions should be linearly independent (or dis-
tinguishable) in the fitting domain to avoid rank deficiency of the transformation matrix for the pseudo
inversion [82, 88]. These techniques have two main assumptions: the base functions span the system
response of interest and there is a linear relationship between strain and displacement of the system.
There is, however, no assumption regarding excitation.

For modal expansion, the base functions are a subset of spatial limited mode shapes [90, 91]. This
technique utilises the aspect that the mode shapes of a linear system form the vector basis for the response
in RN , hence, the response is a linear combination (called modal coordinates) of these mode shapes. We
truncate the number of mode shapes to avoid an ill-posed inverse problem so their column space spans
the majority of the system response. Thus, we apply model simplification to the system model in the
form of modal truncation, see section 3.3.2. Fig. 3.13 outlines the flowchart of modal expansion. A
thorough description of modal expansion given in chapter 7 page 111.

3.5.3 Adaptive filters

The adaptive filters emerge from control theory, which uses a state-space model of the system [92]. A
common argument for the adaptive filters is that they are (probabilistic) optimal estimation algorithms
and they have the potential to overcome both modelling errors and measurement noise. These filters are
actually algorithms but they have similarities to low pass filters [93]. Thus, the adaptive filters remove
noise while they estimate the full-state of the system. The most well-known of these adaptive filters is the
Kalman filter. There are many different adaptive filters that resemble the Kalman filter in the literature:
the dual Kalman filter [72], the augmented Kalman filter [74], the joint input-state estimator [73], the
model-based observer for state and stress estimation [33], the extended Kalman filter [93], unscented
Kalman filter [93, 94], and so forth. In this chapter, we refer to all these different filters as Kalman filters
for simplicity. The flowchart of virtual sensing is outlined for the Kalman filter in Fig. 3.14 and the flow
scheme of the Kalman filter as a process model is illustrated in Fig. 3.15. The statistical background of
the Kalman filter is found in [92, 95] while an introduction for civil engineering is given in [96] and a
practical introduction to the Kalman filter is given in [93].

The Kalman filter is an adaptive filter that utilises Bayesian filtering for linear state-space models us-
ing the discrete state equation and the observation equation [92, 95]. It uses measurements and a system
model of a linear system to predict the next stage of the system. The main assumption of the Kalman
filter is that the system model has some uncertainties and the measurements contain noise. The Kalman
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Figure 3.16: Example 3.3 - Simple example of the Kalman filter: the principle behind the Kalman filter illustrated for the simple system in a).
In b), the probability density functions of the system model and the measurements fuse into a new probability density function for the
Kalman filter. The expected value from Kalman filter is the optimal prediction of the state of system given the probability density functions of
both the system model and the measurements.

filter assumes that these noise sources are white Gaussian noise with zero mean so we compute error
covariance matrices for both noise sources [92, 95]. For Kalman filters, the system models include these
error covariance matrices that the designer of the filter has to set up and it is a non-trivial task. Essen-
tially, a Kalman filter uses multivariate Gaussian distributions to compute the conditional probability
density function of the next state from the state equation of the linear system, given the probability of
the current step. This probability density function is a new Gaussian distribution [95]. The same process
is performed with the measurements from the observation equation. Given the Gaussian distributions
of the two noise sources, the Kalman filter finds the best estimate for the state and observation equation
in a closed-form solution. Hence, the Kalman filter finds the best fit given these noise sources and it is
an optimal predictor.

Example 3.3 - Simple example of the Kalman filter
In this example, we want to illustrate the simplified concept behind the Kalman filter. Let us consider
the two-DOF system in Fig. 3.16 a). We measure the system response with noise and we have a
system model with modelling errors. The observation equation uses the measurements and the state
equation applies the system model. Based on the previous data point, each equation estimates the new
response. Here, the measurement of the system response is a stochastic process and system response
based on the system model is another stochastic process. Each process is Gaussian distributed with a
mean and a variance and the Kalman filter fuses the distributions and calculates the best estimate of
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the response, see Fig. 3.16 b). The relative relationship between the variance or co-variance matrix of
two processes determines the best estimate of the Kalman filter. Put simply, it finds a weighted mean
given noisy measurements and a system model with modelling errors.

The accuracy of the Kalman filter, however, depends on the system model (including the error co-
variance matrices). Thus, the most important part of the design of a Kalman filter is an accurate system
model. To sum up, the Kalman filter requires all modal parameters - in the form of the mass, damping,
and stiffness matrix - while it requires the error covariance matrices.

The Kalman filter applies a state-to-measurement matrix to reduce the system model to the DOF
corresponding to the physical sensors [96]. This matrix directly allows for sensor fusion - the use of
different physical sensors - inside the Kalman filter. Unlike the modal expansion, the Kalman filter
works with fewer sensors than the principal components in system model.

3.5.4 Other techniques

Recently, machine learning and pattern recognition have been applied to stress/strain estimation [54, 61].
These process models are data-driven (empirical) or data-assisted techniques so the system model blends
somewhat into the process model where they automatically build the system and process models, see
the flowchart of machine learning as virtual sensing in Fig. 3.17. These learning techniques require data
from training sets and they enable stress/strain estimation in any point where a sensor trained the tech-
nique. Thus, fully data-driven techniques are incapable of full-field stress/strain estimation since they
are limited to the locations of sensors from the training sets. To obtain full-field stress/strain estimation,
we apply data-assisted techniques that require mathematical modelling aided by data. Machine learning
from one system does, however, not necessarily transfer directly to another system. This topic falls under
transfer learning. For complex and unique systems, learning algorithms require reference sensors since
it is difficult to base the learning libraries on other systems so we must build a unique library for these
systems. This is particularly the case for civil engineering, where structural designs are rarely repeated.
Machine learning has potential in stress/strain estimation for systems produced in vast quantities where
the model is directly transferable. Furthermore, we can apply machine learning to systems with tempo-
rary strain gauges, which measure the strain response in the desired locations, in the training sets. For
more on machine learning see [95, 97].

Statistical predictions have also been applied to estimate the stress/strain response but these are not
actual virtual sensing techniques. These techniques often focus on extreme stress (the maximum stress
measured in a time period) [98, 99] instead of the stress/strain time history. Therefore, we excluded them
from the literature review.

3.6 Discussion

In this section, we discuss important topics, challenges, and issues for stress/strain estimation.

3.6.1 Evaluation of virtual sensors

In the literature and/or industry, no rules or guidelines exist for the evaluation of virtual sensors. In this
section, we will discuss the evaluation of virtual sensors for stress/strain estimation.

Similar to physical sensors, we should evaluate virtual sensors in terms of range, repeatability, sensi-
tivity, and accuracy. Unlike physical sensors, the performance of virtual sensors depends on the combina-
tion of physical sensors, system model, and process model, which complicates an evaluation of a virtual
sensor. Hence, we should consider a complex network of potential errors, which affect the performance,
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such as measurement errors, modelling errors, sensitivity of the reduced system model, processing er-
rors, and violations of the assumptions for the system and process model. In the literature, stress/strain
estimation is evaluated by reference sensors where various quality measurements quantify the virtual
sensors. We refer to the next subsection for an explanation of quality measurements. Thus, the virtual
sensing is solely evaluated for the accuracy of the final output - the virtual sensor.

Any virtual sensing technique provides the perfect virtual sensors under ideal conditions. The achieve-
ment of these conditions might, however, be difficult in practice. Thus, an evaluation of the different
virtual sensor techniques should account for the achievability and practicality of the conditions, assump-
tions, and tuning of the techniques that will provide the best estimation. This strengthens the argument
for more operational applications under the actual conditions.

Quality measurements

Stress/strain estimation is often evaluated through quality measurement/metrics, which all have differ-
ent strengths and weaknesses.

The Time Response Assurance Criterion (TRAC) [28] and Frequency Response Assurance Criterion
(FRAC) [100] are popular quality measurements for stress/strain estimation. These metrics calculates
a correlation between a reference signal and an estimated signal but they do not account for amplitude
difference. Amplitude differences are, however, very important in fatigue analysis and an amplitude
error in the estimation of stress leads to an erroneous estimation of the fatigue damage, see section 3.6.2.
The two metrics are defined in a similar manner to the Modal Assurance Criterion (MAC).

TRACi =

(
εεε>t,i ε̂εεt,i

)2(
εεε>t,i εεεt,i

) (
ε̂εε>t,i ε̂εεt,i

) , FRACi =

(
εεε>f ,i ε̂εε f ,i

)2(
εεε>f ,i εεε f ,i

) (
ε̂εε>f ,i ε̂εε f ,i

) (3.1)

where εεεt,i is the entire measured strain response for sensor i arranged in a column vector, and similarly,
ε̂εεt,i is the estimated strain response at the same location in the time domain. Additionally, εεε f ,i is the
Fourier transform of the measured strain response for the ith strain gauge arranged in a column vector,
and similarly, ε̂εε f ,i is the frequency estimation of strain response in the same position.

Mean Square Error (MSE) and Mean Absolute Error (MAE) [101] are two popular metrics for eval-
uating the error of stress/strain estimation. These metrics are a measurement of the error in the signal
but they are independent of the variance of the reference signal. Therefore, they do not indicate the
signal-to-noise-ratio but only the error. In the literature, these two metrics are often normalised with the
variance/maximum of the reference signal.

MSEi = E
[
(εi(tk)− ε̂i(tk))

2
]

, MAEi = E [|εi(tk)− ε̂i(tk)|] (3.2)

where εi(t) is the measured strain response (reference signal) in the ith strain gauge, ε̂i(t) is the estimated
strain response at the same location, and E [·] denotes the expected value.

When the mean square error is normalised with the variance of the reference signal, it is equivalent
to the coefficient of determination, R2 or r2, from statistics and modal validation [88, 102]. This metric
accounts for both amplitude differences and the general correlation between the signals. This metric
should not be confused with the Pearson correlation coefficient.
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E
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(εεεi(tk)−E [εεεi(tk)])

2
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where Var [·] denotes the variance.

3.6.2 Stress/strain amplitude or range

In this section, we will illustrate how small amplitude differences in stress/strain estimation are ampli-
fied in the estimated fatigue damage. As stated in section 2.4 12, the stress amplitude (or stress range)
and mean stress are the most influential parameters for the fatigue life whereas the frequencies of the
fatigue stress are of minor importance (neglecting the number of cycles associated with the frequency).
Therefore, the correct amplitude of the estimated stress/strain response is essential for fatigue analyses
and we must attach great importance to the amplitude in stress/strain estimation.
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Figure 3.18: Example 3.4 - Amplitude difference due to erroneous boundary conditions of offshore structures: a beam with mass in the end
with two different boundary conditions: a) fix support, and b) spring supports. In c), we apply the same displacement, y1 and rotation, θ, for
the mass and calculate the deflection of each boundary condition.

When we have an amplitude difference in our stress/strain estimation, this introduces an error in the
estimated fatigue damage using the stress-life method. Let us say we have estimated the stress amplitude
with a general amplitude error, σ̂i = aσi. We calculate the fatigue damage based on Palmgren-Miner rule,
Eq. (2.23) page 13, with the estimated stress amplitude.
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(3.4)

Thus, a general amplitude error of a in the stress/strain estimation results in an amplified error in
the fatigue damage of am. The correct amplitude in stress/strain estimation is an important factor for
an accurate assessment of the fatigue damage. The estimated amplitude is, however, sensitive to both
modelling error in the system model and calibration error and misalignment of the physical sensors. In
this case, we intend stress/strain estimation for a fatigue analysis using the stress-life method, then it
is crucial to evaluate the virtual sensor in terms of fatigue damage since this makes the effect of any
amplitude differences in the estimation clear.

Example 3.4 - Amplitude difference due to erroneous boundary conditions of offshore structures
In this example, we will illustrate a potential cause for an amplitude difference in stress/strain

estimation. The boundary conditions of offshore structures are not completely fixed since the soil has
stiffness and damping properties. Generally, even small changes in boundary conditions will change
the strain response of the system even though the displacement response is largely the same. Further-
more, soil properties change over time [97], see section 3.6.7. The soil properties pose a problem for
calibrating a system model. Hence, modelling errors are likely to occur to some extent in the system
model. Thus, it is important to consider boundary conditions in the calibration of the system model
otherwise it might lead to an amplitude error in the stress/strain estimation.

Let us say that we apply stress/strain estimation to a cantilever beam with mass in the end, see
Fig. 3.18 a), where we measure the displacement, y1, and rotation, θ, of the mass. Unfortunately, the
actual system has supports with stiffness, Fig. 3.18 b). Mathematically, it is possible to obtain two sets
of mass and stiffness matrices for these two systems that provide the same natural frequencies and
mode shapes for the two DOFs of the mass for the first two modes.

Thus, we could erroneously estimate the strain response where Fig. 3.18 c) shows two excessive
deflection shapes based on the same displacement and rotation of the mass. The stiffness of sup-
ports decreases the curvature of the beam near the bottom of the beam. Thus, we have an amplitude
difference in our stress/strain estimation.
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Figure 3.19: Example 3.5 - Position of sensors using modal expansion: Numerical cantilever beam with 20 Euler-Bernoulli beam elements

(a) (b) (c)

Figure 3.20: Example 3.5 - Position of sensors using modal expansion: a) the mean Time Response Assurance Criterion (TRAC) value as a
function of the position of sensors, b) the mean of the off-diagonal values of the Modal Assurance Criterion (MAC) matrix as function of the
position of sensors, and c) the conditional number of the reduced modal matrix as function of the position of sensors.

3.6.3 Number and position of sensors

A considerable volume of research has been conducted on the optimal position and number of sensors
[24, 25, 103] since the position and number of the sensors are important for the performance of virtual
sensing. This relates to the sensitivity of the reduced system model, see section 3.3.3. The reduced system
model must be stable before we consider the virtual sensors to be accurate and reliable since the stability
of the system model is transferred to the virtual sensors. In general, the number of sensors depends on
the position of the sensors, the system, and the excitation.

Pingle and Avitabile [24, 25] found for modal expansion that the number of sensors should allow
for the least-squares minimisation process, and the position of sensors should result in a linearly inde-
pendent set of truncated mode shapes (corresponding to the position of sensors). A. Iliopoulos [104]
proposed using the off-diagonals of the Modal Assurance Criterion (MAC) between the truncated mode
shapes to validate the position of sensors for virtual sensing. These arguments are alternative formula-
tions of the necessity for stable reduced system models.

In the framework of modal expansion, this author recommends applying the condition number of the
truncated modal matrix (matrix holding the set of mode shapes) as a metric for the number and position
of sensors. The reduced modal matrix corresponds to the reduced system model. The condition number
relates to the sensitivity of matrix [75]; thus, in this case, the sensitivity of the system model reduced to
the number and position of sensors.

Example 3.5 - Position of sensors using modal expansion
In this example, we will study the position of sensors in regards to strain estimation of a cantilever

beam for modal expansion, see Fig. 3.19. We will evaluate the estimated strain response and check
the relationship to the MAC values and the condition number. The beam is made in 2D with 20 Euler-
Bernoulli beam elements. We simulate the response using the Fourier transformed method [78] with
white noise excitation. We will use the first four mode shapes and five translational DOFs (corre-
sponding to sensors) in all possible combinations to estimate the strain response in the entire beam.
Then we will study the mean value of TRAC values, Eq. (3.1), mean of the off-diagonal values of the
Modal Assurance Criterion (MAC) matrix, and the conditional number of the reduced modal matrix
for each combination of sensors, see Fig. 3.20.

The off-diagonal values are not an ideal quantity to validate the quality of stress estimation. We
obtain MAC values of 0.45 on the off-diagonal entries but we still obtain good TRAC values for the
stress estimation, see Fig 3.21. The MAC values are only well correlated with the condition number
as long as the mean off-diagonal MAC value is below 0.1. The condition number of the truncated
modal matrix with the active DOFs is a better metric for stress/strain estimation. As stated in section
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Figure 3.21: Example 3.5 - Position of sensors using modal expansion: scatter plot matrix of Time Response Assurance Criterion (TRAC),
Modal Assurance Criterion (MAC), and condition number of modal matrix

3.5.2, the system model for modal expansion is truncated to a set of spatially limited mode shapes in a
modal matrix. The condition number of this modal matrix shows the sensitivity of the system model.
Therefore, this is a good indicator for the quality of the position of sensors.

3.6.4 Sensor fusion

The addition of sensors can decrease the sensitivity of the system model. Furthermore, a network of
different and disparate sensors with individual strengths and weaknesses might decrease the sensitivity.
We can combine the data and information of the disparate sensors so the resulting data holds less uncer-
tainty than any of the individual sensors. This combination of disparate sensors is called sensor fusion.
The research field of sensor fusion can benefit virtual sensing.

We can apply the Kalman filter [92] to sensor fusion so that we can obtain a new set of measurements.
An example is accelerometers fused with GPSs or gyroscopes to reduce the drift caused by the numerical
integration of acceleration into displacement. Optionally, we can apply complementary filters to two
different sensors [93]. The idea of complementary filters is to apply filters that complements each other.
An example is the fusion of two different sensors measuring the same quantity by applying a high-pass
filter to one sensor and a low-pass filter to the other. The summation of two both filtered sensors gives
the fused data.

We should note that the adaptive filters for virtual sensing already have sensor fusion incorporated
into their process model [49, 71], while other techniques require manipulation or sensor fusion to account
for different physical sensors. Additionally, the weighted least-square regression allows for regression
for sensors with different levels of measurement errors where the diagonal weight matrix is the inverted
covariance matrix of the measurement error for the sensors [62].

3.6.5 Modal truncation

It is critical that the system model spans the vector space of the response for an accurate stress/strain
estimation. As stated in section 3.3.2, the system model is often truncated to only include contribution
from a few modes. In the literature, many studies have been performed regarding the sufficient number
of modes that we are able to truncate the system to, see [24–27, 67].
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A system can have static effects from higher modes that are located away (in terms of frequency con-
tent) from the excitation frequency due to the spatial distribution of the excitation [105–110]. Therefore,
describing the response by a limited number of lower modes causes a modal truncation error. The errors
of modal truncation are studied in the numerical simulation of structures and structural computation
[106–113]. In these fields, a truncation of modal superposition is applied to reduce the computation of
the structural response. This, however, introduces a modal truncation error, which depends on the load
and modes. For example, the spatial distributions of waves on an offshore structure creates contributions
from higher modes [107]. In these fields, it is stated that the structural response can be calculated as a
combination of the dynamic responses of the lower modes and a correction term based on the residual
modes. Two types of corrections are created; static residual and residual vectors. The static residual uses
static correction terms to adjust for the modal truncation, while the other method makes use of residual
modes, also called ”assumed modes” or ”pseudo modes”, combined with the mode shapes [113].

Through this literature review, the concepts of the modal truncation error are rarely applied in an
experimental setting. In stress/strain estimation, most research is based on the frequency content of the
loading and the structure. Reintroducing the theory behind static correction to virtual sensing could,
thus, benefit stress/strain estimation.

3.6.6 Nonlinearity, nonstationarity, and general damping

In an ideal world, all mechanical and structural systems are linear and stationary with proportional
damping. This is, however, seldom the case in reality where some level of nonlinearity, nonstationarity,
and general damping exists in a system. For insignificant levels, the linear and time-invariant assump-
tions are valid. When the level, however, increases, the validity decreases. In such a case, the traditional
theories of dynamics and modal analysis are inapplicable and we have an issue for virtual sensing where
solutions are needed for the nonlinear and nonstationary system with general damping. Stress/strain
estimation for nonlinear systems is only studied in [64].

3.6.7 Offshore environment

In the literature, stress/strain estimation is often applied to offshore structures [36, 42, 44, 47, 48, 55, 65]
and there are a few reasons for this. For these structures, fatigue is a significant factor of the design pro-
cess so estimation of the stress history could lead to lifetime extensions. Furthermore, the sea makes up a
harsh and hostile environment so the offshore structures are abstruse while the corrosive water corrupts
and damages subsea sensors [97, 114]. Any network of sensors should be located above water in safe
and accessible locations so virtual sensing could enable subsea measurements. Due to the importance of
fatigue in the lifetime extension and the inaccessible subsea conditions, virtual sensing is often deemed
to be beneficial for offshore structures.

Offshore structures have an unique set of issues for virtual sensing. An offshore platform has op-
erating machinery and a wind turbine has rotating rotors that result in a nonstationary environment
and excitation. Generally, offshore structures have strong variations in the modal properties based on
the environmental and operational conditions, for instance: ingress of water, marine growth, fluid stor-
age levels, subsidence, and soil properties [97]. Any changes in soil stiffness, soil damping, scour, and
sediment transport at the seabed are critical for the fatigue damage [115]. Additionally, hydrodynamic
damping of the surrounding water introduces nonlinearity to the offshore structure. The offshore plat-
forms are often connected with bridges that introduce friction and nonlinear behaviour. The fuel tanks
on the topside of the platform potentially act as tuned liquid dampers1. Additionally, wave-induced
structures have an influential quasi-static response since the wave load has a fixed spatial distribution
and frequency content below the first structural mode [107, 109]. This means that we have an issue with
modal truncation error for offshore structures, see section 3.6.5. A successful virtual sensing technique
must include mitigations to these problems.

3.6.8 Quasi-static response and low frequency response

In this section, we will analyse and discuss the literature for stress/strain estimation for quasi-static
response and low-frequency response. This relates to modal truncation, see section 3.6.5.

1This was expressed as a concern by Maersk Oil and Gas (then)/Total (now), DUC, and DHRTC in initial talks to apply structural
health monitoring
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In the literature on stress/strain estimation, Skafte et al. [47] used Ritz vectors (static deflection
shapes) to account for modal truncation in the quasi-static domain and Iliopoulos et al. [48] used strain
gauges instead of the accelerometers in the quasi-static domain. Furthermore, Palanisamy et al. [35]
found that accelerometers are ineffective for estimation of the quasi-static response near 0 Hz. This is
due to the numerical drift and tilt of accelerometers. The drift is low-frequency noise that is caused
by the numerical integration, which is an approximation, of acceleration signal to displacement. Fur-
thermore, the numerical integration amplifies any noise near DC and the noise content depends on the
type of accelerometer. The tilt of accelerometers and the noise on accelerometers near DC are issues and
concerns for acceleration measurements [48, 78].

To summarise, there are several problems for stress/strain estimation for low-frequency content be-
low the first structural mode. These include the structural-dynamics-related problem of the quasi-static
effects and the drift and tilt of accelerometers. These problems must all be solved for successful stress/s-
train estimation for low frequencies.

3.7 Conclusion

In this chapter, we reviewed and presented the literature for virtual sensing of full-field stress/strain
estimation using a narrative literature review. We summarised the history of the reviewed literature on
virtual sensing related to stress/strain estimation and we found it to be a growing research field with an
increasing number of published articles each year for the last decade. In this chapter, we introduced a ter-
minology for stress/strain estimation and we analysed the system models, physical sensors, and process
models frequently applied to stress/strain estimation. In the last section, we discussed different topics,
challenges, and issues encountered in the application of stress/strain estimation and the evaluation of
virtual sensors.

Stress/strain estimation started during the 1950s where the research was primarily focused on ana-
lytic techniques based on the theory of beams and plates. During the 1990s, the focus shifted towards
projection and transformation techniques that used a fit between the response and the strain response to
transform the measured response to strain. This allowed for strain estimation on more complex struc-
tures. The modal expansion techniques evolved from these projection techniques and they gained focus
and popularity in the research field of stress/strain estimation. The analytic expressions for strain esti-
mation using beam, plate, or shell theory are mostly neglected by the 2000s.

In 2005, Hjelm et al. [18, 20] and Graugaard-Jensen et al. [19] introduced the modern formulation of
modal expansion. Since then only a few additions have been made to the modal expansion technique
to overcome specific problems to a given application - such as overcoming the quasi-static response of
wave-induced structures [47, 48]. Most literature on the modal expansion for stress/strain estimation
relates to application and case studies in the laboratory. The actual development of the technique is,
however, limited.

In the 2000s, the adaptive filters - such as the Kalman filter - was applied to strain estimation. Since
then the adaptive filters have been commonplace in the literature where new versions have been intro-
duced. The theory behind the adaptive filters is more complex than the modal expansion technique and
the manual tuning of error covariance matrices requires expertise to ensure the proper setup of these
filters. In recent years, machine learning has begun its entry into stress/strain estimation. To date, these
techniques have, however, not been shown to be superior to the modal expansion. Therefore, the ac-
curacy of stress/strain estimation today is largely the same as in 2005 where the modern version of the
modal expansion was introduced for stress/strain estimation. Put simply, little progress has been made
to stress/strain estimation since 2005 in direct contradiction to the increasing number of research articles.

Generally, there is a lack of consensus of the terminology in stress/strain estimation. This results
in parallel subfields that research the same topic without acknowledging, incorporating, or building on
the research of the other subfields. Thus, some papers introduce the same or similar research under
different names and terms and do little to progress the overall research field. Most articles are applica-
tions and case studies of numerical simulations and laboratory tests. Applications are scarcely applied
to real-world applications in operational environments. These applications would test the achievability
and practicality of the conditions, assumptions, and tuning of the techniques. The readiness levels of
stress/strain estimation point toward evaluation under operational conditions.

There are some common issues for virtual sensing. Stress/strain estimation is barely applied to non-
linear and nonstationary systems. A successful technique should account for the level of nonstationarity
and nonlinearity in the given application. For offshore structures, we must account for the quasi-static
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response while removing the drift of the numerical integration of accelerometers and the tilt error on the
accelerometers.

3.8 Planning and framing the Ph.D. project

We applied this review to set the course of this Ph.D. project. To focus and limit the research, we have
had to make some choices regarding physical sensors, system models, and process model.

As stated by Loland and Dodds [114], a physical monitoring system should restricted to being mounted
above sea. In this Ph.D. thesis, we will focus on accelerometers located above water as the main sensors
since the offshore industry primarily focuses on these sensors for structural health monitoring [97].

As the primary system model, we focus on the finite element model, which is also the most commonly
applied system model in stress/strain estimation. As stated in this chapter, accuracy of stress/strain esti-
mation depends on a well-calibrated system model. We see operational modal analysis and mode shape
expansion of experimental mode shapes as a means to update a system model. Therefore, a significant
part of this Ph.D. project relates to operational modal analysis and mode shape expansion. Further-
more, we want to study modal truncation errors since the set of mode shapes is critical for the success of
stress/strain estimation. In this Ph.D. project, we want to apply the knowledge from the research fields
of numerical simulation and structural computation.

As regards the process model, the exact excitation is unknown for offshore structures in operation so
a successful virtual sensing technique must remain independent of the exact excitation. Additionally, a
versatile technique supports different system models so its application covers the wide range of offshore
structures. Therefore, the analytic expressions are neglected in this Ph.D. project. The harsh environment
hinders machine learning techniques since the installation of sensors at the critical fatigue locations is
difficult and makes it hard to train the algorithm properly. We are left with a choice between the Kalman
filters and the modal expansion. This choice largely comes down to personal preferences. The modal
expansion is the simplest process model and it merely requires the mode shapes compared to the Kalman
filter, which requires the system matrices and tuned error covariance matrices. We restricted our research
to the modal expansion as process model.

In this Ph.D. thesis, we will focus on the issues of nonlinearity and nonstationarity, quasi-static re-
sponse, and modal truncation for stress/strain estimation. We have chosen to leave the other issues from
section 3.6 for future research.
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4.1 Introduction

Unbiassed modal parameters with low uncertainty are important for stress/strain estimation since they
are used to update and calibrate the system model. To obtain the estimated modal parameters with
reduced bias and random errors, the first step is to understand the errors involved in operational modal
analysis and the identification process. There are many different sources of errors, including:

- Measurement setups
- Identification process
- Statistical process
- Violation of the core assumptions in operational modal analysis

We focused on the statistical errors in correlation-driven operational modal analysis to provide a
better theoretical framework for this problem. The statistical errors stem from the estimation process
of the correlation function matrix due to the finite set of data. To the best of this author’s knowledge,
the theory of the erratic behaviour in the tail region of the correlation function matrix, due to estimation
process, has been left largely untouched in the literature on operational modal analysis.

4.2 Contribution

The author came up with the idea, made all mathematical derivations, performed the data analysis for
the case studies, and wrote the paper.

4.3 Main findings

The statistical errors are found to cause the noise tail at the end of the correlation function matrix. The
envelope of the modal auto-correlation function is Rice distributed; thus, it is biassed and it is the reason

https://doi.org/10.1016/j.jsv.2019.115013
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for the phenomenon of the noise tail. The errors cause bias on the zero crossings of the modal auto-
correlation function but they cause random error of the zero crossings that increases linearly in the noise
tail. The statistical errors affect the subspace of the correlation function matrix with insignificant errors,
leading to the conclusion that statistical errors are primarily located within the subspace spanned by the
mode shapes. Thus, in an identification process of modal parameters, the statistical errors have minor
effects on the mode shapes while they cause random errors on the frequency estimates and this results
in both random and biassed error for the damping estimate.

4.4 Reflections

In this paper, we studied the statistical error in the estimation of the correlation function matrix to better
understand the error. This provides a better understanding of the correlation-driven operational modal
analysis and the identified modal parameters used to calibrate the system model (digital twin).



4.5. Appended paper 47

The statistical errors in the estimated correlation function matrix for
operational modal analysis

Marius Tarpøa, Tobias Friisb, Christos Georgakisa, Rune Brinckerb

aAarhus University, Department of Engineering, Inge Lehmanns Gade 10, Aarhus, Denmark
bTechnical University of Denmark, Department of Civil Engineering, Brovej B.118, Kgs. Lyngby, Denmark

Abstract
Given the random vibration of a linear and time-invariant system, the correlation function matrix is
equivalent to free decays when the system is excited by Gaussian white noise. Correlation-driven Oper-
ational Modal Analysis utilises these properties to identify modal parameters from systems in operation
based on the response only. Due to the finite length of the system response, the correlation function ma-
trix must be estimated and this introduces statistical errors. This article focuses on the statistical errors
due to this estimation process and the effect it has on the envelope and zero crossings of the estimated
correlation function matrix. It is proven that the estimated correlation function matrix is a Gaussian
stochastic process. Furthermore, it is proven that the envelope of the modal correlation function matrix
is Rice distributed. This causes the tail region of the correlation function to become erroneous - called the
noise tail. The zero crossings are unbiassed, but the random error related to the crossings increases fast
in the noise tail. The theory is tested on a simulated case and there is a high agreement between theory
and simulation. A new expression for the minimal time length is introduced based on the bias error on
the envelope.

Keywords: Uncertainty, operational modal analysis, envelope, zero crossings, Rice distribution

4.6 Introduction

In operational modal analysis or output-only modal analysis, we use the random response of a system
in its ambient environment to identify the modal parameters [1, 2]. A common practice is the use of
a correlation function matrix in a two-stage modal identification process - the correlation-driven oper-
ational modal analysis. Firstly, we calculate the correlation function matrix of the measured random
system response. Secondly, we apply an identification technique to identify the modal parameters since
we interpret the correlation function matrix as transposed free decays of the linear and time-invariant
system, assuming white Gaussian noise as excitation [3, 4]. This is the idealised and exact statistical
properties of the random system response, and it is based on a system response with an infinite time
length. Exact properties of random data, however, are inaccessible from sampled data and they must be
estimated instead. Thus, in operational modal analysis, we calculate an estimated correlation function
matrix based on a measured system response with a finite time length. This introduces statistical errors
into the estimated correlation function matrix [5, 6]. Hence, in practice, the statistical properties of the
estimated correlation function are a stochastic process.

In the literature, the statistical errors in the correlation function matrix are system and time-dependent
[5, 6]. Furthermore, it is well-known that the statistical errors result in an erroneous and erratic tail re-
gion of the correlation function matrix - the noise tail [6–8]. Whereas the beginning of the estimated
correlation matrix is more persistent despite the statistical errors, generally, the length of the "persistent"
properties is called the "correlation time" of the correlation function. The noise tail causes biassed errors
in the identification of the modal parameters [8] and it is common practice to disregard this region and
utilise the correlation time of the correlation function matrix in an identification process. To the best
of the authors’ knowledge, however, the theory behind this erratic tail region is scarcely studied in the
literature. Bendat and Piersol [5] show the introduction of statistical errors in the estimation of a correla-
tion function. Orlowitz and Brandt [9] study the random errors in the estimated correlation function in
operational modal analysis numerically. Giampellegrini [6] derives an analytic expression of the random
error in the auto-correlation function of a single-of-degree (SDOF) system that illustrates the system and
time dependency of the random error. Tarpø et al. [7] introduce an algorithm for the automatic detection
of the correlation time or the noise tail. Furthermore, Tarpø et al. [10] introduce an algorithm for reduc-
tion of statistical errors by applying windows to the noise tail of each modal auto-correlation function.
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They found that the estimated damping ratios were biassed due to the statistical errors and a reduction
of the statistical errors reduces the biassed and random errors.

To account for the statistical errors, different studies exist on the optimal or required time length of
measured system response [8, 11] since the time length relates to the statistical errors in the identifica-
tion of modal parameters where an increase of time length decreases the statistical errors [5]. Damping
estimates are often biassed, but an increase in the time length results in a decrease in both random and
biassed errors in the damping estimates. Generally, different recommended time lengths exist for op-
erational modal analysis [1, 2, 5, 12–14]. Most of these are based on calculation of the spectral density
function [2, 5] while others are based on experience. [14] sets up a rule of thumb saying the time length
should be 1,000 to 2,000 times the fundamental period.

Another approach is uncertainty quantifications that set up uncertainty bonds for the estimated
modal parameters [15, 16]. For Bayesian operational modal analysis, the analytic expressions of the
uncertainty for modal parameters are calculated for a frequency approach [12, 17].

This article will study the statistical errors in the estimated correlation function matrix used in correlation-
driven operational modal analysis, and it adds novel information to the field. To illustrate the effect of
statistical errors in this article, we will use two different recommended time lengths from Brincker and
Ventura [1] & ANSI 2.47 [13]. This article will show that the length of the correlation function matrix -
the correlation time - is an equally important parameter as the time length. To access the statistical errors
of the estimated correlation function matrix, we will base this article on the following assumptions:

• The system is linear and time-invariant
• The excitation is stationary white Gaussian noise
• The system is lightly damped with orthogonal modes
• The time length of the measured system response is long compared to the time lags of the estimated

correlation function matrix

In this article, the term "statistical errors" includes all random and biassed errors, which affect the
estimated correlation function matrix due to the estimation process. Thus, we exclude the effect of
measurement noise on the correlation function matrix in this study, see [18] for more on this subject. We
assess the random errors by the variance and any biassed errors by the difference between the analytic
and the expected value [5]. The term "statistical errors", however, exclude all errors in the identified
modal parameter caused by any identification techniques. Likewise, we disregard eventual errors caused
by violations of the core assumptions of operational modal analysis - linear and time-invariant system
excited by white Gaussian noise.

We organise the remainder of this article in the following manner. In Section 4.7, we derive an ex-
pression for the random errors in the estimated correlation function matrix. Section 4.8 proves that the
modal auto-correlation function has a biassed envelope by applying the theory of peak probability den-
sity functions. Section 4.10 presents a new expression of the required time length based on the statistical
errors in the correlation function matrix. Finally, in Section 4.11, we validate the analytic expressions of
errors in the correlation function matrix from the previous sections by a simulation study.

4.7 Statistical errors in the correlation function matrix

In this section, we will go through the general statistical errors in the correlation function matrix. We will
show that we can express the statistical errors as system dependent errors in each modal auto-correlation
function.

4.7.1 Correlation function matrix

In operational modal analysis, we consider random vibrations from linear systems that are excited by
white Gaussian noise. We measure the spatial limited system response, y(t), at a finite number degrees-
of-freedom. In the correlation-driven operational modal analysis, the correlation function matrix, R(τ),
for the system response is equivalent to free decays corresponding to the modal parameters of the system
[3, 4].

R(τ) , E
[
y(t)y>(t + τ)

]
(4.1)

where (·)> denotes the transpose and τ is the time lag.
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We can use the modal decomposition to transform the system response into the modal domain.

y(t) =
N
∑

i=1
φiqi(t)

= Φq(t)
(4.2)

where φi is the mode shape for the ith mode, qi(t) is the modal coordinates for the ith mode, N is the
total number of modes in the system, Φ is the modal matrix containing mode shapes as columns, and
q(t) is the modal coordinate vector with the modal coordinates in the rows.

We use the modal decomposition to decorrelate the correlation function matrix into the modal corre-
lation function matrix by inserting Eq. (4.2) in Eq. (4.1) [1].

R(τ) = ΦRq(τ)Φ> (4.3)

where Rq(τ) is the modal correlation function matrix. Each modal auto-correlation function corresponds
to a single-degree-of-freedom (SDOF) system and a free decay of the given mode [19]. When white
Gaussian noise excites a linear and time-invariant system with lightly damped and orthogonal modes,
the modal coordinates are independent and the modal correlation function matrix is diagonal [1, 19].
Thus, we rewrite the equation of the correlation function matrix as a summation of the modal auto-
correlation function.

R(τ) ≈
N
∑

i=1
φiφ

>
i Rqi(τ) (4.4)

where Rqi(τ) is the modal auto-correlation function for the ith mode.
Clough and Penzien [19] made an expression for the correlation function for an SDOF system excited

by white Gaussian noise that we will use to describe the modal auto-correlation functions analytically.

Rqi(τ) =
πω0S0

2k2ζ
e−ω0ζ|τ|

(
cos(ωdτ) +

ζ√
1− ζ2

sin(ωd|τ|)
)

(4.5)

where ω0 is natural cyclic frequency, ωd is natural damped cyclic frequency, ζ is the damping ratio, S0 is
the loading-constant from the white Gaussian noise in the frequency domain, and k is the modal stiffness
of the ith mode. We omit the index for the given mode on all modal parameters to improve readability of
the equations. Based on this equation, we have an expression for the variance of the modal coordinates.

σ2
q i

=
πω0S0

2k2ζ
(4.6)

The Hilbert transformation is often used to find the (Hilbert) envelope by the absolute value of the
analytic signal [20].

env(X(t)) =
√

X(t)2 +H [X(t)]2 (4.7)

where X(t) is an arbitrary function andH denotes the Hilbert transformation.
We calculate the envelope of the modal auto-correlation function, Eq. (4.5), using the Hilbert trans-

formation.

eqi(τ) = env(Rqi(τ)) = σ2
q i

e−ω0ζ|τ|

√
1 +

ζ2

1− ζ2
(4.8)

For simplicity, we will assume that the system has low damping.

eqi(τ) = σ2
q i

e−ω0ζ|τ| (4.9)

4.7.2 Estimated correlation function matrix

Since the system response is ergodic, we use time averaging instead of ensemble averaging. The length of
the signal, however, must tend towards infinite if the time averaging should equal the expected value [5].
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Figure 4.1: Correlogram with two realisations of the same estimated correlation function (black solid line) and the corresponding theoretical
correlation function, Eq. (4.5), (red dashed line)

R(τ) = lim
T→∞

1
T

T∫
0

y(t)y>(t + τ)dt (4.10)

where T is the time length of the measured system response. The measured system response has a
finite time length, meaning, we have to estimate the correlation function matrix and this introduces
statistical errors. This is illustrated in Fig. 4.1 where two estimated correlation functions are plotted next
to the theoretical correlation function. Therefore, the estimated correlation function matrix is a stochastic
process.

Different estimators exist for the correlation function [5]. The unbiassed estimator has a higher vari-
ance as we increase the time lag, τ, whereas the biassed error of the biassed estimator increases with
increasing time lags. The biassed estimator has a biassed envelope and this biassed error transfers into
the identified damping ratios. In operational modal analysis, however, the time length is often longer
than the maximum time lag, T >> τ, thus the difference between the estimators is small. Since we use
the correlation function matrix to identify modal parameters, then an unbiassed estimator is preferable.

R̃(τ) =
1

T − τ

T−τ∫
0

y(t)y>(t + τ)dt, 0 ≤ τ < T (4.11)

By increasing the time length of the recording, the variance of the estimated correlation function
matrix decreases.

lim
T→∞

R̃(τ) → R(τ) (4.12)

4.7.3 Probability density function of the estimated correlation function matrix

Next, we will find the probability density function of the estimated correlation function matrix. We con-
sider a linear and stationary multi-degree-of-freedom system excited by white Gaussian noise. In linear
structural dynamics, we apply the modal decorrelation/modal superposition, Eq. (4.2), to decorrelate
this system into multiple SDOF systems describing each mode [19]. The response of each SDOF system
is a convolution of the excitation and the impulse response function of the given mode [19]. The (convo-
lution) integral is defined as the limit of a summation and - according to the Central Limit Theorem - the
summation of many random variables tends toward a normal distribution [1, 5]. Thus, the modal coor-
dinates are normal distributed, qi(t) ∼ N (0, σ2

q i
), if the time length, T, is large, T >> 0, see Appendix

4.A. The modal decomposition is a linear transformation of normal random vectors [21] so the system
response is a multivariate Gaussian variable, y(t) ∼ N (0, Φ[σ2

q i
]Φ>) where 0 is a zero vector [1, 5].

The estimated modal auto-correlation functions are approximately Gaussian distributed, R̃qi(τ) ∼
N (Rqi(τ), Var[R̃qi(τ)]), see Appendix 4.A. Therefore, the estimated correlation function matrix follows
a multivariate Gaussian distribution, R̃(τ) ∼ N (R(τ), Cov[R̃(τ)]), see Appendix 4.B. Thus, the expected
value of the estimated correlation function matrix is given by
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E
[
R̃(τ)

]
= R(τ)

≈
N
∑

i=1
φiφ

>
i Rqi(τ)

(4.13)

Let us turn to the variance - or statistical error - of each entry of the correlation function matrix using
Eq. (4.4).

Var
[
R̃j,k(τ)

]
≈ Var

[
N
∑

i=1
φj,iφk,iR̃qi(τ)

]
(4.14)

We can express the variance as a summation of the covariances of all products in the summation.

Var
[
R̃j,k(τ)

]
=

N
∑

i=1

(
φj,iφk,i

)2
Var

[
R̃qi(τ)

]
+

N
∑

i=1

N
∑

m=1
m 6=i

φj,iφk,iφj,mφk,mCov
[

R̃qi(τ), R̃qm(τ)
]
(4.15)

When we are dealing with orthogonal modes, the covariance between modal auto-correlation func-
tions is much smaller than the variance of each modal auto-correlation function. This enables us to
approximate the statistical errors in the entire matrix as a summation of the variance of each modal
auto-correlation function (a similar expression is derived in [6]).

Var
[
R̃j,k(τ)

]
≈

N
∑

i=1

(
φj,iφk,i

)2
Var

[
R̃qi(τ)

]
(4.16)

Each product of mode shapes, (φj,iφk,i)
2, is a linear transformation from the variance of the modal

auto-correlation function to the contribution of the ith modes’ contribution of variance of the estimated
correlation function matrix. Thus, the mode shapes distribute the statistical errors from the modal auto-
correlation functions to the entire correlation function matrix. The statistical errors exist within the vector
space spanned by the mode shapes of the system and this vector space of the estimated correlation func-
tion matrix is independent of the statistical errors, at least for systems with low damping and orthogonal
modes. Thus, in correlation-driven operational modal analysis, an identification of the mode shapes is
almost independent of the statistical errors.

To express the statistical errors in the estimated correlation function matrix, we have to derive an
expression for the variance of the estimated modal auto-correlation functions. Bendat and Piersol [5]
derived an expression for the variance of the cross-correlation function by assuming Gaussian distributed
data as input in the correlation function matrix - here written for the unbiassed auto-correlation function
for the modal coordinates.

Var
[

R̃qi(τ)
]

=
1

T − τ

T−τ∫
−T+τ

(
1− |r|

T − τ

) (
Rqi(r)

2 + Rqi(r + τ)Rqi(r− τ)
)

dr (4.17)

Bendat and Piersol [5] further simplified the variance of the estimated correlation function by assum-
ing a large record length, T >> 0.

Var
[

R̃qi(τ)
]
≈ 1

T − τ

∞∫
−∞

(
Rqi

2(r) + Rqi(r + τ)Rqi(r− τ)
)

dr (4.18)

Giampellegrini [6] calculated the variance of the estimated correlation functions using this integral,
Eq. (4.18), by assuming small damping.

Var
[

R̃qi(τ)
]
≈

σ4
q i

2(T − τ)ω0ζ

(
1 + e−2ω0ζτ

(
cos(2ωdτ)(1 + 2ζω0τ)− sin(2ωdτ)

4ω0ζ2τ√
1− ζ2

))
(4.19)

Thus, the statistical errors are non-stationary while they are system and time-dependent. By increas-
ing the time length, T, the statistical errors decrease. Figs. 4.2 and 4.3 illustrate this time dependence.
The statistical errors tend to become approximately stationary as the time lags increase, see Fig. 4.3.
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Figure 4.2: Correlogram with probability density function of the estimated correlation function for an arbitrary system plotted for two
different time lengths, (a) Brincker and Ventura [1], (b) ANSI [13], the expected value (black solid line) and the interquartile range (grey)
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Figure 4.3: Variance of the estimated correlation function, Eq. (4.19), for an arbitrary system plotted for two different time lengths, (a) Brincker
and Ventura [1], (b) ANSI [13]

-1

0

1

M
ea

n
 o

f 

co
rr

el
at

io
n

 f
u

n
ct

io
n

 (
m

2
)

0 0.1 0.2 0.3 0.4 0.5

Time lag (s)

0

0.005

0.01

0.015

V
ar

ia
n

ce
 o

f

co
rr

el
at

io
n

 f
u

n
ct

io
n

 (
m

4
)

Figure 4.4: The relationship between the analytic correlation function, Eq. (4.5), (top) and the variance of the estimated correlation function,
Eq. (4.19), (bottom)
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Figure 4.5: The variance of the estimated correlation function for two arbitrary systems with the upper and lower envelopes, the variance, Eq.
(4.19), (black solid line), upper envelope, Eq. (4.20), (red dashed line) , and lower envelope, Eq. (4.20), (blue solid line)

The minima of the variance of the correlation function give the variance at zero crossings or axis
crossings and the maxima give the variance at the peaks [6], see Fig. 4.4. We want to find the envelopes
of the variance, Eq. (4.18), since this converts the variance to either the zero crossings or the peaks
of the modal auto-correlation function, similarly to an interpolation. By assuming small damping and
removing all terms with ζ to the power of minimum 2, the variance at the peaks and zero crossings of
the estimated correlation function is given by

Var
[

R̃qi (τ)
]±

≈ σ4
q i

1± e−2ω0ζτ(2ω0ζτ + 1)
2(T − τ)ω0ζ

(4.20)

where ± denotes the upper (+) or lower (-) envelope of the variance from Eq. (4.18).
Fig. 4.5 illustrates the variance and its envelopes for two SDOF systems. For the second SDOF system,

we double the frequency-damping product, f0ζ, of the first system. Generally, the variance drops for the
second system and it decays faster. Hence, for multi-degree-of-freedom systems, the mode with the
lowest frequency-damping product has the highest level of statistical errors.

On their own, these expressions of variance do not explain the erratic behaviour in the tail region of
the estimated correlation function, as seen in Fig. 4.7. We have to apply the theory of Peak Probability
Density Functions and Level Crossing to obtain an expression of the density function of the envelope,
see section 4.8, and the zero crossings, see section 4.9.

4.7.4 Error of the estimated modal auto-correlation functions

In this section, we will study the random error of the modal auto-correlation function, Eq. (4.20). Two
special cases of this equation are worth mentioning. First, for variance at time lag zero, τ = 0, the random
error becomes

Var
[

R̃qi (0)
]+
≈ σ4

q i
1

Tω0ζ
, Var

[
R̃qi (0)

]−
≈ 0 (4.21)

While for large time lags, τ >> 0, and time length much larger than the time lag, T >> τ, the random
error is

Var
[

R̃qi (τ)
]±

≈ σ4
q i

1
2(T − τ)ω0ζ

, τ >> 0, T >> τ (4.22)

For both cases, we decrease the random error by increasing the frequency-damping product or the
time length, see Fig. 4.5.

In the literature, the normalised random error, σ
µ , is often used. This is inversely proportional to the

signal-to-noise ratio, µ
σ .
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Figure 4.6: The normalised random error of the estimated correlation function, Eq. (4.23), for two arbitrary systems, normalised random error
for the upper envelope, ε(τ)+ , (red dashed line) and normalised random error for the lower envelope, ε(τ)− , (blue solid line)

ε(τ)± =

√
Var

[
R̃qi (τ)

]±
eqi (τ)

=

√
1

T − τ

e2ω0ζτ ± (2ω0ζτ + 1)
2ω0ζ

(4.23)

This is identical to the results in [6], who looked at the normalised random error by converting the
envelope of the variance function for the biassed auto-correlation function, τ = n π

ωd
, where n is the

discrete number of each peak of the modal auto-correlation function.
Let us have a look at Eq. (4.23). Let us say that we increase the frequency-damping product, then we

increase the slope of the normalised random error. Thus, the normalised random error of modes with
high frequency-damping products increases rapidly compared to modes with low frequency-damping
products, see Fig. 4.6. This is, however, due to the normalisation process. The random errors are in-
versely proportional to the frequency-damping product and the time length, see Eqs. (4.20), (4.21), and
(4.22). Thus, modes with low frequency-damping products have higher random errors than modes with
higher frequency-damping products, as seen in Fig. 4.5.

This concludes this section. So far we have shown that the finite time length of measurement intro-
duces statistical errors to the correlation function matrix. It was shown that the non-stationary statistical
errors are system and time-dependent, and they are introduced in each modal auto-correlation function
(for lightly damped and orthogonal modes). The auto-correlation function for the statistical errors and
expression for the variance (statistical errors) are presented in the next section.

4.8 Statistical errors in the envelope of the modal auto-correlation
function

In this section, we will go into more detail regarding the statistical errors in the envelope and the corre-
lation time. Let us focus on the errors regarding the envelope of each modal auto-correlation function by
applying the theory of Peak Probability Density Functions [5, 22].

4.8.1 Noise tail

The noise tail is a non-persistent feature in the estimated correlation function matrix where we have
erratic behaviour in the tail region, see Fig. 4.7. This happens when the statistical errors dominate the
correlation function and introduce a biassed error in the envelope of the estimated correlation function.
As seen in Fig. 4.7, the noise tail looks different for each realisation of the same system. We must neglect
the notion that the estimated correlation function is a free decay in this tail region. This section will prove
this phenomenon analytically by studying the (Hilbert) envelope of the estimated modal auto-correlation
function and compare it with the theoretical envelope, Eq. (4.9).
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Correlation time

Figure 4.7: Correlogram with two example of the noise tail in a correlation function based on two realisations of the same estimated
correlation function

env
(

R̃qi(τ)
)

=

√
R̃qi(τ)

2 +H
[

R̃qi(τ)
]2

(4.24)

4.8.2 Probability density function of the Hilbert envelope

In this section, we will derive the general probability density function for the Hilbert envelope of a
normal distributed random variable, X ∼ N

(
µ, σ2). The Hilbert envelope of X is given by: env(X) =√

X2 +H[X]2. We look at the probability density of the Hilbert transformed variable, H [X]. By a linear
combination of the standard normal distribution, M ∼ N (0, 1), we write the normal distributed random
variable as: X = σM + µ. Then we apply the Hilbert transformation to this linear combination and use
the fact that the Hilbert transformation of a constant is zero.

H [X] = H [σM + µ]

= σH [M]
(4.25)

Thus, the Hilbert transformation creates a modified normal distribution with an expected value of
zero and the same variance, H[X] ∼ N

(
0, σ2). So we have two normal variables with the same vari-

ance but different expected values. Hence, the Hilbert envelope has a Rice distribution [22], which is a
special case of the non-central chi-square distribution with two degrees of freedom and non-centrality
parameter ( µ

σ )
2. A variable, R ∼ Rice(|µ2

1 + µ2
2|, σ), is Rice distributed when it is comprised of two nor-

mal variables, Z ∼ N (µ1, σ2) and Y ∼ N (µ2, σ2), in the following way, R =
√

Z2 + Y2 [23]. Thus, the
general Hilbert envelope of a normal distributed random variable, X ∼ N (µ, σ2), is Rice distributed,
env(X) ∼ Rice(µ, σ).

The probability density function of the Rice distributed variable is given by

fe(x, µ, σ) ,
x

σ2 exp
(
− x2 + µ2

2σ2

)
I0

(µx
σ2

)
(4.26)

where I0(·) is the modified Bessel function of the first kind with order zero [24].
Then we find the expected value of the Hilbert envelope as a function of the original expected value,

µ, and variance, σ2, of the normal distributed variable X.

µm(µ, σ) =

√
π

2
σL1/2

(
− µ2

2σ2

)
(4.27)

where L1/2(·) is a Laguerre polynomial for case q = 1
2 [22, 24]. Likewise, we find the variance of the

Hilbert envelope.

σ2
m(µ, σ) = 2σ2 + µ2 − πσ2

2
L1/2

(
− µ2

2σ2

)2

= 2σ2 + µ2 − µm(µ, σ)2

(4.28)
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Figure 4.8: The probability density function of the Rice distribution, Eq. (4.26), for different values of µ while σ is constant

The Rice distribution changes shape depending on the signal-to-noise ratio, µ
σ , see Fig. 4.8. When this

ratio tends towards infinite, the envelope becomes normal distributed, and the envelope gets a Rayleigh
distribution when the ratio tends towards zero [22, 23]. In practice, the distribution is approximately
normal distributed when the ratio is above 3 [25].

4.8.3 Probability density function of the envelope for the estimated correlation func-
tion

We insert the expected value and variance of the underlying normal distribution into the general Rice
distribution for the envelope, Eq. (4.26). Here we use the analytic envelope of the modal auto-correlation
function, Eq. (4.9), and the upper envelope of the variance, Eq. (4.20).

fi(x, τ) = fe

(
x, ei(τ), Var

[
R̃qi (τ)

]+)
(4.29)

The shape of the Rice distribution depends on the signal-to-noise ratio or the relationship between
the analytic envelope, ei(τ), and the statistical errors at the peaks, Var[R̃qi(τ)]

+.
We find the expected value of the Hilbert envelope using Eq. 4.27.

µmi(τ) =

√
π

2
σ2

q i

√
1 + e−2ω0ζτ(2ω0ζτ + 1)

2(T − τ)ω0ζ
L1/2

(
(τ − T)ω0ζ

e2ω0ζτ + 2ω0ζτ + 1

)
(4.30)

Likewise, we find the variance of the Hilbert envelope using Eq. 4.28.

σ2
m(τ) = σ4

q i
1 + e−2ω0ζτ(2ω0ζτ + 1)

2(T − τ)ω0ζ

(
2− 2

(τ − T)ω0ζ

e2ω0ζτ + 2ω0ζτ + 1
− π

2
L1/2

(
(τ − T)ω0ζ

e2ω0ζτ + 2ω0ζτ + 1

)2
)

(4.31)
Fig. 4.9 shows the expected value and the interquartile range of the envelope for the modal auto-

correlation function. In the beginning, the expected value follows the analytic envelope but it diverts
as the signal-to-noise ratio decreases in the tail region, see Eq. (4.30). Hence, the expected envelope is
biassed in this region of the modal auto-correlation function since it tends toward a constant value due
to the statistical errors. This explains the erratic noise tail in the estimated correlation function matrix.

The variance of the envelope is displayed in Fig. 4.10 for two different time lengths, and the shape
and amplitude of the variance depend on the time length and frequency-damping product, see Eq. (4.31).
The excitation level is related to the amplitude of the variance.

4.8.4 First part of the envelope - free decay

We want to look at the first part of the modal auto-correlation function that has low levels of statistical
errors. In this region, the analytic envelope is much bigger than the variance, ei(τ) >> Var[R̃qi(τ)], and
the length of this region is the correlation time. Then we have a limit of the Rice distribution where it is
an approximated normal distribution with the expected value of

√
µ2 + σ2 and variance of σ2 [25]. The

expected value of the envelope of a modal auto-correlation function is
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Figure 4.9: Expected value and variance of the envelope of the estimated correlation function for an arbitrary system plotted for two different
time lengths, (a) Brincker and Ventura [1], (b) ANSI [13], the expected value, Eq. (4.30), (black solid line), the interquartile range (grey fill), and
the analytic envelope, Eq. (4.9), (red dashed line)
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Figure 4.10: Variance of the envelope of the estimated correlation function for an arbitrary system plotted for two different time lengths, (a)
Brincker and Ventura [1], (b) ANSI [13], the variance of the envelope, Eq. (4.31), (black solid line) and the general variance of modal
auto-correlation function, Eq. (4.20), (red dashed line)



58 Chapter 4. Paper 1 - The statistical errors in the estimated correlation function matrix for operational
modal analysis

(a)

0 2 4 6 8 10

/

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

is
ed

 b
ia

ss
ed

 e
rr

o
r 

o
f

es
ti

m
at

ed
 e

n
v

el
o

p
e

(b)

0 2 4 6 8 10

/

0

0.1

0.2

0.3

0.4

0.5

0.6

N
o

rm
al

is
ed

 r
an

d
o

m
 e

rr
o

r 
o

f

es
ti

m
at

ed
 e

n
v

el
o

p
e

Figure 4.11: (a) The normalised biassed error as a function of µ
σ , (b) the normalised random error as a function of µ

σ

E [ẽi(τ)] =

√
ei(τ)2 + Var

[
R̃qi (τ)

]+
, ei(τ) >> Var

[
R̃qi(τ)

]
(4.32)

The variance of this region of the envelope yields

Var [ẽi(τ)] = Var
[

R̃qi (τ)
]+

, ei(τ) >> Var
[

R̃qi(τ)
]

(4.33)

4.8.5 Last part of envelope - noise tail

We will look at the part of the correlation function where the noise tail appears. As the analytic envelope
tends towards zero, ei(τ) ≈ 0, the density function of the Hilbert envelope changes to another special
case of the Rice distribution; the Rayleigh distribution [22, 23]. Then we calculate the expected value of
the envelope in the noise tail region of the correlation function.

E [ẽi(τ)] =

√
π

2

√
Var

[
R̃qi (τ)

]+
, ei(τ) ≈ 0 (4.34)

We calculate the variance of the envelope in this region of the modal auto-correlation function.

Var [ẽi(τ)] =
(

2− π

2

)
Var

[
R̃qi (τ)

]+
, ei(τ) ≈ 0 (4.35)

The envelope depends only on the statistical errors in the noise tail. Therefore, the estimated modal
auto-correlation function is no longer a free decay since it is independent of the analytic envelope of
the modal auto-correlation function in this region. The noise tail violates the core assumption in the
correlation-driven operational modal analysis: that the correlation function matrix consists of free de-
cays. Therefore, it is crucial that we exclude the noise tail from an identification process.

4.8.6 Errors of the estimated envelope

Let us look at the biassed and random errors to understand the statistical errors and their effect on the
envelope. We start with the normalised biassed error as a function of the signal-to-noise ratio, see Fig.
4.11 A).

εm

(µ

σ

)
=

µm

µ
− 1

=

√
π

2
σ

µ
L1/2

(
− µ2

2σ2

)
− 1

(4.36)

We insert the equation for the envelope, Eq. (4.9) and the equation for the variance related to the
peaks of the correlation function, Eq. (4.20), into Eq. (4.36).

εm(τ) =

√
π

4

√
e2ω0ζτ + 2ω0ζτ + 1

(T − τ)ω0ζ
L1/2

(
(τ − T)ω0ζ

e2ω0ζτ + 2ω0ζτ + 1

)
− 1 (4.37)
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Figure 4.12: The normalised biassed error of the envelope, Eq. (4.37), for two different time lengths, (a) Brincker and Ventura [1], (b) ANSI [13]
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Figure 4.13: The normalised random error of the envelope, Eq. (4.38), for two different time lengths, (a) Brincker and Ventura [1], (b) ANSI [13]

Fig. 4.12 shows the normalised biassed error of the envelope of an estimated modal auto-correlation
function for two different time lengths.

We turn to the normalised random error, sometimes called the coefficient of variation, see Fig. 4.11
B).

εm

(µ

σ

)
=

σm

µm

=

√
2 +

µ2

σ2 −
π

2
L1/2

(
− µ2

2σ2

)2

√
π

2
L1/2

(
− µ2

2σ2

) (4.38)

The normalised random error is illustrated in Fig. 4.13. In the physical part of the envelope (high
value of signal-to-noise ratio) the normalised random error of the envelope is approximately equal to the
normalised random error of the estimated correlation function, Eq. (4.23). In the noise tail region, we
calculate the normalised random error by tending µ

σ toward zero.

lim
µ
σ→0

εm

(µ

σ

)
=

√
4
π
− 1 (4.39)

Both expressions of the error for each mode are independent of the excitation level. Therefore, the
effect of the statistical errors depends on the modal parameters, time lag, and the total time length.
Both the modal auto-correlation function and its variance have the same relative contribution from the
excitation.

In this section, we have proven that the envelope of the estimated correlation function matrix is Rice
distributed. Therefore, the envelope becomes increasingly biassed as the signal-to-noise ratio decreases
to a point where the expected envelope becomes almost constant, thus explaining the phenomenon of
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Figure 4.14: Correlogram with two realisations of the same estimated correlation function and the zero crossings

the noise tail. Hence, in operational modal analysis, this biassed envelope introduces a biassed error in
the identified damping ratio.

4.9 Statistical errors in zero crossings of the modal auto-correlation
function

In this section, we will study the zero crossings from the modal auto-correlation function, see Fig. 4.14.
The statistical properties of zero crossings for a stochastic process are, however, largely unsolved and
there is no closed-form solution for the probability density function for the level crossing of a stochastic
process [5, 22, 26–30]. Level and zero crossings are studied in [5, 22, 27–29] for a sine wave with ergodic
white Gaussian noise. The estimated modal auto-correlation function is an exponential decaying cosine
with non-stationary Gaussian non-white noise, thus, we simplify the problem due to this complexity.
Therefore, we will study the zero crossing in the noise tail region where the statistical errors dominate
and where they are approximately stationary when the time length is much larger than the time lag,
T >> τ.

4.9.1 Expected zero crossing

Rice [22] states that level crossing is given by the joint probability function, p(α, β), of a stationary and
narrow banded random variable, α, and its derivative, β. The expected zero crossing is then given by

N0 =
∞∫
−∞
|β|p(0, β)dβ (4.40)

For a Gaussian process with zero means, it simplifies to [5]

N0 =

√
1− ρ2

α,β

π

σβ

σα

(4.41)

where σα and σβ are the standard deviation of α and β respectively, and ρα,β is the population correlation
coefficient between α and β.

4.9.2 Variance of the derivative of the modal auto-correlation function

In this section, we will find the variance of the derivative of the estimated modal auto-correlation func-
tion with respect to the time lag, τ.

The correlation function has the following properties regarding the first and second derivative with
respect to time lag [1, 5, 19]

−Rẋ,x(τ) = Rx,ẋ(τ) = d
dτ Rx,x (τ) = Ṙx,x(τ) (4.42)

Rẋ,ẋ(τ) = − d2

dτ2 Rx,x (τ) = −R̈x,x(τ) (4.43)
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Thus, the derivative, with respect to time lag, of the modal auto-correlation function equals the cross-
correlation function between the modal coordinate and its derivative in time, d

dτ Rqi(τ) = Rqi ,q̇i (τ). We
assume a large time length, T, and use the variance expression for a cross-correlation function [5] and
we apply the properties of the correlation function from Eqs. (4.42) and (4.43) to rewrite it.

Var
[
R̃qi ,q̇i (τ)

]
≈ 1

T − τ

∞∫
−∞

(
Rqi ,qi (r)Rq̇i ,q̇i (r) + Rqi ,q̇i (r + τ)Rq̇i ,qi (r− τ)

)
dr

≈ 1
T − τ

∞∫
−∞

(
−Rqi (r)R̈qi (r)− Ṙqi (r + τ+)Ṙqi (r− τ)

)
dr

(4.44)

We calculate the first derivative of the modal auto-correlation function, Eq. (4.5), with respect to τ.

Ṙqi(τ) = − ω0√
1− ζ2

σ2
q i

e−ω0ζ|τ| sin(ωdτ) (4.45)

Clough and Penzien [19] calculated the second derivative of the auto-correlation function of an SDOF
system with respect to τ.

R̈qi (τ) = −ω2
0σ2

q i
e−ω0ζ|τ|

(
cos(ωdτ) +

ζ√
1− ζ2

sin(ωd|τ|)
)

(4.46)

We can see that ω2
0Rqi (τ) = −R̈qi (τ). So we simplify again.

Var
[

d
dτ

R̃qi (τ)

]
≈ 1

T − τ

∞∫
−∞

(
ω2

0Rqi (r)
2 − Ṙqi (r + τ+)Ṙqi (r− τ)

)
dr (4.47)

This is similar to Eq. (4.18) but the first term, ω2
0Rqi (r)

2, is multiplied by ω2
0. We insert Eqs. (4.5) and

(4.46) into Eq. (4.47) and calculate the integral by assuming small damping.

Var
[

d
dτ

R̃qi (τ)

]
≈ ω2

0

σ4
q i

2(T − τ)ω0ζ

(
1− e−2ω0ζτ cos(2ωdτ)(1 + 2ζω0τ)

)
(4.48)

4.9.3 Auto-correlation of statistical errors

The statistical dependency of the correlation function matrix is another important statistical property of
the correlation function. Since we calculate the estimated correlation function matrix for all time lags
from the same realisation of the system response, then the matrix - at different time lags - is statistically
dependent. Hence, the statistical errors in the estimated correlation function matrix are correlated. In
this subsection, we will study this correlation since it relates to the zero crossings.

The estimated modal auto-correlation function is Gaussian distributed so the statistical errors are
additive Gaussian noise, s(τ) ∼ N (0, Var[R̃qi(τ)]), in each estimated modal auto-correlation function.

R̃qi(τ) = Rqi(τ) + s(τ) (4.49)

We will look at the non-stationary and auto-correlation function of the statistical errors in each es-
timated modal auto-correlation function. This is equivalent to the covariance function of the estimated
modal auto-correlation function.

Rs,s(τ, v) = E [s(τ)s(τ + v)]

= E
[(

R̃qi(τ)− Rqi(τ)
) (

R̃qi(τ + v)− Rqi(τ + v)
)]

= Cov[R̃qi(τ), R̃qi(τ + v)]

(4.50)

Priestley [31] derives an expression of the covariance function of the estimated correlation function,
see Appendix 4.C for a similar derivation of the expression of the auto-correlation function of the statis-
tical errors.

Rs,s(τ, v) ≈ 1
T − τ

∞∫
−∞

(
Rqi(r)Rqi(r + v) + Rqi(r + v + τ)Rqi(r− τ)

)
dr (4.51)
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Figure 4.15: Correlogram of statistical errors, Eq. (4.52), for time lag zero, τ = 0, plotted for two different time lengths, (a) Brincker and
Ventura [1], (b) ANSI [13]

Giampellegrini [6] calculates the covariance function of the estimated correlation functions using this
integral, Eq. (4.51), by assuming small damping. In this article, we calculate the auto-correlation function
of the statistical errors based on the work in [6].

Rs,s(τ, v) ≈
σ4

q i
2(T − τ)ω0ζ

·
(

e−ω0ζ|v|
(

cos(ωdv)(1 + |v|ω0ζ) + sin(ωd|v|)
2ω0ζ2|v|√

1− ζ2

)
+

e−ω0ζ(2τ+v)

(
cos(ωd(2τ + v))(1 + (2τ + v)ω0ζ) + sin(ωd(2τ + v))

2ω0ζ2(2τ + v)√
1− ζ2

))
(4.52)

For v = 0, the covariance function, Eq. (4.52), simplifies to the variance of the modal correlation
function, Eq. (4.19). Fig. 4.15 shows the correlation function of the statistical errors. The statistical errors
are a narrow banded process since it - for any value of τ - oscillates with the damped frequency, ωd, of
the given mode.

We will study two special instances: at time lag zero, τ = 0, and high time lags, τ >> 0.

Rs,s(0, v) ≈
σ4

q i
Tω0ζ

e−ω0ζ|v|
(

cos(ωdv)(1 + |v|ω0ζ) + sin(ωd|v|)
2ω0ζ2|v|√

1− ζ2

)
(4.53)

Fig. 4.7 shows this phenomenon with two examples of the estimated modal auto-correlation function.

Rs,s(τ, v) ≈
σ4

q i
2(T − τ)ω0ζ

e−ω0ζ|v|
(

cos(ωdv)(1 + |v|ω0ζ) + sin(ωd|v|)
2ω0ζ2|v|√

1− ζ2

)
, τ >> 0

(4.54)
This case studies the statistical errors in the noise tail where each estimated modal auto-correlation

function oscillates with its damped natural frequency in the tail region of the correlation function. Fur-
thermore, given a large time length compared to the time lag, T >> τ, the statistical errors are approxi-
mately stationary.

4.9.4 Expected zero crossing for the modal auto-correlation function

We focus on the noise tail where the expected value, R̃qi, is approximated zero and the variance is ap-
proximately stationary given that the time length is much larger than the time lag, T >> τ. Therefore,
the variance of the modal auto-correlation function and its derivative obtain the following relationship.

Var
[

d
dτ

R̃qi (τ)

]
≈ ω2

0Var
[

R̃qi (τ)
]

, τ >> 0 (4.55)
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We have the estimated modal auto-correlation function, R̃qi ∼ N (0, Var[R̃qi(τ)]), and its derivative,
d

dτ R̃qi(τ) ∼ N (0, ω2
0Var[ d

dτ R̃qi(τ)]). Since the statistical errors dominate, R̃qi(τ) = s(τ), we can write
the correlation coefficient between the estimated modal auto-correlation function and it derivative as

ρs,ṡ(τ) =
Rs,ṡ(τ, 0)√

Var
[

R̃qi (τ)
]√

Var
[

d
dτ R̃qi (τ)

] , τ >> 0
(4.56)

For stationary data, the cross-correlation function between a random process and its derivative is
zero at time lags zero, Rx,ẋ(0) = 0, [5]. Hence, the cross-correlation, Rs,ṡ(τ, v), between the statistical
errors and it derivative approach zero in the noise tail for v = 0. Thus, the correlation coefficient is
approximately zero in the noise tail.

ρs,ṡ(τ) ≈ 0, τ >> 0 (4.57)

We apply Eq. (4.41) and calculate the expected zero crossing in the noise tail region.

N0(τ) ≈
ω0

π
, τ >> 0 (4.58)

This corresponds well with the findings in Section 4.9.3, however, here the osculating frequency is not
the damped frequency. This is due to the assumptions of narrow banded in Rice [22], Eq.(4.41), for zero
crossings. Since the statistical errors are approximately stationary in the noise tail region and they are
narrow banded with the same frequency, ω0, as the given mode, then the expected zero crossing should
be twice this frequency. Hence, the zero crossings of the estimated modal auto-correlation function are
an unbiassed process. In the noise tail, the expected number of zero crossings as a function of τ is given
by

E [N(τ)] =
∫ τ

0 N0dτ =
ω0

π
τ +

1
2

, τ >> 0 (4.59)

4.9.5 Variance of zero crossings for the modal auto-correlation function

As previously stated, no closed-form solution exists for the probability density function of the periods of
zero crossings. Thus, it is difficult to express the exact variance of each zero crossing.

Cobb [29] shows that the periods of zero crossings from a sine wave with additive Gaussian noise are
normal distributed for high signal-to-noise ratios.

Var [N(τ)] =
2 (1 + ρ1)

π2a2 , µ << σ (4.60)

where a = 1
ε(τ)− , Eq. (4.23), and ρ1 is the normalised correlation function for noise alone at the value

T = 1.
It illustrates that the variance of the zero crossings depends on the signal-to-noise ratio at the begin-

ning of the modal auto-correlation function.
Raninal [28] proves that the variance of the number of zero crossings in a time length, t, increase

linearly for low signal-to-noise ratios and high time lags.

Var [N(τ)] = N0τ, µ >> σ (4.61)

This indicates that the variance of zero crossings is much higher and increases linearly in the noise
tail.

This concludes this section on zero crossings. We have shown that the statistical errors on each modal
auto-correlation function are a non-stationary process but they are narrow banded with the same fre-
quency as the damped natural frequency of each mode. We found that the expected zero crossings are
unbiassed but the variance of the zero crossings increase linearly in the noise tail. Thus in operational
modal analysis, the identified natural frequencies are unbiassed regardless of the noise tail but we should
disregard the noise tail to reduce the uncertainty of the identification process.
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4.10 Noise tail relationship / time length and correlation time rela-
tionship

In this section, we will study the relationship between the time length of data and the correlation time
of the modal auto-correlation functions. The correlation time is, however, a stochastic process that de-
scribes the gradual transition from a persistent physical part to the erratic noise tail. So we will have to
express the relationship between the time length and correlation time with some stochastic expression of
error. We will set up a simplified relationship between the time length, correlation time, and the modal
parameters based on the biassed error since Eq. (4.37) is non-trivial to solve. Both the biassed and ran-
dom error of the envelope depend on the signal-to-noise ratio or the normalised random error, Eq. (4.23),
of the peaks of the estimated correlation function.

We know from Sections 4.7.3 and 4.7.4 that the mode with the lowest frequency-damping product has
the highest level of statistical errors. Thus, we should use the mode with the lowest frequency-damping
product to find the required time length or correlation time.

In operational modal analysis, the excitation is unknown so we must use the relative expression of
the statistical errors since these are unrelated to the excitation levels.

We want to solve the equation for the biassed error of the envelope, Eq. (4.36), to find an expression
for the signal-to-noise ratio as a function of this biassed error. We use the asymptotic expansion of the
Laguerre polynomial for the case 1

2 for negative values [23].

L1/2(−x) =
2
√

x√
π

+
1

2
√

πx
+

1

16
√

πx
3
2
+O

(
x−

5
2

)
(4.62)

We insert this into the normalised biassed error, Eq. (4.36), and solve it for the signal-to-noise ratio, µ
σ .

SNR (εm) =

√√
2εm + 1 + 1

4εm
(4.63)

where SNR (εm) is the approximated signal-to-noise ratio, µ
σ , as a function of the normalised biassed

error. Since we based it on an asymptotic expansion, it only works for a small normalised biassed error.
We know that the signal-to-noise ratio is inversely proportional to the normalised random error.

Thus, we can equal the approximated signal-to-noise ratio, Eq. (4.63), to the normalised random error,
Eq. (4.23), that we derived in Section 4.7.4.

1
SNR (εm)

=

√
1

T − τ

e2ω0ζτ + 2ω0ζτ + 1
2ω0ζ

(4.64)

Since the normalised biassed error is based on the biassed error relative to the envelope, we will
express the correlation time relative to the decay of the correlation function, a = e−ω0ζ|τ0|. We simplify
Eq. (4.64) by removing the smallest terms of the normalised random error and we insert Eq. (4.63).

Tmin(εm, f0ζ, a) =

√
2εm + 1 + 1

4εm

a−2

4π f0ζ
(4.65)

where τ0 is the correlation time for the given mode.
This new expression adds novel information on the relationship between the normalised biassed error

of the envelope, εm, the frequency-damping product, ω0ζ, the time length of the recording, T, and the
correlation time of the correlation function matrix, τ0. For this expression, we should use the mode with
the lowest frequency-damping product since it has the highest level of statistical errors as previously
stated. We can use this expression to find an appropriate time length, Tmin, based on a given time lag,
biassed error, and correlation time. Or we can find the correlation time, τmax, for a given time length if
we have the desired level of normalised biassed error.

We will show the application of Eq. (4.65) with an example. Let us say that we want to find the time
length of a measurement setup meant for operational modal analysis. We have an initial estimate of the
modal parameters of the first fundamental mode. Now we must specify how much correlation time, a,
we need for the identification process, e.g. a = 10%. In practice, the authors find that the noise tail seems
to begin at 10% normalised biassed error of the envelope. Thus, we need a time length of approximately
Tex ≈ 42

f0ζ .
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4.10.1 Comparison to other required time lengths

By applying Eq. (4.65), we will study two minimum required time lengths, Brincker and Ventura [1] and
ANSI 2.47 [13]. These two expressions recommend minimum time lengths with a difference of 2, 000%.

TBrincker =
10
f0ζ

(4.66)

TANSI =
200
f0ζ

(4.67)

The required time length from Brincker and Ventura, Eq. (4.66), assumes that the lowest frequency
of the system defines the longest correlation time. It uses spectral density functions as the basis for this
time length requirement [5]. The correlation function for the lowest mode must decay to an amplitude
of 4% and we need 20 data segments with 50% overlap and 40 frequency averages [1]. We want to
compare this time length requirement with Eq. (4.65). We know from Eq. (4.66) that we must have
a = 4%. We equal Eq. (4.65) to Eq. (4.66), Tmin(εm, f0ζ, 0.04) = TBrincker, and solve for the normalised
biassed error, εm, which is approximately 440%. Since εm was based on an asymptotic expansion of the
Laguerre polynomial for negative values, it is inaccurate for large values of normalised biassed error.
The normalised biassed error is, however, still so big that we should decrease the correlation time for
the given time length. We set the normalised biassed error to 10%, so the correlation time ends at an
amplitude of approximately 20%. This contradicts the 4% decay of the original derivation.

We turn to the other time length requirement from ANSI 2.47, Eq. (4.67). It uses the first fundamental
mode of a system and has a biassed error of 4% and a variance error of 10% [13]. We insert a normalised
biassed error, εm, of 4% into Eq. (4.65) and equal it to Eq. (4.67), Tmin(0.04, f0ζ, a) = TANSI . Then the
correlation time should end at an amplitude of 7.1%. If we accept a normalised biassed error of 10% then
the correlation time ends at an amplitude of approximately 5%.

A normalised biassed error at 10% often occurs at the end of the correlation time and the beginning
of the noise tail. So, for Brincker and Ventura the noise tail begins when the amplitude drops to ∼ 20%
while it begins at an amplitude of ∼ 5% for ANSI 2.47. The increased correlation time from ANSI
2.47, however, comes with a 2, 000% increase in the time length. The two recommended time lengths
result in widely different levels of error, but Brincker and Ventura provide the more practical of the two
recommended time lengths, though the correlation time is shorter.

In this section, we showed that the normalised random error of the estimated correlation function can
be used to set up a simple relationship between the normalised biassed error, the time length, correlation
time, and the system parameters.

4.11 Case study

In this section, we will verify the statistical properties derived in this article of the estimated correlation
function matrix based on a simulation and an experimental study. For the discrete estimation of the
correlation function matrix, we apply the direct method in the time domain where we compute average
products of the sampled data using the toolbox from Brincker and Ventura [1].

R̂(k) =
1

N − k

N−k
∑

n=0
y(n)y>(n + k), 0 ≤ k < N (4.68)

where R̂(k) is the discrete estimated correlation function matrix, N is the total number of samples, T =
N∆t, k is the discrete time lag, τ = k∆t, and ∆t is the sampling interval. For more information on the
discrete estimation of the correlation function matrix, we refer to [1, 5].

4.11.1 Simulation study

We simulate the response of a three degree-of-freedom system corresponding to masses in series sup-
ported in one end, see the system in Fig. 4.16. To model a system with closely spaced and orthogonal
modes, we modify the system so the third mode has the similar natural frequency as the second mode
but shifted upwards with 0.05 Hz, see the modal parameters in Table 4.1. The time length of each simula-
tion was 13 minutes. Thus, the correlation time corresponds to a decay of 6.7% of the original amplitude
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m3 m2 m1

k3 k2 k1

c3 c2 c1

Figure 4.16: The system used in the case study

while the normalised error is below 25% according to Eq. (4.65). We run 100,000 simulations of the sys-
tem response by generating white Gaussian noise as excitation and use the Fourier transformed modal
superposition to simulate the linear system [1]. For each simulation of the response, we calculate the
estimated correlation function matrix and use the analytic mode shapes of the system to decorrelate each
estimated correlation function matrix into the modal auto-correlation functions, similar to Eq. (4.4). We
estimate the envelope of each modal auto-correlation function using the Hilbert transformation [20].

Table 4.1: Modal parameters of the numerical system

Mode 1 Mode 2 Mode 3

Frequency (Hz) 3.39 10.01 10.06
Damping Ratio (%) 1.49 1.34 5.00

Figs. 4.17 and 4.18 show the expected value, Eq. (4.13), and variance, Eq. (4.16), respectively, of the
correlation function matrix next to sampled values of all estimated correlation function matrices from the
simulation. Fig. 4.19 compares the expected value, Eq. (4.5), and the variance, Eq. (4.19), of the estimated
modal auto-correlation functions, R̃qi(τ), to the sample mean and sample variance of the decorrelated
estimated correlation function matrix from the Monte Carlo simulations. There is a high correlation
between the theoretical and the simulated statistical properties.

In Fig. 4.20, we move to the envelope and compare the analytic expressions of the expected value,
Eq. (4.30), and the variance, Eq. (4.31), of the envelope to sample mean and variance from the Monte
Carlo simulation. The sample mean and analytic expression of the expected envelope are identical while
the sample variance is almost equivalent to the analytic variance of the envelope. Fig. 4.21 illustrates the
normalised biassed and random error of the Hilbert envelope.

Fig. 4.22 illustrates the correlation function of the statistical errors in each modal correlation function
at two time lags, τ, by comparing the analytic expression, Eq. (4.52), with the results from the simulation.
The analytic correlation function of the statistical errors matches with the simulation study. Fig. 4.23
shows the zero crossings for each modal auto-correlation function, and the analytic expression is similar
to the sample mean zero crossing. The variance of the zero crossings increases rapidly and linearly in
the noise tail region while the variance is small for zero crossings located in the correlation time. By
comparing it with Fig. 4.21, this growth of variance happens as the biassed error exceeds 10%.

The assumption of a sufficient time length is system dependent. For the second and third mode, there
is a high correlation between theory and the simulation but the first mode deviates a bit. Thus, the time
length must be sufficiently long for the individual modes, see sections 4.7.4 and 4.8.6. Thus, modes with
low frequency-damping products require longer time lengths compared to modes with higher products.
Therefore in this case study, we should expect the third mode to behave more as the analytic equations
from this article than the first mode would.

Thus, based on these findings, we will expect relatively large random and biassed errors in the es-
timated damping ratios, some random errors in the estimated frequency, and only identification errors
in the estimated mode shapes in an identification process using correlation-driven operational modal
analysis.

The assumptions in this article are mainly based on lightly damped and orthogonal modes. Very
closely spaced modes, however, have correlated modal coordinates, and the cross-correlation between
the modes is influential. In such a case, the expectation and variance of the estimated correlation func-
tion matrix differ from the summation of the expectations and variances of the modal auto-correlation
functions. In this case, these summations are more a rule of thumb.

Based on this case study, the statistical properties of the estimated correlation function matrix match
well with the analytic expression.
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Figure 4.17: Simulation study: Analytic expectation, Eq. (4.13), (red dashed line) against sample mean of the Estimated Correlation Function
Matrix, R̃(τ), based on 100,000 Monte Carlo Simulations (black solid line)
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Figure 4.18: Simulation study: Analytic variance, Eq. (4.16), (red dashed line) against sample variance of the Estimated Correlation Function
Matrix, R̃(τ), based on 100,000 Monte Carlo Simulations (black solid line)
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Figure 4.19: Simulation study: Analytic expected value, Eq. (4.5), and analytic variance, Eq. (4.19), (red dashed line) against sample mean and
variance of the Estimated Modal Auto-Correlation Function, R̃q i(τ), for each mode based on 100,000 Monte Carlo Simulations (black solid line)
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Figure 4.20: Simulation study: Analytic expected value, Eq. (4.30), and variance, Eq. (4.31), of envelope (red dashed line) against sample mean
and variance of envelope based on 100,000 Monte Carlo simulations (black solid line)
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Figure 4.21: Simulation study: The normalised biassed error, Eq. (4.37), and normalised random error, Eq. (4.38), (red dashed line) against the
sampled versions from 100,000 Monte Carlo simulations (black solid line)
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Figure 4.22: Simulation study: Analytic correlation of statistical errors, Eq. (4.52), (red dashed line) against estimated correlation of statistical
errors based on 100,000 Monte Carlo simulations (black solid line)
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Figure 4.23: Simulation study: Analytic expected zero crossings, Eq. (4.59), (red dashed line) against sample mean and variance of zero
crossings based on 100,000 Monte Carlo simulations (black solid line)

4.11.2 Experimental study

In this section, the analytic expressions are verified by an experimental study of a T shaped steel structure
with a hollow cross-section, RHS40×40×2, in a laboratory facility, see Fig. 4.24. To verify the statistical
properties, we need many data sets measured over a longer period. The fluctuation of the modal parame-
ters is, however, near inevitable due to environmental effects during the recording. Even in a laboratory,
it is difficult to obtain complete stationarity and completely remove environmental effects over many
data sets, see Fig. 4.26. The variances in temperature and humidity cause slightly non-stationary in the
modal parameters over all the data sets. Thus for the experimental study, we have a variance from both
the statistical errors and non-stationary modal parameters. This additional variance obstructs the verifi-
cation of any analytic expression regarding variance; however, we can still verify the analytic expression
regarding expected values using the experimental study.

For the measurement-setup, we applied 10 Brüel & Kjær 4508-B-002 uniaxial accelerometers to the
structure as seen in Fig. 4.25. The data sets were recorded over the course of four days, primarily at
night. We sampled the data at a frequency of 1651 Hz and we used 386 data sets with a time length
of 238 seconds. Thus, the correlation time corresponds to a decay of 14.6% given a normalised error of
25% according to Eq. (4.65) using the lowest frequency-damping product. We bandpass filter the data
with cut-off frequencies at 5 and 100 Hz to remove noise and higher modes. The Ibrahim time domain
technique [32] identified the modal parameters from an arbitrary data set using the correlation function
matrix. The identified mode shapes were used to decorrelate the estimated correlation function matrix
from each data set. Finally, we identified the modal parameters based on the sample mean of each modal
auto-correlation functions using the Ibrahim time domain, see Table 4.2. In this study, only the first three
modes are included.

Table 4.2: Modal parameters of the experimental system

Mode 1 Mode 2 Mode 3

Frequency (Hz) 7.30 8.91 22.8
Damping ratio (%) 2.47 0.392 0.237

Fig. 4.27 compares the expected value of the estimated modal auto-correlation functions, Eq. (4.5), to
the sample mean of the decorrelated estimated correlation function matrix from the experimental study.
For the envelope, Fig. 4.28 compares the analytic expressions of the expected value, Eq. (4.30), of the
envelope to the sample mean. While Fig. 4.29 shows the expected and sample mean of zero crossings
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Figure 4.24: Experimental study: Photo of the test specimen in the
laboratory

Figure 4.25: Experimental study: Position of sensors on the test
specimen, arrows denotes uniaxial accelerometers
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Figure 4.26: Experimental study: The environmental effects during the experimental tests, variance in (a) temperature and (b) humidity
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Figure 4.27: Experimental study: Analytic expected value, Eq. (4.5), (red dashed line) against sample mean of the Estimated Modal
Auto-Correlation Function, R̃q i(τ), for each mode based on experimental study (black solid line)
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Figure 4.28: Experimental study: Analytic expected value, Eq. (4.30), of envelope (red dashed line) against sample mean of envelope based on
experimental study (black solid line)

for each modal auto-correlation function. Generally, the analytic expression correlates well with this
experimental study, taking into account, that the uncertainty of the actual modal parameters is a source
of error.

Based on this experimental case study, the statistical properties of the estimated correlation function
matrix match well with the analytic expression for all expected values.

4.12 Conclusion

In this article, we have studied the estimation of the correlation function matrix in operational modal
analysis and the associated statistical errors, which relates to the finite time length of the measured sys-
tem response. To verify the statistical properties derived in this article, we performed a Monte Carlo
simulation of a three DOF system, and generally, these simulations agree well with the analytical expres-
sions from this article. We showed that the statistical errors are non-stationary and additive Gaussian
noise in each modal auto-correlation function - for orthogonal modes. The relative statistical errors de-
pend on the system parameters, the time length of the measurements, and time lags (correlation time)
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Figure 4.29: Experimental study: Analytic expected zero crossings, Eq. (4.59), (red dashed line) against sample mean of zero crossings based on
experimental study (black solid line)
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in the estimated correlation function matrix. The statistical errors are narrow banded with the same fre-
quency as the damped frequency of the mode. The zero crossing of each modal auto-correlation function
is unbiassed.

We have shown that the envelope of the modal auto-correlation function is Rice distributed, meaning
it becomes biassed as the statistical errors increase in the tail region. We derived an expression for the
expected envelope of the modal auto-correlation function. In this article, we call this biassed region the
noise tails of the modal auto-correlation functions, and the correlation function matrix contains a noise tail
for each mode in the system. The biassed error of the envelope transfers to an identification process and
creates a biassed error in the estimated modal parameters. Since damping ratios are primarily identified
based on the envelope, the estimation of damping is highly affected by the noise tail.

These statistical errors affect identification of modal parameters in operational modal analysis. The
mode shapes span the vector space of the estimated correlation function matrix and the statistical errors
are located within this space. Thus, for orthogonal modes, there are no statistical errors in the subspace of
the estimated correlation function matrix. The frequency estimates are unbiassed since the zero crossings
of the correlation function matrix are unbiassed but the variance increases rapidly in the noise tail. The
damping estimates are biassed when the correlation function matrix includes parts of the noise tail.
Generally, there is a higher variance on the envelopes than the zero crossings, thus, a higher variance is
expected for damping estimates than the frequency estimates.

We derived a relationship between the modal parameters, time lags, and the total time length of the
recording. The expression is based on the assumption of white Gaussian noise as excitation, a linear and
ergodic system, low damping, and a large time length.

For further research, the effect of statistical errors on the identification of modal parameters in the
correlation-driven operational modal analysis should be studied. The theory and analytic expressions
provided within this article provide the theoretical framework for such a study.
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Appendix 4.A Probability density function of the estimated modal
auto-correlation function

We will look at the probability density function of the modal auto-correlation function and we will use
the Transformation of Probability Densities, the Central Limit Theorem, and the Moment Generating
Function to obtain it [5, 21]. We want to find the distribution of the modal auto-correlation function.

Rqi(τ) = E [qi(t)qi(t + τ)] (4.69)

First, we go back to the equation of motion for a stationary system excited with white Gaussian noise.

Mÿ(t) + Cẏ(t) + Ky(t) = x(t) (4.70)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, and x(t) is the exci-
tation vector. The excitation vector is multivariate normal distributed, x(t) ∼ N (0, Σ), where Σ is the
covariance matrix.

We apply the modal decomposition, Eq. (4.2), for mode i and pre-multiply with the transposed mode
shape for mode i to decorrelate the equation of motion into an SDOF system for mode i.

φ>i Mφi q̈i(t) +φ>i Cφi q̇i(t) +φ>i Kφiqi(t) = φ>i x(t) (4.71)

The response of an SDOF system is a convolution of the modal excitation, φ>i x(t), and the impulse
response function, hi(t), [19].
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qi(t) =
∞∫
−∞

φ>i x(t− τ)hi(t)dτ (4.72)

The integral is defined as the limit of a sum and the Central Limit Theorem states that the sum of
many random variables tends to be normal distributed [1]. Thus, the modal coordinates, qi(t), are ap-
proximated normal distributed, qi(t) ∼ N (0, σ2

q i
), where σ2

q i
is the variance of the modal coordinates.

Any time lag of the response is still a normal variable with the same variance due to the time-invariance
of the system and the excitation, qi(t + τ) ∼ N (0, σ2

q i
).

For simplicity, we deal with a single discrete variable, qi(t)→ X ∼ N
(
0, σ2), and the distribution of

the estimated auto-correlation coefficient. The auto-correlation function will have similar proof but the
number of averaging changes from N to N− j where N is the discrete time length, T = N∆t, and j is the
discrete time lag, τ = j∆t. We leave that proof to the reader.

The density function for a normal distribution with zero mean is given by

fx(x, σ2) =
1√

2πσ2
exp

(
− x2

2σ2

)
(4.73)

Then the correlation coefficient (auto-correlation function at time lag zero) of this normal variable is
given by

ρx(τ) = E
[
X2]

=
1
N

N
∑

i=1
X2

i

(4.74)

Firstly, we transform the normal distribution by squaring the random variables, Y = X2, using the
Transformation of Probability Densities.

g(x) = x2 , g−1(y) = ±√y (4.75)

We calculate the transformed probability density function for Y:

fy(y, σ2) = fx(g−1(y), σ2)

∣∣∣∣ d
dy

g−1(y)
∣∣∣∣

= f (
√

y, σ2)

∣∣∣∣ 1
2
√

y

∣∣∣∣+ f (−√y, σ2)

∣∣∣∣ 1
2
√

y

∣∣∣∣
=

1√
2πσ2y

exp
(
− y

2σ2

) (4.76)

We rewrite the probability density function to a Gamma distribution with shape factor k = 1
2 and

scale factor θ = 2σ2.

fy(y, k, θ) =
yk−1

Γ(k)(θ)k exp
(
−y

θ

)
(4.77)

Therefore, we can write the squared normal variable as a Gamma distributed variable, Y ∼ Γ(k, θ) =

Γ( 1
2 , 2σ2).
Now, we will transform this Gamma distribution by finding the sum of N Gamma variables with the

same shape and scale factor, Z =
N
∑

i=1
Yi. We will use the Moment Generating Function [5] to find the new

probability density function. The Moment Generating Function for a Gamma distribution is given by

M(t) = E [exp(tX)]

=
1

(1− tθ)k

(4.78)

The Moment Generating Function for a summation of random variables equals the product of all the
Moment Generating Functions.



76 Chapter 4. Paper 1 - The statistical errors in the estimated correlation function matrix for operational
modal analysis

M N
∑

i=1
Yi

(t) =
N
∏
i=1

MYi (t)

=
N
∏
i=1

1
(1− tθ)k

=
1

(1− tθ)Nk

(4.79)

The Moment Generating Function for the summation is still valid for a Gamma distribution with a
shape factor of Nk. Therefore, we have Z ∼ Γ(Nk, θ) = Γ(N

2 , 2σ2).
Finally, we need to divide with the number of variables, ρx = Z

N , which is a scaling of a Gamma
distribution. We use the Transformation of probability densities.

g(z) =
z
N

, g−1(r) = Nr (4.80)

The transformed probability density function for ρx is given by

fr(r, σ2) = fz(g−1(r), σ2)

∣∣∣∣ d
dr

g−1(r)
∣∣∣∣

=
(Nr)Nk−1

Γ(Nk)(θ)Nk exp
(
−Nr

θ

)
N

=
rNk−1

Γ(Nk)( θ
N )Nk

exp
(
−Nr

θ

) (4.81)

Thus, proving that a scaling of a Gamma distribution is another Gamma distribution with a new scale
parameter, ρx ∼ Γ(Nk, θ

N ) = Γ(N
2 , 2σ2

N ).
We rewrite the Gamma distribution as a summation, ρx = ∑Nk

i=1 Ωi, using the Moment Generating
Functions.

Mρx (r) =
1(

1− r θ
N

)Nk

=
Nk
∏
i=1

1
1− r θ

N

(4.82)

Thus, we have Ωi ∼ Γ(1, θ
N ) [21]. The Central Limit Theorem states that a large sum of random

variables is approximately normal distributed [5]. For a long discrete time length, N, the modal auto-
correlation function is approximately normal distributed.

Appendix 4.B Probability density function of the estimated correla-
tion function matrix

We will look at the probability density function of the correlation function matrix.

R(τ) = E
[
y(t)y(t + τ)>

]
(4.83)

We know from Appendix 4.A that the modal coordinates are uncorrelated normal variables, qi(t) ∼
N (0, σ2

q i
). We stack the modal coordinates in a multivariate normal variable, q(t) ∼ N (0, [σ2

q i
]) where 0

is a zero vector and [σ2
i ] is the covariance matrix where the non-diagonal elements are zero.

Let us look at the modal decomposition. It is a linear transformation of Gaussian random vectors or
a linear transformation of a multivariate Gaussian variable [21].

y(t) = Φq(t) (4.84)
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If we assume that the mode shapes are time invariant, we have the multivariate normal variable,
y(t) ∼ N (0, Φ[σ2

q i
]Φ>) [21]. As for the modal coordinates, any time lag of the response is a multivariate

normal variable with the same covariance y(t + τ) ∼ N (0, Φ[σ2
q i
]Φ>).

We turn to the correlation function matrix and assume uncorrelated modal coordinates [1, 19].

R(τ) = ΦE
[
q(t)q(t + τ)>

]
Φ>

=
N
∑

i=1
φiφ

>
i Rqi(τ)

(4.85)

Thus, the correlation function matrix is a summation of the product, φiφ
>
i Rqi(τ). We know from

Appendix 4.A that each modal correlation function is approximately normal distributed. Therefore, the
correlation function matrix is a summation of linear transformations of multivariate Gaussian variables.
Hence, the correlation function matrix is also approximately normal distributed due to the Central Limit
Theorem. Thus, the correlation function matrix, R(τ), is approximated multivariate normal distributed
for a long time series in Operational Modal Analysis.

Appendix 4.C Auto-correlation of statistical errors

The estimated modal auto-correlation function has non-stationary and additive Gaussian noise, s(τ) ∼
N (0, Var[R̃qi(τ)]).

R̃qi(τ) = Rqi(τ) + s(τ) (4.86)

The auto-correlation function of these statistical errors is equivalent to the covariance function of the
estimated modal auto-correlation function, cov[R̃qi(τ), R̃qi(τ + v)], and given by

Rs(τ, v) = E [s(τ)s(τ + v)]

= E
[(

R̃qi(τ)− Rqi(τ)
) (

R̃qi(τ + v)− Rqi(τ + v)
)]

= E
[

R̃qi(τ)R̃qi(τ + v)
]
+ E

[
Rqi(τ)Rqi(τ + v)

]
−E

[
R̃qi(τ)Rqi(τ + v)

]
−E

[
Rqi(τ)R̃qi(τ + v)

] (4.87)

We arrive at the following equation.

Rs(v) = E
[

R̃qi(τ)R̃qi(τ + v)
]
− Rqi(τ)Rqi(τ + v) (4.88)

The rest of the derivation follows a similar derivation of the variance of the auto-correlation function
from [5]. The estimated modal auto-correlation function is defined as (assuming data exist for T − τ).

R̃qi(τ) =
1

T − τ

T−τ∫
0

qi(t)qi(t + τ)dt (4.89)

We insert the definition of the estimated modal auto-correlation function into Eq. (4.88).

Rs(v) = E

[
1

(T − τ)2

T−τ∫
0

T−τ∫
0

qi(t)qi(t + τ)qi(u)qi(u + τ + v)dt du

]
− Rqi(τ)Rqi(τ + v) (4.90)

We use the fourth-order statistical expression of stationary Gaussian processes on the modal coordi-
nates inside the integral [5].

E [qi(t)qi(t + τ)qi(u)qi(u + τ + v)] = Rqi(τ)Rqi(τ + v) + Rqi(u− t)Rqi(u + v− t)+

Rqi(u + v− t + τ)Rqi(u− t− τ)
(4.91)

We insert this back into the integral Eq. (4.90).
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Rs(τ, v) =
1

(T − τ)2

T−τ∫
0

T−τ∫
0

(
Rqi(u− t)Rqi(u + v− t) + Rqi(u + v− t + τ)Rqi(u− t− τ)

)
dt du

(4.92)
We rewrite this expression by r = u− t.

Rs(τ, v) =
1

T − τ

T−τ∫
−T+τ

(
1− |r|

T − τ

) (
Rqi(r)Rqi(r + v) + Rqi(r + v + τ)Rqi(r− τ)

)
dr (4.93)

We assume a long time length, T, so we simplify the equation.

Rs(τ, v) ≈ 1
T − τ

∞∫
−∞

(
Rqi(r)Rqi(r + v) + Rqi(r + v + τ)Rqi(r− τ)

)
dr (4.94)
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5.1 Introduction

In the previous chapter, we established the theory of statistical errors in the estimated correlation function
matrix. Next, we want to reduce these errors in an identification process of the modal parameters in
operational modal analysis. In this way, we could update and reduce the modelling errors in the system
model used in stress/strain estimation.

In this paper, we proposed a new algorithm for the reduction of the noise tail and the statistical errors
so it reduces the biassed part of the correlation function matrix.

5.2 Contribution

The author had the idea to reduce statistical errors by modifying the envelope for the modal auto-
correlation functions. The idea of finding the noise tail by fitting two lines to the correlation function
was proposed by cosupervisor Rune Brincker. The author performed the data analyses and wrote the
paper.

5.3 Main findings

The proposed algorithm increased stability and reduced the biassed error in the identification process of
modal parameters in operational modal analysis.

https://doi.org/10.1016/j.ymssp.2019.07.024
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5.4 Reflection

To the best of this author’s knowledge, this algorithm is the first attempt to reduce statistical errors in the
operational modal analysis community. It reduced biassed errors - primarily on the damping estimation
- and it increased stability in the identification process. This inspires more confidence in an estimation
of the modal parameter, which will be used to calibrate and update a system model for stress/strain
estimation. Thus, the research results in a better basis for updating the system model for stress/strain
estimation.
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Abstract
In operational modal analysis, the correlation function matrix is treated as multiple free decays from
which system parameters are extracted. The finite time length of the measured system response, how-
ever, introduces statistical errors into the estimated correlation function matrix. These errors cause both
random and bias errors that transfer to an identification process of the modal parameters. The bias error
is located on the envelope of the modal correlation functions, thus violating the assumption that the cor-
relation function matrix contains multiple free decays. Therefore, the bias error transmits to the damping
estimates in operational modal analysis. In this paper, we show an automated algorithm that reduces the
bias error caused by the statistical errors. This algorithm identifies erratic behaviour in the tail region of
the modal correlation function and reduces this noise tail. The algorithm is tested on a simulation case
and experimental data of the Heritage Court Building, Canada. Based on these studies, the algorithm
reduces bias error and uncertainty on the damping estimates and increases stability in the identification
process.

Keywords: Operational modal analysis, correlation function matrix, uncertainty, bias reduction, estima-
tion error

5.6 Introduction

In operational modal analysis, we use the random vibrations of a linear and time-invariant system, ex-
cited by white Gaussian noise, to extract modal parameters. The correlation-driven operational modal
analysis uses a two-stage time domain modal identification process [1]. The first step is the calculation
of the correlation function matrix by the random vibrations of the system. In the second step, we treat
the correlation function matrix as free decays of the system [2, 3] from which we estimate the modal pa-
rameters. Unfortunately, exact properties of any random data are inaccessible from sampled data with a
finite length thus we must estimate them instead. In operational modal analysis, the finite length of the
time series forces us to estimate the correlation function matrix and this introduces statistical errors [4].
The statistical errors are system dependent and they cause the estimated correlation function matrix to
become a stochastic process that depends on the modal parameters and the time length. These statistical
errors create random errors in the correlation functions [5–8] that increase with the number of time lags.

Recently, it was shown for operational modal analysis that the envelope of the correlation function is
Rice distributed [5]. Therefore, the envelope becomes increasingly biassed as the random error increases
in the estimated correlation function. This bias error results in erratic behaviour in the tail region of the
estimated correlation function - referred to as the noise tail - for each mode in the system, see Fig. 5.1.
The error depends on the frequency-damping product, the excitation level, and the time length of the
measurement. Since the envelope is biassed in the noise tail, this introduces bias errors in the modal
parameters from an identification process. The bias error is pronounced for the estimated damping ratio
since it is located at the envelope. The zero crossings of the correlation function is, however, unbiassed
[5].

We should exclude the noise tails from an estimation of modal parameters to reduce the bias error in
operational modal analysis. Each mode, however, has an individual position of the noise tail [5, 9, 10]
and this complicates the matter of choosing a sufficient length of the correlation function matrix when
estimating the modal parameters. For instance, modes with a high frequency-damping product need a
smaller part of the estimated correlation function than modes with a lower frequency-damping product
to obtain a valid estimation [11]. Truncation, however, might lead to erroneous results if the correlation
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function has insufficient information about one of the modes for an estimation of the modal parameters
[11].

In the literature, there are various methods for dealing with random noise on the system response. We
can use singular value decomposition or principle component analysis for subspace reduction to remove
noise perpendicular to the reduced subspace [12–14]. Research, however, indicates that a substantial
part of the statistical error is located in the subspace of the physical signals [5, 10]. Furthermore, we can
remove the first part of the correlation function matrix to reduce the additive and uncorrelated noise
[15]. The statistical errors in the correlation function matrix, however, are different than other types of
random noise since it increases with time lags [6, 7]. The use of exponential windows or other tapering
windows, traditionally used to reduce leakage [16], could be applied to the correlation function matrix
to reduce the noise tails [1]. Each mode, however, has a unique noise tail and this complicates the matter
of choosing a suitable window (similar to a truncation of the correlation function matrix). Therefore,
an exponential window might remove the noise tails from some modes while it tampers the physical
response of others and loses information of these modes.

This article presents an algorithm for an automatic reduction of statistical errors in the estimated
correlation function matrix while decreasing the chance of an erroneous truncation. This reduction of
statistical errors assumes that we can manipulate the noise tail since its envelope is purely made of errors.
We change the envelope in the noise tail to mimic that of the physical correlation function by using a
least square fit of a negative exponential. The disadvantage of this algorithm is that the system must be
overdetermined. So we need fewer modes than measured channels with the system response. We can,
however, bypass this problem by applying filtering techniques to the response so the contribution of
modes outside the filter is reduced. The algorithm reduces the bias on damping estimates and increases
stability and reliability in the identification process of modal parameters.

5.7 Theory

5.7.1 Correlation Function Matrix

In operational modal analysis, we use ambient vibrations for modal analysis by measuring the spatial
limited system response, y(t). We assume that stationary white Gaussian noise excites a linear and time-
invariant system [1]. When these assumptions are fulfilled, we can treat the correlation function matrix,
Ry(τ), as multiple free decays of the system [2, 3].

Ry(τ) = E
[
y(t)y>(t + τ)

]
(5.1)

where E denotes the expectation operator.
Brincker [3] has calculated the analytic expression for the correlation, here written for positive time

lags, τ.

Ry+(τ) = 2π ∑N
i=1

(
γiφ

>
i eλiτ + γ∗i φ

H
i eλ∗i τ

)
(5.2)

where λi is the modal pole, γi is the modal participation vector, and φi is the mode shape for ithmode.
If we apply the modal decomposition on the correlation function matrix and assume uncorrelated

modal coordinates, we can decorrelate it into a diagonal matrix [1] where each diagonal component is
a free decay of a single-degree-of-freedom (SDOF) system. The modal decomposition states that the
response from a linear system is a linear combination of mode shapes and modal coordinates.

y(t) = Φq(t) (5.3)

where Φ is the mode shape matrix and q(t) is a vector containing the modal coordinates for all modes.
We insert Eq. (5.3) into Eq. (5.1).

Ry(τ) = ΦRq(τ)Φ> (5.4)

where Rq(τ) is the modal correlation function matrix, which is based on the modal coordinates. In the
case of uncorrelated modal coordinates, the modal correlation function matrix is a diagonal matrix where
modal auto-correlation functions are equivalent to a free decay of a SDOF system of the given mode.
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Figure 5.1: Correlogram with random iteration of the estimated correlation function for two different time lengths and the approximated
beginning of the noise tail

5.7.2 Estimated Correlation Function Matrix

When we have to calculate the correlation function matrix from measured data, we use time averaging
instead of ensemble averaging since the system response is ergodic. The length of the signal must, however,
tend towards infinity for this to be true [4].

Ry(τ) = lim
T→∞

1
T

T∫
0

y(t)y>(t + τ) dt (5.5)

where T is the total time length of the measured system response and > denotes the transpose.
In reality, however, we measure the system response with a sample time step, ∆t, and a finite length

of each data set. Therefore we have to estimate the discrete correlation function matrix from a finite
sample size, which introduces statistical errors [4].

R̃y(k) =
1

N − k

N−k
∑

n=0
y(n)y>(n + k), 0 ≤ k < N (5.6)

where R̃y(k) is the estimated correlation function matrix, N is the total number of samples, T = N∆t, k
is the discrete time lag, τ = k∆t, and ∆t is the sampling interval.

This estimated correlation function matrix is a random variable with an expected value equal to the
analytic correlation function matrix and a variance caused by the statistical errors which are additive
Gaussian noise [4, 5]. Since the finite time length of the recorded signal causes the statistical errors, the
variance decreases when the time length increases [5–7]. Furthermore, the estimated correlation function
matrix at different time lags is statistically dependent since we calculate the entire function matrix from
the same sample. Thus, the statistical errors have cross-correlation.

For simplicity, let us assume that the statistical errors on the mode shapes are small and neglectable
compared to the errors on the frequencies and damping ratios of the system. This enables us to decorre-
late the statistical errors into individual statistical errors on the modal auto-correlation functions by the
use of Eq. (5.4).

R̃qi(k) = φ†
i R̃y(k)

(
φ†

i

)>
(5.7)

where † denotes the pseudo inverse and R̃qi(k) is the estimated modal correlation function.
Now, the variance on each modal auto-correlation function expresses the statistical errors that depend

on the modal properties of the system, the excitation, and the duration of the system response [5, 7].
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Figure 5.2: The expected value of the envelope of the estimated correlation function (black), the envelope of the correlation function, Eq. (5.2),
(black), and the difference between them (the bias error) (grey) for two different time lengths

5.7.3 Noise Tail

As previously mentioned, the statistical errors create erratic behaviour in the tail region of the estimated
correlation function matrix - known as the noise tail - as illustrated in Fig. 5.1. This happens when the
statistical errors dominate the correlation function [5, 7, 9, 10]. Tarpø et al. [5] showed that the envelope
of the estimated modal correlation function is Rice distributed and therefore biassed in the tail region,
see Fig. 5.2. The discrete expected value of the envelope follows this expression

envi(k) =

√
π

2
σ2

q i

√
1 + e−2ωiζik∆t(2ωiζik∆t + 1)

2(N − k)∆tωiζi
L1/2

(
(k− N)∆tωiζi

e2ωiζik∆t + 2ωiζik∆t + 1

)
(5.8)

where L1/2(·) is the Laguerre polynomial for case 1
2 , σ2

q i
is the variance of the modal coordinates, ωi is the

natural frequency, and ζi is the damping ratio for the ith mode. Fig. 5.2 illustrates the expected envelope
of the estimated correlation function, the envelope of the analytic correlation function, and the bias error
caused by the statistical errors [5].

Fig. 5.3 shows a random realisation of an estimated correlation function for two different time lengths.
The envelope of an analytic free decay is plotted along with the expected value of the envelope from Eq.
(5.8). The frequency of the oscillations from the correlation functions is consistent, at least to the eye,
in Fig. 5.3 whereas the envelope is obviously biassed in the tail region. Therefore, the envelope of
an estimated correlation function indicates the level of statistical errors since it diverts from a negative
exponential function as the errors increase.

The expected envelope has an increasing bias error as the time lag of the correlation function in-
creases. When the statistical errors are small, the expected envelope is an approximated exponential
decay. As the statistical errors start to dominate, the envelope becomes constant and this creates the
noise tail - thus violating the assumption that the correlation function matrix consists of free decays.
Therefore, it is essential that we reduce the statistical errors in operational modal analysis.

Since statistical errors affect each mode in the correlation function, it creates a noise tail for each
mode in the estimated correlation function matrix. As seen in Eq. (5.8), the expected value of the modal
envelope will be different for each mode. Therefore, the individual noise tails start at different positions
for each mode. This poses a problem when we have to choose the number of time lags to utilise from the
correlation function matrix. If we use a small part of the correlation function matrix to remove noise tail
for one mode, it might truncate another mode and cause an erroneous identification of that given mode.
This problem is further discussed in [11].

5.8 Algorithm

In this section, we will introduce a novel algorithm to minimise the bias error caused by the statisti-
cal errors without truncating the correlation function matrix. The algorithm decorrelates the correlation
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Figure 5.3: Correlogram with random iteration of the estimated correlation function with the expected value of the envelope (black), the
estimated envelope (grey), and the envelope of the correlation function, Eq. (5.2), (black) for two different time lengths

function matrix, detects the noise tails, and modifies the envelopes of the decorrelated correlation func-
tions in these regions.

5.8.1 Modal Decorrelation of Correlation Function Matrix

We want to decorrelate the estimated correlation function matrix into an approximated modal correlation
function matrix as in Eq. (5.7). This decorrelation is called a similarity transformation. When the trans-
formation matrix contains the eigenvectors as column vectors, the similarity transformation diagonalise
the estimated correlation function matrix.

We could use any identification process to identify mode shapes and apply these to decorrelate and
equalise the energy in the estimated correlation function matrix. Thus, the algorithm is applicable on
previously identified modal parameters to reduce uncertainty of these since we can apply the identified
mode shapes in the modal decorrelation of the estimated correlation function matrix. In this article, we
automatically estimate the mode shapes using a condensation technique by Olsen et al. [12] combined
with a similar identification process as Vold et al. [17] using auto-regression models and a poly reference
technique, see Sec. Appendix 5.A.

When we have a transformation matrix, Φ̃, containing a set of identified mode shape, we decorrelate
the estimated correlation function matrix into an approximated modal correlation function matrix, which
we will call the decorrelated correlation function matrix.

R̂q(τ) = Φ̃†R̃y(τ)
(
Φ̃†)> (5.9)

On the diagonals of this matrix, the correlation functions are decorrelated to auto-correlation func-
tions, which corresponds to free decays of SDOF systems. Since this is an approximated decorrelation,
the decorrelated correlation function matrix is a non-diagonal matrix.

5.8.2 Envelope Detection

In Signal Processing we can use the Hilbert transformation as envelope detection [18]. For this algorithm,
we want to find the envelopes of the diagonal components of the decorrelated correlation function, Eq.
(5.9). These diagonal components, R̂qi(k), are auto-correlation functions and they each form an approxi-
mated free decay of a SDOF system.

When we apply the Hilbert transformation, we obtain a phase shifted signal,H
[

R̂qi(k)
]
. We estimate

the envelope of each decorrelated auto-correlation functions using the absolute value of the analytic
signal [18].

ei(k) =

√
R̂qi(k)

2 +H
[

R̂qi(k)
]2

(5.10)
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where H denotes the Hilbert transformation. Fig. 5.3 shows two examples of the Hilbert envelope of
a decorrelated correlation function. The decorrelated auto-correlation functions are aperiodic functions
since they have a discontinuity in the ends due to the noise tail. Therefore, oscillations often exist in the
Hilbert envelope at the end of the correlation functions, see Fig. 5.3. These (Gibbs) oscillations must be
positioned in the noise tail since they scramble the detection of the real noise tail.

5.8.3 Identifying the location of the Noise Tail

The envelope of the estimated correlation function is a stochastic process that follows a Rice distribution
[5]. The analytic expression for the expected envelope is a Laguerre polynomial, Eq. (5.8), and each
realization of the stochastic process varies slightly. Generally, the physical part of a modal correlation
function resembles an exponential decay while the noise tail has an almost constant envelope with fluc-
tuations. Thus, the logarithmic envelope of the physical part is similar to a straight declining line and the
noise tail is the divergence that produces a near constant envelope. This, however, is an approximation
since the shift from the physical part to the noise tail is gradual due to the Laguerre polynomial.

We use the updated algorithm of Tarpø et al. [9] to find the position of the noise tail. It fits two lines to
the estimated envelope where the transition between the two lines is a variable. The combined model has
four parameters for each transition between the two lines, and the best fit of all the possible transitions
indicates the beginning of the noise tail. Since the expected envelope is described by a Laguerre polyno-
mial, this combined model is a simplification that locates the noise tail as the statistical error dominates
completely.

Firstly, we divide the estimated envelope for a decorrelated auto-correlation function into two vectors
for each line as a function of the transition, n.

m1(n) = log
([

ei(1) ei(2) . . . ei(n)
])>

m2(n) = log
([

ei(n + 1) ei(n + 2) . . . ei(N)
])> (5.11)

We use linear regression to fit the two lines to the logarithmic envelope.

mi(n) = Xi(n)ai(n) (5.12)

We set up design matrices, Xi(n), between the two lines.

X1(n) =

[
1 2 3 . . . n
1 1 1 . . . 1

]>
(5.13)

X2(n) =

[
n + 1 n + 2 n + 3 . . . N

1 1 1 . . . 1

]>
(5.14)

We find the regression parameters by Least Squares [19]:

âi(n) = X†
i (n)mi(n) (5.15)

So we have the best fit for both lines.

m̂i(n) = Xi(n)âi(n) (5.16)

We compile the two estimated lines into one vector.

ê(n) = exp
([

m̂1(n)
m̂2(n)

])
(5.17)

We use the Coefficient of Determination [20] for each iteration of n as a quality quantification.

r2(n) = 1− ∑N
k=1 (ei(k)− êi(k))

2

∑N
k=1 (ei(k)− E [e])2 (5.18)

We repeat this process for all possible values of n. The highest value of the Coefficient of Determina-
tion indicates the best fit and thereby the start of the noise tail, n0.
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Figure 5.4: Best fit on the analytic mean value of the envelope, the estimated Hilbert envelope of the correlation functions from Fig. 5.3 (black
line) and the two fitted models (red) for two different time lengths
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Figure 5.5: Modified Hilbert envelope (black) and the estimated Hilbert envelope (grey) of the correlation functions from Fig. 5.3 in logarithmic
scale for two different time lengths

r2(n0) = max
(
r2(1), r2(2), r2(3), . . . , r2(N)

)
(5.19)

Fig. 5.4 illustrates the best fit of these two models on two different estimated correlation functions
based on system responses with different time lengths. Although the piecewise linear fit seems insuffi-
cient as a fit of the logarithmic envelope (especially in the noise tail region), it approximates the point of
transition into the noise tail well.

Since we estimate the location of the noise tail where the statistical errors dominate, then we have
substantial bias error in the part right before the estimated noise tail. In order to reduce this bias error,
we say the physical part is located before the noise tail with a transition area between the two. The
authors obtained good results with the following expression for the end of the physical part: n1 = 0.8n0.

5.8.4 Modification of the Noise Tail

We use the envelope of the identified physical part of the correlation functions to modify the envelope of
the noise tail. The regression gave the parameters of the line corresponding to the best fit of the physical
envelope and we extend this regression line to the envelope of the noise tail by modifying the original
envelope. We have two parameters for the line in the physical part, â1(n1). We extend the best fit of
the free decay into the noise tail. Thereby, we obtain a modified envelope where we only change the
envelope of the noise tail based on the best fit of the physical part of the envelope.
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Figure 5.6: Correlogram with the modified estimated correlation function (black) based on the correlation functions from Fig. 5.3 with the
analytic envelope of a free decay corresponding to the modal parameters (black) for two different time lengths

Figure 5.7: Case 1 - Simulated system: Illustration of the cantilever beam used in the simulation study and the position of the sensors (black)

ẽ =

[[
ei(1) ei(2) . . . ei(n1)

]>
exp (X2(n1)â1(n1))

]
(5.20)

The transition between the two combined envelopes often has abrupt changes that need to be smoothen
since they disrupt the identification process of the modal parameters. We define a transition region,
n1 ± n1

6 , and we apply a monotone piecewise cubic interpolation [21] to replace this region by an inter-
polation using the rest of the modified envelope, ẽ.

Fig. 5.5 shows two examples of a modified envelope for a decorrelated correlation function based on
different time lengths. The modified envelope is identical to the original envelope for discrete time lags
below n1.

We substitute this modified envelope with the original envelope for each diagonal component in the
decorrelated correlation function matrix.

∗
Rqi(k) = R̂qi(k)

ẽ(k)
e(k)

(5.21)

Finally, we truncate
∗
Rq(k) so it excludes time lags higher than the detected noise tails. In other words,

the noise tail located at the highest time lag determines the truncation. Then we can use this modified
correlation function matrix in an identification process. Fig. 5.6 illustrates the modification of a correla-
tion function.

5.9 Case Studies

5.9.1 Case 1 - Simulated Cantilever Beam

We simulate the response of a cantilever beam in 2D, made with 20 Euler-Bernoulli Beam elements,
using the Fourier transformed superposition method with all modes implemented in the OMA-toolbox
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Figure 5.8: Case 1 - Simulated system: Singular values of the spectral density matrix of a random iteration of the Monte Carlo simulation
using the Welch technique with 50% overlap

from [1]. To mimic the spatial limited response measured by sensors, we extract the responses of four
translational degrees-of-freedom, corresponding to four sensors, see Fig. 5.7. Since we are interested in
the first three modes of the system, see Tab. 5.1, we use a sampling frequency of 550 Hz and a time length
of 60 seconds, using the recommended time length from [1]. We run 10,000 simulations of the system
response excited by white Gaussian noise in all degrees-of-freedom and we calculate the correlation
function matrix for each iteration using Eq. (5.6). The singular values of the spectral density matrix are
plotted in Fig. 5.8 for a random simulation.

To estimate the modal parameters from an estimated correlation function matrix, we use the Time
Domain Poly-reference [17], the Ibrahim Time Domain [22], and the Eigensystem Realization Algorithm
[13] from the OMA-toolbox in [1] with two different model orders. For each simulation, we estimate
the modal parameters from the original correlation function matrix. We apply the algorithm to reduce
the statistical errors of the correlation function matrix automatically and we estimate a new set of modal
parameters. Then we choose the estimated modes with modal parameters closest to the three real modes.

The number of included time lags of the correlation function matrix is important for the estimation of
modal parameters since the statistical errors increase with increasing number of time lags. These errors
create increasing random errors on the estimated correlation functions and increasing bias errors on the
estimated envelope [5]. Therefore, the number of time lags is important in an analysis of this algorithm.
This complicates the comparison of the normal identification procedure and identification based on this
algorithm. So, we test different lengths of the correlation function matrix but we choose 513 discrete time
lags (1.03 s) to illustrate the algorithm in the figures.

Table 5.1: Case 1 - Simulated system: Modal parameters of the system

Mode 1 Mode 2 Mode 3

Frequency [Hz] 8.32 52.1 145.9
Damping Ratio [%] 2 2 2

Results and discussion

Figs. 5.9 and 5.10 display the estimated modal parameters from the original and the modified correlation
function matrix for two different model orders. For the original correlation function matrices, large bias
errors and skewness exist in the distribution of modal parameters for all identification techniques with
a model order of two. By increasing the model order to three, the estimates of the third mode become
approximately Gaussian distributed and the bias error decreases. For the modified correlation function
matrix, the distribution is consistently approximately Gaussian and the bias error of the damping esti-
mates is lower regardless of the model order.

The different identification techniques have diverse bias and random errors for the third mode, indi-
cating that the noise tail influences the techniques differently when the model order is low. By increasing
the model order, we decrease the skewness of the estimates. So an identification technique with a higher
model order is better able to fit with a weakly-excited mode with a large noise tail. All the techniques,
however, provide similar results with a low model order when we use the algorithm to reduce the noise
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Figure 5.9: Case 1 - Simulated system with 10,000 simulations: Identification of modal parameters from the first 513 time lags from the
original correlation function matrix (red) with sample mean (red ”x”), and the modified correlation function matrix (blue) with sample mean
(blue ”+”) using Time Domain Poly-reference (TDPR), Ibrahim Time Domain (ITD), and the Eigensystem Realization Algorithm (ERA) for a
model order of 2
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Figure 5.10: Case 1 - Simulated system with 10,000 simulations: Identification of modal parameters from the first 513 time lags from the
original correlation function matrix (red) with sample mean (red ”x”), and the modified correlation function matrix (blue) with sample mean
(blue ”+”) using Time Domain Poly-reference (TDPR), Ibrahim Time Domain (ITD), and the Eigensystem Realization Algorithm (ERA) for a
model order of 3
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Figure 5.11: Case 1 - Simulated system with 10,000 simulations: (Tufte) box-plot of the estimated modal parameters using Time Domain
Poly-reference a with model order of two [17] for a varying number of included time lags. Estimates based on the original (black) and the
modified correlation function matrix (blue). In the (Tufte) box-plot, the dots mark sample means and the vertical lines mark the 2nd , 25th , 75th ,
and 98th percentiles.

tail. Furthermore, an identification technique with low model order has lower bias error using the mod-
ified correlation function matrix than a technique with a slightly higher model order using the original
correlation function. So the algorithm creates stability in terms of the model order in the identification
process.

For the first and second mode, the effect of the algorithm is modest with the respective number of
time lags of 513. The uncertainty or skewness of the estimation is mostly indifferent to the algorithm.
The second mode, however, gets a sample mean of the frequency and damping estimates closer to the
real value for the low model order. For the high model order, the algorithm affects the bias on the
damping estimates for the second mode. This indicates a general reduction of bias error, regardless of
the identification technique and the model order.

In Figs. 5.9 and 5.10, the algorithm has an influence on the estimation of the modal parameters for
the third mode. The bias errors reduce when the model order is low. Here a substantial change appears
in the distribution of the modal parameters for the third mode. Both damping and frequency estimates
have a skewed distribution for the original correlation function matrix, whereas the skewness ceases for
the modified correlation function matrix, see Fig. 5.9.

Figs. 5.11 and 5.12 illustrate the results of an identification process with varying number of included
time lags. Regardless of the model order, the bias and random errors rise with the increasing inclusion
of the noise tails - this is especially apparent for the second and third mode. Evidently, the low model
order has increasing estimation errors on the third mode and the Time Domain Poly-reference technique
overestimates the damping ratio and underestimates the natural frequency, see Fig. 5.11. For a model
order of three, the identification technique underestimates the damping ratio and natural frequency, see
Fig. 5.12. Furthermore, for a small number of included time lags, the identification procedure slightly
overestimates the damping ratio for the first mode, indicating truncation errors. The algorithm creates
considerably more stable estimates than the original correlation function matrix regardless of the number
of included time lags, see Fig. 5.11.

The algorithm has a substantial influence on the bias error in the estimation of modal parameters.
Furthermore, it creates a more stable identification process since it, in this study, seems insensitive to the
number of included time lags and the model order of the identification technique.
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Figure 5.12: Case 1 - Simulated system with 10,000 simulations: (Tufte) box-plot of the estimated modal parameters using Time Domain
Poly-reference with a model order of three [17] for a varying number of included time lags. Estimates based on the original (black) and the
modified correlation function matrix (blue). In the (Tufte) box-plot, the dots mark sample means and the vertical lines mark the 2nd , 25th , 75th ,
and 98th percentiles.

5.9.2 Case 2 - Heritage Court Building

We will look at the algorithm applied to a modal analysis of the Heritage Court Tower, dataset 1 [1]. The
Heritage Court Building is a 15-story building with a reinforced concrete shear core in Vancouver, British
Columbia, Canada, see Fig. 5.13. On April 28th 1998, operational modal tests were carried out to analyse
the dynamic properties of the building. A total of eight accelerometers were used in the test where six
sensors were rowed while the other two sensors were used as references located on the 14th floor. The
vibration measurements have a sampling frequency of 50 Hz and a time length of 326 seconds. This is a
relatively short time length so the level of statistical errors will be significant.

For this study, we will focus on the first dataset with a total of six sensors. A band-pass filter is used
with cut-off frequencies of 0.95 and 1.75 Hz and roll-off bands of 0.4 Hz.

We use the Eigensystem Realization Algorithm [13] on the correlation function matrix to create a sta-
bility diagram by changing the model order (the number of block rows in the Hankel matrices) while we
keep the number of extracted modes the same as the number of channels in the measurements. We com-
pare the stability diagram based on the original correlation function matrix with the stability diagram
from the modified correlation function matrix where the algorithm reduces the noise tails automatically.
For both stability diagrams, the correlation function matrix has 500 discrete time lags and we omit the
first ten discrete time lags to remove uncorrelated broadband noise [15].

Results and Discussion

There should be three stable modes at approximately 1.22, 1.28, and 1.45 Hz in the applied frequency
range [1]. In the stability diagram, three stable modes stand out as vertical lines for both the original
and modified correlation function matrix, see Fig. 5.14. The cluster plot in Fig. 5.15 illustrates the
same tendency by three clusters of estimates. Both Fig. 5.14 and Fig. 5.15 contain all identified modal
parameters without any validation of the estimates.

The estimated modal parameters from the original correlation function matrix, however, drift slightly
as the number of block rows of the Hankel matrix changes whereas the estimates of the modified cor-
relation function matrix are more stable, see Fig. 5.14. In the cluster plot, the clusters of stable modes
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Figure 5.13: Case 2 - The Heritage Court Building from two directions
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Figure 5.14: Case 2 - Heritage Court Tower, data set 1 [1]: Stability diagram based on the original correlation function matrix (black) and the
modified correlation function matrix (blue), both including 500 time lags and disregarding the first ten time lags
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Figure 5.15: Case 2 - Heritage Court Tower, data set 1 [1]: Cluster plot with the natural frequency and damping ratio for estimated modes
from the stability diagram based on the original correlation function matrix (black) and the modified correlation function matrix (blue), both
including 500 time lags and disregarding the first ten time lags

are denser and shift when we apply the algorithm to reduce the noise tail, see Fig. 5.15, whereas the
damping estimates for the original correlation function matrix are unstable and form scattered clusters.

Since we extract six modes for each model order, there are an additional three modes for each identifi-
cation as seen in Figs. 5.14 and 5.15. These modes are spurious and instable regardless of the correlation
function matrix applied in this identification process. Furthermore, some of these spurious modes have
negative damping. The spurious modes from the original correlation function matrix have natural fre-
quencies closer to the three stable modes whereas the natural frequencies of the spurious modes from
the modified correlation function reside below.

Based on this study, reducing the noise tail creates more stable estimates that are less dependent on
the model order (number of block rows). This indicates that the reduction of statistical errors is essential
for a more stable and reliable estimation of the modal parameters using operational modal analysis.

5.10 Conclusion

The finite length of the measured vibrations introduces system dependent statistical errors in operational
modal analysis. These errors cause random errors in the estimated correlation function matrix and bias
errors in the envelopes of the matrix. The noise tail (erratic behaviour in the tail region of the correlation
function matrix) indicates high levels of bias errors. Furthermore, these statistical errors transfer to an
identification process of the modal parameters resulting in estimated modal parameters with random
and bias errors. Since the bias error relates to the envelope of the correlation function, it mainly affects
the damping estimates. Hence, in operational modal analysis, it is essential to reduce the noise tail so we
decrease the bias error on damping estimates.

In this article, we introduced an automatic algorithm to reduce the noise tail in the estimated corre-
lation function matrix. The algorithm decorrelates the estimated correlation function matrix through a
condensation technique, auto-regression models, and a poly-reference technique. It detects the noise tail
of the decorrelated auto-correlation functions by fitting two lines to the Hilbert envelope. Then it mod-
ifies the envelope of each noise tail to mimic the physical part using the regression fit. The algorithm
reduces the bias error of the statistical errors but random errors still remain in the correlation function
matrix.
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Based on the studies presented in this article, the statistical errors make identification techniques
biassed and unstable since the techniques fit a correlation function matrix with both random and bias
errors which increase with increasing number of time lags. The number of included time lags of the
correlation function matrix and the model order of the identification technique affect this fit and often
cause instability - here weakly-excited modes seem to be more unstable. The algorithm reduces the effect
of statistical errors on a correlation function matrix. Thereby, it increases the stability and reliability and
it reduces the bias error in the identification process of the modal parameters.
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Appendix 5.A Automated Modal Decorrelation of Estimated Corre-
lation Function

We use the condensation technique in [12] to decorrelate and equalise the energy for each compo-
nent in the estimated correlation function matrix. It is a dimensionality reduction based on the Principle
Component Analysis using the Singular Value Decomposition [14]. We perform a singular value decom-
position on the estimated correlation function matrix at time lag zero.

USUT = SVD(R̃y(0)) (5.22)

where U is a unitary matrix holding the singular vectors, [U1, U2, . . . , Un], and S is a diagonal matrix that
holds the descending singular values, σ1 > σ2 > · · · > σn ≥ 0.

S =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn

 (5.23)

To reduce the dimension, we remove the lower singular values in S and the corresponding singular
vectors in U and we set up a transformation matrix, T. In this algorithm, the dimentional reduction is
optional and it is mainly applied to reduce the computation time.

T = UmS
1
2
m (5.24)

where Sm is the upper left m × m block of the singular value matrix, and Um contains the first m sin-
gular vectors. Some identification techniques apply similar dimensionality reduction using the singular
value decomposition. These techniques apply this approach to help stabilise the identification process
of modal parameters. This implementation of the singular value decomposition has a different objec-
tive: We want to create a new correlation function matrix with reduced noise tails that we can use with
any identification technique that utilise correlation function matrices. In order to achieve this, we need
to decorrelate the estimated correlation function matrix and equalise the energy for each modal auto-
correlation function.

This transformation matrix, T, decorrelates and condenses the correlation function matrix to m com-
ponents.

Y(k) = T†R̃y(k)
(
T†)> (5.25)

Since the singular vectors are, by definition, orthogonal, it creates some problems when we have
a correlation between modes. In such a case, the transformation matrix, Eq. (5.24), is orthogonal and
insufficient to decorrelate the correlation function matrix since the mode shapes of the system are non-
orthogonal. Therefore, we modify this transformation to decorrelate systems that are more complex. We
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use a similar approach as [17] to estimate eigenvectors using auto-regression models and a poly reference
technique. First, we set up two block Hankel matrices using Eq. (5.25).

H1 =

[
Y(1)> Y(2)> Y(3)> . . . Y(K− 2)>

Y(2)> Y(3)> Y(4)> . . . Y(K− 1)>

]
(5.26)

H2 =
[
Y(3)> Y(4)> Y(5)> . . . Y(K)>

]
(5.27)

We estimate the auto-regression matrices by the use of the block Hankel matrices.[
Â2 Â1

]
= H2H†

1 (5.28)

Then we form the companion matrix.

Ac =

[
0 I

Â2 Â1

]
(5.29)

We perform an eigenvalue decomposition of the companion matrix and obtain the eigenvectors, V.
Then we modify the transformation matrix from Eq. (5.24).

Z = TV (5.30)

Finally, we decorrelate the estimated correlation function matrix into an approximated modal corre-
lation function matrix, which we will call the decorrelated correlation function matrix.

R̂q(τ) = Z†R̃y(τ)
(
Z†)> (5.31)

On the diagonals of this matrix, the correlation functions are decorrelated to auto-correlation func-
tions, which corresponds to free decays of SDOF systems. Since this is an approximated decorrelation,
the decorrelated correlation function matrix is a non-diagonal matrix.
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Chapter 6

Paper 3 - Modal truncation in
experimental modal analysis

�
All exact science is dominated by the idea
of approximation

�
Bertrand Russell

Status
- Published in Topics in Modal Analysis & Testing, Volume 9, as part of the Conference Proceedings

of the Society for Experimental Mechanics Series
- Available here: https://doi.org/10.1007/978-3-319-74700-2_15

6.1 Introduction

Modal truncation is a truncation of the modal superposition, which states that the response of a linear
system is a linear combination of its mode shapes. Using modal expansion for virtual sensing, we need
to truncate the number of included mode shapes so there are less modes than sensors to ensure a overde-
termined problem. In the terminology of virtual sensing, this is a model simplification to the relevant
information of the system. Any truncation of the modal matrix, however, introduces approximation er-
rors - the modal truncation errors - that depends on the span of the applied mode shapes in relation to
the given response. This paper studies modal truncation errors in an experimental setting.

As stated in section 3.6.5, modal truncation is studied in the research fields of numerical simulation
and structural computation. Here, they correct the calculated response with a quasi-static contribution
from residual modes (modes located in out-of-frequency bands) since they know that higher modes
might contribute to the response based on the loading. This knowledge is rarely applied in an experi-
mental setting or stress/strain estimation. Thus, we transfer established knowledge from one research
field to experimental analysis. The paper is appended due to the absence of modal truncation in struc-
tural health monitoring.

6.2 Contribution

The author came up with the main idea, performed the experiments, made the data analysis, and wrote
the paper.

6.3 Main findings

This paper studied modal truncation in an experimental setting. We found that the contribution of each
mode depends on the convolution of the impulse response function of the given mode and the temporal
variation of the load but, moreover, it depends on the inner vector product between the mode shape
of the given mode and the spatial distribution of the load. We prove experimentally that the spatial

https://doi.org/10.1007/978-3-319-74700-2_15
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distribution of the load is important in modal truncation since it could lead to a quasi-static contribution
from residual modes.

6.4 Reflection

We can apply this knowledge of the modal truncation error to stress/strain estimation using modal
expansion. We should consider both the frequency and spatial content of the system and excitation
when we choose the set of mode shapes for the modal expansion technique. A choice primarily based
on frequency might lead to modal truncation errors. Furthermore, we can apply this to the quasi-static
response of offshore structures where the spatial content is of great importance.
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Some methods in experimental modal analysis rely on a finite set of modes and they neglect the higher
modes. However, this approach causes a truncation of the modal decomposition and the modal trunca-
tion introduces errors of unknown magnitude. In this paper the effect of modal truncation is investigated
on a test specimen in the laboratory. It is found that the system response is dependent of the frequency
and the distribution of the load. Modal truncation can introduce significant errors if the set of mode
shapes does not efficiently span the spatial distribution of the load.
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6.6 Introduction

The modal decomposition describes the structural dynamic response where the mode shapes of the sys-
tem uncouple the dynamic response into the modal coordinates. When we truncate the modal decompo-
sition to only include the first number of modes, we have a smaller set of modal coordinates to describe
the system. This simplifies the structural response and it is frequently used to ease the calculation in
structural dynamics. In experimental modal analysis, we identify a number of modes and we use them
with experimental techniques for different purposes like; full field response estimation, fatigue analysis,
load estimation, damage detection etc..

Normally, the truncated set of mode shapes provides good results however it might result in sig-
nificant errors in certain instances where omitted modes contribute to the response [1–7]. The gross
behaviour of structures is generally captured by the modes that are located in the frequency range of the
load [3, 9]. However, higher modes might influence the localised behaviour by their non-trivial contri-
bution. Therefore, a truncation of the modal decomposition can lead to errors of the representation of the
response [1, 5, 7, 9]. This is also the case for experimental techniques that uses a truncated set of mode
shapes to represent the structural response.

The phenomenon of modal truncation is described in structural computation and finite element mod-
elling. Generally, these fields of research state that we can calculate the response as a combination of the
dynamic responses of the lower modes and a correction term, which is based on the quasi static response
of the remaining modes. Two types of corrections are created; static residual and residual vectors. The
static residual uses static correction terms to adjust for the modal truncation. Whereas the other method
make use of residual modes, also called ”assumed modes” or ”pseudo modes”, combined with the mode
shapes [8].

This paper showcases the potential problem of the modal truncation in an experimental setting. We
find that the required number of modes in a modal decomposition depends on the frequency range and
the spatial distribution of the loading.

6.7 Theory

6.7.1 Truncation of the modal decomposition

The modal decomposition says that any response from a linear system is a linear composition of its mode
shapes. This means that the response of a linear structure is located in the subspace of its mode shapes.

y(t) =
N
∑

i=1
φiqi(t) (6.1)
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where y(t) ∈RN×1 is system response, φi ∈RN×1 is the mass normalised mode shape, qi(t) is the modal
coordinate for mode i and N is the degree of freedom for the system.

Let us say that we only use K modes in the modal decomposition then we have a smaller set of
modes to describe the system. Hence, we have introduced an error in our representation of the structural
response due to the modal truncation. This error is often referred to as the residual effect.

ε(t) =
N
∑

i=K+1
φiqi(t) (6.2)

As long as this error is insignificant then the truncation of the modal decomposition is acceptable.
However, it is hard to estimate the magnitude of this error. We will look at the modal coordinates to get a
better understanding of the truncation error. We calculate the modal response in the frequency domain.

Qi(ω) = Hi(ω)φT
i X(ω) (6.3)

where X ∈ RN×1 is the load in the frequency domain, Hi(ω) is the frequency response function for the
ith mode.

Hi(ω) =
1

mi
(
−ω2 + j2ζiωiω + ω2

i
) (6.4)

where mi is the modal mass, ωi is natural frequency and ζi is the damping ratio for mode i.
In the following, we will look at two types of loading: random or fixed spatial distribution of the

load. A load with a fixed spatial distribution can be separated like

X(ω) = FS(ω) (6.5)

where F ∈ RN×1 is the spatial distribution of the load and S(ω) is the scalar function defining the tem-
poral variation of the load. Therefore, we can rewrite the expression for the modal coordinates in the
frequency range, eq. 6.3, if the load has a spatial distribution.

Qi(ω) = Hi(ω)S(ω)φT
i F (6.6)

We see that the contribution of each mode is dependent of the scalar product of frequency response
function and the frequency range of the load. However, it is also dependent on the inner vector product
between the given mode shape and the spatial distribution of the load. This tells us that a modal coor-
dinate is given both by the frequency range and the spatial distribution of the load. But if the load has a
random spatial distribution then the modal response only depends on the frequency range of the load.
Therefore, the residual effect depends on frequency range and spatial distribution of the load.

Modal Truncation of the Quasi Static Contribution

Often, the omitted modes are located above the frequency range of the load when we truncate the modal
decomposition. When the load frequency is located way before the natural frequencies of the modes
then the omitted modes act quasi static.

We will show this by an example where the frequency range of the load is restricted and we omit
all modes outside this range. Here we assume that the first omitted mode n and all higher modes have
much higher natural frequencies, ωn, than the highest load frequency, ωx. This means; ωx << ωn. So
we can rewrite the frequency response function, eq. (6.4), for the truncated modes when we roughly
approximate that any term in denominator with ω is insignificant compared with the term ω2

n. Then the
modal coordinates for truncated modes are

Q̃n(ω) ≈


1

mnω2
n

S(ω)φT
n F 0 ≤ ω ≤ ωx

0 ω > ωx

(6.7)

We see on eq. (6.7) that the modal coordinates is no longer a dynamic response but a quasi static
response. Therefore, we approximate the residual effect as

ε̃(t) ≈ s(t)
N
∑

n=K+1

φnφT
n F

mnω2
n

(6.8)
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This is a quasi static error, which depends on the inner vector product between the mode shape and
spatial distribution of the load and the modal mass and frequency. So a truncation of higher modes might
give a amplitude error of the system response because we have removed a quasi static contribution from
the residual modes.

6.7.2 Reduction of subspace

We would like to be able to remove the influence of certain modes from a measured system response in
order to access the effect of modal truncation. In order to do this we will use a linear transformation,
which we base on the modal decomposition. The estimated modal coordinates for K modes is found
when we project the system response onto the subspace of the mode shapes.

q̂(t) = Φ+
K y(t) (6.9)

where q̂(t) ∈ RK×1 is the estimated modal coordinate matrix and ΦK ∈ RN×K is the truncated modal
matrix, which contains the applied mode shape as columns. Then we can find the truncated system
response.

ŷ(t) = ΦKq̂(t) (6.10)

where ŷ(t) ∈ RN×1 is the truncated system response with a reduced subspace. This transformation
projects the response onto the column space of the modal matrix and thereby it reduces the subspace of
the response to only include the given modes.

6.7.3 Quality Measurements

It is useful to access the difference between a measured and the equivalent truncated response so we
know the errors of a modal truncation. To assess the difference, we utilise the coefficient of determina-
tion, R2

t,i, from model validation in both time and frequency domain [10].

R2
t,i = 1− ∑N

k=1 (yi(tk)− ŷi(tk))
2

∑N
k=1 (yi(tk)− E [yi(t)])

2 (6.11)

R2
f ,i = 1− ∑N

k=1
(
|Yi( fk)| − |Ŷi( fk)|

)2

∑N
k=1 (|Yi( fk)| − E [|Yi( f )|])2

(6.12)

where E [X] is the expected value of X, yi(t) & ŷi(t) are the measured and truncated response for sensor
i and Yi( f ) & Ŷi( f ) are the Fourier transformed measured and truncated response for sensor i.

6.8 Case study

We will show the effect of modal truncation on a small structure in the laboratory. The test specimen is
a T-shaped steel structure, which is fixed with claps, see Figure 6.1. In this case study, we will assume
that we are only interested in the first 100 Hz of the system. We will identify the modes located inside
this frequency region and we will project the response onto the column space of the mode shapes using
equation (6.10). By projecting the response onto the subspace of the used mode shapes, we remove the
contribution of the higher modes and all noise that are perpendicular to this subspace. This is to illustrate
the effect of neglecting the contribution of the others modes in an experimental setting.

In this paper, we will call the modes located in given frequency range for the ”dynamic modes” and
we will define the modes located outside this range as ”residual modes”. So we will look at the truncation
error by using the dynamic modes that are located in the given frequency range. Then we will add
one and then two residual modes to the modal decomposition from outside this frequency range and
calculate the truncation error. This is in order to see if modes outside the frequency range will have a
contribution to the system response.
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Figure 6.1: Photo of the test specimen in the lab
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Figure 6.2: Position of sensors, red arrows are for uniaxial
accelerometers and blue arrows are the geophones

6.8.1 Set up

Ten uniaxial accelerometers with a sensitivity of 100 mV/g and two geophones are applied to the struc-
ture as seen on Figure 6.2. The geophones work as shakers when we apply a current to them. Com-
pressed air excites the structure from 3 directions and this loading creates turbulence around the struc-
ture and the excitation resembles white Gaussian noise. One set of data is accuired where the geophones
are idle and this data set is used to identify the modal parameters using operational modal analysis [11].

A time length of 300 seconds is used with a sampling frequency of 1651 Hz for each data set. The
data is decimated to a new frequency of 825.5 Hz [11]. We bandpass filter the data sets from 5 to 100 Hz,
see Figure 6.3. The low frequency cut-off is applied to remove noise from DC.

An Operational Modal Analysis is preformed where the Frequency Domain Decomposition is used to
identify the modes [12]. We found five dynamic modes in the frequency region and five residual modes
outside this range, see Figure 6.3 & 6.4.

6.8.2 Case 1

In this case, the geophones are idle and only compressed air is used as excitation and therefore the load
has no defined spatial distribution. The measured response is projected onto the subspace of the five
dynamic modes using equation (6.10). Afterwards, we add one and then two residual modes to the
modal decomposition. We calculate the coefficient of determination in time and frequency domain for
each version of the modal decomposition, see Table 6.1.

Generally, we do not achieve a better representation of the response by adding residual modes to the
modal decomposition. The two worst truncated responses are sensor 8 & 10 and the recorded accelera-
tion for these two sensors plotted on Figure 6.5 & 6.6 for the scenario with dynamic modes only.

Table 6.1: Quality Measurements for case 1

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Dynamic modes R2
t 1.0000 0.9916 0.9990 1.0000 0.9919 0.9958 0.9997 0.9969 0.9977 0.9850

R2
f 1.0000 0.9955 0.9995 1.0000 0.9975 0.9977 0.9998 0.9979 0.9985 0.9866

Dynamic modes +
1 residual mode

R2
t 1.0000 0.9924 0.9990 0.9999 0.9917 0.9992 0.9997 0.9986 0.9977 0.9973

R2
f 1.0000 0.9960 0.9995 1.0000 0.9974 0.9995 0.9998 0.9991 0.9985 0.9984

Dynamic modes +
2 residual modes

R2
t 1.0000 1.0000 0.9990 1.0000 1.0000 0.9996 0.9997 0.9986 0.9977 0.9978

R2
f 1.0000 1.0000 0.9995 1.0000 1.0000 0.9997 0.9998 0.9991 0.9985 0.9986
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Figure 6.3: Case 1, Singular Value Decomposition of the Spectral Density Matrix
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Figure 6.4: Identified Experimental Mode Shapes

6.8.3 Case 2

In the next case, we excite the structure with compressed air. Additional, we apply a current to the
second geophone so it excites the structure at a frequency of 64 Hz, see Figure 6.7 for spectral density
plot. This means that a significant part of the load has a fixed spatial distribution in this case.

Like in Case 1, the five dynamic mode shapes are used for the projection of the subspace using eq.
(6.10). Next, we add one and two residual modes from outside the frequency region. Then the coefficients
of determination are calculated for the time and frequency domain, see Table 6.2.

Table 6.2: Quality Measurements for case 2

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Dynamic modes R2
t 0.9999 0.9759 0.9991 0.9999 0.9236 0.8625 0.9991 0.9947 0.9976 0.9745

R2
f 0.9999 0.9759 0.9996 0.9999 0.9227 0.8565 0.9991 0.9947 0.9984 0.9745

Dynamic modes +
1 residual mode

R2
t 0.9999 0.9709 0.9991 0.9999 0.9300 0.9718 0.9994 0.9990 0.9977 0.9993

R2
f 0.9999 0.9708 0.9995 1.0000 0.9293 0.9706 0.9995 0.9991 0.9985 0.9994

Dynamic modes +
2 residual modes

R2
t 1.0000 1.0000 0.9990 0.9999 1.0000 0.9977 0.9997 0.9989 0.9978 0.9989

R2
f 1.0000 1.0000 0.9995 1.0000 1.0000 0.9977 0.9998 0.9990 0.9985 0.9990

Generally, the truncated response using only the dynamic mode has a high correlation with the mea-
sured response but a few sensors deviate. The two worst channels are for sensor 5 & 6 and the responses
for the sensors have wrong amplitudes, see Figure 6.8 & 6.9. By adding residual modes, we see an
increase in the quality measurements, which is especially evident for sensor 5 & 6. The quality fit for
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Figure 6.5: Case 1, only dynamic modes: Response of truncated
response, black is the measured and red is the truncated response

0 10 20 30 40 50 60 70 80 90 100
Frequency [Hz]

-80

-60

-40

-20

0

dB
 r

el
. t

o 
un

it

Sensor 8

0 10 20 30 40 50 60 70 80 90 100
Frequency [Hz]

-80

-60

-40

-20

0

dB
 r

el
. t

o 
un

it

Sensor 10

Figure 6.6: Case 1, only dynamic modes: Spectrum of truncated
response, black is the measured and red is the truncated response
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Figure 6.7: Case 2, Singular Value Decomposition of the Spectral Density Matrix

sensor 6 increases with more than 0.1 by adding one residual mode. Whereas, sensor 5 needs two resid-
ual modes to have a quality fit above 0.93. The response for sensor 5 & 6 using two residual modes are
plotted in Figure 6.10 & 6.11.

6.9 Discussion

First, we should note that the projection onto a fixed number of mode shapes removes noise and modal
response alike if their subspaces are orthogonal to the new subspace of the projection. Therefore, we
will remove noise and this reduction of noise will affect the quality measurements since we are using
a signal with noise as reference. The resolution of the experimental mode shapes also has an influence
on the assumption that we can reduce the subspace. However, we will assume that these errors are
insignificant.

Overall the modal truncation has a low error and most sensors maintain the same response as mea-
sured when we use the five dynamic mode shapes. In Case 1, the first five dynamic mode shapes were
sufficient to span the measured response but in Case 2 we needed additional mode shapes to accurate
span the measured response for a few of the sensors. Here sensor 5 & 6 are less precise in Case 2 where
a part of the load had a defined load pattern. By observing figure 6.2, we can see that the excitation by
the second geophone primarily results in responses for sensor 2, 5 & 6. Furhermore, we can observe in
figure 6.4 that the first five mode shapes do not span this movement. The sixth and seventh mode shapes
add more information to better span the response that is caused by the geophone.

In these tests, we see that an excitation with a fixed spatial distribution has a higher residual effect
compared with an excitation with a random load pattern. This is in accordance with the theory of the
residual effects. The theory suggests that a fixed spatial distribution of the load causes contributions
from modes outside the frequency of load. Therefore, a fixed load pattern seems to activate quasi static
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Figure 6.8: Case 2, only dynamic modes: Response of truncated
response, black is the measured and red is the truncated response
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Figure 6.9: Case 2, only dynamic modes: Spectrum of truncated
response, black is the measured and red is the truncated response
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Figure 6.10: Case 2, dynamic modes + 2 residual modes:
Response of truncated response, black is the measured and red is
the truncated response
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Figure 6.11: Case 2, dynamic modes + 2 residual modes:
Spectrum of truncated response, blac is the measured and red is
the truncated response

response of the higher modes even-though the frequency of the load is located before the natural fre-
quencies of these modes. These modes should be included in the lower frequency region if we want a
proper representation of the response for localised behaviour.

6.10 Conclusion

In this paper we have shown the possible errors caused by truncating the modal decomposition in ex-
perimental modal analysis. Often this truncation error is insignificant but it is pronounced if a significant
part of load has a fixed spatial distribution. The magnitude of the error is hard to estimate but localised
structural behaviour seem to be highly affected by this residual effect. This means that experimental
techniques that use a truncated set of modes to describe the response might introduce errors in localised
behaviour.

To sum up, we cannot rely purely on the frequency range to choose the number of modes in a experi-
mental modal analysis since the combination of higher modes may contribute to the response. Therefore,
modal truncation introduces errors in response representation if the set of mode shapes inefficiently span
the spatial distribution of the load.
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7.1 Introduction

It is quite evident that a perfectly correlated system model (we use finite element models in this the-
sis) provides the optimal condition for stress/strain estimation. In reality, however, any (mathematical)
model is an approximation and this introduces modelling errors. For stress/strain estimation using the
modal expansion, the modelling errors are expressed in an incorrect subspace-projection, which are un-
representative of the actual structure. This inaccuracy of the subspace-projection is investigated in this
paper. Furthermore, we examine the expansion of experimental mode shapes as a means for updating a
system model and thereby reducing the modelling errors.

7.2 Contribution

The author came up with the idea to study the expansion of experimental mode shape from operational
modal analysis, performed the data analysis, and wrote the paper. Both the new "leave-p-out-cross-
validation" implementation of the local correspondence principle and the new quality measurement
"normalised error of fatigue" were proposed by the author.

7.3 Main findings

Here, we found that expansion of experimental mode shape can decrease modelling errors from a finite
element model but the expansion process introduces fitting errors. Thus, we have a trade-off between

https://doi.org/10.1016/j.ijfatigue.2019.105280
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modelling and fitting errors that we must balance. Therefore, we must choose an expansion technique
with great care and fit it to the application. In this paper, the traditional local correspondence and SEREP
techniques, in general, introduced more fitting errors than they reduced the modelling errors. Therefore,
the author concluded that expansion of experimental mode shapes should be applied with care.

7.4 Reflections

In this paper, we proved that mode shape expansion provides a tool for optimising the accuracy in
stress/strain estimation but it requires expertise to avoid the potential pitfalls of introducing significant
levels of fitting errors.
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Abstract
Offshore structures are exposed to fatigue damage due to fluctuating environmental and operational
forces. The actual stress history of structures in operation is an important parameter for the remaining
fatigue lifetime. Unfortunately, the fatigue critical locations are often difficult to reach for inspection
of cracks or installation of sensors and these direct locations lead to corruption of sensors due to the
environmental effects. Virtual sensing enables full-field stress/strain estimation that facilitates fatigue
analyses of offshore structures in operation. In the literature, various virtual sensing methods exist but
this paper focuses on modal expansion. This technique uses the mode shapes (the linear subspace) of the
structure to transform the measured system response into the full-field stress/strain response. The ap-
plied mode shapes either hail from a finite element model or an expansion of experimental mode shapes
from an operational modal analysis. This paper compares the use of mode shapes from a finite element
model to the use of expanded experimental mode shapes. Modal expansion is applied to a scaled offshore
platform in the laboratory to estimate the strain response using the finite element mode shapes and ex-
panded experimental mode shapes using different expansion techniques: System Equivalent Reduction
Expansion Process (SEREP), local correspondence principle, and the new leave-p-out cross validation
implementation of the local correspondence principle introduced in this paper. The results are analysed
with different metrics and this paper introduces a new quality measurement - the normalised error of
fatigue damage - for strain estimation intended for fatigue analysis. Based on this study, expansion of
experimental mode shapes has the potential to reduce errors in stress/strain estimation. The expansion
is, however, a fitting process and, thus, it contains fitting error dependent on the case. In this study, the
finite element mode shapes outperform some of the mode shape expansion techniques due to this fitting
errors. Therefore, expansion of experimental mode shapes can improve stress/strain estimation but it
should be used with care to avoid an overfit.

Keywords: Stress estimation, mode shape expansion, virtual sensing, fatigue analysis, structural health
monitoring

7.6 Introduction

Offshore structures are prone to fatigue failure due to the fluctuating forces, and the stress history of
these structures is crucial to access and analyse the remaining fatigue lifetime. The fatigue assessment
of existing offshore structures requires information on the strain response from all relevant locations
and, therefore, it necessitates sensors at all fatigue critical locations of the structure. Unfortunately, these
locations are often inaccessible as well as harmful to the sensors due to the hostile environment [1, 2]. A
possible solution is virtual sensing or virtual sensors that convert and extend data from physical sensors
to an unmeasured location through some process models [3]. In the literature on stress estimation, the
most popular process models are: the modal expansion [4–14] and the Kalman Filter [15–20]. The Kalman
filter is an optimal predictor that comes from control theory and it uses a state space model of the system.
The modal expansion is a linear transformation that expands the system response based on the mode
shapes of the system [21]. The two techniques have been proven to be competitive and interchangeable
[15, 17]. This paper focuses on the modal expansion for virtual sensing in preparation for a fatigue
analysis. Fig. 7.1 outlines the methodology of modal expansion. Virtual sensing needs information
on the system - the system model - and finite element models are the most applied approach for stress
estimation.

In the literature of virtual sensing, modal expansion is applied with success on a wide range of me-
chanical and civil structures. Hjelm et al. [11] presented a full-field strain estimation technique using
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the modal expansion and applied it to a laboratory structure and a lattice tower. Avitabile and Pingle [6]
estimated the strain response on a test-specimen in the Laboratory while Aenlle et al. [22] applied strain
estimation on a scale model of a two-story building. Maes et al. [17] estimated the strain response on an
offshore monopile wind turbine and applied data fusion to combine accelerometers and strain gauges.
To study strain estimation on wave-induced structure, Skafte et al. [5] applied modal expansion with
Ritz vector to account for the quasi-static response caused by waves and estimated the strain response
on a scale model of an offshore platform excited with shakers mimicking a wave spectrum. Similarly,
Iliopoulos et al. [7] applied a multi-banded modal expansion on an offshore monopile wind turbine in-
cluding the quasi-static strain contributions from thrust loads by combining accelerometers and strain
gauges. To evaluate strain estimation, Nabuco et al. [9] applied a reliability analysis on the estimated
strain response of a scaled offshore platform and showed the relevance of strain estimation compared to
the traditional norms and design. Recently, the modal expansion for strain estimation is applied to non-
linear structures where Tarpø et al. [8] estimated the strain response with success for a simulated offshore
platform with friction in order to test modal expansion for non-linear structures. Furthermore, Nabuco
et al. [14] used modal expansion based on parameters determined from a linear case and successfully
estimated the strain response of two scaled offshore platforms with a friction coupling.

For modal expansion, researchers divide into two groups: the ones using finite element mode shapes
[6, 7, 10, 12, 17] and the ones applying expanded experimental mode shapes [4, 5, 8, 9, 11]. To the best
of the authors knowledge, however, the two approaches have never been compared in a study. The
hypothesis behind expanding mode shapes is: expanded experimental mode shapes are, essentially, an
update of the finite element model and these mode shapes have the potential to reduce modelling errors
from the finite element model. The update depends on the accuracy of the mode shape expansion.

In 1965, Guyan [23] introduces the first method for expanding experimental mode shapes and there-
after several researchers contributed to this field. The expansion methods enable a linear relationship
between an experimental and analytical model. Generally, the experimental mode shapes have a set
of spatially limited Degrees-Of-Freedom (DOF) whereas the analytical models have much larger sets of
DOFs. To enable the linear relationship between the two sets of mode shape matrices, we either reduce
the analytical model or expand the experimental mode shape. Thus, a close relation exists between re-
duction and expansion methods, and many of the methods are applicable for both reduction and expan-
sion. Levine-West et al. [24] group the different expanding methods into three main categories: direct,
projection, and error methods. The direct methods determine the transformation matrix which maps
between the active and full set of DOFs, entirely by the mass and stiffness matrices from the analytical
model, e.g. Guyan [23], Kidders dynamic expansion [25], Millers dynamic expansion [26], and Improved
Reduced System (IRS) [27]. In the projection methods, the transformation matrix is determined using an-
alytical (and sometimes experimental) mode shapes in different least-squares formulations, e.g. System
Equivalent Reduction Expansion Process (SEREP) [28], modal expansion [21], hybrid method [29], per-
turbed force approach [30], and Procrustes method [31]. The error methods repeat calculations until
convergence or minimisation of a cost function, e.g. direct mode shape expansion [32], local correspon-
dence principle [33], and least-squares with quadratic inequality constraints [24].

This paper further develops modal expansion by studying the selection of mode shapes - the use of
expanded experimental mode shapes in contrast to the finite element mode shapes. In terms from virtual
sensing, this paper studies the system model. In general, expansion of experimental mode shapes and
strain estimation are case dependent since they depend on position and number of sensors, measurement
noise, modelling errors of the finite element model, and identification errors in the experimental mode
shapes. To illustrate the potential benefit for offshore structures, we test the effect on an offshore scale
model in the laboratory. The results of this case study suggest that expansion of mode shapes benefits
the strain estimation, but it requires low estimation errors in experimental mode shapes and a highly
correlated finite element model. The expansion of experimental mode shapes is a fitting procedure and
it needs proper tuning to reduce the fitting errors. Overfitting is a risk for mode shape expansion and
it results in an erroneous stress estimation. Hence, mode shape expanding has the potential to reduce
errors in stress estimation, but it must be handled with care to reduce fitting errors.

Furthermore, this paper introduces a new implementation of the local correspondence principle
based on leave-p-out cross-validation in Section 7.7.4 and a new quality measurement for strain esti-
mation with respect to a fatigue analysis called "normalised error of fatigue damage" in Section 7.8.1.
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Figure 7.1: The methodology of modal expansion Figure 7.2: The principle of modal expansion illustrated in R3

with a two-dimensional subspace: We project the response, y(t),
onto the subspace spanned by the mode shapes, φφφ1 and φφφ2, and
obtain the truncated response, ŷ(t), where all response orthogonal
to the subspace, yn(t), is removed

This new implementation of the mode shape expansion provides the best fit for the strain estimation.

7.7 Modal expansion for strain estimation

The modal expansion technique is a least square regression and it uses linear algebra to create virtual
sensors [21]. The technique uses the modal superposition/modal decorrelation [34] to estimate the re-
sponse of the entire structure. It is a subspace projection or a linear transformation of the spatial limited
response onto the linear subspace (vector space) spanned by the mode shapes, see Fig 7.2.

7.7.1 Modal decorrelation

The response of a linear system is the solution to the differential equation - the equation of motion [34].

Mÿ(t) + Cẏ(t) + Ky(t) = x(t) (7.1)

where M ∈ RN×N , C ∈ RN×N , and K ∈ RN×N is the mass, damping and stiffness matrix and y(t) ∈ RN ,
ẏ(t) ∈ RN , and ÿ(t) ∈ RN are displacement, velocity, and acceleration of the system while x(t) ∈ RN is
the load and N is the number of DOFs in the system. For proportional damping, we use the undamped
equation of motion to find the mode shapes of the system through the eigenvalue problem.

M−1K = Φ
[
ω2

n
]

Φ−1 (7.2)

where Φ ∈RN×N is the modal matrix, which contains all mode shapes as column vectors, Φ = [φφφ1, . . . , φφφN ],
and it forms an eigenbasis for RN . Thus, the response of a linear structure is located within the vector
space spanned by the mode shapes. In terms of linear algebra, the modal matrix defines the column
space (also called image or range) of the system response, C(Φ) = span(φφφ1, . . . , φφφN), and it is called the
transformation or design matrix. Hence, any response, y(t), is a linear combination of the mode shapes
[34] - this characteristic is called the modal decorrelation.

y(t) = Φq(t) (7.3)

where q(t) ∈ RN contains the modal coordinates.

7.7.2 Modal truncation and spatial limited response

Let us say that we only know K mode shapes, Φ̃ = [φφφ1, . . . , φφφK] ∈ RN×K, then the column space of this
truncated and approximated modal matrix is an approximation of the linear subspace of the system,
C(Φ̃) ≈ C(Φ). Furthermore, let us assume that we measure the spatial limited system response, ya(t) ∈
Ra, with a sensors. The modal matrix has the same spatial limitation, Φ̃a ∈ Ra×K.

y(t) =

[
ya(t)
yd(t)

]
, Φ̃ =

[
Φ̃a
Φ̃d

]
(7.4)

where the subscript [·]a denotes the active degrees-of-freedom and the subscript [·]d denotes the inactive
degrees-of-freedom.
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Figure 7.3: The principle of modal expansion with errors in the mode shapes illustrated in R3 with a two-dimensional subspace: We have the
response, y(t), and two sets of mode shapes; the correct set φφφ1 & φφφ2 and the erroneous set φ̃φφ1 & φ̃φφ2. A) shows the subspaces of these two sets,
B) and C) are the orthogonal view of the subspace and projected response onto this space for the two sets of mode shapes, and D) is the error
caused by the erroneous subspace

Finally, we add noise to the system response, ỹa(t) = ya(t) + n(t) ∈ Ra, so the new response locates
partially outside the column space of the truncated and spatial limited modal matrix, ỹa(t) 6∈ C(Φ̃a).

We estimate the modal coordinates by transforming the measured response using the modal decor-
relation, Eq. (7.3).

q̂(t) = Φ̃†
a ỹa(t) (7.5)

where [·]† denotes the Moore–Penrose inverse.
Now, we transform the estimated modal coordinates into the physical domain, which is similar to a

subspace project of the measured response onto the column space, C(Φ̃a).

ŷa(t) = projC(Φ̃a)
(ỹa(t)) = Φ̃aq̂(t) (7.6)

where

ŷa(t) ∈ C(Φ̃a) = span(φφφa,1, . . . , φφφa,K)
ŷa(t) 6∈ C(Φ̃a)⊥ = span(φφφa,K+1, . . . , φφφa,N)

(7.7)

In this way, the modal expansion works as a subspace reduction - called modal filtering [35] - that
removes any noise or response orthogonal to the applied subspace. The reader should note that this only
holds for the full spatial mode shapes and we always need more sensors than the number of modes, a >
K, to avoid overfitting. Furthermore, the subspace reduction/modal filtering depends on the truncation,
resolution, and the quality of the applied mode shapes and the system response.

It is important that the applied modal matrix spans the response. A truncation of applied mode
shapes might lead to modal truncation errors [36] while erroneous mode shapes (caused by modelling
errors) introduce errors, see Fig. 7.3. Thus, the column space of the used modal matrix should be close
to the actual column space of the system, C(Φ̃) ≈ C(Φ).

7.7.3 Modal expansion and strain estimation

For virtual sensing, we expand the estimated response from Eq. (7.6) by replacing the spatial limited
mode shape, Φ̃a, with the full modal matrix, Φ̃, containing all DOFs. Thus, we obtain full-field measure-
ments of the system.

ŷ(t) = Φ̃q̂(t) (7.8)

Similarly, for strain estimation, we use the modal coordinates from Eq. (7.5) to estimate the strain
response of the structure since the modal coordinates for strain and displacement are the same [37]. To
create virtual strain gauges at any point of the structure, we use the strain mode shapes - mode shapes
expressed in strains instead of displacement.

ε̂εε(t) = Φ̃εq̂(t) (7.9)
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where Φ̃ε ∈Rb×K is the strain mode shape matrix, ε̂εε(t) ∈Rb is the estimated strain response of the entire
structure, and b is the number of virtual strain gauges. Each strain mode shape is the static strain caused
by a deflection corresponding to each mode shape [38].

Φ̃ε = TεΦ̃ (7.10)

where Tε ∈Rb×N the displacement-to-strain transformation matrix . Thus, in the case of a dimensionless
mode shape matrix, the strain mode shapes have the unit [m−1] since it is a dimensionless displacement
relative to a geometric quantity of the structure.

7.7.4 Expansion of experimental mode shapes

We want to apply the modal matrix with a column space closest to the actual system, C(Φ), and the ex-
pansion of experimental mode shapes has the potential to do this. Skafte [39] and Levine [40] investigate
the expansion of experimental mode shapes and we refer the reader to these for further details on the
subject. Fig. 7.4 illustrates the process of mode shape expansion for operational modal analysis.

The hypotheses behind mode shape expansion is that experimental mode shapes are more repre-
sentable of the real structure than a finite element model. Thus, expanded experimental mode shapes are
closer to the actual structure than the finite element mode shapes. In other words, we can use expanded
experimental mode shapes to reduce modelling errors from the finite element model. As previously
stated, different techniques exist for expanding or reducing mode shapes but they might all introduce
fitting errors in the attempt to reduce modelling errors.

Generally, mode shape expansion/reduction finds a linear relationship between the mode shapes
from experiments, Φexp ∈ Ra×K, and the finite element model, ΦFE ∈ RN×N . Thus, we can transform
the experimental mode shapes linearly to the reduced finite element, ΦFE,a ∈ Ra×N .

Φexp = ΦFE,aT1
= T2ΦFE,a

(7.11)

where T1 ∈ RN×K and T2 ∈ RK×N are transformation matrices, which hold the linear relationship.
Using the full finite element mode shape matrix, we expand the experimental mode shape to hold all

the same DOFs as the finite element model.

Φexp, f ull = ΦFET1
= T2ΦFE

(7.12)

The reader should note that although the majority of expansion techniques follow the framework in
Eqs. (7.11) and (7.12), there are exceptions. These alternative frameworks are outside the scope of this
paper.

The linear relationship in Eq. (7.11) is similar to structural modification theory stating that two similar
systems have a linear relationship between their mode shape matrices [41]. Let us say that we have a
system called A and a perturbed version of this system called B. The mode shapes of system B are a
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linear combination of the mode shape of system A, ΦA = ΦBT, or the other way around. Hence, we can
transform the mode shape from one system to the other and this transformation is, essentially, an update
from one system to the other.

Given the correct transformation matrix, the expansion of the experimental mode shape is similar
to an update of the finite element model. Recently, it has even been applied directly to finite element
updating using the mode shape orthogonality equations [42]. The quality of the expansion or finite
element update, however, depends on the position and quality of sensors, errors from the identification
process of the experimental mode shapes, and their correlation with the finite element model [39, 40].

In this paper, we will apply SEREP [28] and two versions of the local correspondence principle [33].

System Equivalent Reduction Expansion Process (SEREP)

Originally, SEREP was a global mapping technique used to estimate rotational degrees-of-freedom from
experimental data [28]. The active DOFs (sensors) of a mode shape matrix relate to the full set of DOFs,
hence, it results in a linear transformation of the active DOFs to all DOFs. We will use a similar principle
to expand experimental mode shapes by using a reduced finite element model with the same DOF as the
experimental mode shape. Furthermore,

Φexp = TSEREPΦFE,a (7.13)

We calculate the transformation matrix, TSEREP ∈ RK×N , using the Moore-Penrose pseudo inverse of
the finite element mode shapes.

TSEREP = ΦexpΦ†
FE,a (7.14)

The linear transformation matrix, TSEREP, should - preferably - be non-square and we should have
less finite element mode shapes for the expansion than active DOFs to minimise the chance of overfit-
ting. When transformation matrices are square, the Moore-Penrose pseudo inverse becomes the general
inverse and it is often referred to as SEREPa. Therefore, the number of finite element mode shapes is an
important parameter and it relates to the fitting errors.

Local correspondence principle

The local correspondence principle [33] follows the same basic equations as SEREP but it differs in one
important aspect: each experimental mode is expanded individually using an optimised subset of finite
element modes in an iteration process. The local correspondence principle origins from the mode shape
sensitivity equations and it utilises that a change in a mode shape is primarily a linear combination of
the surrounding modes (in natural frequency). The local correspondence principle finds an optimised
subset of the closest surrounding modes using cross-validation to expand the given experimental mode
shape. The ith mode shape is expanded by

φφφexp,i = ΦFEpi (7.15)

where pi ∈ RN is a projection vector given by

pi = (ΦFESi)
† φφφexp,i (7.16)

where Si ∈ RN×N is a diagonal cluster selection matrix that defines the optimal cluster of finite element
mode shapes. To find this optimal subset of finite element modes, Si, used for the expansion, Eqs. (7.15)
and (7.16) are calculated repeatedly by adding more finite element modes to the subset at each iteration.
The optimal subset of finite element modes is chosen as the combination that gives the best correlation
between the experimental and expanded mode shape.

The optimisation procedure has two different approaches. In the first, modes are iteratively added to
the subset according to their distance in frequency to the corresponding mode, in descending order. The
second approach adds modes to the subset according to the highest increment in the correlation between
the expanded and experimental mode. In this paper, we will focus on the first approach.

As previously stated, the local correspondence principle uses cross-validation (or leave-one-out)
from statistics and machine learning [43] to find the optimal number of mode shapes. In k-fold cross-
validation, the data set is split into k subsets that we use either for fitting/training or observation/val-
idation. A fitting set is used to estimate a model - a transformation matrix - and an observation set is
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used to check the model to reduce the chance of overfitting. For the local correspondence, the active
DOFs from the experimental mode shapes are divided into a fitting, φφφexp, f it,i ∈ Ra−1, and an observation
set, φφφexp,obs,i ∈ R1, where the observation set has a single DOF that is rowed through all DOFs [33]. This
approach corresponds to a repeated leave-one-out cross-validation that is repeated for all combinations.
Then, we calculate the transformation matrix for the given cluster of finite element modes.

p̃i(m) =
(

ΦFE, f itS(m)
)†

φφφexp, f it,i (7.17)

where p̃i(m) ∈ RN is the projection vector as a function of m, which is the number of finite element
mode shapes in the cluster, S(m) ∈ RN×N is the diagonal cluster selection matrix as a function of m, and
ΦFE, f it ∈ R(a−1)×N is the finite element mode shape with fitting DOFs.

Then, we calculate the estimated experimental mode shape, which we call the smoothed experimental
mode shape.

φ̃φφexp,i(m) = ΦFEp̃i(m) (7.18)

Using the observation set, we calculate the Modal Assurance Criterion (MAC) value between the
experimental mode shape, φφφexp,obs,i, and the estimated mode shape, φ̃φφexp,obs,i(m), to check the quality of
the fit.

Fobs,i(m) =

∣∣∣φ̃φφexp,obs,i(m)Hφφφexp,obs,i

∣∣∣2(
φ̃φφexp,obs,i(m)Hφ̃φφexp,obs,i(m)

) (
φφφH

exp,obs,iφφφexp,obs,i

) (7.19)

The highest MAC value, Fobs(m), indicates the optimal number of finite element modes in the cluster,
moptimal , and we obtain the cluster selection matrix, Si = S(moptimal). The cross-validation indicates that
the number of modes in a smoothing or expansion process using the local correspondence principle is of
minor importance.

To sum up the algorithm:

1. Divide the experimental mode shape into a fitting and observation set of DOFs

2. Rank the finite element mode shapes after their local correspondence to the experimental mode -
either in frequency or highest correlation between experimental and finite element mode shapes

3. Make the cluster selection matrix, S(m), and calculate the transformation matrix, p̃i(m)

4. Calculate the quality of the fit for the observation set, Eq. (7.19), between the smoothed and the
actual experimental mode shape for each cluster

5. Pick the cluster selection matrix, Si, that provides the best quality of the fit

Local correspondence principle - leave-p-out-cross-validation

For this article, we introduce a "leave-p-out-cross-validation" implementation of the local correspon-
dence principle where we specify the value p. Similarly, the active DOFs from the experimental mode
shape are divided into two sets: the fitting/training and the observation set. The difference from the
original implementation of local correspondence is that the observation sets have p DOFs instead of a
single DOF. We calculate all combinations of fitting and observation sets, which results in a!

(a−p)!p! com-
binations of sets where a is the total number of active DOFs. Alternatively, a random selection of these
combinations could be applied to minimise computation time. The median is used for all combinations
to obtain Fobs(m).

Generally, there are errors in both the fitting/training and the observation set since there is uncer-
tainty in each DOF. Lowering p increases the errors related to the observation set while the errors in
the fitting set increase when p increases. Thus, the choice of p is important since a low p increases the
observation error while a high p results in higher fitting errors. Generally, low p values - relative to the
total number of DOFs - lead to clusters with more finite element mode shapes while high p values result
in clusters with fewer finite element mode shapes.
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7.8 Case study

We will study the effect of expanding mode shapes using SEREP, the local correspondence principle,
and the "leave-p-out-cross-validation" implementation of the local correspondence principle in regard to
strain estimation, and compare the results to strain estimation based on the finite element mode shape.

We will have two case studies: with and without frequency bands associated with specific modes. In
the literature, frequency bands are used for modal expansion to reduce the chance of overfitting [5, 7].

7.8.1 Quality measurements

Multiple approaches exist for checking the quality of the strain estimation and they have different strengths
and weaknesses.

Time Response Assurance Criterion (TRAC) and Frequency Response Assurance Criterion (FRAC)

In the literature, the Time Response Assurance Criterion (TRAC) [6] and the Frequency Response Assur-
ance Criterion (FRAC) [44] are the most popular quality measurements.

TRACi =

(
εεε>t,i ε̂εεt,i

)2(
εεε>t,i εεεt,i

) (
ε̂εε>t,i ε̂εεt,i

) , FRACi =

(
εεε>f ,i ε̂εε f ,i

)2(
εεε>f ,i εεε f ,i

) (
ε̂εε>f ,i ε̂εε f ,i

) (7.20)

where εεεt,i is the entire discrete time history of the measured strain response for strain gauge i arranged
in a column vector, and similarly, ε̂εεt,i is the estimated strain response at the same location in the time
domain. Furthermore, εεε f ,i is the direct Fourier transformed of the measured strain response for the ith

strain gauge arranged in a column vector, and similarly, ε̂εε f ,i is the frequency estimation of strain response
in the same position. These measurements check the general relationship between two signals where a
value of 1 corresponds to perfect correlation while a value of 0 indicates independence between the
signals. TRAC and FRAC are, however, independent of amplitude differences.

Mean errors

To account for an amplitude differences, we apply different metrics of the mean error from statistics.
The Mean Squared Error (MSE) measures the averaged value of the squared errors between a reference
signal and an estimated signal.

MSEi = E
[
(εεεi(tk)− ε̂εεi(tk))

2
]

(7.21)

where εεεi(t) is the measured strain response (reference signal) in the ith strain gauge, ε̂εεi(t) is the estimated
strain response at the same location, and E [·] denotes the expected value.

The Mean Absolute Error (MAE) is another measurement of the difference between two signals.

MAEi = E [|εεεi(tk)− ε̂εεi(tk)|] (7.22)

These metrics are independent of the amplitude of the reference signal, therefore, these are often
normalised to obtain the relative mean error.

Coefficient of determination, R2

The coefficient of determination, R2
i , is often used in model validation [45] (not to confuse with the

Pearson correlation coefficient) and it is the mean squared error normalised with the variance of the
reference signal. Thus, it takes into account both amplitude differences and the general amplitude of the
reference signal. A coefficient of determination with a value of 1 indicates perfect correlation with the
same amplitudes.

R2
i = 1−

E
[
(εεεi(tk)− ε̂εεi(tk))

2
]

Var [εεεi(tk)]
(7.23)
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Figure 7.5: Photo of the scale model in the lab Figure 7.6: Position of sensors on the test specimen, red arrows
show Brüel & Kjær 4508-B-002 uniaxial accelerometers and blue
dots show HBM 1-LY11-0.3/120 strain gauges measuring along
the longitudinal direction of the members

Normalised error of fatigue damage

Strain/stress estimation is intended for a fatigue analysis, hence, it is important to compare the estimated
stress with the measured stress in cycle counting since fatigue life depends mainly on the stress ranges
[46, 47]. We will set up a new quality measurement based on the SN-curve (excluding the effect of a
bilinear SN curve) and the Palgreen-Miners Rule

Di =
ncycles

∑
j=1

1
Nj

=
ncycles

∑
j=1

∆σm
j

C
=

Em

C

ncycles

∑
j=1

∆εm
j (7.24)

where Di is the cumulated fatigue damage in the ith fatigue location, ncycles is the total number of counted
cycles, Nj is the number of cycles for fatigue failure at the given stress range, ∆σj, C is the fatigue capacity
(the intercept of log(N) axis in the SN curve), m is the "slope" of the SN curve, E is the modulus of
elasticity, and ∆ε j is the strain range from cycle counting. Thus, the normalised error of fatigue damage
between the estimated and the measured fatigue damage is given by

ηi =
D̂i − Di

Di
=

ncycles

∑
j=1

∆ε̂m
j

ncycles

∑
j=1

∆εm
j

− 1 (7.25)

where ηi = 0 indicates a perfect estimation of strain, a negative value means an underestimation of
fatigue damage, and a positive value indicates an overestimation of fatigue damage.

This quality measurement is independent of the fatigue capacity and modulus of elasticity. It depends
on the applied cycle counting algorithm and the "slope", m, from the SN curve, which are the same
parameters used in the calculated fatigue damage. Thus, the normalised error of fatigue damage is a
measurement of fatigue damage based on the strain response from a reference and an estimated signal.
For the remainder of this paper, we will use m = 3, which corresponds to welded steel structures [47].

7.8.2 Scale Model of an offshore platform in the laboratory

We will use a 1:50 geometric scale model of a tripod oil platform made of polymethyl methacrylate, see
Fig. 7.5 and see Skafte et al. [5] for additional information on the scale model. The entire study ran in
a laboratory facility where environmental and operational effects were controlled. Thus, environmental
and operational variations for real offshore structures are neglected in this study.
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Table 7.1: Modal Parameters

Mode 1 2 3 4 5

Finite Element Model Frequency [Hz] 10.1 10.2 24.9 65.1 71.7
Operational Modal Analysis Frequency [Hz] 9.20 9.38 23.6 66.9 75.4

Difference [%] 9.78 8.74 5.51 -2.69 -4.91

We excite the model by brushing the topside with a nylon brush and this loading has a high level
of white noise characteristics. Real offshore structures, however, experience some quasi-static response
due to the wave and this complicates stress/strain estimation since it introduces modal truncation errors
[36]. In this study, the quasi-static response is excluded and we refer to [5, 7] for further information on
this topic. The multiple ambient and operational loads of an offshore structure approximate as white
noise excitation due to the central limit theorem - a common assumption in operational modal analysis
[35]. Thus, in this paper, we study virtual sensing in the dynamic range of the model.

For the measurement-setup, we have 12 Brüel & Kjær 4508-B-002 uniaxial accelerometers with a sen-
sitivity of 100 mV/g on the topside and 14 HBM 1-LY11-0.3/120 strain gauges, with a gauge factor of 2,
on the lower part of the model, corresponding to subsea, see Fig. 7.6. No calibration was performed after
the installation of the strain gauges. Each strain gauges are applied in Wheatstone bridge circuits using
the quarter bridge configuration. The locations of the sensors mimic the real offshore conditions so all
accelerometers are positioned above water while the strain gauges are placed subsea.

We sample the data at a frequency of 1651 Hz using NI9134 and NI9135 DAQ modules. To remove
noise around DC and measurement noise, we bandpass filter the data with cut-off frequencies at 6 and
80 Hz. We use operational modal analysis to extract the modal parameters from the system [35]. For
the identification process, we decimate the data to a new sampling frequency of 206 Hz [48], and we
calculate the correlation function and spectral density matrices using a segment size of 1024 [35]. To
remove uncorrelated measurement noise, we omit the first ten discrete time lags. We apply the Eigen-
system Realization Algorithm (ERA) [49] to identify modal parameters from the correlation function
matrix using two block rows in the Hankel block matrices and five singular values in the singular value
decomposition, see Table 7.1 and Fig. 7.7.

Then we created a finite element model of the scale model in Nastran/Patran and updated the modu-
lus of elasticity of the model to match the modal parameters of the modes with primary focus on match-
ing mode shapes. The update was a compromise between all five modes where the frequency of the
first two bending modes are a bit too high in the finite element model compared to the experimental
modes while the second two finite element bending modes are too low. The experimental mode shapes
are similar to the mode shapes from the finite element model as seen in the MAC values in Fig. 7.8.

We integrate the acceleration response from the accelerometers twice to get the displacement, y(t),
by the use of the Fourier transformation [35].

y(t) = F−1
(

1
−ω2F (ÿ(t))

)
(7.26)

where F (·) and F−1(·) denote the standard and inverse Fourier transformation, respectively.
Then, we estimate the strain response in all points where strain gauges were positioned, see Fig. 7.6,

and we apply Rainflow Counting [50].

Without frequency bands

We use all five mode shapes on the filtered response for strain estimation. Figs. 7.9-7.20 display the
results of the strain estimation using the different sets of mode shapes.

Generally, the expanded mode shapes, using the leave-p-out implementation of the local correspon-
dence principle, lead to the smallest normalised error of fatigue damage, but they also lead to three
instances where they underestimate the fatigue damage compared to the other expansion techniques.

Both expanded experimental and finite element mode shapes provide a good basis for strain estima-
tion for strain gauge A and B, which are located on the main column of the structure. Generally for strain
gauge A and B, all mode shapes lead to a minor underestimation of the fatigue damage, see Fig. 7.14,
since they all underestimate the number of cycles for low strain ranges, see Fig. 7.19. The noise floor of
the strain gauges is located at−120 dB, see Figs. 7.17 and 7.18, and this creates a potential source of error
since the strain gauges are used as a reference. Whenever the estimated strain drops below the noise
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Figure 7.7: Singular values of spectral density matrix from scale
model and the identified modes from an operational modal
analysis using the Eigensystem Realization Algorithm (ERA) [49]
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Figure 7.9: Scale model of an offshore platform without frequency
bands: Time Response Assurance Criterion (TRAC), Eq. (7.20)
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Figure 7.10: Scale model of an offshore platform without
frequency bands: Frequency Response Assurance Criterion
(FRAC), Eq. (7.20)

A B C D E F G H I J K L M N

Strain gauge

0

0.5

1

1.5

2

2.5

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r 

(M
S

E
)

10
-4  FE LC leave-one-out LC leave-8-out SEREP

Figure 7.11: Scale model of an offshore platform without
frequency bands: Mean Squared Error (MSE), Eq. (7.21)
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Figure 7.12: Scale model of an offshore platform without
frequency bands: Mean Absolute Error (MAE), Eq. (7.22)
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Figure 7.13: Scale model of an offshore platform without
frequency bands: coefficient of determination (R2), Eq. (7.23)
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Figure 7.14: Scale model of an offshore platform without
frequency bands: normalised error of fatigue damage (η), Eq.
(7.25)
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Figure 7.15: Scale Model of an offshore platform without
frequency bands: Time History, Strain Gauge A
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Figure 7.16: Scale Model of an offshore platform without
frequency bands: Time History, Strain Gauge L
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Figure 7.17: Scale Model of an offshore platform without
frequency bands: Frequency Spectrum, Strain Gauge A
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Figure 7.18: Scale Model of an offshore platform without
frequency bands: Frequency Spectrum, Strain Gauge L
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Figure 7.19: Scale Model of an offshore platform without
frequency bands: Strain Range Histogram, Strain Gauge A
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Figure 7.20: Scale Model of an offshore platform without
frequency bands: Strain Range Histogram, Strain Gauge L
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Figure 7.21: Scale model of an offshore platform with frequency
bands: Time Response Assurance Criterion (TRAC), Eq. (7.20)
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Figure 7.22: Scale model of an offshore platform with frequency
bands: Frequency Response Assurance Criterion (FRAC), Eq.
(7.20)

floor, we are unaware of the actual quality of the estimation process. We will, however, see a drop in all
quality measurements and we will underestimate (in regard to the reference sensor) the fatigue damage.

The TRAC and FRAC values for sensors L and M are better for the finite element mode shapes than
for the local correspondence principle with leave-8-out, see Figs. 7.9 and 7.10. These values are, however,
misleading as Figs. 7.16 and 7.20 show. Moreover, the other quality measurements contradict the TRAC
and FRAC values for sensors L and M indicating that the local correspondence principle with leave-8-
out leads to the best estimation. The amplitude, using finite element modes, is too big, which leads to a
shifted Strain Range Histogram and therefore incorrect fatigue damage.

The MSE, Fig. 7.11, and MAE, Fig. 7.12, are difficult to comparable across strain gauges since the
level of strain response changes considerable for each sensor. Therefore, we can mainly use these metrics
to analyse the errors between the different sets of mode shapes for each strain gauge - separately. The
coefficient of determination, Fig. 7.13, and the new normalised error of fatigue damage, Fig. 7.14, are
relative metrics that are comparable across strain gauges and even other structures.

With frequency bands

We apply two frequency bands with a transition at 30 Hz: the first band, 6− 30 Hz, contains the first
three modes while the second band, 30− 80 Hz, contains the fourth and fifth mode. Figs. 7.21-7.32 show
the results of the strain estimation with the frequency bands.

By applying frequency bands, the finite element mode shapes lead to, approximately, the same results
as the expanded experimental mode shapes using the leave-p-out implementation of the local correspon-
dence principle. For some strain gauges, it exceeds the expansion techniques in terms of the coefficient
of determination and normalised error of fatigue damage, see Figs. 7.25 and 7.26. Generally for the
expanded experimental mode shapes, the use of frequency bands has a minor influence on the strain
estimation. Therefore, SEREP and the traditional local correspondence principle produce virtual sensors
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Figure 7.23: Scale model of an offshore platform with frequency
bands: Mean Squared Error (MSE), Eq. (7.21)
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Figure 7.24: Scale model of an offshore platform with frequency
bands: Mean Absolute Error (MAE), Eq. (7.22)

A B C D E F G H I J K L M N

Strain gauge

0.8

0.85

0.9

0.95

1

C
o

ef
fi

ci
en

t 
o

f 
d

et
er

m
in

at
io

n
, 

R
2

 FE LC leave-one-out LC leave-8-out SEREP

Figure 7.25: Scale model of an offshore platform with frequency
bands: coefficient of determination (R2), Eq. (7.23)
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Figure 7.26: Scale model of an offshore platform with frequency
bands: normalised error of fatigue damage (η), Eq. (7.25)
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Figure 7.27: Scale Model of an offshore platform with frequency
bands: Time History, Strain Gauge A
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Figure 7.28: Scale Model of an offshore platform with frequency
bands: Time History, Strain Gauge L



7.8. Case study 127

0 10 20 30 40 50 60 70 80

Frequency [Hz]

-160

-140

-120

-100

-80

M
ag

n
it

u
d

e,
 d

B
 r

el
. 

to
 u

n
it

 Measured strain LC leave-8-out FE

Figure 7.29: Scale Model of an offshore platform with frequency
bands: Frequency Spectrum, Strain Gauge A
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Figure 7.30: Scale Model of an offshore platform with frequency
bands: Frequency Spectrum, Strain Gauge L
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Figure 7.31: Scale Model of an offshore platform with frequency
bands: Strain Range Histogram, Strain Gauge A
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Figure 7.32: Scale Model of an offshore platform with frequency
bands: Strain Range Histogram, Strain Gauge L
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with more errors than the finite element mode shapes or the leave-p-out implementation of the local
correspondence principle. In this case, these two expansion techniques have fitting errors that lead to
worse strain estimation than the use of the finite element mode shapes. The expansion of experimental
mode shapes, however, depends on the number of finite element mode shapes that is used as a basis for
expansion [5]. This parameter study was outside the scope of this paper.

In the frequency domain, we observe a shift in energy at the transition, 30 Hz, between the two
frequency bands, see Figs. 7.29 and 7.30. Thus, the strain estimation has issues with modal truncation
[36] due to frequency bands where the chosen mode shapes do not span the entire response. Here the
subspace projection removes some of the physical response. This causes the normalised error of fatigue
damage to amplify slightly for all techniques. Thus, the use of frequency bands increases the chance of
modal truncation since the truncated number of modes - associated with a frequency band - might have
an insufficient span of the response in the given band. It, however, increases the accuracy of the strain
estimation using the finite element model.

7.9 Conclusion

This paper finds that expanding experimental mode shapes can increase the accuracy of a stress estima-
tion using the modal expansion since the expanded mode shapes better span the response of the actual
system. Hence, expansion of experimental mode shapes by a finite element model has the potential to
reduce the modelling errors of the finite element model. The expansion is, however, a fitting process,
which might introduce fitting errors. The experimental mode shapes must be closer to the actual system
than the finite element mode shape. Thus, mode shape expansion should be used carefully.

This paper introduced a new implementation of the local correspondence principle by the use of
leave-p-out cross-validation. In the presented case study, the new leave-p-out implementation of the
local correspondence principle outperforms SEREP and the original local correspondence principle.

This paper finds that the quality measurements TRAC and FRAC values might mislead the quality of
strain/stress estimation since they are independent of amplitude differences. Since stress ranges/ampli-
tudes are the most crucial part of fatigue damage, these quality measurements should be used with care.
Furthermore, this paper finds that the MSE and MAE values are difficult to compare across different
sensors or different case studies since the amplitudes of these values depend on the level of response at
each sensor. Therefore, this paper introduced a new quality measurement, normalised error of fatigue
damage, for stress estimation based on the normalised fatigue damage. The new quality measurement
takes amplitudes into account and it are comparable with across different sensors and with other studies.
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Chapter 8

Paper 5 - Full-field strain estimation of
subsystems within time-varying and
nonlinear systems using modal
expansion

�
Chaos was the law of nature; Order was
the dream of man

�
Henry Adams

Status
- Second round of review at Mechanical Systems and Signal Processing as of writing

8.1 Introduction

The modal expansion technique assumes a linear and stationary system with proportional viscous damp-
ing to create virtual sensors. The reality is, however, not as ideal as these assumptions where some
amount of nonlinearities, nonstationarities, and nonproportional viscous damping exist. For offshore
structures, we have marine growth, ingress of water, fluid storage levels, and soil properties that change
over time, see chapter 3, and this introduces nonstationarity to the structures. In some cases, bridges
connect offshore platforms and this introduces a friction-coupling and nonlinearity to the platforms.
Furthermore, structure and soil interaction, structure and water interaction, and extreme waves add
further nonlinearities to offshore structures.

For some nonlinear and nonstationary systems, we can model them as multiple subsystems with ex-
ternal nonlinear and nonstationary effect. This is the case for offshore platforms connected with bridges
where each platform is a linear subsystem with external friction that couples the subsystem to the entire
nonlinear system. In this paper, we apply stress/strain estimation to subsystems within nonstationary
(time-varying) and nonlinear systems with general viscous damping.

8.2 Contribution

The author came up with the idea of applying Structural Modification Theory and Linear Algebra to
explain the use of modal expansion for nonstationary and nonlinear structures with general viscous
damping. Furthermore, the author wrote the paper, performed the experimental tests with Tobias Friis,
and applied stress/strain estimation.
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8.3 Main findings

We found that the response of a nonlinear and time-invariant system with general viscous damping
in RN must be a combination of the undamped, linear mode shapes of the underlying system since
these mode shapes form a basis for RN . We introduced the pseudo modal coordinates, which is the
combination of the undamped, linear mode shapes, for the nonlinear and nonstationary system with
general damping.

This enables us to apply modal expansion to subsystems within a nonlinear and nonstationary system
with general viscous damping. Compared to a linear and stationary system, the complexity increases
regarding the sufficient set of mode shapes for an accurate stress/strain estimation of a nonlinear and
time-invariant system with general viscous damping. Unfortunately, modal truncation errors become
an issue for modal expansion due to the nonlinearity and nonstationary effects and we would require a
higher number of mode shapes. Generally, the set of mode shapes should span the global response of
the system. In this paper, we prove that, for "linear" subsystems within a nonlinear and nonstationary
system, the choice of applied mode shapes is similar to that of a linear system. Thus, for these cases,
we can apply stress/strain estimation using the undamped mode shapes of the subsystem with high
accuracy and precision.

8.4 Reflections

We conclude that we can apply stress/strain estimation to a "linear" subsystem within nonlinear and
nonstationary systems with general viscous damping by the use of a set of linear mode shapes. The set
of mode shapes should sufficiently span the response of the structure, as explained in chapter 6.
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Full-field strain estimation of subsystems within time-varying and non-
linear systems using modal expansion

Marius Tarpøa, Tobias Friisb, Christos Georgakisa, Rune Brinckerb

aAarhus University, Department of Engineering, Inge Lehmanns Gade 10, Aarhus, Denmark
bTechnical University of Denmark, Department of Civil Engineering, Brovej B.118, Kgs. Lyngby, Denmark

Abstract
Virtual sensing allows for the estimation of stress and/or strain response in unmeasured locations of a
system. Often, these virtual sensing techniques assume a linear and time-invariant system with pro-
portional damping. In this article, one virtual sensing technique - the modal expansion - is proven
applicable for stress/strain estimation of subsystems within time-varying and nonlinear systems with
general viscous damping where the time-varying and nonlinear effects act externally on the subsystems.
This technique uses the mode shapes of the subsystem to expand the response by a subspace projection.
It is proven that the mode shapes of the underlying undamped and linear system form a basis for the
response of the time-varying and nonlinear systems with general viscous damping. Therefore, a trun-
cation of the mode shapes results in modal truncation errors that depend on the span of the applied
mode shapes. Thus using an appropriate set of undamped and linear mode shapes of the subsystem, the
modal expansion allows for estimation of the stress/strain response for subsystems within time-varying
and nonlinear systems with general viscous damping. This concept is proven both numerically and ex-
perimentally.

Keywords: Virtual sensing, structural modification theory, hybrid modal analysis, structural health mon-
itoring

8.6 Introduction

Stress/strain estimation is a subsection within the research field of virtual sensing where physical sensors
are extended to unmeasured and inaccessible positions or quantities [1]. Fig. 8.1 outlines the flowchart
of virtual sensing. Commonly for all virtual sensing techniques, they require knowledge of the physical
sensors and the system in the form of a system model. A process model combines the physical measure-
ments and the system model to generate virtual sensors, and it can even convert the measured quantities
into other types of quantities/sensors. In stress/strain estimation, the virtual sensing enables conversion
and/or extension of sensors into the full-field stress/strain estimation, and thereby, it enables full-field
fatigue analysis.

Physical
sensors

System
model

Process
model

Virtual
sensors

Figure 8.1: Flowchart of virtual sensing

For stress/strain estimation, the most popular process models are: the modal expansion [2–9] and the
Kalman filter [10–16]. The modal expansion is a least square regression or a linear transformation tech-
nique that uses the mode shapes of a system to transform the response into virtual sensors. It projects
the response unto the subspace spanned by the mode shapes and transforms the response to the strain
response. The designer of the modal expansion chooses an appropriate set of mode shapes for the tech-
nique to work [2, 3, 8]. The Kalman filter and other adaptive filter techniques are optimal predictors
and they use the system matrices in the discrete state space form to estimate the stress/strain response
by assuming white Gaussian noise on both the system matrices (process noise) and the physical mea-
surements (measurement noise). The designer of the adaptive filter tunes the error-covariance matrices
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to ensure satisfactory results [11, 12, 17]. The two different techniques are found to be interchangeable
since they lead to similar estimations of the strain response [10, 12].

In the literature of virtual sensing, stress/strain estimation is applied with success to a wide range of
civil and mechanical structures. During the 1950s, stress/strain estimation had its tentative beginnings
where analytical relationships between response and strain for beams or plates were investigated [18–20].
These analytical expressions dominated stress/strain estimation until the 1990’s where transformation
matrices were applied to the field. In 1995, Okubo and Yamaguchi [21] introduced a displacement-to-
strain transformation matrix calculated from strain and displacement measurements for dynamic strain
prediction. Seo et al. [22] used the displacement-to-strain transformation matrix with mode shapes un-
der free boundary conditions as basis vectors to express the mode shapes under operational boundary
conditions using the same expression, which was later termed "structural modification theory" [23]. In
2005, Hjelm et al. [5] and Graugaard-Jensen et al. [6] applied the modal expansion for full-field strain
estimation to a laboratory structure and a lattice tower under operational conditions. As the first, Pa-
padimitriou et al. [11] applied the Kalman filter (an adaptive filter) to strain estimation in a numerical
simulation in 2011. In 2015, Palanisamy et al. [15] studied strain estimation with the Kalman filter for
non-zero mean excitation. Gevinski et al. [9] applied modal expansion in the frequency domain under
the term hybrid modal analysis. In 2016, Maes et al. [12] compared strain estimation using the Kalman
filter, the joint input-state estimation algorithm, and the modal expansion on an offshore monopile wind
turbine in the Belgian North Sea and applied data fusion to combine accelerometers and strain gauges.
J. Kullaa [24] applied dynamic substructuring to modal expansion in numerical simulations by replacing
the mode shapes of the full system with component modes of the subsystem. To account for the quasi-
static response, Iliopoulos et al. [3] combined accelerometers and strain gauges to modal expansion for
strain estimation on an offshore monopile wind turbine. Skafte et al. [2] applied Ritz vectors (pseudo
modes) to the multi-banded modal expansion technique to accommodate for the quasi-static response of
wave-induced structures. In recent years, machine learning algorithms have been applied to strain esti-
mation where Lu et al. [25] used pattern recognition on the Shenzhen Bay Stadium and Deng et al. [26]
applied learning to modal expansion. In 2020, Tarpø et al. [8] studied the effect of applying expanded
experimental mode shapes to modal expansion and stress estimation, finding, that the expansion is sim-
ilar to an update of the system model and it can increase accuracy. Recently, stress/strain estimation is
applied to nonlinear structures where Risaliti et al. [27] applied the augmented extended Kalman filter to
estimate the load and strain field on nonlinear mechanical systems by the means of the implicit equation
of motion. Furthermore, Tarpø et al. [4] utilised modal expansion for strain estimation of a numerical
offshore platform with friction and Nabuco et al. [7] applied a displacement-to-strain transformation
matrix of two friction-coupled scaled offshore platforms.

For now, the theory limits the modal expansion technique to time-invariant and linear systems. In
this paper, we address stress/strain estimation using the modal expansion technique for subsystems
within time-varying and nonlinear systems with general viscous damping by extending the theory with
structural modification theory. It is known that a change of an system results in a set of mode shapes
that are a linear combination of the original undamped normal mode shapes [23]. This paper extends
this concept to changes that result in coupled, time-variant, and nonlinear systems with general viscous
damping. Therefore, the response of this new system could be described by the same vector space as
the original system since the undamped mode shapes form a basis for RN . Thus, we can use the uncou-
pled and undamped normal modes of a subsystem in the modal expansion to estimate the strain/stress
response of the coupled subsystem as long as any nonlinear and time-varying effect act externally on
the subsystem. We are, however, unable to extend the full-field virtual sensors beyond the subsystems,
from which we measure the response, using uncoupled mode shapes. Furthermore, we need a sufficient
set of mode shapes from the subsystem to span the response and this introduces the problem of modal
truncation errors [28].

We organise this paper as follows: Section 8.7.1 sets up the equation of motion and Section 8.7.2
introduces modal expansion and strain estimation for linear system. Section 8.7.3 introduces structural
modification theory and proves that the response of coupled, nonlinear, and time-varying systems with
general viscous damping is a linear combination of the uncoupled and undamped mode shapes. Section
8.7.4 introduces the concepts of pseudo modal coordinates, which is the linear combination of the normal
modes. In Section 8.7.5, we combine modal expansion and the pseudo modal coordinates for strain
estimation in case of coupled, nonlinear, and time-varying systems with general viscous damping. We
find that modal expansion is limited to strain estimation of the measured subsystems where the nonlinear
and time-varying effects act externally on the subsystems. Finally, in Section 8.8, we validate the theory
on several numerical simulations and an experimental case study with two friction-coupled platforms in
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the laboratory.

8.7 Theory

8.7.1 Equation of motion

The response of a linear and stationary system with viscous damping is the solution of an ordinary
differential equation - called the equation of motion [29, 30].

Mÿ(t) + Cẏ(t) + Ky(t) = x(t) (8.1)

where y(t) ∈ RN , ẏ(t) ∈ RN , and ÿ(t) ∈ RN are the displacement, velocity, and acceleration of the
system, M ∈ RN×N , C ∈ RN×N , and K ∈ RN×N are the mass, damping, and stiffness matrix, x(t) ∈ RN

is the external excitation vector, and N is the total number of degrees-of-freedom (DOF) in the system.
When we have proportional viscous damping, we can use the undamped equation of motion to find the
mode shapes of the system through the eigenvalue problem. The eigenvalue problem arises when we
separate the general solution of the equation of motion in time and space [29, 31].

M−1Kφi = ω2
i φi (8.2)

where ωi is angular frequency of the ith mode and φi ∈ RN is the undamped mode shape vector for the
ith mode. The undamped mode shape is called a normal mode.

If the mass and stiffness matrices are symmetric and positive semi-definite matrices with full rank
[31], there exists N real eigenvalues and N linearly independent eigenvectors - even though the eigen-
values may be indistinct [32]. The modal matrix, Φ = [φ1, φ2, . . . , φN ] ∈ RN×N , span RN and the mode
shapes, the column vectors in the modal matrix, are linearly independent to each other [31]. Thus, the
modal matrix is an (eigen-)basis of the eigenvectors for RN [32] and it is orthogonal with respect to the
mass and stiffness matrix [29–31]. In short, any response, y(t), in RN is a linear combination of these
mode shapes and this phenomenon is called the modal superposition.

y(t) = Φq(t) (8.3)

where q(t) ∈ RN is called the coordinate vector or the modal coordinates and it holds the coefficients of
the linear combination of the mode shapes. The modal expansion is a linear coordinate transformation
from the physical space into the modal space.

Throughout the paper, we use the system response, y(t), mode shapes, Φ, and modal coordinates,
q(t), as variables for different systems.

8.7.2 Strain estimation using modal expansion

In this section, we will introduce modal expansion for strain estimation. We assume a linear relationship
between the strain response and the displacement of the system.

ε(t) = Tεy(t) (8.4)

where ε(t) ∈ Rb is the strain response of the system in b locations and Tε ∈ Rb×N the displacement-to-
strain transformation matrix.

We insert the modal superposition from Eq. (8.3) and define the strain mode shape as the static strain
caused by a deflection corresponding to each mode shape [22].

ε(t) = TεΦq(t)
= Φεq(t)

(8.5)

where Φε is the strain mode shape matrix.
In reality, we have a truncated set of normal mode shapes, Φ̃ = [φ1, . . . , φK] ∈ RN×K, which is

an approximation of the underlying linear subspace of the system. Moreover, we measure the system
response, ya(t) ∈ Ra×1, in a points on the system.

y(t) =

[
ya(t)
yd(t)

]
, Φ̃ =

[
Φ̃a
Φ̃d

]
(8.6)
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where (·)a denotes the active DOFs and (·)d denotes the inactive DOFs.
We estimate the modal coordinates by transforming the measured response, ya(t), using the normal

mode shapes, Φ̃a, see Eq. (8.3).

q̂(t) = Φ̃†
aya(t) (8.7)

where (·)† denotes the Moore–Penrose pseudo inverse.
We insert the estimated pseudo modal coordinates into Eq. (8.5).

ε̂(t) = Φ̃εq̂(t) (8.8)

where ε̂(t) is the estimated strain response of the entire system and Φ̃ε is the truncated strain modal
matrix.

The main assumption of modal expansion is that a set of mode shapes span the subspace of a mea-
sured response. Modal expansion is essential a least square regression technique that projects the mea-
sured response onto the column space of the applied mode shapes, Φ̃a, reduces the response to this linear
subspace, and expands the response. Thus, the modal expansion technique allows for estimation of the
stress/strain response for linear system if we apply an appropriate set of mode shapes, which span the
majority of the system response. The set of mode shapes should be selected by an agreement between the
natural frequency and the excitation frequency but also by the matrix product of the transposed mode
shape and the spatial distribution of the excitation to avoid modal truncation errors [28]. Furthermore,
the accuracy of modal expansion also depends on the number and position of sensors. This issue re-
lates to the stability of the inversion of the reduced and truncated modal matrix, Φ̃a, and the condition
number of this modal matrix indicates the level of stability.

8.7.3 Structural modification theory

In this section, we will study the linear subspace spanned by the original linear mode shapes as the
system is modified or changed. This is used to study the validity of modal expansion with linear mode
shapes as the actual system diverts from the original system, which the mode shapes stem from. First, it
is assumed the system has a change in all system matrices while the damping is still proportional.

(M + ∆M)ÿ(t) + (C + ∆C)ẏ(t) + (K + ∆K)y(t) = x(t) (8.9)

where ∆M ∈ RN×N , ∆C ∈ RN×N , and ∆K ∈ RN×N hold the perturbation for the mass, damping, and
stiffness matrix.

Structural modification theory proves that this new system has a new set of mode shape vectors that
are a linear combination of the original system [23].

Φ̃ = ΦP (8.10)

where P ∈ RN×N is a matrix that contains the linear combination of mode shapes. Since both modal
matrices, Φ and Φ̃, are bases for RN , they are linearly dependent of each other. Thus, a set of mode
shapes from a modified system is a linear combination of the original mode shapes. In linear algebra,
the matrix P is called the change of basis matrix, the (coordinate) transformation matrix, or the change of
coordinates matrix from Φ to Φ̃ [32, 33]. Moreover, the matrix P maps the modal coordinates of the new
mode shapes, Φ̃, to the coordinates of the original mode shapes, Φ.

Eq. (8.10) is only valid for the full set of mode shapes but it still holds for a limited number of mode
shapes if the changes between the systems are small [34]. Sondipon [35] investigates the derivatives of
eigenvalues and eigenvectors in a nonproportional viscously damped dynamic system to analyse the
rate of changes and sensitivity. Finding, the sensitivity of a mode shape depends, considerably, on the
surrounding modes in terms of natural frequency [35]. Brincker et al. [34] extended the sensitivity equa-
tions to finite but small changes in the mass and stiffness matrices, similarly proving that a change for
a given mode shape is primarily described as a linear combination of the closest modes (in term of fre-
quency). Thus, any changes to a mode shape are approximated by a finite set of the closest, surrounding
mode shapes. A small change requires few modes, however, as the size of changes increases so does the
number of modes. These conclusions hold for all kind of small perturbations.

Thus, we could use a suitable subset of mode shapes from the original system for strain estimation of
a perturbed system using modal expansion and still have low modal truncation errors. In the following
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subsections, we will extend this concept of a linear subspace spanned by the original mode shapes for
coupled, time-variant, and/or nonlinear systems with general viscous damping.

Coupled systems

In this section, we will study coupling of systems - similar to dynamic sub-structuring - for strain estima-
tion when the exact coupling is unknown. In the literature, J. Kullaa [24] applied dynamic substructuring
to modal expansion when the coupling of one subsystem is known to the main system. We begin with
two uncoupled linear systems, A and B, and we rewrite the two corresponding equations of motion into
one equation. [

MA 0
0 MB

][
ÿA(t)
ÿB(t)

]
+
[

CA 0
0 CB

][
ẏA(t)
ẏB(t)

]
+
[

KA 0
0 KB

][
yA(t)
yB(t)

]
=

[
xA(t)
xB(t)

]
(8.11)

where the subscripts (·)A and (·)B denote the DOFs related to the subsystems.
We find the uncoupled mode shapes through the eigenvalue problem of the undamped equation of

motion.

Φ =

[
ΦA 0
0 ΦB

]
(8.12)

We add a change to the system matrices so the systems are coupled together.

([
MA 0

0 MB

]
+ ∆M

) [
ÿA(t)
ÿB(t)

]
+
([

CA 0
0 CB

]
+ ∆C

) [
ẏA(t)
ẏB(t)

]
+
([

KA 0
0 KB

]
+ ∆K

) [
yA(t)
yB(t)

]
=

[
xA(t)
xB(t)

]
(8.13)

Using structural modification theory, the new set of coupled mode shapes are a linear combination of
the uncoupled mode shapes.

Φ̃ = ΦP

=

[
ΦA 0
0 ΦB

]
P

(8.14)

Thus, the uncoupled mode shapes span the response of the coupled system and, moreover, they span
the response of each subsystem in the coupled system. Therefore, we can use the uncoupled mode
shapes of a subsystem for strain estimation when the mode shape components of the coupled subsys-
tem are unknown. We cannot, however, extend the strain estimation beyond a subsystem to another
subsystem if we do not have measurements of the other subsystem or know the coupling between the
subsystems. Uncoupled mode shapes limit modal expansion to the subsystems from which we have
measurements.

Nonlinear and time-varying system with general viscous damping

Let us consider a nonlinear and time-varying system with general viscous damping within RN .

Mÿ(t) + Cẏ(t) + Ky(t) + fnl (E(t)) = x(t) (8.15)

where fnl (E(t)) ∈ RN is a general nonlinear and time-varying effect vector that depends on the energy
(or conditions) in the system, E(t) ∈ RN , which again depends on time. In this article, the term energy
is used to cover both the energy in the system and any conditions, which causes nonlinear and/or time-
varying changes to the system.

In the case of a linear system, fnl(E(t)) = 0, we have an eigenvalue problem in the state space formu-
lation. For underdamped modes, the 2N eigenvalues and mode shapes appear in complex conjugated
pairs due to the non-proportional viscous damping [30, 31, 36].[

−M−1C −M−1K
I 0

]
= Θ [λn]Θ−1 (8.16)

where Θ ∈ C2N×2N contains the eigenvectors in conjugated pairs as column vectors and [λn] ∈ C2N×2N

is a diagonal matrix with the modal poles in conjugated pairs. Here the eigenvectors, Θ, hold the mode
shape and modal poles as follows
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Θ =

[
[λn] Φ̃ [λ∗n] Φ̃∗

Φ̃ Φ̃∗

]
(8.17)

where Φ̃ ∈ CN×N is the complex modal matrix, (·)∗ denotes the complex conjugate, and [Φ̃ Φ̃∗] ∈
CN×2N form a R-basis of dimension 2N. The upper part relates to modal velocity while the lower part
relates to modal displacement.

For nonlinear systems, the traditional understanding of the modes breaks down [37]. Due to the
energy dependency of the nonlinear system, a direct separation into time and space solutions is impos-
sible for the nonlinear equation of motion, Eq. (8.15) [37]. In this paper, we assume that the equation
of motion for a nonlinear system has an energy dependent solution in both time and space. Therefore a
set of complex and nonlinear mode shapes exists as a spatial solution and this set depends on the same
parameters as the nonlinear force vector, fnl . In terms of algebra, a basis for RN exists as a function of
the energy in the system, thus, the basis changes according to the nonstationarity and nonlinearity. The
reader should note that the notion of a solution in space for a time-varying and nonlinear system is,
however, constructed since it will change continuously and accordingly to the energy in the system.

The nonlinear mode shapes occur in complex conjugated pairs due to the nonproportional viscous
damping.

Θ (E(t)) =

[
[λn (E(t))] Φ̃ (E(t))

[
λn (E(t))

∗]
Φ̃∗ (E(t))

Φ̃ (E(t)) Φ̃∗ (E(t))

]
(8.18)

where Φ̃ (E(t)) ∈ CN×N and Φ̃∗ (E(t)) ∈ CN×N are the complex nonlinear modal matrix and they are
complex conjugates of each other. Since these mode shapes form a spatial solution for any level of energy,
E(t), then a linear combination - as function of the energy - equals the system response. Thus, a nonlinear
coordinate transformation exists that maps the physical response of the nonlinear system into a complex
and nonlinear modal space.

y(t) =
[
Φ̃ (E(t)) Φ̃∗ (E(t))

] [q f (E(t))
q∗f (E(t))

]
= Ψ (E(t))qc (E(t))

(8.19)

where Ψ (E(t)) ∈ CN×2N is the modal matrix containing conjugated pairs of mode shapes and qc (E(t))
∈ C2N is the modal coordinates. We can write any basis of RN as a linear combination of another basis
since they are linear dependent [33]. Therefore Ψ (E(t)) and Φ are linearly dependent since they are both
vector bases for RN for any level of energy, E(t).

Ψ (E(t)) = ΦP (E(t)) (8.20)

where P (E(t)) ∈ CN×2N is the change of basis matrix, which holds the combination of normal modes.
An alternative proof for the relationship in Eq. (8.20) is given in Appendix 8.A.

Hence, the complex nonlinear mode shapes are an energy dependent linear combination of the nor-
mal mode shape of the undamped system. Therefore, a nonlinear system with general viscous damping
has an underlying linear subspace spanning the normal mode shapes of the undamped linear system.

8.7.4 Pseudo modal coordinates

In this subsection, we will introduce the pseudo modal coordinates, qp(t). Let us say that we have a
time-varying and nonlinear system with general viscous damping and it has time and energy dependent
complex and nonlinear mode shapes, Ψ(E(t)), which form a basis for the system response in RN .

y(t) = Ψ (E(t))qc (E(t)) (8.21)

Using structural modification theory, we express these mode shape through an exact linear relation-
ship of the underlying normal modes, Φ. Moreover, P(E(t)) maps the modal coordinates of complex
nonlinear mode shapes to those of the normal mode shape, which we define as pseudo modal coordi-
nates, qp(E(t)).

qp (E(t)) = P (E(t))qc (E(t)) (8.22)
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Figure 8.2: Linear two degree-of-freedom system
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Figure 8.3: Nonlinear two degree-of-freedom system

The pseudo modal coordinates are the linear combination of the underlying normal modes that cor-
responds to the system response. These coordinates hold all of the nonstationarity, complexity from the
general viscous damping, and/or the nonlinearity.

We rewrite the modal decomposition from Eq. (8.21) using Eq. (8.22) so it resembles the traditional
modal decomposition.

y(t) = Φqp (E(t)) (8.23)

Thus, a complex system has a linear subspace where the undamped mode shapes from the original
system span the system response.

Example of pseudo modal coordinates

In this example, we will show that a nonlinear system has a linear subspace spanned by the underlying
normal modes. To illustrate the concept of pseudo modal coordinates, we introduce a two DOF system
(it is the same system as in [32]), see Fig. 8.2, with the following equation of motion.[

1 0
0 1

] [
ÿ1(t)
ÿ2(t)

]
+

[
2 −1
−1 2

] [
y1(t)
y2(t)

]
=

[
0
0

]
(8.24)

The linear mode shapes are

Φ =

[
1 1
1 −1

]
(8.25)

Using the Reduced Row Echelon Form (Gauss-Jordan elimination) [32], we can prove that this modal
matrix spans R2 and it is linearly independent. Thus, it is a basis for R2.

We simulate the free response of this linear two DOF system with an initial displacement correspond-
ing to the second mode, [1,−1]>, and no initial velocity, see Fig. 8.4 (a) and (b). The two DOFs move
out-off-phase and the relation between the two is linear, hence, the motion correspondences to a straight
line in configuration space. Only the modal coordinate for the second mode oscillates with the natural
frequency of the second mode, see Fig. 8.4 (c).

To introduce nonlinearity into the system, we add a cubic spring between the boundary and the first
mass, see Fig. 8.3. [

1 0
0 1

] [
ÿ1(t)
ÿ2(t)

]
+

[
2 −1
−1 2

] [
y1(t)
y2(t)

]
+

[ 1
2 y3

1(t)
0

]
=

[
0
0

]
(8.26)

Again, we simulate the free response of the nonlinear two DOF system from an initial displacement
of [8.476, 54.232]> and no initial velocity, so we have an internal resonant nonlinear normal mode [32],
see Fig. 8.5 (a) and (b). The simulations are carried out in the state space format [38] where the system
of equations are formulated with the classical linear terms and with the addition of a term containing all
the nonlinear forces. It is notable that the solution of Eq. (8.26), in a state space formulation, is provided
in discrete time format by assuming a linear variation of the external forces and nonlinear forces between
the successive time steps, i.e., so-called first order hold (more details are provided by Lòpez-Almansa et
al. [38] and Lu et al. [39]). The simulations are then performed by time-stepping through the response
and the nonlinear forces are iterated within each time step. The two DOFs in the system vibrate out of
unison, therefore, the motion in configuration space is a curved line. See [37] for more information on
nonlinear normal modes and internal resonance for nonlinear systems.

Since the underlying linear mode shapes are a basis for RN , the nonlinear response is a linear combi-
nation - the pseudo modal coordinates - of these linear mode shape vectors, see Fig. 8.5 (c). The pseudo
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Figure 8.4: The linear two degree-of-freedom system from Fig. 8.2: (a) the response of the system, (b) the same response in configuration
space, and (c) modal coordinates of the response with the underlying linear mode shapes
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Figure 8.5: The nonlinear two degree-of-freedom system from Fig. 8.3: (a) the response of the system, (b) the same response in configuration
space, and (c) pseudo modal coordinates of the response with the underlying linear mode shapes

modal coordinates are periodic but they are comprised by multiple sinusoids unlike the linear case. Thus,
each pseudo modal coordinate has multiple osculating frequencies - even for internal resonance.

8.7.5 Strain estimation using pseudo modal coordinates

In this section, we will combine pseudo modal coordinates and modal expansion for strain estimation.
We have a time-varying and nonlinear system with general viscous damping. We estimate the pseudo
modal coordinates by projecting the measured response, ya(t), onto the subspace spanned by the normal
mode shapes, Φ̃a, see Eq. (8.23).

q̂p (E(t)) = Φ̃†
aya(t) (8.27)

To estimate the strain response, we insert the estimated pseudo modal coordinates into Eq. (8.5).

ε̂(t) = Φ̃εq̂p (E(t)) (8.28)

where ε̂(t) is the estimated strain response of the entire system and Φ̃ε is the truncated strain modal
matrix.

Thus, this indicates that the modal expansion technique allows for estimation of the stress/strain re-
sponse for time-varying and nonlinear systems with general viscous damping. The reader should note
that this is only valid if we apply an appropriate set of undamped and linear mode shapes, which span
the majority of the system response. The issue of modal truncation (selecting mode shapes) is, however,
complicated since the sensitivity equations are inapplicable to a nonlinear system. The perturbations
from linear system, which yield the nonlinearity, are not necessarily small changes in the system. As
the perturbation from the original linear system increases, the number of modes to accurately span the
response increases. Whenever the column space of the truncated modal matrix inaccurately spans the
system response then we have a modal truncation error [28]. The fact that sensitivity of mode shapes
depends on the surrounding modes might be inapplicable to nonlinear systems. Therefore, the contribu-
tions of higher modes might be more influential and distinct than that of a linear system and this leads
to a substantial issue of modal truncation.

In the following, we will study the selection of linear undamped mode shapes of a special case of
nonlinear and time-varying systems where the issue of modal truncation is similar to a linear system.
We will consider a subsystem inside a nonlinear and time-varying system with non-proportional viscous
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damping where the time-varying and nonlinear effects act externally on the subsystem. In the following,
we rewrite Eq. (8.15) into two subsystem: A and B.

[
MAA MAB
MBA MBB

][
ÿA(t)
ÿB(t)

]
+
[

CAA CAB
CBA CBB

][
ẏA(t)
ẏB(t)

]
+
[

KAA KAB
KBA KBB

][
yA(t)
yB(t)

]
+
[

fnl,A(E(t))
fnl,B(E(t))

]
=

[
xA(t)
xB(t)

]
(8.29)

We calculate and rearrange the upper equations related to the Ath subsystem.

MAAÿA(t) + CAAẏA(t) + KAAyA(t) = xA(t)− fnl,A (E(t))−MABÿB(t)−CABẏB(t)−KAByB(t)
(8.30)

In the following, we consider the case where the nonlinear and time-varying force, fnl,A, acts ex-
ternally on the Ath subsystem. On the left-hand side of the equation, we have an uncoupled linear
subsystem. On the right-hand side, we have all external terms, which contain the external force and the
coupling to the entire system. We combine all the external terms in one external term, x̂all,A(t).

MAAÿA(t) + CAAẏA(t) + KAAyA(t) = x̂all,A(t) (8.31)

Thus, we can interpret the subsystem as a linear system with an external force, which depends on the
external excitation, the coupling to the entire system (both linear, nonlinear, and time-varying coupling),
and external nonlinear and time-varying effects. Notably, the subsystem is parametrically excited since
the external force depends on the response of the subsystem [40]. This linear subsystem has a set of linear
mode shapes, ΦA, that span its response. Therefore, we can use the undamped linear mode shapes of
the subsystem for strain estimation. We need a sufficient number of undamped mode shapes from the
subsystem to approximate the pseudo modal coordinates. The same rules for selecting mode shapes in
modal expansion for a linear system apply for a subsystem of a nonlinear and time-variant system as
long as the nonlinear effects act externally on the subsystem. We should consider both frequency and
spatial distribution of the external force, x̂all,A(t), when we select the number of modes to include in the
modal expansion technique.

A crucial limitation of strain estimation using pseudo mode shapes is nonlinearly coupled subsys-
tems. Similar to the linear case, we cannot expand measurements from one subsystem to another if the
coupling between the subsystems is unknown. In practice, actual nonlinear coupling is, however, often
associated with large quantities of uncertainty. Thus, this uncertainty large limits the strain estimation
to the measured subsystem.

8.8 Case studies

We will prove that a set of normal mode shapes is sufficient for strain estimation of a substructure with
external nonlinear and time-varying effects using the modal expansion. In a numerical study, we will
verify the concept of pseudo modal coordinates for strain estimation using the full response of a time-
varying and nonlinear structure with general viscous damping and the full set of linear mode shape,
thus, we remove the issues of modal truncation errors and sensor position. Finally, in an experimental
study, we apply strain estimation to a nonlinear test-specimen comprised of two subsystems coupled by
friction using the mode shapes from a linear finite element model.

8.8.1 Quality measures

Multiple approaches exist for evaluating the strain estimation and they have different strengths and
weaknesses. In this paper, we have chosen to apply the Time Response Assurance Criterion (TRAC) and
Normalised Error of Fatigue Damage (NEFD), which are described in the following.

Time Response Assurance Criterion (TRAC)

The TRAC [41] is a popular quality measures in the field of stress/strain estimation. TRAC values in-
dicate a general correlation between two signals where a value of 1 corresponds to perfect correlation
while a value of 0 indicates independence between the signals. It is, however, independent of amplitude
differences.
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Table 8.1: Modal parameters of the underlying linear system from the numerical simulation study

Mode 1 2 3 4 5 6 7 8 >8

Frequency (Hz) 18.84 24.17 118.1 151.5 330.7 424.1 648 831.1 >1071
Damping Ratio (%) 10 10 2.5 2.5 2.5 2.5 2.5 2.5 100√

2

TRACi =

(
εεε>t,i ε̂εεt,i

)2(
εεε>t,i εεεt,i

) (
ε̂εε>t,i ε̂εεt,i

) (8.32)

where εεεt,i is the entire discrete time history of the measured strain response for the ith strain gauge
arranged in a column vector, and similarly, ε̂εεt,i is the estimated strain response at the same location.

Normalised Error of Fatigue Damage (NEFD)

It is important to evaluate the stress estimation in fatigue damage when the estimation is intended for a
fatigue analysis. For this propose, we apply the NEFD [8], which is based on the SN-curve (excluding
the effect of a bilinear SN curve) and the Palgreen-Miners Rule.

ηi =
D̂i − Di

Di
=

n̂cycles

∑
j=1

∆σ̂m
j

C
ncycles

∑
j=1

∆σm
j

C

− 1 =

n̂cycles

∑
j=1

∆ε̂m
j

ncycles

∑
j=1

∆εm
j

− 1 (8.33)

where Di and D̂i are the cumulated fatigue damage for the measured and estimated signal, respectively,
in the ith fatigue location, ncycles and n̂cycles are the total number of counted cycles for the measured and
estimated signal, respectively, ∆σj and ∆σ̂j denote the stress range from cycle counting, C is the fatigue
capacity (the intercept of log(N) axis in the SN curve), m is the "slope" of the SN curve, and ∆ε j and ∆ε̂ j
are the strain range from cycle counting. In this paper, we apply the rainflow counting algorithm [42].
Thus, we can use the summation of the strain ranges to the power of m for a measured and estimated
signal to calculate the normalised fatigue damage. Here ηi = 0 indicates a perfect estimation of the
strain response in terms of fatigue damage while a negative value indicates an underestimation of fatigue
damage, and a positive value indicates an overestimation of fatigue damage. For the remainder of this
paper, we will use m = 3, which corresponds to welded steel structures [43].

8.8.2 Numerical simulation study on cantilever beam

In this case, we use a numerical simulation of two cantilever beams, see Fig 8.6, to prove the concept
of pseudo modal coordinates for strain estimation in the case of time-varying and nonlinear systems
with general viscous damping. Here we use all DOFs from the left beam, which is a subsystem that is
nonlinearly coupled to the other beam. Table 8.1 lists the modal parameters of the linear and uncoupled
beams with proportional damping. All higher modes, above the eighth mode, have high damping ratios
to mainly include their quasi-static contribution. The two beams are connected in three different manners
where the coupled system is nonlinear and has non-propertional damping. In case a, the two beams are
coupled with a friction element in top of both beams and a single-degree-of-freedom system is added
in top of the first beam, working as a tuned mass damper, while time-varying masses are added to both
beams in three locations marked with large dots, see Fig. 8.7 (a). The time-varying masses increase from
zero to two kg and back to zero during the simulation and the total mass of the left beam is 5.11 kg.
In case b, the two beams are connected by a spring in top and the first beam has a contact spring with
high stiffness in the top, see Fig. 8.7 (b). In case c, the two beams are connected by a cubic spring and
an additional cubic spring is added to top of the first beam, see Fig. 8.7 (c). We apply strain estimation
to all cases where we calculate the pseudo modal coordinates from the full response using the linear
uncoupled mode shapes of the left cantilever beam. From the pseudo modal coordinates, we estimate
the full-field strain field using the linear strain mode shapes.
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Figure 8.6: Numerical test-specimen

(a) (b)
0

(c)

Figure 8.7: (a) Friction-coupled with time-varying mass (marked with large dots) and tuned mass damper, (b) coupled systems with
nonlinear contact spring, and (c) coupled with a cubic spring

For the uncoupled system, the linear damping matrix, describing the linear inherent structural damp-
ing, is composed by the desired damping ratios of the considered modes and the principles of propor-
tional damping [29]. As the beams are coupled, the viscous damping becomes nonproportional. The
simulations are performed with the same state space technique as described in Section 8.7.4. For all
simulations, uncorrelated Gaussian white noise excites the numerical model in all DOFs.

Results and discussion

In these numerical case studies, we have studied strain estimation for systems with nonlinear friction-
coupling, nonlinear contact springs, cubic springs, a tuned-mass-damper, and time-varying masses. Figs.
8.8, 8.10, and 8.12 show the strain estimation at five evenly distributed nodes for case a, b, and c respec-
tively, while Figs. 8.9, 8.11, and 8.13 contain the spectral density of strain estimation using the first four
singular values for case a, b, and c respectively. The mean square errors of the strain estimation, using
the pseudo modal coordinates, are of a magnitude of 10−35 and all TRAC values are one for the entire
full-field strain response for all cases. Thus, proving, the underlying linear mode shapes of a single beam
form a basis for a nonlinear and time-varying system with general viscous damping.

8.8.3 Experimental study on friction-coupled scale model of two offshore platforms

In this experimental case study, we will study strain estimation for nonlinear systems with a limited
number of sensors and mode shapes. As test-specimen, we use two models of platforms in the laboratory,
see Fig. 8.14, that we couple by a bridge introducing friction. Thus, the platforms are linear subsystems
within a nonlinearly coupled system. We want to estimate the strain response of the small platform using
mode shapes of this uncoupled platform. Of the two platforms, the small platform changes the most
when the two platforms are coupled. First, we estimate the strain response in a linear and uncoupled
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Figure 8.8: Case a: the estimated strain response (red dotted line)
and the correct strain response (black line) in five locations marked
on the cantilever beam on the left
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Figure 8.9: Case a: the first four singular values of the spectral
density matrix of both the estimated full-field strain response (red
dotted line) and the correct full-field strain response (black line)
calculated using Welch averaging method with segments of 2048
data points and 50 % overlap
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Figure 8.10: Case b: the estimated strain response (red dotted line)
and the correct strain response (black line) in five locations marked
on the cantilever beam on the left
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Figure 8.11: Case b: the first four singular values of the spectral
density matrix of both the estimated full-field strain response (red
dotted line) and the correct full-field strain response (black line)
calculated using Welch averaging method with segments of 2048
data points and 50 % overlap
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Figure 8.12: Case c: the estimated strain response (red dotted line)
and the correct strain response (black line) in five locations marked
on the cantilever beam on the left
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Figure 8.13: Case c: the first four singular values of the spectral
density matrix of both the estimated full-field strain response (red
dotted line) and the correct full-field strain response (black line)
calculated using Welch averaging method with segments of 2048
data points and 50 % overlap
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Figure 8.14: The two scaled platforms with the bridge, which
applies friction-coupling between the platforms in the nonlinear
case study
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Figure 8.15: Position of sensors on the test specimen, the red
arrows represent the eight Brüel & Kjær 4508-B uniaxial
accelerometers and the blue dots represent the eight HBM
1-LY11-6/120 strain gauges measuring along the longitudinal
direction of the members

case then we couple the two platforms with a bridge, which induces a friction connection, thus, the
platforms become nonlinear.

8.8.4 System

We apply eight Brüel & Kjær 4508-B uniaxial accelerometers and eight HBM 1-LY11-6/120 strain gauges,
see Fig. 8.15. The measured strain response of opposite sides of each member is subtracted and divided
by two to reduce noise and normal forces in the cross section. This results in four strain gauges that we
use as reference sensors for the strain estimation, see Fig. 8.15.

Compressed air excited the two platforms to generate loading with white noise characteristics. The
data was sampled with a frequency of 1651 Hz and it was afterwards decimated to a new sampling
frequency of 412.75 Hz.

To update a finite element model, we identify the modal parameters using operational modal analysis
where we preform two separate analyses to identify the modal parameter of each platform. To identify
the modal parameters of the linear setup, we estimate the correlation function matrix from all accelerom-
eters attached to the given platform using a test with duration of 20 minutes from the linear setup and
apply the Eigensystem Realization Algorithm (ERA) [44] using two block rows in the Hankel matrix and
reducing to six singular values. The estimated correlation function matrix included 513 discrete time
lags. This time length ensures low statistical errors in the estimation of the correlation function matrix.
The biassed error on the envelope of the modal auto-correlation function is less than 4% for the first
mode of the small platform [45]. The operational modal analysis results in six identified modes, see Fig.
8.16 (a), where three of these relates to the small platform, see Fig. 8.16 (b) and Table 8.2.

We created a finite element model in Ansys 18.2 of the small platform. The model has a total of 996
nodes and 657 elements. We updated the supports, Youngs Modulus, and the density of finite element
model to reduce the difference in frequency between the experimental modes and finite element modes
and to ensure a spatial resemblance using the Modal Assurance Criterion (MAC). Table 8.2 shows the
modal parameter from the updated finite element model and the operational modal analysis.

To apply strain estimation using the modal expansion, we need the displacement of the small plat-
form. Using the Fourier transformation properties, we integrate the acceleration, ÿ(t), from the ac-
celerometers twice to the displacement, y(t) [30].

y(t) = F−1
(

1
−ω2F (ÿ(t))

)
(8.34)

where F (·) and F−1(·) denote the standard and inverse Fourier transformation, respectively.

1The first two modes are closely-spaced so they are rotated within their subspace to get the best MAC values with the mode
shapes from the finite element model, see [30]
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Table 8.2: Modal parameters of the small platform

Mode 1 2 3

Updated finite element model Frequency (Hz) 3.561 3.628 6.670
Operational modal analysis Frequency (Hz) 3.560 3.596 6.665

Difference (%) -3.8e-03 -8.9e-01 -7.5e-02
Modal Assurance Criterion (MAC) (-) 0.818 0.918 0.998
MAC, rotating modes in subspace1 (-) 1.00 1.00 0.998
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Figure 8.16: Linear setup: singular values of spectral density matrix calculated using Welch averaging method with segments of 215 data
points and 50 % overlap and the identified modes from an operational modal analysis using the Eigensystem Realization Algorithm (ERA)
[44]: (a) both platforms and (b) small platform
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Figure 8.17: The first three mode shapes from the finite element model of the small platform
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Figure 8.18: Each column represents one of the three considered cases, (a) mainly slip state, (b) interchanging states, and (c) mainly stick state.
In the top, the singular values of the spectral matrix (black line) are plotted with the identified modes of the linear setup (red dotted line) to
illustrate the change from the linear setup. In the bottom, the correlation of the mean movement of the two platforms in the direction of the
bridge is calculated as the correlation coefficient with 2062 data points

In the nonlinear case, we add the bridge between the two platforms, see Fig. 8.14, which introduces
friction-coupling. In the slip state of the friction-coupling, the two platforms move, primarily, separately
as two unconnected structures while they share movement in the stick state. For the slip state, the move-
ment of the two platforms is uncorrelated while the two platforms have highly correlated movement
for the stick state. Furthermore, in the slip state, we have a total of six modes in the given frequency
range while we only have five modes in the stick state where the bending modes of each platform - in
direction of the other structure - merge into one. Since we add friction, the platforms have a decreased
level of movement in the stick state. Under a given level of random excitation, the two platforms switch
between the two states. Fig. 8.18 illustrates this phenomenon. For the nonlinear setup, we use a level
of excitation where we have interchanging states for the strain estimation, see Fig. 8.18 (b). Here the
peak, at approximately three Hz, indicates interchanging states and the third torsional mode of the large
platform transfers some energy to the small platform at a frequency of approximately five Hz, see Fig.
8.18. Thus, the two platforms are friction-coupled and nonlinear.

Results

We perform strain estimation with a time duration of 20 minutes for both the linear and nonlinear setup
using the same three mode shapes from the updated finite element model. Figs. 8.19 and 8.20 show a
zoom of the estimated and measured strain response for the linear and nonlinear setup while Fig. 8.21
shows the spectral density of the estimated and measured strain response for the linear and nonlinear
setup.

For the quality measurement, we separated each data sets into 20 subsets with a length of a single
minute. This is done to access the distribution of the metrics. Fig. 8.22 shows the TRAC values while Fig.
8.23 shows the NEFD values for both the linear and nonlinear setup. Generally, the quality measures are
similar for both the linear and nonlinear setup. The quality measures from the linear setup have higher
scatter than the measures from the nonlinear setup. For strain gauges A and C, the linear setup provides
the quality measures with the best results while the nonlinear setup ensure the best result for strain
gauges B and D . There might be a small amount of modal truncation errors present in the estimation
of strain in A and B due to higher modes (local modes in the leg of the platform) contributing to the
response for the nonlinear setup.

In Fig. 8.23, all NEFD values show an underestimation of fatigue damage. This could be caused by the
measurement noise (noise floor) on the strain gauges, so the reference signals contain noise, which results
in a higher fatigue damage for the reference signal than what it should have. It could also be related
to modal truncation errors or modelling errors of the finite element model. In [8], it is observed that
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Figure 8.19: Linear case: zoom of measured (black line) and estimated (red dotted line) strain response
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Figure 8.20: Nonlinear case: zoom of measured (black line) and estimated (red dotted line) strain response
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Figure 8.21: Singular values of spectral density matrix from the measured (black line) and estimated (red dotted line) strain response calculated
using Welch averaging method with segments of 215 data points and 50 % overlap: (a) linear setup and (b) nonlinear setup
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Figure 8.22: The Time Response Assurance Criterion (TRAC)
values for the linear (black circles) and nonlinear case (blue crosses)
together with the sample mean value for the linear (black plus sign)
and nonlinear case (blue cross)
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Figure 8.23: Normalised Error of Fatigue Damage (NEFD) for the
linear (black circles) and nonlinear case (blue crosses) together with
the sample mean value for the linear (black plus sign) and
nonlinear case (blue cross)

modelling errors on the mode shapes result in either overestimation or underestimation of the fatigue
damage in strain estimation due to errors in the amplitude of the strain estimation.

8.9 Conclusion

In this paper, we have proven that the undamped, linear mode shapes span the response of nonlinear and
time-varying systems with general viscous damping. This is applied to stress/strain estimation of sub-
systems within these systems using the modal expansion method. Here the nonlinear and time-varying
effects act externally on each subsystem so we can interpret the subsystems as linear with external force,
which depends on the response of the subsystems. Therefore, the undamped, linear mode shapes of the
subsystem are used to estimate the stress/strain response of the linear subsystems within the nonlin-
ear and time-varying systems with general viscous damping. The theory is verified by three numerical
studies of nonlinear and/or time-varying structures with general viscous damping.

By truncating the number of undamped, linear mode shapes, we approximate the subspace of the
response with a modal truncation error. The level of this error depends on the span of the undamped,
linear mode shapes and the extent of the change from the undamped system to the new system. For
the modal expansion technique, we can use this principle to estimate stress/strain for linear subsys-
tems within nonlinear and time-varying systems with general viscous damping by an appropriate set of
undamped, linear mode shapes. This is verified by an experimental case study with two scale models
of offshore platforms in a laboratory coupled by friction. Here the scaled platforms are linear subsys-
tems coupled nonlinearly together to a nonlinear system. Here the same accuracy was observed for the
nonlinear setup as for the linear setup though the test-specimen acted nonlinearly.
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Appendix 8.A Relationship between the complex nonlinear mode shapes
and undamped linear mode shapes

Now, we will set up a relationship between the complex nonlinear and undamped mode shapes. First,
we go back to the undamped version of the equation of motion without excitation within RN .

Mÿ(t) + Ky(t) = 0 (8.35)

We know that the undamped and linear system has the normal mode shapes, Φ that decorrelate the
equations into the modal space but we will now find these mode shapes in a different way. Since we
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can use any basis to describe a vector in RN then we use the nonlinear vector basis spanned by the
complex and nonlinear mode shapes, Eq. (8.19), as basis for the linear system response and insert into
the equation of motion, Eq. (8.35).

M
∂2

∂t2 (Ψ (E(t))qc(t)) + KΨ (E(t))qc(t) = 0 (8.36)

This equation of motion is coupled but we can set up a new eigenvalue problem for any given level
of energy. We assume a solution of the form: qc(t) = T (E(t)) q̃ (E(t)).

M
∂2

∂t2 (Ψ (E(t))T (E(t)) q̃ (E(t))) + KΨ (E(t))T (E(t)) q̃ (E(t)) = 0 (8.37)

We rearrange into a nonlinear eigenproblem.

M−1KΨ (E(t))T (E(t)) q̃ (E(t)) = − ∂2

∂t2 (Ψ (E(t))T (E(t)) q̃ (E(t))) (8.38)

There is, however, a solution that simplifies this nonlinear eigenproblem to a linear problem.

q̃ (E(t)) = exp[iωit] , Φ = Ψ (E(t))T (E(t)) (8.39)

Then we obtain the proper eigenvalue-eigenvector equation.

M−1KΦ =
[
ω2

i
]

Φ (8.40)

We rewrite the solution of the eigenvectors, Eq. (8.39).

Ψ (E(t)) = ΦP (E(t)) (8.41)

where P (E(t)) ∈ CN×2N is the change of basis matrix, which holds the combination of normal modes.
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Chapter 9

Paper 6 - Tilt errors of linear
accelerometers attached to dynamic
systems with tilt motion caused by the
system response

�
Nothing in life is to be feared, it is only
to be understood. Now is the time to un-
derstand more, so that we may fear less

�
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9.1 Introduction

As stated in section 3, there are three main obstacles in estimating the stress/strain response in the quasi-
static region of offshore platforms:

- The quasi-static response of a dynamic system (modal truncation)
- The drift of accelerations
- The tilt of accelerometers

In the paper, we will study accelerometers, which rotate due to tilt motion and measure components
of the gravitational acceleration. This tilt effect is well-documented for static or quasi-static conditions
and it is utilised in tilt-sensing applications. In this paper, we will study the tilt effect on accelerometers
attached to a linear and time-invariant system under dynamic conditions where the tilt motion stems
from the dynamic response of the system itself.

9.2 Contribution

Rune Brincker made an original note on the tilt error and this author made an additional note on tilt
error on dynamic systems to set up an impulse and frequency response function matrix for the measured
acceleration with tilt error. The author combined and completely rewrote the two notes, wrote additional
sections, changed and extended the theory, performed a literature review on the subject, and conducted
the experimental case study.

9.3 Main findings

We found that, due to the gravitational acceleration, the rotational displacement pollutes the measured
translational acceleration of the system in the DOFs where an accelerometer is attached to the system.
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We derived expressions for the impulse and frequency response function matrix for the measured accel-
eration of a tilting accelerometer that expresses the tilt error. Additionally, we introduced two methods
for estimating the tilt angle that are applicable for tilt reduction. Finally, we verified the theory and
illustrated the reduction of the tilt error on a test specimen in the laboratory.

9.4 Reflections

This paper furthers our understanding of the tilt error on accelerometers and it brings the research field
closer to overcoming the obstacles in stress/strain estimation in the quasi-static region of offshore plat-
forms. We can apply either of the introduced techniques to reduce the tilt error on the measured acceler-
ation of offshore structures.
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Tilt errors of linear accelerometers attached to dynamic systems with
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cUniversity of Chile, Department of Civil Engineering, Av. Blanco Encalada 2002, Santiago, Chile

Abstract
Translational inertia sensors - like the accelerometer - can measure the translational acceleration but they
are incapable of distinguishing between translational and tilt motions. As an accelerometer tilts, it will
measure a component of the gravitational acceleration along with the translational acceleration of the
sensors. This results in a tilt error on the measured acceleration that masks the actual translational accel-
eration. In this paper, tilt error is studied for accelerometers attached to linear, stationary, and dynamic
systems where the tilt motion origins from the system response. Mathematical formulations of the tilt
errors are introduced where an impulse and frequency response function matrix for the measured ac-
celeration from accelerometers is derived. It is proven that the tilt error is a pollution by the rotational
displacement on the translational acceleration of the accelerometers. Thus, the displacement of a dy-
namic system merges with its acceleration in the presence of tilt errors and the level of tilt error depends
on the system and the excitation. In this paper, two methods are introduced to reduce the tilt error. Both
theory and tilt reduction are verified on a test-specimen in the laboratory.

Keywords: Accelerometers, tilt sensing, tilt motion, tilt-to-horizontal coupling

9.6 Introduction

An accelerometer is an inertia sensor that measures proper acceleration (the acceleration experienced
by the sensor itself) [1]. A wide range of accelerometers exists with different strengths and weaknesses
where they exist as uni-, bi-, tri-, or multi-axial versions. Characteristics of accelerometers include sensi-
tivity, frequency range (bandwidth), measuring range, and linearity of the sensors [1]. Some accelerome-
ters are capable of true Direct Current (DC) measurements while others have built-into filters. In general,
the sensor is attached to a movable object, which may undergo rotational motion, so the sensor measures
acceleration in a fixed direction(s) relative to the sensor itself and these forces are transformed to accel-
erations. Therefore, they do not measure the acceleration in a fixed coordinate system but in a relative
coordinate system to the rotation of the sensor.

An accelerometer measures all acceleration including the gravitational acceleration, which is a con-
stant force directed toward the centre of the earth [1]. Therefore, as an accelerometer undergoes rotational
motion - tilt -, the accelerometer measures a component of the gravitational acceleration along with the
actual acceleration of the sensor. Even an accelerometer - incapable of true DC measurements - measures
a component of the gravitational acceleration when the sensor rotates dynamically. This is a well-known
phenomenon and it is used to estimate, detect, and/or sense the tilt angle of an object using accelerom-
eters in static or quasi-static conditions where the sensors are affected by gravitational acceleration and
unaffected by a translational acceleration of the sensor [1–8]. Under dynamic conditions, the rotation of
an accelerometer causes a tilt error in the measured acceleration [9, 10]. Brincker and Ventura [10] made
a basic introduction to the effect of tilt on accelerometers for structural health monitoring. Boroschek and
Legrand [9] experimentally studied the effect of static and dynamic tilt motion on accelerometer when
the measured acceleration is double-time integrated to displacement. They found that tilt angles cause
distortion - at low frequency and the frequency of rotation - in the measured acceleration of accelerom-
eter. In the literature, tilt errors for inertia sensors are studied with a focus on earthquake and strong
motion where the rotational components of the ground motion transfer to the inertia sensor [11–15].
Here Fabrice et al. [16] reviewed configurations for separation of horizontal and tilt motion with focus
on seismological studies and seismic isolation applications. To the best of the authors’ knowledge, the
erroneous effect of tilt motion on accelerometers is scarcely studied under dynamic conditions when the
tilt effect is not caused by ground motion.
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Figure 9.1: An accelerometer is a single node with six-degrees-of-freedom and it can measure translational acceleration in one, two, or three
principal directions (also known as uni-, bi-, and triaxial)

In this paper, we will investigate the effect of tilting accelerometers where we exclude the sensitiv-
ity range of accelerations and other measurement errors. This paper provides an introduction to the
tilt of accelerometers: how this influences accelerometer measurements of acceleration on linear, time-
invariant, and dynamic systems, and how this influence is reduced. In contrast to previously published
papers, this paper focuses on the dynamic conditions for accelerometers and the effect of tilt motion -
not caused by ground motion. In this paper, we will derive an impulse and frequency response func-
tion matrix for the measured acceleration of accelerometers mounted to a dynamic system by assuming
small tilt angles. Furthermore, we will prove that tilt errors are caused by the rotational displacements of
an accelerometer that pollute the measured translational acceleration. Therefore, tilt is a dynamic error
where the level of tilt error relates to the relationship of the rotational displacement and the translational
acceleration of an accelerometer. Dependent on the level of error, tilt motions cause an amplitude error
in the measured acceleration that will result in an error in the identification process of mode shapes. We
verify both the theory of tilt error and tilt reduction on a test-specimen in the laboratory.

9.7 Theory

In this section, we will introduce the tilt error of rotating linear accelerometers. Whenever an accelerom-
eter rotates - or tilts - the sensor measures a component of the gravitational acceleration that depends on
the tilt angle [1–4, 6–10]. Thus, tilt motion influences the measured acceleration due to the influence of
the gravitational acceleration. For accelerometers attached to dynamic systems, the tilt creates an error
in the measurement of the actual acceleration. In the following sections, we will formulate the statement
in a mathematical form.

The reader should note that different definitions exist for angles eg. roll, yaw, and pitch angles (Euler
angles). In this paper, we will define angle as the rotation around each primary axis: rotation around the
x-axis is θx, rotation around the y-axis is θy, and rotation around the z-axis is θz.

9.7.1 Tilt error

Let us say that we have a network of accelerometers that measures the linear or translational accelerations
in a finite set of Degree-Of-Freedom (DOF) on a rigid body. The acceleration of the rigid body is given
by

ÿ(t) =
[
ÿa(t) θ̈(t)

]T (9.1)

where y(t) is the full displacement vector, t is time, ya(t) is the DOFs corresponding to the location of
accelerometers, and θ(t) is the rotational DOFs of the sensors.

Next, let us say that the error signal from the tilt is ε(t), so the signal s(t) measured by the accelerom-
eters is

s(t) = ÿa(t) + ε(t) (9.2)
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Figure 9.2: As the accelerometer tilts, it measures a component of gravitational acceleration: (a) rotation, θx , around the x-axis, (b) rotation, θy ,
around the y-axis, and (c) rotation, θz , around the z-axis

For simplicity, we will derive the following for a triaxial accelerometer, s(t) ∈ R3, but the derivation
is expansible to any network of accelerometers. Thus, we have a triaxial accelerometer mounted in a
single point, measuring the translational acceleration in the main directions, see Fig. 9.1. In the case of
no rotation of the triaxial accelerometer, we can express the static tilt error.

ε(t) = g, for θ(t) = 0 (9.3)

where g =
[
0 0 −g

]T is the gravity vector accounting for the constant signal in the vertical direction.
Next, we will introduce rotation around the x-, y-, and z-axes - denoted as θx, θy, and θz, see Fig. 9.2,

and we organise these rotations in a vector.

θ(t) =
[
θx(t) θy(t) θz(t)

]T (9.4)

We express the error as the accelerometer tilts by multiplying with the rotation matrix.

ε(t) = R (θ(t)) g (9.5)

where R (θ(t)) is composed by the basic rotation matrices.

R (θ(t)) =

1 0 0
0 cos(θx(t)) sin(θx(t))
0 − sin(θx(t)) cos(θx(t))

cos(θy(t)) 0 − sin(θy(t))
0 1 0

sin(θy(t)) 0 cos(θy(t))

 cos(θz(t)) sin(θz(t)) 0
− sin(θz(t)) cos(θz(t)) 0

0 0 1


(9.6)

Thus, the tilt error is given by

ε(t) = g
[
sin(θy(t)) − cos(θy(t)) sin(θx(t)) − cos(θx(t)) cos(θy(t))

]T (9.7)

We rewrite this vector using calculation rules for products of sines and cosines [17] so we end with
the following expression in vector-matrix form for the measured acceleration.

ε(t) = G1 cos (G2θ(t)) + P1 sin (P2θ(t)) (9.8)

where

G1 = g

0 0 0
0 0 0
0 − 1

2 − 1
2

 , G2 =

0 0 0
1 1 0
1 −1 0

 , P1 = g

1 0 0
0 − 1

2 − 1
2

0 0 0

 , P2 =

0 1 0
1 1 0
1 −1 0

 (9.9)
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The term with cosine relates to the sensor that measures vertical acceleration while the term with sine
relates to the accelerometers measuring in horizontal directions.

Next, we will simplify these expression by assuming small angles - cos(θ) ≈ 1, sin(θ) ≈ θ - so we
rewrite the tilt error, Eq. (9.7)

ε(t) = g
[
θy(t) −θx(t) −1

]T (9.10)

Assuming small angles, we rewrite the tilt error, Eq. (9.8), into a vector–matrix form

ε(t) = g + Pθ(t) (9.11)

where

P =

 0 1 0
−1 0 0
0 0 0

 g (9.12)

Thus, we can express the measured accelerations as

s(t) = ÿa(t) + g + Pθ(t) (9.13)

Thus, the displacement of the accelerometers in the form of the rotational DOFs pollutes the measured
acceleration.

9.7.2 Tilt error for dynamic systems

Next, we apply structural/mechanical dynamics to the issue of tilt to study tilt under dynamic condi-
tions. We assume that the accelerometers are perfectly attached to a linear, time-invariant, and dynamic
system so the equation of motion gives the system response [18].

Mÿ(t) + Cẏ(t) + Ky(t) = x(t) (9.14)

where M, C, and K are the mass, damping, and stiffness matrices, y(t), ẏ(t), and ÿ(t) are displacement,
velocity, and acceleration of the system, and x(t) is the excitation vector.

The accelerometers are mounted to a structure where we have full acceleration of the system and the
mode shapes

ÿ(t) =
[
ÿa(t) θ̈(t) ÿd(t)

]T , Φ =
[
Φa Φθ Φd

]T (9.15)

where Φ is the full modal matrix, [ ]a denotes the (translational) DOFs corresponding to the location of
accelerometers, [ ]θ denotes the rotational DOFs of the sensors, and [ ]d denotes the remaining DOFs.

Assuming small angles, we transform the measured acceleration to the frequency domain by apply-
ing the Fourier transformation to Eq. (9.13).

S(ω) = F (ÿa(t)) +F (g) +F (Pθ(t))
= Ÿa(ω) + δ(ω)g + Pθ(ω)

(9.16)

where F (·) denotes the Fourier transformation, Y(ω) is the Fourier transformation of the displacement,
and δ(ω) is the Dirac delta function.

We apply the modal superposition [18] to express the measured acceleration in modal acceleration.

S(ω) = ΦaQ̈(ω) + δ(ω)g + PΦθ
Q̈(ω)

ω2
(9.17)

where Q(ω) is the modal coordinates in the frequency domain.
We rewrite Eq. (9.17)

S(ω) = δ(ω)g +

(
Φa +

PΦθ

ω2

)
Q̈(ω) (9.18)

We insert the frequency response function matrix for the modal accelerations [18].

S(ω) = δ(ω)g +

(
Φa +

PΦθ

ω2

)
ω2[Hn(ω)]ΦTX(ω) (9.19)
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where [Hn(ω)] is a diagonal matrix with the frequency response functions of the modal coordinates and
X(ω) is the excitation vector in the frequency domain.

We define a frequency response function matrix of the measured acceleration from accelerometers on
a system with tilt as

Hs(ω) =

(
Φa +

PΦθ

ω2

)
ω2[Hn(ω)]ΦT (9.20)

Inside the frequency response function matrix of the measured acceleration, we have an error term,
PΦθ
ω2 , due to tilt motion. Thus, the tilt error depends on the system and excitation where the error increases

as the excitation frequency decreases. Besides, the relationship between the rotational displacement and
the translational acceleration defines the level of tilt. Generally, the tilt error dominates at low frequencies
on the frequency response function of the accelerometers due to the term 1

ω2 on the error. Furthermore,
the term δ(ω)g is a DC measurement that we can remove by detrending the measured accelerations.
Some accelerometers are, however, incapable of true DC measurements so they exclude this term, δ(ω)g,
but Eq. (9.20) still holds in the frequency range of these sensors.

We extend the theory to the impulse response function matrix of the measured acceleration of an
accelerometer with tilt error.

hs(t) =
(

Φa + Pφθ

[
ω−2

d

]) [
ḧi(t)

]
ΦT

=
N
∑

i=1

(
φi,a +

Pφi,θ

ω2
d

)
ḧi(t)φT

i

(9.21)

where ωd is the damped frequency of each mode and hi(t) is the impulse response function of the ith

mode.
As consequence of Eq. (9.21), the tilt error increases on the impulse response functions as the natural

frequencies of the system decrease. Thus, we get an amplitude difference for an estimation of the impulse
response function due to the tilt error, and, in modal analysis, this leads to an erroneous estimation of the
mode shape. In general, any estimation of the modal parameters from a free decay measured by tilting
accelerometers results in erroneous estimation of the mode shape.

9.8 Remove tilt errors

The tilt error is removable from the acceleration when we know the tilt angles [9]. If we have a triaxial
accelerometer mounted in a point, measuring the components in the main directions, and we know the
rotations vector, we find the error signal, Eq. (9.11), and then remove the influence of the tilt using Eq.
(9.13) to isolate the true acceleration signal.

ÿa(t) = s(t)− ε(t)
= s(t)− g− Pθ(t) (9.22)

Often, we mainly have an estimate of the tilt angles, thus, we can only reduce the tilt error. Further-
more, we can apply band-pass filters to the tilt angles, θ(t), depending on our confidence in the estimated
tilt angles.

9.8.1 Uniaxial accelerometer

In the case, we have an uniaxial accelerometer that measures acceleration in the direction of a unit vec-
tor, u =

[
ux uy uz

]T , we construct a measured acceleration vector, s(t), from the scalar signal, s(t),
measured by the sensor.

s(t) = us(t) (9.23)

Then we use Eq. (9.22) to remove the tilt, and, finally, project the signal on the direction vector to
obtain the true 1D acceleration signal

ÿa(t) = uT (us(t)− ε(t))
= uT (us(t)− g− Pθ(t))

(9.24)
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Figure 9.3: The principle of a rigid body motion

Since the direction vector is unity so that uTu = 1, we rewrite the equation

ÿa(t) = s(t)− uTg− uTPθ(t) (9.25)

We arrive at the general result for the true acceleration

ÿa(t) = s(t)− uxgθy(t) + uygθx(t) + uzg (9.26)

9.9 Estimating tilt angles

Preferably, we measure the tilt angles directly with an inclinometer (tilt sensor) [1]. This is, however,
impossible in some cases. In this section, we assume that we only have accelerometers in the sensor
network. We can estimate the tilt angles from accelerometers mounted on a structure with random
vibrations. In this paper, we will study two methods for estimating tilt angles based on accelerometers.
Firstly, we estimate the tilt angles by simple geometry and the accelerometers that measure acceleration
caused purely by rotational motion. Secondly, we estimate the tilt by virtual sensing where we expand
the displacement to the rotational degrees of freedom.

In both cases, we need to integrate the measured acceleration signals twice to obtain the displace-
ments that are proportional to the angles. Here we should be aware of numerical drift caused by the
integration process. In the presents of drift in the displacement signal, this drift error is transferred
into the "cleaned" acceleration signal so the signal does not contain the tilt effect but a drift error at low
frequencies.

9.9.1 Pure rotational motion in one direction

First, let us assume that a subset of sensors are mounted on a rigid body. We can describe any rigid body
motion by a translational motion of the centre of gravity and an angular rotation motion around the
centre of gravity [19], see Fig. 9.3. Let us assume that the rigid body does not undergo any translational
motion in one direction. In civil engineering applications, this is often the vertical direction. In this case,
any measured motion - in that direction - is caused by rotation. By assuming small angles, we express
the displacement - caused by pure rotation - of the rigid body, see Fig. 9.4.

y0(t) = Rθ0(t) (9.27)

where y0(t) is the motion caused purely by rotation and R is a rotation matrix that contains the geomet-
rical distances from the centre of gravity to each sensor.
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Figure 9.4: The principle of detecting tilt angles by accelerometers with purely rotational motion
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Figure 9.5: Flowchart of virtual sensing for estimating tilt angles from accelerometers

When the number of elements in y0(t) is larger than or equal to 2, then we can estimate the tilt angles.

θ̂0(t) = R†y0(t) (9.28)

where (·)† denotes the Moore–Penrose (pseudo) inverse. The more overdetermined the problem is the
better for the estimate.

9.9.2 Virtual sensing

Additionally, we could apply virtual sensing [20], which we illustrate as a flowchart in Fig. 9.5. For the
given application of estimating the tilt angles, we transform the signal from the physical accelerometers
to virtual tilt measurements for each sensor by applying a system model and a process model. This type
of virtual sensing is also called response estimation or expansion. We should, however, be aware that
the estimated tilt angles are slightly erroneous because they are based on signals containing tilt error.
Therefore, the estimated angles themselves are influenced by the tilt error on the accelerometers. In
principle, we have to remove the influence of the tilt motion on the tilt angels themselves. This is done
by an iterative process.

In the literature of response estimation, the most applied system model is a highly correlated finite
element model but it could take any form. Likewise, the most common process models include the modal
expansion [21–23] and adaptive filters like the Kalman filter [24].

9.10 Case Study - laboratory test

We will study the effect of tilt motion on a test-specimen in the laboratory by comparing the measured
acceleration from accelerometers to the measured acceleration from another sensor unaffected by the
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Figure 9.6: Test-specimen in the laboratory Figure 9.7: Position and direction of the 12 accelerometers (red
arrows) and two lasers (green arrows) on the test-specimen

gravity acceleration. Furthermore, we will estimate tilt angles and apply tilt reduction.

9.10.1 Setup

The test-specimen is comprised of an aluminium circular beam with a diameter of 6 mm and a thickness
of 1 mm with wooden blocks (392× 202× 27 mm) attached at each end of the beam where one block is
clamped to the ground. The position of the second wooden block is adjustable to obtain different lengths
between the blocks. We use two different setups where we adjust the length between the wooden blocks
so the test-specimen has a height of 762 and 798 mm in the setups. Fig. 9.6 illustrates the test-specimen.

We use 12 accelerometers of the type Brüel & Kjær 4508-B, 100mV/g and two lasers of type Micro-
Epsilon optoNCDT 1300 to measure the wooden block at the top, see Fig. 9.7. The reader should note
that the applied accelerometers are incapable of true DC measurements (0.3-8000 Hz AC accelerometers).
We excite the structure with a Brüel & Kjær impact hammer of the type 8206, 22.5mV/N, so we have a
free decay of the system.

Using standard experimental modal analysis in a Multiple-Input/Multiple-Output (MIMO) formu-
lation, we apply multiple impact loads to the test-specimen at different locations. We organise all the
free decays (0.2 s after each impact) in a matrix, and we estimate the modal parameters from this matrix
using a stabilization diagram based on the Ibrahim time-domain method [10, 25], see Fig 9.8. Fig. 9.9
illustrates the five mode shapes from the identification process and Table 9.1 holds the identified modal
parameters.

9.10.2 Model

We create a simple model of the test-specimen simplified to 2D - corresponding to the yz-plane from Fig.
9.7 - with one translational and one rotational DOF, see the system in Fig. 9.10 (a). The first and fourth
mode from the identification process from the experimental analysis correspond to the given plane. The
model is updated to resemble the experimental analysis in terms of natural frequencies, see the modal
parameter in Table 9.1. Fig. 9.10 (b-c) illustrates the two mode shapes of the system. We use Eq. (9.20)



9.10. Case Study - laboratory test 163

0 5 10 15 20 25

Frequency [Hz]

0

5

10

15

20

25

30
M

o
d
el

 O
rd

er
 [

-]

 

Figure 9.8: Stabilization diagram using the Ibrahim time-domain
method [25] where red circles (◦) indicate stable modes, black
dots (·) indicate spurious modes, and the green bar indicates the
selected model order for height 762 mm
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Figure 9.9: Experimental mode shapes corresponding to Fig. 9.8
for height 762 mm

and the mode shapes from Table 9.1 to plot the frequency response function matrix of the measured
acceleration in Fig. 9.11 for both setups.

Table 9.1: Modal parameters of the 2 DOF system in Fig. 9.10 (a) and estimated frequency

Mode 1 2

Height: 762 mm Experimental frequency [Hz] 0.82 7.5
Frequency [Hz] 0.83 7.5
Mode shape [-]

[
0.27 −0.53

]T [
0.015 0.79

]T

Modal Assurance Criterion (MAC) 0.97 0.99

Height: 798 mm Experimental frequency [Hz] 0.75 7.3
Frequency [Hz] 0.76 7.4
Mode shape [-]

[
0.29 −0.53

]T [
0.014 0.79

]T

Modal Assurance Criterion (MAC) 0.98 0.99

9.10.3 Data analysis

We apply an impact load next to and in the direction of one of the lasers and measure both displacement
from the lasers and the acceleration from the accelerometers. This results in a free decay of the test
specimen in the yz-plane. Assuming for the given frequency range of interest, the wooden block is
rigid and we calculate the acceleration of the block as a mean value. For the accelerometers, the mean
acceleration of the wooden block in the y-direction is the mean value of accelerometers 3, 6, 9, and 12. For
the lasers, the acceleration is the mean value of the data from both lasers differentiated twice to obtain
acceleration. Data from both lasers and accelerometers are bandpass filtered with cut-off frequencies of
0.5 and 1.1 Hz. Fig. 9.12 shows the acceleration from the accelerometers and lasers where we observe an
amplitude difference between the two types of sensors. Furthermore, the amplitude difference is slightly
different for the two setups where the ratios of standard deviations between accelerometers and lasers
are 1.72 and 1.78 for the height of 762 and 798 mm respectively.

First, we want to apply the theory from section 9.7.2 to find an explanation for the amplitude differ-
ence. We can use the impulse response function matrix of the measured acceleration from Eq. (9.21) to
find the error caused by tilt.

hi,s(t) =

(
φi,a −

gφi,θ

ω2
d

)
ḧi(t)φT

i

=

(
1− gφi,θ

ω2
dφi,a

)
φi,a ḧ1(t)φT

i

(9.29)
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Figure 9.10: The numerical model for movement in the yz-plane (a) the two degree-of-freedom system model, (b) first mode shape, and (c)
second mode shape (corresponding to the fourth experimental mode)
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Figure 9.11: The frequency response function of actual acceleration (black) and the measured acceleration by an accelerometer with tilt error
(red) where the solid lines correspond to a height of 762 mm and the dashed lines correspond to a height of 798 mm, (a) for translational force
and (b) for the rotational force (force moment)
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Figure 9.12: The measured acceleration of the accelerometers (red) as the mean value of sensor 3, 6, 9, and 12 and the acceleration of the lasers
(black) as the mean value of both laser for (a) height 762 mm and (b) 798 mm
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Figure 9.13: The corrected acceleration of the accelerometers using Eq. (9.29) and Table 9.2 (red) as the mean value of sensor 3, 6, 9, and 12 and
the acceleration of the lasers (black) as the mean value of both laser for (a) height 762 mm and (b) 798 mm

(a)
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(b)
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Figure 9.14: The corrected mode shapes estimated from the accelerometers, Eq. (9.29) and Table 9.2: (a) original estimated mode shapes, (b)
corrected mode shapes adjusted for tilt error

Thus, we have an expression for an amplitude difference caused by the tilt error for each mode. We
apply the modal parameter from Table 9.1 to calculate the amplitude difference for both setups, see Table
9.2.

We assume that the free decay in Fig. 9.12 is mainly comprised of the first mode. The amplitude
difference - based on the analytic expression for tilt - corresponds well with the ratio of standard devi-
ation between accelerometers and lasers. We apply these amplitude differences to adjust the measured
acceleration from the accelerometer, see Fig. 9.13. This corrected the amplitude of the acceleration from
the accelerometers so they have similar amplitude as the lasers. Similarly, we adjust the estimated mode
shapes for the tilt effect in Fig. 9.14 where we obtain a better resemblance to the mode shapes from the
model, see Fig. 9.10. Here the MAC-value increases to above 0.99 for the first mode shape as compared
to the values in Table 9.1.

Table 9.2: The amplitude difference on a free decay due to tilt error on accelerometer

Mode 1 2

Height: 762 mm 1− gφi,θ

ω2
dφi,a

1.70 1.22

Height: 798 mm 1− gφi,θ

ω2
dφi,a

1.79 1.26

Finally, we estimate the tilt angles using the four vertical sensors (unaffected by translational motion)
and we conclude that the assumption of small angles is valid for the given case, see Fig. 9.15. This tilt
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Figure 9.15: Tilt estimation, θx , for (a) height 762 mm and (b) 798 mm
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Figure 9.16: Tilt reduction on the measured acceleration of the accelerometers (red) as the mean value of sensor 3, 6, 9, and 12 and the
acceleration of the lasers (black) for (a) height 762 mm and (b) 798 mm
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sensing application introduces a small amount of noise in the estimated tilt angles so they do not form
a free decay of a single mode. We reduce the tilt error by applying Eq. (9.22), see Fig. 9.16. By reducing
the tilt error, we obtain a similar amplitude between accelerometers and lasers.

9.10.4 Discussion

For the case study, we observed an amplitude difference in acceleration from the accelerometers and the
lasers on the same test-specimen. Here the accelerometers overestimate the acceleration with at-least 70%
compared to the lasers (this factor is case dependent). This difference could be caused or influenced by
measurement noise or the double differentiation of the displacement data from the lasers. The amplitude
difference is, however, explainable by the theory from section 9.7.2 and we can reduce the difference by
estimating the tilt angles and reducing the tilt effect. By applying the theory, we adjust the mode shapes
estimated from the free decay and we obtain estimated mode shapes that better resemble the mode
shapes from the model. Thus, both theory of the tilt error for dynamic systems and tilt reduction of
acceleration measured by accelerometers are validated in this study.

9.11 Conclusion

In this paper, we have studied the effect of tilting accelerometer where the accelerometer rotates/tilts
from its original position and erroneously measures a component of the gravitational acceleration along
with the actual acceleration of the sensor. The novelty of this paper is that it focuses on accelerometers
attached to a linear and time-invariant system under dynamic conditions where the system response
itself causes tilt motion of the sensors. We have proven that the tilt error is a pollution of the measured
translation acceleration caused by the rotational displacement of the sensor. We set up mathematical
formulations of the tilt error on the accelerometer and derive an expression for the frequency response
function matrix and impulse response function matrix of accelerometers attached to a dynamic system.
These expressions indicate that tilt error would be transferred to an experimental identification of mode
shapes using accelerometers. Furthermore, we introduced two methods of reducing the tilt error by
estimating the tilt angles solely by the accelerometers. The theory is validated by an experimental study
in the laboratory.
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10.1 Introduction

This chapter covers quasi-static strain estimation of an offshore platform - the Valdemar platform (tripod
structure) in the North Sea - but the study is unfinished due to time constraints and unexpected issues
and complexity in the application. At this stage, the paper is predominately conceptual.

For offshore structures, the quasi-static response, caused by waves, strongly contributes to the overall
fatigue life and a successful application of stress/strain estimation must correctly predict the stress his-
tory caused by this wave loading. As stated in section 3, we have multiple obstacles for the quasi-static
stress/strain estimation for offshore structures. Unfortunately, these obstacles overlap in the frequency
domain. The tilt error of accelerometers often takes place at low frequencies [1] where the drift of the
displacement also occurs due to the numerical integration from acceleration. Moreover, the wave spec-
trum has its peak frequency - and most energy - below the first natural frequency of the structure and
this causes a quasi-static response. This quasi-static response is often not well represented by a few
modes in the modal superposition, thus, modal truncation errors are an issue for stress/strain estima-
tion using modal expansion. We have these sources of errors located at the same frequency region and
this complicates matters. In this paper, we focus on an application of stress/strain estimation on an op-
erating offshore structure where we will study the effect of pseudo mode shapes for structures with a
quasi-static response.

The reader should note that a configuration of sensor setup was impossible for this Ph.D. project.
Therefore, the application is restricted to accelerometers as the primary physical sensors and strain
gauges as the reference located above the sea.

10.2 Contribution

The author came up with the idea to test the different techniques for pseudo mode shapes. The new
pseudo mode based on the residual error is proposed by the author.
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10.3 Main findings

The study is inconclusive and the estimated strain response does not match well with the measured
strain response for the quasi-static strain response. The complexity of the application under the actual
operating conditions is far higher than anticipated. Thus, additional research is required for a successful
application of quasi-static strain estimation on the Valdemar platform.

10.4 Reflections

The complexity of quasi-static strain estimation was underestimated for the application on the Valdemar
platform since there are many sources of potential errors in the application. We deal with tilt errors on the
accelerometer, the drift of acceleration in the numerical integration process, sensitivity of accelerometers,
measurement errors on both accelerometers and strain gauges, the sensitivity of the reduced system
model for pseudo mode shapes, the accuracy of the pseudo mode shapes, calibration of the system
model, etc.. It is difficult to separate these errors in the given application so we are unaware of the extent
of each source of error. Instead of handling everything at once, we need to take a step back and handle the
issues separately and validate any solutions in separate studies. This is a more sound scientific approach;
however, we did not anticipate all these errors beforehand.

Unfortunately, there are many unproven ideas in this paper. The subspace of residual method did
not work since there was no null-space of the dynamic mode shapes from which to find principal com-
ponents. The assumption - that we could divide the wave loading into approximated sets of temporal
variations and spatial distributions to calculate pseudo mode shapes - is still just a hypothesis.
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Abstract
In this paper, we introduce a preliminary study of strain estimation on an offshore tripod structure in
the North Sea where we focus on the issues of quasi-static strain estimation. The structure is the Valde-
mar platform that is equipped with a sensor network consisting of accelerometers, Global Positioning
Systems (GPS), strain gauges, and wave radar. In this study, the accelerometers are applied as the main
sensors for strain estimation. There are no strain gauges installed on the structure subsea so stress/strain
estimation is impossible to validate subsea. Therefore, this study is restricted to strain estimation above
sea. For quasi-static strain estimation caused by wave-loading, the first few mode shapes inaccurately
span the response since higher modes contribute to the response with a residual effect. In this study,
we apply pseudo modes to compensate for residual effect. The study is inconclusive due to unforeseen
issues in the application and external difficulties that caused problems in the project’s time-frame. This
paper presents the lessons learned and the issues discovered relating to the application of quasi-static
strain estimation. Therefore, the paper is predominately conceptual.

Keywords: Stress estimation, virtual sensing, fatigue analysis, structural health monitoring, modal ex-
pansion

10.6 Introduction

Virtual sensing is a technique that expands measurements to unmeasured locations and/or transforms
the measurements into new quantities [2]. Here, stress/strain estimation is a subcategory within vir-
tual sensing that estimates the full-field stress/strain response of a system. In turn, the estimated stress
history paves the way for fatigue assessments of the system so that an estimated fatigue life is avail-
able. Thus, virtual sensing holds a potential for lifetime extensions for systems prone to fatigue damage.
Therefore, considerable research has been conducted for stress/strain estimation for offshore structures
[3–21]. The wave loading has both a quasi-static and dynamic effect on an offshore structure and there
are several successful applications for dynamic stress/strain estimation [5, 6, 13, 15, 17, 19] while appli-
cations for quasi-static stress/strain estimation are sparse. For wave-induced structures, the quasi-static
response, caused by the wave loading, has a major contribution to the overall fatigue damage and, there-
fore, it is vital to extend stress/strain estimation to the quasi-static effect. For quasi-static stress/strain
estimation at a low-frequency domain, we encounter multiple issues. We are outside the strictly dynamic
response so the structural response might not only be comprised by a few modes. Thus, modal truncation
could become an issue for stress/strain estimation using modal expansion due to the residual effects of
higher modes. Furthermore, we deal with sensitivity, measurement noise, and tilt error for accelerome-
ters that are amplified in the double numerical integration to displacement and this causes an erroneous
drift in the displacement signal. In the literature, Skafte et al. [3] used Ritz vectors to account for the
quasi-static response due to waves for offshore structures in the laboratory on a scale model and Iliopou-
los et al. [5, 21] used a similar technique by a static calculation of the deflection shape by a representative
load. Furthermore, Iliopoulos et al. [21] estimated the quasi-static strain response by strain gauges of an
offshore monopile wind turbine. Palanisamy et al. [12] studied strain estimation in a numerical setting
using the Kalman filter for non-zero mean excitation and they found that accelerometers/acceleration
are ineffective for estimation of the quasi-static response near 0 Hz.

In this paper, we will study quasi-static stress/strain estimation for offshore structures with an em-
phasis on modal truncation error. Modal truncation is a simplified representation of a system by a
truncated set of modes. In the literature, the modal truncation was studied since the calculation of all
eigenvalues and eigenvectors proved impractical for large systems. Consequently, a truncation of modal



172Chapter 10. Paper 7 - Preliminary study: Quasi-static strain estimation above the sea for an offshore
tripod structure in the North Sea

superposition was adapted to decrease the computational time. This modal truncation might, however,
lead to errors in the quasi-static response due to the residual effect of higher modes [22–25]. Thus, this led
to the creation of static correction terms, which are added to the dynamic response to reduce the residual
effect, and pseudo modes, which are load-dependent vector as a substitution of or addition to the mode
shapes [23, 24, 26–31]. In particular, the modal truncation effect (residual effect) is studied in the field
of calculating the response of offshore structures [23, 26, 28, 32]. In recent years, Maes et al. [33] used
the term dummy modes for the static correction added to experimental load estimation although the
formulation of dummy modes is similar to the modal truncation augmentation method (pseudo modes).
Furthermore, Tarpø et al. [34] studied modal truncation errors in an experimental setting for modal anal-
ysis and found that the modal truncation error not only depends on the frequency content of the load
but also on the spatial distribution of the load. In particular, the modal truncation error of each mode de-
pends on the convolution of the impulse response function and the temporal variation of the excitation
while it also depends on the inner vector product between the mode shape and the spatial distribution
of the excitation.

In this paper, we will study an application of quasi-static strain estimation on an operating offshore
platform in the North Sea. The study is inconclusive but it is a starting point for solving the difficult
problem of quasi-static stress/strain estimation. Therefore, the presented work is predominately con-
ceptual and it can serve as an underlying basis for future research in the topic. We organise the paper
as follows: in Section 10.7, we introduce the theory of structural dynamics, modal superposition, modal
truncation, quasi-static residual effect, and deflection shapes due to wave loading. Section 10.8 intro-
duces virtual sensing with the modal expansion technique and section 10.9 explains static correction and
pseudo modes to reduce the residual effect with a focus on application in virtual sensing. In section
10.10, we apply virtual sensing on an offshore platform - the Valdemar platform in the North Sea - with
focus on strain estimation.

10.7 Structural dynamics

The response of a linear and stationary system with viscous damping is the solution of the equation of
motion [35, 36].

Mÿ(t) + Cẏ(t) + Ky(t) = x(t) (10.1)

where M ∈ RN×N , C ∈ RN×N , and K ∈ RN×N are the mass, damping, and stiffness matrix, y(t) ∈ RN ,
ẏ(t) ∈ RN , and ÿ(t) ∈ RN are the displacement, velocity, and acceleration of the system, x(t) ∈ RN is the
external excitation vector, and N is the total number of degrees-of-freedom (DOFs) in the system. In the
case of proportional damping, we use the undamped equation of motion to find the mode shapes of the
system through the eigenvalue problem [35, 36].

Kφi = ω2
i Mφi, i ∈N (10.2)

where φi ∈ RN is the mass normalised undamped mode shape vector for the ith mode and ωi is the
angular frequency of the ith mode.

Any response of a linear structure is positioned in the vector-space of its mode shapes, which is called
modal superposition.

y(t) =
N
∑

i=1
φiqi(t)

= Φq(t)
(10.3)

where qi(t) is the modal coordinate for mode i, Φ ∈ RN×N is the modal matrix, which holds the mode
shapes as column vectors, and q(t) ∈RN is the modal coordinate of the modes. The modal superposition
transforms the physical space into the modal space.

The mode shapes are orthogonal to the mass and stiffness matrix [35, 36].

Φ>MΦ = I , Φ>KΦ =
[
ω2

i
]

(10.4)

We can use these orthogonal equations to express the inverse mass and stiffness matrices as a sum of
the outer products of the mode shapes.
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M−1 =
N
∑

i=1
φiφ

>
i , K−1 =

N
∑

i=1

φiφ
>
i

ω2
i

(10.5)

10.7.1 Steady-state response

In this section, we document the traditional theory of calculating the steady-state response. In the fol-
lowing, we will consider a fixed spatial distribution of the load.

x(t) = Fs(t) (10.6)

where F ∈ RN×n is the spatial distribution of the load, s(t) ∈ Rn is the temporal variation of the load,
and n is the number of components in the load.

We assume a steady-state response so the system response becomes a spatial distribution (deflection
shape) of the temporal variation of load, y(t) = ∆s(t). We insert this response and the force, Eq. (10.6)
into the equation of motion, Eq. (10.1).

−ω2M∆s(t) + iωC∆s(t) + K∆s(t) = Fs(t)

(−ω2M + iωC + K)∆ = F
(10.7)

where ∆ ∈ RN×n is the deflection shape.
We isolate the deflection shape of the steady-state response.

∆ = (−ω2M + iωC + K)−1F (10.8)

As the excitation frequency decreases, the contribution from both the mass matrix (inertia forces)
and damping matrix (damping forces) decreases. As the excitation frequency tends toward zero, we
approach the static deflection shape.

lim
ω→0

∆ = K−1F (10.9)

10.7.2 Modal superposition and truncation

The Duhamels integral (a convolution integral) is the solution to the equation of motion [35, 36]. Here,
we write it for the modal domain.

qi(t) = hi(t) ∗φ>i x(t), i ∈N (10.10)

where hi(t) is the impulse response function for the ith mode and ∗ denotes the convolution operation.
We use the modal superposition, Eq. (10.3), to obtain the full response from the modal coordinates.

In practice, we often apply modal truncation, which is a system simplification. We truncate the modal
superposition, Eq. (10.3), to include K modes then we have an unknown error in our representation of
the structural response - called the modal truncation error or the residual effect.

y(t) =
K
∑

i=1
φiqi(t) +

N
∑

i=K+1
φiqi(t)

= ỹ(t) + e(t)
(10.11)

where ỹ(t) ∈ RN is simplified dynamic response and e(t) ∈ RN is the modal truncation error (residual
effect).

As long as this modal truncation error is insignificant then the truncation of the modal superposition
is acceptable. In the following, we will demonstrate how to access the modal truncation by studying the
contribution of each mode in the form of its modal coordinate. Let us assume that the load is separable
into a fixed spatial distribution and temporal variation, Eq. (10.6), thus, we can calculate the modal
coordinates as a convolution, Eq. (10.10).

qi(t) = hi(t) ∗φ>i Fs(t), i ∈N

= φ>i F hi(t) ∗ s(t), i ∈N
(10.12)
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Consequently, the contribution of each mode depends on the convolution of the impulse response
function and the temporal variation of the load. It also depends on the inner vector product between the
given mode shape and the spatial distribution of the load. Therefore, the residual effect depends on both
frequency range and spatial distribution of the load [34].

Quasi-static residual effect

In this case, we truncate the modal superposition to include K modes that substantially contribute to
the dynamic response. We assume that these K modes contribute with a dynamic response while higher
modes contribute with a residual effect. Thus, we assume that the majority of the system response has
a subspace that this truncated set of mode shapes spans. Moreover, we assume low damping on these
residual modes. Therefore, we have a quasi-static residual effect, e(t), with no dynamic amplification
of the residual modes so the modal coordinates for these residual modes become a static version of Eq.
(10.10).

q∗i (t) =
φ>i
ω2

i
x(t), i ∈N > K (10.13)

Then we insert this into the modal truncation error.

e∗(t) =
N
∑

i=K+1

φiφ
>
i

ω2
i

x(t) (10.14)

We insert the inverse of the stiffness matrix, Eq. (10.5), which is a sum of outer products of the mode
shapes, into the operational deflection shape.

e∗(t) =

(
K−1 −

K
∑

i=1

φiφ
>
i

ω2
i

)
x(t) (10.15)

This equation is the static correction term known as the mode acceleration method [24, 35]. This term
is used in the calculation of the system response to correct for the contribution of residual modes.

In the case that we have a load with a fixed spatial distribution, Eq. (10.6) then we can further rewrite
the static correction term.

e∗(t) =

(
K−1 −

K
∑

i=1

φiφ
>
i

ω2
i

)
Fs(t)

= ∆s(t)

(10.16)

where ∆ ∈ RN×n is matrix holding the operational deflection shapes of the residual effect as column
vectors.

∆ =

(
K−1 −

K
∑

i=1

φiφ
>
i

ω2
i

)
F (10.17)

These deflection shapes are also called pseudo modes and this formulation is called the modal trun-
cation augmentation method [24, 30]. To illustrate why these deflection shapes are often called pseudo
modes, assumed modes, or dummy modes, let us insert the static correction term from Eq. (10.16) into
the response from Eq. (10.11).

y(t) =
K
∑

i=1
φiqi(t) + e∗(t)

= Φ̃q(t) + ∆s(t)

(10.18)

We rewrite the equation to a combined matrix form that resembles the modal superposition, Eq. (10.3)

y(t) =
[
Φ̃ ∆

] [q(t)
s(t)

]
= Φ̂qp(t)

(10.19)
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where Φ̂ ∈ RN×K+n is the pseudo modal matrix that contains both mode shapes and deflection shapes
and qp(t) ∈ RK+n holds the coefficients of the linear combination of the pseudo modal matrix. In this
way, the deflection shapes become pseudo modes that are included along with the mode shapes in a
pseudo modal matrix.

10.7.3 Wave loading and deflection shapes

In this section, we will apply the previous sections to wave-induced structures to analyse the response.
For simplicity, we assume in this section that the structure in question is a cylinder/pile. Firstly, we
want to set up the wave loading on an offshore structure. Using linear wave theory, the velocity in the
x-direction of a single wave is

u(t, z) =
Hω

2
cosh (k (h + z))

sinh (kh)
cos (ωt− kx) (10.20)

where H is the wave height, k is wave number, h is the water depth, ω is the cyclic frequency of the wave,
and z is the principal axis perpendicular to the seabed.

The acceleration in the x-direction is

u̇(t, z) = −Hω2

2
cosh (k (h + z))

sinh (kh)
sin (ωt− kx) (10.21)

We apply Morison’s equation to obtain the wave loading in the x-direction on a cylinder/pile [37].

x(t, z) = CI
ρd4π

4
u̇(t, z) + CD

ρd
2

u(t, z)|u(t, z)| (10.22)

where CI is the coefficient of inertia (mass), CD is the coefficient of drag, ρ is the water mass density, and
d is the pile diameter.

We insert the velocity, Eq. (10.20), and acceleration, Eq. (10.21), of the wave into Morison’s equation,
Eq. (10.22), and we exchange the coordinate z with a vector, z ∈ RN .

x(t) = −CI
ρd4π

4
Hω2

2
cosh (k (h + z))

sinh (kh)
sin (ωt− kx) + . . .

CD
ρd
2

(
Hω

2
cosh (k (h + z))

sinh (kh)

)2
cos (ωt− kx) | cos (ωt− kx) |

(10.23)

We divide the loading into components of spatial distributions and temporal variations for both the
inertial and drag dominated wave loading.

x(t) = fIsI(t) + fDsD(t) (10.24)

where fI ∈ RN is a vector holding the spatial distribution of the inertia-dominated wave load, sI(t)
is the temporal variation of the inertia-dominated wave load, fD ∈ RN is a vector holding the spatial
distribution of the drag-dominated wave load, and sD(t) is the temporal variation of the drag-dominated
wave load. Here, the spatial distributions depend on the wave.

fI = ω2H
cosh (k (h + z))

sinh (kh)
, fD =

(
ωH

cosh (k (h + z))
sinh (kh)

)2
(10.25)

We are, however, dealing with multiple waves with different characteristics defined by the wave
spectrum and we combine the load using superposition.

x(t) = ∑
i

fI,isI,i(t) + fD,isD,i(t) (10.26)

Let us now assume that we will approximate the load by dividing the wave spectrum into Nwave
segments; each with corresponding wave height, wave number, and cyclic frequency.

x(t) ≈
Nwave

∑
i=1

fI,isI,i(t) + fD,isD,i(t)

≈ FIsI(t) + FDsD(t)
(10.27)
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Figure 10.1: The spatial distribution of wave loading from JONSWAP with a peak frequency of 0.137 Hz, a significant wave height of 2.02 m,
and a peak enhancement coefficient of 2.38: (a) inertia-dominated wave loading, and (b) drag-dominated wave load

where FI ∈ RN×Nwave holds the spatial distributions of the inertia-dominated wave loading as column
vectors, sI(t) ∈ RNwave holds the temporal variation of the inertia-dominated wave load, FD ∈ RN×Nwave

holds the spatial distributions of the drag-dominated wave loading as column vectors, and sD(t) ∈
RNwave holds the temporal variation of the drag-dominated wave load. Fig. 10.1 shows an example
of the spatial distributions of the inertia- and drag-dominated wave loading as function of wave depth
and wave frequency. Here, the dependency on wave frequency is evident for the spatial distribution of
the wave loading.

We will rewrite eq. (10.27) to an combined matrix-vector formulation.

x(t) ≈
[
FI FD

] { sI(t)
sD(t)

}
≈ Fws(t)

(10.28)

where Fw ∈ RN×2Nwave holds 2Nwave spatial distributions of the load and s(t) ∈ R2Nwave holds the same
number of temporal variations of the load.

If we were to calculate the deflection shapes (or deflection shape of the residual effect) based on Fw
then we would obtain 2Nwave different shapes, ∆ ∈ RN×2Nwave . Thus, for the quasi-static response, a
wave-induced structure vibrates with multiple deflection shapes. Furthermore, each deflection shape is
a linear combination of all the mode shapes that depends on the natural frequency of the mode and the
inner matrix product between the mode shape and the spatial distribution of the wave-loading. Here,
the inner matrix product can include higher modes.

∆ = K−1Fw

=
N
∑

i=1
φi

φ>i Fw

ω2
i

(10.29)

For offshore structures, the strain response and curvature above the waves are near zero in the quasi-
static response since deformation mainly occurs subsea. Fig. 10.2 illustrates an example of a simplified
offshore structure (simplified to a cantilever beam with mass at the end). To obtain the correct curvature,
we need more than the first few mode shapes using modal superposition.

Furthermore, the matrix, ∆, containing the deflection shapes, is likely to be rank deficient so we
could reduce the matrix to hold fewer deflection shapes. Let us say that the matrix has rank k, where
k < 2Nwave, then we can use the singular value decomposition where the first k left singular vectors form
an orthogonal basis for the column space for the matrix that contains the deflection shapes.

The reader should note that the wave loading in this section does not stretch in accordance with
the wave elevation since the equations are based on linear wave theory, therefore; the wave loading is
defined from the seabed to mean water level.
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(a)
 

(b)
 

Figure 10.2: Example of deflection shape based on the spatial distribution of wave loading from JONSWAP with a peak frequency of 0.137 Hz,
a significant wave height of 2.02 m, and a peak enhancement coefficient of 2.38 for: (a) inertia-dominated wave loading, and (b)
drag-dominated wave load

10.8 Virtual sensing

Virtual sensing transforms measured quantities to the full-state of the system from where we extract
specific data of the system at any location of the system [2]. This datum is called a virtual sensor. We can
divide virtual sensing into four components: system model, physical sensors, process model, and virtual
sensor. The system model is a mathematical model of the system [38] that contains all the necessary
information of the system and sensors for the particular application; this information is also called states
of the system. The physical sensors are a network of sensors which measure different quantities of the
system. The process model transforms the information of the system model and physical sensors into
virtual sensors by estimating the full-state of the system. Fig. 10.3 illustrates the flowchart of virtual
sensing.

Physical
sensors

System
model

Process
model

Virtual
sensors

Figure 10.3: Flowchart of virtual sensing

10.8.1 Modal expansion - least-square regression

The modal expansion is a process model for virtual sensing that uses the modal superposition, Eq. (10.3),
to estimate the modal coordinates from the spatial limited physical sensors through a least-square regres-
sion. We have a truncated modal matrix with K mode shapes, Φ̃ =

[
φ1 φ2 . . . φK

]
, which is our

system model. We take the modal superposition with a modal truncation error, Eq. (10.11), and introduce
measured and unmeasured DOFs. [

ya(t)
yd(t)

]
=

[
Φ̃a
Φ̃d

]
q(t) +

[
ea(t)
ed(t)

]
=

[
ỹa(t)
ỹd(t)

]
+

[
ea(t)
ed(t)

] (10.30)

where (·)a denotes the measured DOFs and (·)d denotes the unmeasured DOFs. For modal expansion,
we call the modal matrix - reduced to the measured DOFs, Φ̃a =

[
φa,1 φa,2 . . . φa,K

]
- for the re-

duced system matrix.
Unfortunately, we will also have measurement noise, n(t), in the measured response, ym(t).
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ym(t) =
[
Φ̃a
]

q(t) + ea(t) + n(t) (10.31)

Using modal expansion, we can estimate the pseudo modal coordinates

q̂(t) = Φ̃†
a (ya(t) + ea(t) + n(t)) (10.32)

Since the modal truncation error has a subspace orthogonal to column space of the truncated modal
matrix, C(Φ̃a), then Φ̃†

aea(t) = 0. The reader should, however, note that this is not the case in presence
of modelling errors.

q̂(t) = Φ̃†
aya(t) + Φ̃†

an(t) (10.33)

To estimate the full-field strain response, we use the strain mode shapes, which is defined as the strain
response caused by a deflection corresponding to a mode shape [39].

ε̂(t) = Φ̃εq̂(t) (10.34)

where ε̂(t) is the estimated full-field strain response and Φ̃ε is the strain mode shape matrix.
An important aspect of the modal expansion is the stability of this inverse process for the accuracy of

the virtual sensor. We will introduce the concept of sensitivity (also called observability) of the reduced
system model to describe the extent to which a virtual sensor changes due to a small change in the system
model or measured data of the physical sensors. The system model is reduced to the measured DOFs
and it should - in its reduced form - distinguish between the different states of the system based on the
physical sensors. The reduced system model should be so sensitive that we can satisfactorily estimate the
state of the system. It should, however, not be so sensitive that it becomes unstable where a small level
of noise results in an erroneous estimation of state. Generally, there is a trade-off between sensitivity
and instability (uncertainty). The sensitivity of the reduced system model depends on the number and
position of the physical sensor, excitation, and the system. We will highlight some important aspects
of modal truncation for modal expansion. Whenever one of the reduced mode shapes tends toward a
zero vector, φa,j ≈ 0, the reduced modal matrix tends toward rank deficiency and we cannot estimate
the corresponding modal coordinate. Furthermore, the reduced modal matrix is also rank deficient if
two mode shapes - in their reduced forms corresponding to the measured DOFs - are linear dependent,
φa,j ∝ φa,k. Here, both states are equally likely and the reduced system model is unstable.

10.8.2 Modal expansion - weighted least-square regression

Alternatively, we could apply the weighted least-square regression in the modal expansion [40]. Here,
we introduce the covariance matrix of the measurement noise on the physical sensors. This enables us
to distinguish between the importance of each physical sensor used for virtual sensing. We can estimate
the pseudo modal coordinates as

q̂p(t) =
(

Φ̃>a WΦ̃a

)−1
Φ̃>a Wym(t) (10.35)

where W is the weight matrix and it is defined as the inverse of the covariance matrix of the measurement
noise.

W =
(
E
[
n(t)n(t)>

])−1 (10.36)

We can use the weighted least-square when we have different types of sensors. This version of modal
expansion enables sensor fusion of sensors with different levels of measurement noise.

10.9 Static correction and pseudo mode shapes

In this section, we will discuss methods for static corrections that reduce the modal truncation error or
residual effect.

Pseudo modes are additional mode shapes or operational deflection shapes that we insert into a trun-
cated modal matrix to better span the response of interest. Thus, we use a combination of eigenvectors
and pseudo modes dependent on the particular loading in a pseudo modal matrix.
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Φ̂ =
[
Φ̃ ∆

]
(10.37)

where Φ̂ ∈ RN×K+n is the pseudo modal matrix, Φ̃ ∈ RN×K is the truncated modal matrix with K mode
shapes, and ∆ ∈ RN×n holds the deflection shapes or pseudo mode shapes.

Ideally, the pseudo modal matrix should have linearly independent column vectors and the pseudo
modes should be linearly independent of applied mode shapes. In that case, the pseudo modal matrix is
linearly dependent and it increases the condition number so the truncated pseudo modal matrix becomes
unstable. Thus, the pseudo modal matrix is near rank deficient and ill-conditioned. We can overcome
this problem by orthogonalising the pseudo modal matrix to the mass and stiffness matrix by solving
the following eigenvalue problem.

φ̂>i Kφ̂izi = ω̂2
i φ̂>i Mφ̂izi (10.38)

Then we obtain the final pseudo mode shapes.

ϕi = φ̂izi (10.39)

We should normalise ϕi so it resembles the other mode shapes in terms of vector length. In least-
square regression, this is called column scaling and it reduces the condition number and increases the
stability of the reduced system model [41]. In this paper, we mass normalise each mode in Eq. (10.37).

ϕi =
ϕi√

ϕ>i Mϕi
(10.40)

10.9.1 Mode acceleration

This method is a static correction to the truncated response and it is based on the stiffness matrix and
the load vector. This method assumes that the truncated modes influence the response with a static
contribution whereas the dynamic response stems from the included modes. There are many different
versions of the Modal Acceleration Method and most of them are essentially the same, as shown by
Soriano et al. [42].

In the case of K included modes in the modal superposition, the static correction is calculated as Eq.
(10.15).

ẽ(t) =

(
K−1 −

K
∑

i=1

φiφ
>
i

ω2
i

)
x(t) (10.41)

In structural health monitoring, the exact load history is unknown so this method has limited appli-
cation in this field.

10.9.2 Ritz vectors

Traditionally, a set of orthogonal Ritz vectors is used instead of the eigenvector to calculate the system
response to reduce the computational time significantly. There are many approaches to calculating the
Ritz vectors where Wilson made one of the first versions [43].

We will use the Ritz vectors as pseudo modes in the modal expansion to reduce the modal truncation
error. In the literature of stress/strain estimation, Skafte et al. [3] applied Ritz vectors as "assumed
modes", "pseudo modes", or "dummy modes" to reduce modal truncation for the quasi-static response
of wave-induced structures. Assuming the load has a spatial distribution that is time-invariant, see Eq.
(10.6), we calculate the first Ritz vector as the static deflection shape caused by the spatial distribution of
the load, Eq. (10.9).

∆ = K−1F
= Φ

[
ω−2

i

]
Φ>F

(10.42)

A Ritz vector is a linear combination of all mode shapes. Therefore, the pseudo modal matrix -
containing both mode shapes and the Ritz vectors - has an issue: the column vectors in the pseudo
modal matrix are linearly dependent.
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10.9.3 Modal truncation augmentation method

This method is an extension of the mode acceleration and it is not just a static correction. We need to
know the spatial distribution of the load (loading pattern). In this method, we calculate some pseudo
eigenvectors based on the spatial distribution of the load and stiffness matrix. It is calculated as the static
deflection shape with an exclusion of K dynamic modes.

∆ =

(
K−1 −

K
∑

i=1

φiφ
>
i

ω2
i

)
F (10.43)

This equation equals Eq. (10.17); thus, the modal truncation augmentation method corresponds to a
quasi-static residual effect. Unlike the Ritz vectors, these modal truncation augmentation vectors are not
a linear combination of the applied K dynamic modes.

10.9.4 Subspace of residuals method

This method is novel and was created by the authors for this paper. The method applies principal com-
ponent analysis and it estimates the subspace of the residual effect to substitute for the most dominant
residual mode shape that the modal truncation omitted. The technique requires that the reduced and
truncated mode shapes, Φ̃a, inaccuracy span the measured and spatial limited response, ya(t).

When we truncate the modal superposition then we have some response that we cannot express with
the chosen set of mode shapes. We can find this residual effect by projecting the response onto the null
space of Φ>a .

êa(t) =
(
I−ΦaΦ†

a
)

ya(t) (10.44)

Let us say the modal truncation error, ea(t), has a subspace, V, which is spanned by some column
vectors, vi. The reader should note that this subspace is also the null space of Φ>a .

V = span
{

v1 v2 . . . vH
}

(10.45)

Hence, we have a transformation matrix and its column vectors are the basis for the subspace V.

V =
[
v1 v2 . . . vH

]
(10.46)

Thus, we express the residual effect as a linear combination of these vectors.

êa(t) =
H
∑

i=1
vi q̃i(t)

= Vq̃i(t)
(10.47)

We calculate the covariance matrix of the residual effect.

C = E
[
êa(t)êa(t)>

]
= VE

[
q̃i(t)q̃i(t)>

]
V>

(10.48)

We will perform a singular value decomposition on the covariance matrix

C = UaSU>a (10.49)

Thus, the singular vectors are approximately equivalent to the transformation matrix, V ≈ Ua. The
corresponding singular values, S, tell us how much each column vector contributes to the response. This
is a principal component analysis and we can approximate the missing subspace of the response by the
most dominant singular vectors.

The singular vector, Ua, could be expanded where we could use the Ritz vector or the finite element
mode shapes as the basis for the expansion of the singular vectors. The most important numbers of
singular vectors, J, are used as pseudo mode shapes.
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Figure 10.4: Experimental study: The Valdemar platform in the
North Sea [44]

Figure 10.5: Experimental study: Position and direction of triaxial
accelerometers (red arrows) and strain gauges measuring the
direction of the member (blue dots)
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Figure 10.6: Experimental study: Singular values of spectral density function matrix of accelerometers (black) and estimated modes (red dashed
line)

(Mode 1) (Mode 2) (Mode 3) (Mode 4) (Mode 5)

Figure 10.7: Mode shapes from finite element model of the Valdemar structure
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Table 10.1: Experimental study: Modal parameters of the Valdemar platform

Mode 1 2 3 4 5

Finite element model Frequency [Hz] 0.519 0.522 1.288 3.736 3.887
Operational modal analysis Frequency [Hz] 0.518 0.532 1.247 3.815 4.030

Difference [%] -0.251 1.902 -3.292 2.076 3.538
Modal Assurance Criterion (MAC) [-] 0.999 0.998 0.989 0.960 0.900

10.10 Case study - offshore platform

The studied structure is the unmanned Valdemar offshore platform, which is a tripod structure posi-
tioned in the North Sea at a water depth of 42.7 m, see Fig. 10.4. The structure is equipped with four
triaxial accelerometers that measure the structural acceleration in a total of 12 signals, see Fig. 10.5. Four
strain gauges are placed in pairs at 11.5 (elevation 1) and 12.2 m (elevation 2) above the mean water level.
Here, the accelerometers are used as the physical sensors for strain estimation at the same locations as
the strain gauges, which are used as a reference for the estimation. Each dataset has a duration of an
hour and a sample rate of 128 Hz. Furthermore, the structure is equipped with three wave radars and
two Global Positioning Systems (GPS). For this study, we divide the response into three regions given by
the frequency bands: static (0− 0.1 Hz), quasi-static (0.1− 0.45 Hz), and dynamic region (> 0.45 Hz).

The reader should note that the reference strain gauges do not measure the quasi-static effect of the
wave loading since they are positioned above the sea. The spatial distributions of the wave loading
ensure that there is no static stress above the waves, see Fig. 10.10. Thus, the measured strain response
is inertia dominated in the quasi-static domain since they only measure the dynamic effect of the wave
loading. In the planned installation of the sensors, the strain gauges were intended to be positioned near
the surface of the sea. In practice, this, however, proved impossible since the waves washed away the
scaffold during the installation. Thus, the strain gauges were installed at a safer location higher on the
main column. Therefore, the measured strain response has a low amplitude due to the location of the
sensors and it results in a low signal-to-noise ratio. The location of the strain gauges is not ideal for
verifying strain estimation of the quasi-static effect of the wave loading.

To update and validate a system model, we apply operational modal analysis [1] to estimate the
modal parameter of the structure in operation. We decimated the acceleration from the accelerometers
to a new sampling rate of 16 Hz and applied a bandpass filter with cut-off frequencies of 0.4 and 4.4
Hz. We estimate the unbiased correlation function matrix [45] and reduce the statistical errors in this
matrix by the algorithm by Tarpø et al. [46]. The Ibrahim time-domain technique [47] estimates the
modal parameters from the estimated correlation function matrix and Table 10.1 shows the estimated
parameters and Fig. 10.6 shows the identified modes atop the spectral density matrix. The reader should
note that the fourth and fifth modes are weakly excited and difficult to estimate and we could only
estimate these two modes in selected datasets. Thus, we should be cautious regarding the accuracy of
these two modes.

Based on as-built technical drawings, we have created a finite element model in Ansys with 1156
beam elements and 452 shell elements. We simplified the structure since we are primarily interested in
the global response from the first five modes, see the mode shapes in Fig. 10.7. We update the finite
element model based on its first five modes to resemble the estimated modes using operational modal
analysis, see Table 10.1. For more information on the finite element model, we refer the reader to [6].
In general, we obtained a high correlation between the model and the results from operational modal
analysis but the Modal Assurance Criterion (MAC) for the fifth mode is off. Due to the uncertainty
on the estimated modal parameters of the fourth and fifth mode, we assume the finite element model
resembles the actual system for global behaviour.

For the given application, there is a lot of noise in the estimation of modal parameters - especially for
the fourth and fifth modes. We assess this estimation error to exceed the modelling errors of the finite
element model so an expansion of experimental mode shapes is disadvantageous to the finite element
mode shapes for modal expansion [4]. Therefore, we apply the finite element mode shapes in this case
study.

All data are bandpass filtered with cut-off frequencies of 0.1 and 1 Hz. The strain gauges are dom-
inated by noise above 1 Hz where they are unfit for use as reference sensors; therefore, we limit the
analysis to strains below 1 Hz. The low cut-off frequency is chosen to eliminate the static region and
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Figure 10.8: Tilt reduction of measured accelerometers: singular values of spectral density matrix from the measured (black line) and tilt
reduced acceleration (red line)

reduce the numerical drift of the displacement caused by integrating the acceleration twice using the
Fourier transformation.

y(t) = F−1
(

1
−ω2F (ÿ(t))

)
(10.50)

where F (·) and F−1(·) denote the standard and inverse Fourier transformation, respectively.
We use the vertical sensors to reduce the tilt effects on the accelerometers [48], see Fig. 10.8. The

reduction is minor but the reduction is amplified in the integration to displacement.

10.10.1 Simplification of spatial distribution of the wave loading

As derived in Section 10.7.3, we would have 2Nwave pseudo modes in each principal direction, where
Nwave is the number of segments for the wave spectrum. There are issues with the spatial distributions
of the wave loading for modal expansion since we need an overdetermined problem as it requires more
physical sensors than pseudo mode shapes. Thus, we need to reduce the number of pseudo modes.

In this study, we will simplify the loading conditions for the pseudo mode shape to the main column.
Furthermore, we have chosen a spatial distribution that corresponds to the peak frequency of a JON-
SWAP fitted to the data of wave radars, see Fig. 10.9. Preliminary simulations indicate that the choice
of wave frequency for the spatial distribution primarily affects the Valdemar structure subsea where no
sensors are located. For this study, we focus on stress/strain estimation above the sea so the choice is of
minor importance. We note that this spatial distribution is an estimation that corresponds to an averaged
spatial distribution at mean water level. Using superposition, we split the wave loading into contribu-
tions from inertia-dominated and drag-dominated wave loading in the two principal directions, x and y.
Thus, we split the wave loading into four spatial distributions. The deflection shape is illustrated in Fig.
10.10 in the principal axis y. When the wave loading is only applied to the main column, the deflection
shapes of inertia or drag spatial distribution are near identical. Therefore, we will focus on the inertia-
dominated spatial distribution of the load for the pseudo modes. The reader should note that we cannot
express the deflection shapes of the wave loading as a linear combination of the first five modes since the
five mode shapes cannot make a shape with the correct curvature. Therefore, we need the contribution
of higher modes to accurately describe the quasi-static response caused by waves.

The reduced form - corresponding to the location of sensors - of the first two mode shapes and Ritz
vectors in both principal directions are similar where the angle between the two subspaces of these
are 5.5◦. Furthermore, the condition number of the pseudo modal matrix is quite high, 21, indicating
that we are dealing with an unstable reduced system model. To conclude, the Ritz vector and the first
two mode shapes are quite similar and this challenges the separation of the response. Using the modal
truncation augmentation method, the angle of the subspace between the first two mode shapes and the
two deflection shapes is 66.5◦ while the condition number of the reduced pseudo modal matrix is 1.92.
In theory, the modal truncation augmentation method provides a better basis for modal expansion than
the Ritz vector method.
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Figure 10.9: Wave spectral density function from wave radar (black) and JONSWAP with a peak frequency of 0.137 Hz, a significant wave
height of 2.02 m, and a peak enhancement coefficient of 2.38 (red)

(a)
 

(b)
 

Figure 10.10: Deflection shapes in y-axis for: a) inertial-related, and b) drag-related spatial distribution of the wave loading

Figure 10.11: Deflection shape from inertia-dominated wave loading in two directions (black) and best approximation using five mode shapes
(red)
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Figure 10.12: Strain estimation using five dynamic modes in dynamic region: (a) zoom of measured (black line) and estimated (red dotted
line) strain response in the time domain, and (b) singular values of spectral density matrix from the measured (black line) and estimated (red
line) strain response calculated using Welch averaging method with 50% overlap.
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Figure 10.13: Strain estimation using five dynamic modes in quasi-static and dynamic region: (a) zoom of measured (black line) and
estimated (red dotted line) strain response in the time domain, and (b) singular values of spectral density matrix from the measured (black
line) and estimated (red line) strain response calculated using Welch averaging method with 50% overlap.

10.10.2 Dynamic modes in dynamic and quasi-static region

Firstly, we will use the dynamic modes without pseudo modes to study the issue of modal truncation
for quasi-static strain estimation. We have studied strain estimation with both the first three and five
modes in the modal matrix where the latter provides the best setup. We note that the authors studied
the setup with three modes in [6] and the inclusion of the two additional modes was explored after this
publication.

We will restrict ourselves to the dynamic range 0.4− 1.0 Hz in the first application, see Fig. 10.12 for
the results, where the estimation is highly correlated with the measured strain response. Next, we move
into the quasi-static region 0.1− 1.0 and Fig. 10.13 illustrates the results. Here, we overestimate the strain
response below 0.4 Hz.

10.10.3 Compare Ritz vectors, modal truncation augmentation method, and sub-
space of residuals method

We will calculate the pseudo modes based on the inertia-dominated wave loading, which is a simplifi-
cation of the actual loading conditions. We calculate the pseudo modes related to the Ritz vector and
modal truncation augmentation method. We apply multi-band modal expansion containing two fre-
quency bands with a transition at 0.4 Hz. The first band at 0.1− 0.4 Hz contains the pseudo modes in
both principal directions and the first two mode shapes while the second band at 0.4-1.0 Hz holds the
first five modes. Fig. 10.14 shows the results for Ritz vectors as pseudo modes and Fig. 10.15 displays
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Figure 10.14: Strain estimation with pseudo modes using the Ritz vector method: (a) zoom of measured (black line) and estimated (red dotted
line) strain response in the time domain, and (b) singular values of spectral density matrix from the measured (black line) and estimated (red
line) strain response calculated using Welch averaging method with 50% overlap.
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Figure 10.15: Strain estimation with pseudo modes using the modal truncation augmentation method: (a) zoom of measured (black line) and
estimated (red dotted line) strain response in the time domain, and (b) singular values of spectral density matrix from the measured (black
line) and estimated (red line) strain response calculated using Welch averaging method with 50% overlap.
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Figure 10.16: Strain estimation with pseudo modes using the subspace of residuals method: (a) zoom of measured (black line) and estimated
(red dotted line) strain response in the time domain, and (b) singular values of spectral density matrix from the measured (black line) and
estimated (red line) strain response calculated using Welch averaging method with 50% overlap.
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Figure 10.17: Strain estimation with sensor fusion using strain gauges from elevation 2 as physical sensor: (a) zoom of measured (black line)
and estimated (red dotted line) strain response in the time domain, and (b) singular values of spectral density matrix from the measured
(black line) and estimated (red line) strain response calculated using Welch averaging method with 50% overlap.

the results for the modal truncation augmentation method as pseudo modes. There is, however, no dis-
tinguishable difference between the Ritz vector method and the modal truncation augmentation method
as pseudo mode shapes in this application of strain estimation. The condition number is higher for the
Ritz vector but it is - for the given noise level - insignificant for strain estimation.

For the subspace of residuals method, we use the leave-p-out-cross-validation implementation of the
local correspondence principle technique [4] to expand the first two singular vectors from the covariance
matrix using the first five mode shapes as a basis. The subspace of residuals method does not work since
the dynamic modes incorrectly span the entire response. There is simply no residual effect, which we
can apply principal component analysis to. Thus, for the time being, the subspace of residuals method is
unproven and we should test the method in further studies.

Neither technique for pseudo mode shape results in well-correlated strain estimation in this case
study. Since virtual sensing is a process with three main components - the physical sensors, system
model, and process model - then we cannot dismiss the idea of pseudo modes in virtual sensing. The
issues, which prevent us from a well-correlated strain estimation, could stem from any or a combination
of the three components. It could be the accelerometers: sensitivity at low frequency, numerical integra-
tion and the resulting drift, position and number of accelerometers. It could come from modelling errors
in the finite element model or pseudo modes. It could also result from the modal expansion technique.
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Figure 10.18: Singular values of spectral density function matrix of accelerometers calculated using Welch averaging method with 50%
overlap (black line), quasi-static acceleration (red line), and dynamic acceleration (blue line): (a) frequency domain decomposition [49] analysis
of the static and dynamic domain, and (b) acceleration estimation using the four strain gauges and the first two modes

10.10.4 Sensor fusion

We will apply sensor fusion by including two of strain gauges with the 12 accelerometers in the modal
expansion so we only have two strain gauges as reference. For modal expansion, we transition from the
regular least-square regression to a weighted least-square regression. We can adjust the weight matrix
so it is primarily based on the strain gauges and we obtain strain estimation that is very close to the
measured strain response, see Fig. 10.17. It is, however, an unimpressive achievement since the strain
gauges - used as physical sensors in modal expansion - are located 0.7 m above the reference strain
gauges and the structure is more than 75 m height. We therefore need more reference sensors to confirm
the sensor fusion technique.

10.10.5 Frequency domain decomposition and acceleration estimation by strain
gauges

In this study, we will use two different approaches to decorrelate the acceleration measured by the ac-
celerometers into quasi-static and dynamic components. We perform a frequency domain decomposition
[49] to analyse the acceleration and study the separation into dynamic and quasi-static acceleration. We
estimate the spectral density matrix from the measured acceleration using the Welch averaging method
and apply singular value decomposition on the matrix. We select two singular vectors at 0.135 and 0.160
Hz as the quasi-static deflection shape and two singular vectors at 0.517 and 0.535 Hz corresponding to
the first and second modes. The angle between the two subspaces spanned by the quasi-static deflection
shape and the first and second mode shape is 6.6◦ and the condition number of all singular vectors is
21.35. Using the two sets of singular vectors, we decorrelate the acceleration into the quasi-static and
dynamic acceleration, see Fig. 10.18 (a).

Next, we will swap the physical and the references sensors for the virtual sensing application so we
use the four strain gauges as physical sensors to estimate the acceleration in the same locations where
the accelerometers are mounted. Since the strain response, at the strain gauges, relates to inertia, we
will use the first two mode shapes for the modal expansion. The reader should note that we cannot
recreate the measured acceleration through the strain gauges since these do not measure the quasi-static
response, unlike the accelerometers. We use this estimated acceleration to access the dynamic portion of
the measured acceleration. Then the quasi-static response equals the residual acceleration between the
measured and the estimated acceleration from the strain gauges. Fig. 10.18 (b) illustrates the result in the
frequency domain.

Now we have two different decorrelations of the acceleration into quasi-static and dynamic response,
see Fig. 10.18. The two approaches for decorrelation resemble each other but the results are not identical.
The dynamic response from the acceleration estimation has less energy at low frequency, see Fig. 10.18
(b), whereas the frequency domain decomposition has difficulties with separating the acceleration into
quasi-static and dynamic components, see Fig. 10.18 (a).
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Furthermore, we performed a principal component analysis on the residual acceleration from the
acceleration estimation to find the main deflection shape of the missing response. Unfortunately, the
principal component vectors are close to the first and second modes. Thus, the quasi-static portion of the
measured acceleration is largely spanned by the first two mode shapes.

10.11 Discussion and conclusion

In this preliminary paper, we introduced different pseudo mode shapes for modal expansion to reduce
the modal truncation error in quasi-static stress/strain estimation. We applied the techniques to the
Valdemar platform located in the North Sea but we were unsuccessful in achieving good correlation
between estimated and measured strain response in the quasi-static region. Generally, we estimate the
strain response with high precision in the dynamic region but we overestimate the strain response in the
quasi-static region. The strain estimation using five dynamic mode shapes is similar to strain estimation
using pseudo modes from the Ritz vector method or the modal truncation augmentation method. More-
over, we approach virtual sensing from both the accelerometers and the strain gauges as physical sensors
and we could not achieve proper agreement between the two types of sensors. It is difficult to pinpoint
the exact reason for the lack of success due to the many components, which make a virtual sensor. The
reason might relate to the system model, the physical sensors, the process model, the reference sensors,
or any combination thereof. In the system model, we could have issues with the calibration of the finite
element model or the pseudo modes as a representation of the quasi-static effect caused by the wave
loading. For the physical sensor, we could have issues with the accelerometers in terms of sensitivity,
measurement noise, or the position and number of sensors. For the reference sensors, the location of
the strain gauges was not ideal for quasi-static strain estimation and it resulted in a low signal-to-noise
ratio. Furthermore, the strain gauges could have issues with measurement noise, potential misalign-
ment, and temperature sensitivity. Based on the network of accelerometers, the quasi-static and dynamic
response are near indistinguishable from each other. In other words, we have a near unstable reduced
system model where the quasi-static response is primarily a small rotation difference from the dynamic
response. This instability introduces errors in the stress/strain estimation since the states are difficult to
separate.

It would seem that we cannot apply accelerometers as the only physical sensors for virtual sensing
in the static region. Here the integration error - caused by integrating the acceleration twice to obtain
displacement - dominates since the integration process amplifies measurement noise in the acceleration
signal. The measurement noise relates to the sensitivity of the accelerometer. In the plots with frequency
domain decomposition of the spectral density matrix, the noise floor follows 1

ω2 and it approaches the
actual system response. We should use other sensors in this frequency region in order to obtain reliable
results.

We were able to successfully apply sensor fusion using the weighted least-square with both ac-
celerometers and strain gauges. We could use two of the strain gauges in the modal expansion in a
sensor fusion using weighted least-square regression. Here, we increased our confidence in the strain
gauges until we obtained results that largely corresponded to the strain gauges. Then we can easily
estimate the other two strain gauges.

In conclusion, we need further research before an application of quasi-static strain estimation is fea-
sible on the Valdemar platform.
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Chapter 11

Conclusion

�

Reasoning draws a conclusion, but does
not make the conclusion certain, un-
less the mind discovers it by the path of
experience

�
Roger Bacon

In this Ph.D. project, we studied selected aspects and issues of stress/strain estimation for offshore
structures.

In chapter 3, we conducted a narrative literature review of stress/strain estimation. We conclude
that it is an active and growing research field. Generally, we observed a lack of consensus and com-
mon terminology in the field. We introduced a terminology based on other scientific fields. The study
revealed several points and issues on the subject that have not been fully addressed in the literature.
In terms of accuracy, stress/strain estimation has not advanced since 2005 where the modal expansion
technique was introduced. In the meantime, we have seen new techniques introduced but these are not
superior (performance-wise) to the modal expansion technique. Furthermore, the evaluation of stress/s-
train estimation is complex due to the entire process of virtual sensing. Often, the evaluation is based
on the final virtual sensors in laboratory applications or numerical simulations. In the literature, there
are few applications under operational conditions that evaluate the precision, achievability and practi-
cality. The study, also, unveiled a challenge for stress/strain estimation: amplitude difference between
true and estimated stress/strain response. Here, the estimated fatigue damage amplifies with a factor
of the amplitude difference to the power of m, see Eq. (3.4). Thus, even small differences in the estima-
tion lead to erroneous estimation of the fatigue damage. There are many factors which might cause an
amplitude difference, including tilt motions, misalignment, and incorrect calibration of accelerometers
or incorrect update of the system model. This challenges the confidence in the technique indented for
fatigue analysis.

In Paper 1 and Paper 2, we studied the statistical errors in the estimation of the correlation func-
tion matrix for operational modal analysis. We intended to reduce the errors of the estimated modal
parameters in operational modal analysis so that we reduce the calibration error of the system model
for stress/strain estimation. In Paper 1, see chapter 4, we studied the statistical errors in an analytical
perspective to understand the behaviour of the error and the phenomenon of the noise tail. We found
that the envelope of the modal auto-correlation function is Rice distributed so the envelope is biassed
in the noise tail. Furthermore, the zero crossings are unbiassed but the variance increases linearly in the
noise tail. In Paper 2, chapter 5, we introduced a novel algorithm for reducing statistical errors and the
algorithm reduced the biassed error on the estimated modal parameters while it increased stability in the
identification process. This research increases our confidence in the estimated modal parameters which
could inspire more confidence in calibration and updating of a system model based on the estimated
modal parameter.

In Paper 3, see chapter 6, we studied modal truncation, which is the reduction of modes to describe a
system. In the terminology for virtual sensing introduced in chapter 3, it is a simplification of the system
model to the essential and relevant information for the given application. In this appended paper, we
prove that the contribution of each mode depends on the convolution of the temporal variation of the
load and the impulse response function and the inner vector product between the spatial distribution of
the load and the mode shape. We can use this as a guideline for selecting an appropriate set of mode
shapes for stress/strain estimation.
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In Paper 4, see chapter 7, we found that an expansion of experimental mode shapes could reduce
modelling errors of the system model using in the modal expansion. Therefore, this expansion is equiv-
alent to a calibration of the system model. We saw an amplitude difference between the measured and
estimated strain response using mode shapes from the finite element model. Here, the expanded exper-
imental mode shapes reduced this amplitude difference. The expansion process could, however, intro-
duce fitting errors in the expansion process as seen for the original local correspondence principle and
System Equivalent Reduction Expansion Process (SEREP). Thus, we introduced a new implementation
of the local correspondence principle using leave-p-out-cross-validation, which provided a better expan-
sion. In the case study in chapter 7, the errors in the expansion process easily exceeded the modelling
errors if the fitting was performed incorrectly. Therefore, we would discourage applying expansion of
mode shapes without a reference signal to check the fitting errors.

We have found in Paper 5, see chapter 8, that the normal undamped mode shapes can still be used
to estimate the strain response for subsystems within a nonlinear and time-variant system with general
viscous damping where the nonlinear and time-variant effects act externally on the subsystem. We prove
that the full set of normal undamped mode shapes forms a basis for RN and the nonlinear and nonsta-
tionary mode shapes are a linear combination of the underlying normal undamped mode shapes that
depend on the nonlinearity and nonstationarity. The accuracy of virtual sensing becomes a problem of
the modal truncation since the applied set of normal undamped mode shapes should span the response
of the nonlinear and nonstationary system with general damping. In the case of a subsystem with exter-
nal nonlinear and time-variant effects, the nonlinear and time-variant effects act as an external load on
the subsystem and we can interpret the subsystem as linear with parametric excitation. In this case, the
choice of mode shapes is similar to a linear system and should be based on the temporal variation and
spatial distribution of this nonlinear and time-variant load.

In Paper 6, see chapter 9, we studied the effect of the gravitational acceleration on accelerometers
undergoing rotational/tilting movements. Since the accelerometers can measure the gravitational ac-
celeration, the tilt motion of accelerometers introduces an error in the measured acceleration. When
the accelerometer is mounted on a structure, the tilt angle depends on the structure and the excitation.
Thus, the rotational displacement of the structure pollutes the measurement of the translational acceler-
ation. We introduced impulse and frequency response function matrices to account for the tilt error in
the measured acceleration from accelerometers. For an offshore structure with modes of low frequencies
and excitation with lower frequency content, the tilt errors are present in the quasi-static response. For
stress/strain estimation, we must reduce this tilt error to obtain better virtual sensors.

In Paper 7, see chapter 10, we applied stress/strain estimation to the Valdemar platform located in
the North Sea with an emphasise on the application of pseudo mode shapes to account for the quasi-
static response. The research is, however, incomplete since unforeseen issues and time constraints forced
us to discontinue the project. In this study, we found new issues for quasi-static stress/strain estima-
tion that we did not anticipate in the planning of the Ph.D. project. Generally, we obtained a good
correlation between the estimated and measured dynamic strain response while we overestimated the
quasi-static strain response. This overestimation could be attributed to many different sources of errors
in the application. We could have issues with sensitivity and measurement noise on the sensors (includ-
ing the strain gauges used for reference), tilt errors on the accelerometers, modelling error in the system
model, the accuracy of the pseudo mode shapes, the sensitivity of the reduced system model, drift of
the displacement due to the double numerical integration of the acceleration, etc.. Generally, we need
to measure the quasi-static effect if we hope to apply virtual sensing. Moreover, accelerometers - as the
main physical sensor for stress/strain estimation - are problematic due to the integration of acceleration
to displacement for low frequencies. Therefore, accelerometers are not ideal as the primary sensor on
structures with quasi-static behaviour.

In this Ph.D. project, multiple issues were uncovered for stress/strain estimation for offshore struc-
tures and a selection of these were studied in the project. We studied the statistical errors in correlation-
driven operational modal analysis to provide a better basis for the calibration of the system model
utilised in stress/strain estimation. A study on modal truncation was performed to assist in the choice
of mode shapes in the system model for modal expansion. This provides a practitioner with the tools to
choose an appropriate set of mode shapes for modal expansion. Following this, we studied the expan-
sion of experimental mode shapes to calibrate the system model intended for stress/strain estimation.
This study helps the practitioner to reduce modelling errors in the system model if the experimental
mode shapes have a reasonable level of noise. Then we applied modal expansion for stress/strain es-
timation of "linear" subsystems within a nonlinear and time-variant system. We studied tilt errors on
accelerometers to provide the practitioner with theory and techniques to reduce errors in the physical
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sensors for virtual sensing. Finally, we applied stress/strain estimation on the Valdemar platform in the
North Sea and uncovered issues for future research.

We will end this conclusion with some important remarks for stress/strain estimation and virtual
sensing that practitioners should keep in mind. Firstly, we are unable to expand something that we do
not measure. Therefore, we cannot estimate localised behaviour based on the measurement of global
behaviour. For offshore structures, we are unable to estimate localised subsea stress/strain response
based on measurements of the global response above water. Furthermore, uncertain connections be-
tween any subsystems limit virtual sensors to the subsystems from which we measure. These connec-
tions would have high levels of uncertainty so their behaviour is difficult to predict and they could be
complex, nonlinear, and/or time-variant couplings between subsystems. For offshore platforms, the
bridges, which connect platforms, are an example of such an uncertain connection since they introduce
nonlinear friction-coupling. Therefore, we can only estimate the stress history of the measured platforms.
Moreover, we should be aware of the effect of errors in the estimated stress history when we calculate
the estimated fatigue damage using the Palgren-Miner rule. Here, the estimated stress amplitude of each
stress cycle is taken to the power of m (3 for welded stress structures) so any error in the stress ampli-
tude is amplified. Thus, even small errors in the estimation accumulate and amplify in the calculation of
fatigue damage. Here, the support/boundary conditions are very important in stress/strain estimation
and the corresponding estimated fatigue damage. A small change in the boundary conditions might
result in a potentially large error in the fatigue damage due to modelling errors in the system model.
Furthermore, the boundary conditions complicate the validation and calibration of the system model
when these conditions are uncertain and/or should be modelled as a spring connection.
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Chapter 12

Future works

�
Life can only be understood backwards;
but it must be lived forwards

�
Søren Kierkegaard

Every selection has a corresponding and unavoidable deselection while hindsight leaves us wiser.
This Ph.D. project is no exception. It is simply impossible to cover all research aspects of stress/strain
estimation in a single Ph.D. project. Thus upon completion of this project, further research is needed for
stress/strain estimation. This chapter outlines some important issues for the further research that must
be solved before an actual application of stress/strain estimation can be realised for lifetime extension of
offshore structures.

At the given readiness level of stress/strain estimation, we need to validate the concept under ac-
tual conditions - outside numerical simulations or laboratories - at actual systems and structures. For
these applications of stress/strain estimation, the complexity tends to increase outside these controlled
environments. This complexity under any operational conditions should be studied before an actual ap-
plication of stress/strain estimation is viable. Such applications will test the achievability and practicality
of the applied virtual sensing technique. Furthermore, some reference sensors must be positioned near
fatigue-critical locations to validate the concept of estimating fatigue damage before actual applications
of stress/strain estimation are realisable. For offshore structures, we need subsea strain measurements
of actual structures in operation. The strain gauges on the Valdemar platform have low levels of strain
response and they are located far from the fatigue-critical locations. Subsea measurements are required
to validate the concept of virtual sensing under the actual conditions.

Moreover, we need to study the potential amplitude error in stress/strain estimation since stress am-
plitude/range is important for fatigue life using Palmgren-Miner rule. Here, the partial fatigue damage
raises each stress amplitudes to the mth power so any error is amplified. Thus, we need accurate esti-
mates of the stress amplitude of each cycle and possible solutions, to decrease amplitude errors, are vital
to increase trust in the estimation of the stress/strain history.

Stress/strain estimation requires further research regarding quasi-static response. The problem should
be divided into research components to study separately. We need investigations of the spatial distribu-
tion of wave loading and the corresponding static deflection shapes. We need to consider sensors other
than accelerometers at low frequencies or apply sensor fusion to accurately measure the quasi-static re-
sponse of offshore structures. Sensor fusion could potentially provide a better sensor network for virtual
sensing. Here, the weighted least-square regression techniques is a simple extension of the modal ex-
pansion to include sensor fusion. For future work, the ”weighted modal expansion” should be studied.
In the quasi-static response, there is a potential for residual effects from the higher modes. Here, the
sensitivity of the reduced system model is an important research field. We should consider an investi-
gation into the potential rank deficiency in modal expansion for the reduced pseudo modal matrix. We
could consider blind source separation and similar solutions to separate quasi-static response from the
dynamic response. Finally, we could apply wave mapping - e.g. using radar, buoys, and/or lidar - to
estimate the wave loading so we can calculate an additional estimate of the quasi-static response.
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Appendix A

Other publications

�
What is history? An echo of the past in
the future; a reflex from the future on the
past

�
Victor Hugo

In this appendix, we put the work of the unappended publications, which were published or written
during the Ph.D. project, into the context of the history for and contribution to the project.

A.1 Main author

Experimental determination of structural damping of a full-scale building with and
without tuned liquid dampers

- Experimental determination of structural damping of a full-scale building with and without tuned liquid
dampers
M. Tarpø, C. Georgakis, A. Brandt, & R. Brincker
Submitted to Structural Control and Health Monitoring summer 2020

The paper is an experimental assessment of the modal properties of a high-rise building - with and
without tuned liquid dampers. This assessment is based on both ambient tests (operational modal anal-
ysis) and full-scale excitation tests. This is the only journal paper with Marius Tarpø as the main author
that is not appended in the Ph.D. thesis, as a result of it being deemed too far removed from the main
Ph.D. project.

Back in 2013, an original paper was submitted to the Journal of Performance of Constructed Facilities
that warranted major revisions, which were never undertaken by the original authors. In 2019, Marius
Tarpø was tasked to unearth the old data, reanalyse, and completely rewrite the original paper. This
resulted in a completely new paper with a slightly shifted focus.

The effect of operational modal analysis in strain estimation using the modal expan-
sion

- The effect of operational modal analysis in strain estimation using the modal expansion
M. Tarpø, B. Nabuco, C. Geargakis, & R. Brincker
Conference proceedings of IOMAC 2019

This paper was a conference version of Paper 4 and it was written during the completion of this. For
this paper, the author came up with the idea, performed the data analysis, and wrote the paper.

Statistical error reduction for correlation-driven operational modal analysis

- Statistical error reduction for correlation-driven operational modal analysis
M. Tarpø, P. Olsen, M. Juul, S. Amador, T. Friis, & R. Brincker
Conference proceedings of ISMA 2018
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This paper was a conference version of Paper 2 and it was written during the completion of this paper.
For this paper, the author came up with the idea, performed the data analysis, and wrote the paper.

Operational modal analysis based stress estimation in friction systems

- Operational modal analysis based stress estimation in friction systems
M. Tarpø, T. Friis, B. Nabuco, S. Amador, E. Katsanos, & R. Brincker
Conference proceedings of IMAC 2018

This was our first attempt to apply stress/strain estimation to nonlinear structures. It was a numerical
case study for an offshore platform with friction applied to the topside. The stress estimation was largely
unaffected by the applied friction. The paper was excluded from the thesis since Paper 5 better reflects
the theory and application of stress estimation for nonlinear systems. For this paper, the author wrote
the paper and performed the analysis within the paper. The second co-author - Tobias Friis - simulated
the numerical response of the platform with and without friction.

On minimizing the influence of the noise tail of correlation functions in operational
modal analysis

- On minimizing the influence of the noise tail of correlation functions in operational modal analysis
M. Tarpø, P. Olsen, S. Amador, M. Juul, & R. Brincker
Procedia Engineering 199, 1038-1043

In this paper, we proposed an algorithm for detecting the noise tail. This paper is not included as an
appended paper in the thesis since Paper 1 and Paper 2 cover the same topic more extensively. For this
paper, the author wrote the paper, created the algorithm, and performed the analysis within the paper.
Cosupervisor Rune Brincker had the idea to estimate the position/location of the noise tail by fitting two
lines to the logarithmic envelope of the correlation functions.

Operational modal analysis based prediction of actual stress in an offshore structural
model

- Operational modal analysis based prediction of actual stress in an offshore structural model
M. Tarpø, B. Nabuco, A. Skafte, J. Kristoffersen, J. Vestermark, S. Amador, & R. Brincker
Procedia Engineering 199, 2262-2267

The paper focuses on strain estimation of a scale model of an offshore platform and was the first
paper written by the author. The research was mainly conducted to familiarise the author with the topic
so the paper provides little new knowledge to the research community. For this paper, the author wrote
the paper, conducted the experiments, and performed the analysis within the paper.
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A.2 Co-author

Best linear approximation of nonlinear and nonstationary systems using Operational
Modal Analysis

- Best linear approximation of nonlinear and nonstationary systems using Operational Modal Analysis
T. Friis, M. Tarpø, E. Katsanos, & R. Brincker
Mechanical Systems and Signal Processing

The paper was written in order to better understand what happens to the correlation function matrix
for nonlinear systems. We found that the correlation function matrix is the best linear approximation
that minimises the mean square error between the measured response and synthesised response based
on the best linear system. For stress/strain estimation, this furthers our understanding of the estimated
mode shapes of nonlinear and nonstationary systems using operational modal analysis since these mode
shapes are applied in modal expansion. For this paper, the author of this thesis contributed with inputs
for both analytic derivations and the case studies and performed the main proofreading and editorial
service of the paper.

Fatigue Stress Estimation of an Offshore Jacket Structure Based on Operational Modal
Analysis

- Fatigue Stress Estimation of an Offshore Jacket Structure Based on Operational Modal Analysis
B. Nabuco, M. Tarpø, U. T. Tygesen, & R. Brincker
Shock and Vibration, 2020

In this paper, we estimated the strain history of the Valdemar platform in the North Sea - excluding
the quasi-static response. Thus, it was a proof of concept for dynamic strain estimation for offshore
structures under the actual conditions. For this paper, the author contributed with inputs for the finite
element updating and the stress estimation while the author reviewed and edited the paper.

Equivalent linear systems of nonlinear systems

- Equivalent linear systems of nonlinear systems
T. Friis, M. Tarpø, E. Katsanos, & R. Brincker
Journal of Sound and Vibrations, 2020, Volume 469

This paper focuses on three different approaches to estimate equivalent linear systems. The paper
is not directly tied to stress/strain estimation since it relates to nonlinear systems, which we might en-
counter in offshore structures. It is, however, a tool that we could apply in the design and/or analysis
of offshore structures. For this paper, the author contributed with inputs to both the idea and the case
studies and the author edited the paper.

Operational modal analysis based linear system identification of systems with elasto-
perfectly-plastic nonlinear behaviour

- Operational modal analysis based linear system identification of systems with elasto-perfectly-plastic non-
linear behaviour
T. Friis, M. Tarpø, E. Katsanos, & R. Brincker
Conference proceedings of IOMAC 2019

In this paper, we studied the estimation of stiffness and viscous damping with operational modal
analysis on a nonlinear system in a simulated study. This paper was a preliminary study that we ex-
tended in another paper regarding equivalent linear systems from the correlation-driven operational
modal analysis. For this paper, the author of this thesis contributed to the conception of the research
work, reviewed, and edited the paper.
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Automated operational modal analysis using sliding filters and time domain identi-
fication techniques

- Automated operational modal analysis using sliding filters and time domain identification techniques
P. Olsen, M. Tarpø, M. Juul, & R. Brincker
Submitted to the Journal Mechanical Systems and Signal Processing summer 2019

This is a paper on automated operational modal analysis where we applied sliding filters to create
an alternative stability diagram, which we cleaned and clustered to estimate the modal parameters au-
tomatically. Initially, an automated identification process was intended for this Ph.D. project but we
reduced the focus on this aspect as the Ph.D. project progressed. This paper is a precursor of the initial
Ph.D. plan. For this paper, the author contributed to the creation of the algorithm, the author wrote the
main text for the experimental case study, and the author did the modal tracking in this study to test the
tracking over multiple datasets.

Operational modal analysis and fluid-structure interaction

- Operational modal analysis and fluid-structure interaction
M. Vigsø, T. Kabel, M. Tarpø, R. Brincker, & C. Georgakis
Conference proceedings of ISMA 2018

In this paper, the main author, Michael Vigsø, wanted to see the effect of surrounding water on a test
specimen in a wave flume. The effective mass of the water changed the modal parameters of the test
specimen. Interestingly, the frequencies of some modes moved so they became closely spaced with new
modes as the water level increased. Hence, the mode shapes of the new closely spaced modes began to
merge. For this paper, the author made contributions to the operational modal analysis in this paper and
edited the paper.

Output-only damping estimation of friction systems in ambient vibrations

- Output-only damping estimation of friction systems in ambient vibrations
T. Friis, E. Katsanos, M. Tarpø, S. Amador, & R. Brincker
Conference proceedings of ISMA 2018

In this paper, we studied damping estimates of friction systems with random vibrations. We extended
the study into two journal papers "Equivalent linear systems of nonlinear systems" and "Best linear ap-
proximation of nonlinear and nonstationary systems using Operational Modal Analysis". For this paper,
the author contributed to the conception of the research work, reviewed, and edited the paper.

Nonlinear strain estimation based on linear parameters

- Nonlinear strain estimation based on linear parameters
B. Nabuco, T. Friis, M. Tarpø, S. Amador, E. Katsanos, & R. Brincker
ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering

This was another attempt of applying stress/strain estimation to nonlinear structures. Here, we cre-
ated a linear strain-to-displacement-transformation matrix from a linear setup and used this transforma-
tion matrix to estimate strain for nonlinear setups of the same test specimen with success. For this paper,
the author reviewed and edited the paper.

Scenario based approach for load identification

- Scenario based approach for load identification
M. Vigsø, M. Tarpø, J.B. Hansen, C.T. Georgakis, & R. Brincker
Conference proceedings of IMAC 2018

This paper applies different scenarios of the spatial distribution of load to estimate the load. Load
identification is an alternative virtual sensing technique to stress/strain estimation. For this paper, the
author helped with the experiment, supported in the data analysis, and edited the manuscript.
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Reliability Analysis of Offshore Structures Using OMA Based Fatigue Stresses

- Reliability Analysis of Offshore Structures Using OMA Based Fatigue Stresses
B. Nabuco, M. Tarpø, A. Aïssani, & R. Brincker
ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering

Our first attempt to access the reliability of stress/strain estimation. For this paper, the author was
mainly responsible for the stress estimation applied in the paper and edited the manuscript.
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