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ABSTRACT: This commentary provides two methodological expansions of von 
Hippel and Huron’s (2020) empirical report on (anti-)tonality in twelve-tone rows by 
Arnold Schoenberg, Anton Webern, and Alban Berg. First, motivated by the theoretical 
importance of equality between all pitch classes in twelve-tone music, a full replication 
of their findings of “anti-tonality” in rows by Schoenberg and Webern is offered using 
a revised tonal fit measure which is not biased towards row-initial and row-final sub-
segments. Second, motivated by a long-standing debate in music cognition research 
between distributional and sequential/dynamic tonality concepts, information-theoretic 
measures of entropy and information content are estimated by a computational model 
and pitted against distributional tonal fit measures. Whereas Schoenberg’s rows are 
characterized by low distributional tonal fit, but do not strongly capitalize on tonal 
expectancy dynamics, Berg’s rows exhibit tonal traits in terms of low unexpectedness, 
and Webern’s rows achieve anti-tonal traits by combining high uncertainty and low 
unexpectedness through prominent use of the semitone interval. This analysis offers a 
complementary–and arguably more nuanced–picture of dodecaphonic compositional 
practice. 
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DESPITE Arnold Schoenberg’s (1941/1950) proclamation that “[c]omposition with twelve tones has no 
other aim than comprehensibility” (p. 103), dodecaphonic (i.e., twelve-tone) music has failed to reach the 
level of widespread popularity that he and his followers from the Second Viennese School had originally 
hoped for. As we approach the centennial for the discovery of Schoenberg's “method of composing with 
twelve tones,” discussions about its comprehensibility continue to resurface in academic circles. Music 
cognition researchers, in particular, have contributed to this debate and sometimes provided important 
empirical corroboration (see, e.g., Brown, 2016; Dibben, 1994; Dienes & Longuet-Higgins, 2004; de 
Lannoy, 1972; Krumhansl, Sandell, & Sergeant, 1987; Ockelford & Sergeant, 2013; Pedersen, 1975).  
 The authors of the current target article, Paul von Hippel and David Huron, made an essential 
contribution to this endeavor when they presented their initial analysis of anti-tonal (or “contra-tonal”) 
traits in Schoenberg’s twelve-tone rows in an unpublished conference paper about 20 years ago (Huron & 
von Hippel, 2000). Although Huron briefly revisited these results in the penultimate chapter of his Sweet 
Anticipation (Huron, 2006), the recent paper by von Hippel and Huron (2020) provides the first detailed 
account in journal publication format and, furthermore, consolidates the original findings by expanding 
them to Anton Webern’s and Alban Berg’s rows and by incorporating a set of control variables and a larger 
control corpus.  

A major methodological innovation of this research project is the procedure for quantifying the 
tonality of twelve-tone rows. Specifically, tonal fit is operationalized as the average of 44 Pearson 
correlations between the highest-scoring major/minor key profile (see their Figure 2) and sub-segments of 
cardinality one to eleven—always including the first pitch in the row—of the prime (P), retrograde (R), 
inversion (I), and retrograde-inversion (RI) forms of each twelve-tone row. In this way, von Hippel and 
Huron (2020) were able to demonstrate that segments from twelve-tone rows by Arnold Schoenberg (n = 
42) and Anton Webern (n = 21) achieved significantly lower tonal fit than segments from randomly 
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generated twelve-tone rows (n = 1,000). There was, on the other hand, no significant difference in tonal fit 
between the random sample and twelve-tone rows by another famous Schoenberg student, Alban Berg (n = 
23), who is known for adhering more closely to tonal traits in his dodecaphonic works (Jarman, 1985). 
These findings were interpreted to mean that Schoenberg’s and Webern’s twelve-tone rows are in fact 
“anti-tonal,” i.e. actively composed to avoid tonal features and thus presumably also to circumvent tonal 
listening schemata. 

As it provides a methodologically sound empirical basis for discussions about tonality (and 
absence thereof) in dodecaphonic composition, von Hippel and Huron’s (2020) paper was most certainly 
worth the long wait. At the same time, their choice of method—which is clearly only one amongst many 
possible ones—invites for replication using alternative procedures. This may challenge or indeed further 
substantiate their claims regarding anti-tonality in Schoenberg and Webern (and tonality in Berg for that 
matter). To that end, below, I offer two methodological expansions of von Hippel and Huron’s (2020) 
analysis. First, I present a close replication of their analysis using a modified operationalization of tonal fit 
that considers all sub-segments of twelve-tone rows on equal terms rather than having a bias towards initial 
and final tones of the rows. Second, I quantify the sequential expectancy dynamics of twelve-tone row 
forms using a computational model of melodic expectation. As will be evident, some of these analyses are 
consistent with von Hippel and Huron’s (2020) findings while others deviate slightly and thus may offer a 
more nuanced picture of anti-tonal and tonal twelve-tone composition in Schoenberg’s, Webern’s, and 
Berg’s oeuvres. 
 

CONSIDERING ALL POSSIBLE SUB-SEGMENTS OF ROWS 
 
As mentioned above, von Hippel and Huron’s (2020) operationalization of tonal fit averages 44 
correlations corresponding to the highest numerical Pearson correlation with any of the 12 major or 12 
minor key profiles (cf. Krumhansl & Kessler, 1982) for the 1 to 11 first tones of the P, I, R, and RI forms of 
each row. Because peripheral (i.e., initial or final) tones of the row are more likely than medial tones to be 
featured in sub-segments computed in this way, this automatically leads to an imbalance in favor of the 
former over the latter. This resulting row-initial and row-final bias may indeed be justified in terms of 
general psychological mechanisms where primacy and recency effects are well-established (Lewandowsky 
& Murdock, 1989) and in musical practice where themes are often identified by their beginning, as 
exemplified by dictionaries of musical themes (e.g., Barlow & Morgenstern, 1983). Musical serial order 
effects also appear, for example, in the reconstruction of order for verses in church hymns (Maylor, 2002). 
Yet, the current operationalization of tonal fit seems somewhat at odds with dodecaphonic principles of 
equality between all twelve pitch classes, such as expressed in Josef Matthias Hauer’s (1920) “law of the 
twelve tones” which inspired subsequent dodecaphonic compositional practice. Thus, it seems relevant to 
test if von Hippel and Huron’s (2020) findings hold true with an alternative operationalization of tonal fit 
that considers all possible sub-segments of the rows. 
 
Methods 
 
All the twelve-tone rows used in the original study by von Hippel and Huron (2020) were obtained in the 
humdrum **kern format. Specifically, 42, 21, and 23 rows composed by Arnold Schoenberg, Anton 
Webern, and Alban Berg, respectively, were downloaded from the website of the Center for Computer 
Assisted Research in the Humanities (London et al., 2002). The authors of the target article, moreover, 
provided a link to the 1,000 random rows used in their study.  
 All available files were imported into R (R Core Team, 2018) and processed there. First, a **kern 
spine was added to the random row files who previously only contained a **pc spine with numerals 0-11 to 
designate 12-tet pitch classes. The **kern spine was created by (arbitrarily) mapping 0 to C, 1 to C#, 2 to D 
etc. Second, an arbitrary quarter-note duration was added to all note events (this was required for import 
into the computational model used below). Third, retrograde (R), inversion (I), and retrograde inversion 
(RI) forms of each row were generated from the imported prime (P) forms. Specifically, the order of 
pitches of the P form was reversed to obtain the R form. To obtain the I form, the intervals of the P form 
were first inverted after which the new row was transposed up or down in its entirety to comprise the exact 
same pitch set as the P form (i.e., all pitches from C3 to B3). For consistency, the **pc spine was updated 
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accordingly. Finally, the RI form was obtained by reversing the order of pitches in this newly obtained I 
form.  
 Next, for replication purposes, von Hippel and Huron’s (2020) original measure of tonal fit was 
computed. This was done by extracting the 11 sub-segments of cardinality 1 to 11 (i.e., comprising the first 
tone, the first two tones, the first three tones etc.) of each of the four P, R, I, RI forms of each twelve-tone 
row. The Krumhansl-Schmuckler key-finding algorithm (Krumhansl & Schmuckler, 1986; Krumhansl, 
1990) was then applied to each of these 44 sub-segments to identify the highest scoring Pearson correlation 
with any of the 12 major and 12 minor key profiles (Krumhansl & Kessler, 1982). Tonal fit was finally 
calculated by averaging these 44 values. 
 Finally, an alternative operationalization of tonal fit was computed that equally considers all 
possible sub-segments of rows, thus avoiding the bias for peripheral over medial tones in von Hippel and 
Huron's (2020) original measure. This novel tonal fit measure was based on a total of 130 (rather than 44) 
Pearson correlation values for each row, corresponding to all the possible 11, 10, 9, 8, 7, 6, 5, 4, 3, and 2 
sub-segments of consecutive tones of cardinalities 2 to 11, respectively, for the P and I forms. R and RI 
forms were not used as sub-segments would be identical between the P and R as well as between the I and 
RI forms. Cardinalities 1 and 12 were also excluded as the resulting correlation values of single pitches or 
full chromatic sets with the key profiles would merely have changed the tonal fit measure by a constant.[2] 
Apart from the initial selection of a larger number of sub-segments, the alternative operationalization of 
tonal fit was calculated similarly to the previous measure by averaging the 130 highest-scoring Pearson 
correlations with the Krumhansl-Kessler key profiles.  
 
Results 
 
Figure 1 contains violin plots of the replication of von Hippel and Huron’s (2020) results with their original 
tonal fit measure (left panel) as well as the results from the new analysis with the novel tonal fit measure 
introduced above (right panel). Unlike the analysis reported by von Hippel and Huron, the measures 
reported here were not standardized to the mean and standard deviation of random rows but rather occupy 
the original scale typical of correlation values (i.e., theoretically ranging from -1 to 1 although the selection 
of the highest correlations makes negative tonal fit values extremely unlikely). 

To assess if the twelve-tone rows by the three specific composers differed significantly from 
random rows, linear regression with robust (i.e., heteroscedasticity-resistant) standard errors was conducted 
predicting the original and revised tonal fit measures with dummy variables for each of the composers 
using the lm() function in R (R Core Team, 2018).[3] Similar to the previous study, quantile regression was 
also conducted to compare the median between the different types of rows. To this end, the rq() function 
from the quantreg package was used (Koenker, 2020). 

As evident from Tables 1 and 2, both types of regression confirmed that Alban Berg’s twelve-tone 
rows did not differ significantly from the random rows neither when tonal fit was calculated as done by von 
Hippel and Huron (2020) nor when using the revised measure introduced here. The rows by Arnold 
Schoenberg and Anton Webern, however, showed significantly lower levels of tonal fit than the random 
rows, and this was the case for both the original and revised measures with both types of regression. Taken 
together, these follow-up analyses indicate that the effects for anti-tonality in dodecaphonic compositions 
by Schoenberg and Webern hold true when all row members are considered equally. 
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Figure 1. Violin plots of the tonal fit values for the 1,000 random twelve-tone rows as well as the 23, 42, 
and 21 twelve-tone rows composed by Alban Berg, Arnold Schoenberg, and Anton Webern, respectively. 
The violins comprise a kernel density plot displayed on top of a conventional boxplot with median (white 
dot), interquartile range (black box), and lower/upper adjacent values (whiskers). The left panel depicts von 
Hippel and Huron’s (2020) original tonal fit measure whereas the right panel depicts the revised tonal fit 
measure introduced here which is not biased towards row-initial and row-final sub-segments. As can be 
seen, the revised measure replicates the original findings that, in comparison with random rows, 
Schoenberg’s and Webern’s rows were significantly anti-tonal whereas Berg’s rows were not. 
 
 
Table 1. Linear regression with robust standard errors (left) and quantile median regression (right) of the 
original tonal fit measure by von Hippel and Huron (2020). 
 
 Linear robust regression  Quantile (median) regression 
 Coefficient (SE) t p  Coefficient (SE) t p 
Intercept 0.52 (<0.01) 310.24 <.01  0.52 (<0.01) 220.03 <.01 
Berg 0.01 (0.01) 0.52 .60  0.03 (0.02) 1.65 .10 
Schoenberg -0.03 (<0.01) -4.12 <.01  -0.03 (<0.01) -3.40 <.01 
Webern -0.06 (<0.01) -8.09 <.01  -0.07 (<0.01) -7.63 <.01 
 
 
Table 2. Linear regression with robust standard errors (left) and quantile median regression (right) of the 
revised tonal fit measure introduced here. 
 
 Linear robust regression  Quantile (median) regression 
 Coefficient (SE) t p  Coefficient (SE) t p 
Intercept 0.54 (<0.01) 384.98 <.01  0.54 (<0.01) 308.13 <.01 
Berg -0.01 (0.01) -1.11 .27  -0.02 (0.02) -1.14 .25 
Schoenberg -0.04 (<0.01) -5.44 <.01  -0.04 (<0.01) -3.96 <.01 
Webern -0.06 (<0.01) -8.42 <.01  -0.06 (<0.01) -6.60 <.01 
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CONSIDERING SEQUENTIAL EXPECTANCY DYNAMICS IN TONALLY 
ENCULTURATED LISTENERS 

 
Following in the footsteps of an old discussion in music cognition research regarding whether to 
operationalize tonality in distributional (e.g., Krumhansl, 1990) or sequential terms (e.g., Butler, 1989), von 
Hippel and Huron’s (2020) method can rightfully be criticized for adhering to the former rather than the 
latter approach.[4] Neither the original tonal fit measure nor the revised one evaluated above considers the 
order in which row members occur. Yet, as music unfolds in time, and the human brain engages in “eager 
processing” whereby incoming sensory input is continually recoded as soon as it arrives (Christiansen & 
Chater, 2016), perception of musical structure is necessarily sequential rather than retrospectively 
summative (Hansen, Kragness, Vuust, Trainor, & Pearce, under review).  

Specifically in the context of dodecaphonic composition, it has previously been argued that there 
is a cognitive dimension to understanding the aesthetics and reception of twelve-tone music as well as the 
historical context in which it emerged. An unbalanced focus on compositional process over perceptual 
structure—what Taruskin (2004) refers to as “the poietic fallacy”—has undoubtedly not benefitted the 
popularity of twelve-tone music in the general public. In his discussion of cognitive constraints on 
compositional systems, Lerdahl (1992) argued that the serial organization of musical sounds as found in 
many twelve-tone pieces made this music “cognitively opaque” from a listener’s perspective. This 
opaqueness was primarily ascribed to serialism’s permutational rather than elaborational melodic structure, 
its avoidance of sensory consonance and dissonance distinctions, and its inability to induce a pitch space 
mapping spatial distance to cognitive distance. Along similar lines, other accounts have emphasized how 
key features of dodecaphonic composition like flat zeroth-order pitch distributions, registral discontinuity 
(resulting from octave equivalence), limited hierarchical depth of motives, weak metrical scaffolding, 
rhythmical irregularity, and the lack of well-established cadential formulas and repetitions transgress 
fundamental principles of music listening (Ball, 2011; Lerdahl, 2001). Humans are, in other words, 
predisposed for musics that lend themselves well to our cognitive chunking mechanisms, limited working 
memory capacity, preference for familiar structures, and sophisticated statistical learning and pattern 
discovery skills.  
 A growing body of research indeed demonstrates that expectations play a key role in all of these 
areas. This is, for example, the case for segmentation of music into phrases (Pearce, Müllensiefen, & 
Wiggins, 2010; Hansen, Kragness, Vuust, Trainor, & Pearce, under review), memory for melodies (Agres, 
Abdallah, & Pearce, 2018), stylistic enculturation (Hansen, Vuust, & Pearce, 2016; Morrison, Demorest, & 
Pearce, 2018), and the cognition of musical repetition (Margulis, 2014) and cadence formulas (Sears, 
Pearce, Caplin, & McAdams, 2018; Sears, Pearce, Spitzer, Caplin, & McAdams, 2019). Thus, claims about 
anti-tonality in dodecaphonic composition ultimately makes assumptions about psychological expectation 
mechanisms rather than about musical structure per se (i.e., independent from the listener’s perspective). 
While the key profiles used for computing tonal fit measures above were indeed empirically derived from 
listening experiments with human participants, they were not used in a way where the order of pitches in 
the melodic sequence was considered, and they only assessed listener expectations at one particular point in 
a listening episode. The expectancy dynamics of twelve-tone rows can be modelled more dynamically with 
computational models of event-based listening such as the one adopted below.  
 
Methods 
 
The Information Dynamics of Music Model (IDyOM, Pearce, 2005) was used to estimate event-level 
measures of information content (IC) and entropy for the P, R, I, and RI forms of the 1,000 random and 86 
composed twelve-tone rows. The information-theoretic estimates of information content and entropy from 
this unsupervised, variable-order n-gram model have previously been shown to relate directly to the 
unexpectedness and uncertainty experienced by human listeners (Hansen & Pearce, 2014). For the main 
analysis, short-term models making predictions from the local context (i.e., the relevant form of the twelve-
tone row in question) were combined with long term-models trained on a large corpus of European 
folksongs. This sizeable corpus of 279,926 notes from a total of 5,739 melodies taken from the fink, erk, 
boehme, ballad, allerkbd, altdeu, dva, zuccal, and kinder subsets of German folksongs and the further 
subsets of Alsatian, Yugoslavian, Swiss, and Austrian folksongs from the Essen Folksong Collection 
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(Schaffrath, 1992, 1993) ensured that the resulting information-theoretic measures were representative of 
tonal listening schemata at large.  

IDyOM was configured to predict the absolute pitch of each event in the sequence using the 
cpint viewpoint. This viewpoint represents each event as a single numeric indicating the relative pitch 
interval in semitones from the pitch of the preceding note in the sequence. In previous work, this viewpoint 
has often been combined with the cpintfref viewpoint representing the chromatic scale-degree of a 
given note in relation to the overall tonic and mode of the musical piece in question (e.g., Hansen & Pearce, 
2014; Hansen, Vuust, & Pearce, 2016). As scale-degrees cannot, however, be defined meaningfully for 
twelve-tone rows, the current analysis resorted to the remaining, well-defined cpint viewpoint. 
 Before conducting robust linear regression and median regression of the information-theoretic 
measures as presented above for the original and revised tonal fit measures, mean entropy and IC values 
were computed for each of the random and composed rows. This was done by averaging across all non-
initial events in any of the four P, R, I, and RI forms. Entropy and IC for initial note events in each form of 
each row were disregarded as the lack of a prior context means that IDyOM, in these cases, estimates from 
a uniform probability distribution resulting in constant row-initial entropy and IC levels. 
 
Results 
 
As an initial sanity check, the overall success of each execution of IDyOM (configured as described above) 
in predicting the random and composed twelve-tone rows was compared with the success of IDyOM 
executions where the long-term models were trained on the row corpora themselves (via 10-fold cross-
validation) rather than on a large, tonal corpus as described above. These alternative models can be viewed 
as simulating the experience of an expert listener skilled in (only) twelve-tone rows. To this end, model 
success was quantified in terms of average information content where low values signify that the notes that 
actually occurred in the sequence were predicted by the model with high probability on average whereas 
high values, conversely, signify that the model was relatively surprised about the notes in the sequence.  

Unsurprisingly, this analysis found that random and composed rows were both predicted more 
strongly by IDyOM models trained on the rows themselves (mean ICrandom: 3.49; mean ICcomposed: 3.38) than 
by IDyOM models trained on the (stylistically somewhat irrelevant) tonal corpus (mean ICrandom: 5.82; 
mean ICcomposed: 5.60). The fact that mean IC was lower for composed than for random rows both when 
predicted by dodecaphonic IDyOM models and by tonal IDyOM models suggests that composed rows 
contained more systematic combinations of pitch intervals than random rows—both in the context of 
twelve-tone music and tonal folksongs. While consistent with von Hippel and Huron’s (2020) suggestion 
that Alban Berg may have composed rows with tonal characteristics, these preliminary findings do not 
overall seem consistent with their conclusions about anti-tonality in Schoenberg’s and Webern’s music. To 
assess these issues in greater detail, however, one must proceed to distinguishing between the rows by each 
of the three twelve-tone composers. 
 As for the tonal fit measures analyzed above, linear regression with robust standard errors as well 
as quantile (median) regression were conducted for the two information-theoretic measures IC and entropy 
(Figure 2 and Tables 3 and 4). This analysis found that to a listener enculturated in tonal music, Alban 
Berg’s and Anton Webern’s twelve-tone rows generally contained more expected notes than was the case 
for the random rows. Arnold Schoenberg’s rows, on the other hand, did not show significantly different 
levels of IC in comparison with the random control corpus. Moreover, while Berg’s and Schoenberg’s 
twelve-tone rows were no different from the random rows in terms of mean entropy, Webern’s rows were 
generally estimated to evoke more uncertain pitch expectations in tonal listeners. It will be discussed below 
how these results differ in interesting ways from von Hippel and Huron’s (2020) findings without being 
incompatible with them. 
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Figure 2. Violin plots of the information-theoretic measures estimated by IDyOM for the 1,000 random 
twelve-tone rows as well as the 23, 42, and 21 twelve-tone rows composed by Alban Berg, Arnold 
Schoenberg, and Anton Webern, respectively. The violins comprise a kernel density plot displayed on top 
of a conventional boxplot with median (white dot), interquartile range (black box), and lower/upper 
adjacent values (whiskers). The left panel depicts the mean information content which quantifies the 
average unexpectedness of notes in the row whereas the right panel depicts the mean entropy which 
quantifies the average uncertainty when listeners make predictions about the next pitch in the row. As can 
be seen, for listeners accustomed to tonal music, both Alban Berg’s and Anton Webern’s twelve-tone rows 
were significantly more expected than random rows whereas Anton Webern’s rows simultaneously created 
more uncertain expectations in listeners. Arnold Schoenberg’s rows did, on the other hand, not differ from 
random rows in terms of these information-theoretic measures. 
 
Table 3. Linear regression with robust standard errors (left) and quantile median regression (right) of the 
information content measure estimated by IDyOM. 
 
 Linear robust regression  Quantile (median) regression 
 Coefficient (SE) t p  Coefficient (SE) t p 
Intercept 5.85 (0.02) 258.11 <.01  5.82 (0.03) 169.95 <.01 
Berg -0.53 (0.20) -2.64 <.01  -0.69 (0.19) -3.65 <.01 
Schoenberg 0.05 (0.14) 0.39 .69  0.12 (0.11) 1.11 .27 
Webern -0.51 (0.15) -3.43 <.01  -0.54 (0.17) -3.19 <.01 
 
 
Table 4. Linear regression with robust standard errors (left) and quantile median regression (right) of the 
entropy measure estimated by IDyOM. 
 
 Linear robust regression  Quantile (median) regression 
 Coefficient (SE) t p  Coefficient (SE) t p 
Intercept 3.05 (<0.01) 1245.96 <.01  3.05 (<0.01) 1009.75 <.01 
Berg -0.02 (0.02) -0.74 .46  -0.01 (0.02) -0.55 .58 
Schoenberg <0.00 (0.02) -0.08 .94  0.01 (0.02) 0.64 .52 
Webern 0.08 (0.02) 4.52 <.01  0.08 (0.03) 2.75 <.01 
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 Additionally, to evaluate the relative contribution of tonal fit, expectancy dynamics, and control 
variables representing other structural row properties, multiple logistic regression analysis was conducted, 
following von Hippel and Huron’s (2020) procedure of adding all relevant predictors at once (i.e., the 
“enter” method). All the original control variables were added as predictors, including binary variables for 
whether rows were (a) inversionally hexachordally combinatorial (IHC), (b) derived from trichords, 
tetrachords, pentachords, or hexachords, and/or (c) mirror-symmetric, as well as numeric variables for how 
many (d) semitones and trichords of the (e) (014) and (f) (016) type they contained. In contrast to the target 
authors’ analysis, the revised (unstandardized) tonal fit measure introduced above replaced the original one, 
and mean information content (IC) and mean entropy were also added to model expectancy dynamics.  

The results from the logistic regression analysis complements von Hippel and Huron’s findings in 
a number of interesting ways (Table 5). First, the Schoenberg analysis replicates the findings reported in 
the original paper and expanded upon here, namely that his rows exhibit significantly lower tonal fit than 
random, but that mean IC and entropy do not contribute significantly to predicting their status as composed. 
Moreover, the previously significant tendency for more semitone intervals did no longer meet the 
significance threshold, thus indicating that some of this variance may have been accounted for by the added 
(albeit non-significant) information-theoretic predictors. The tendencies for lower entropy and higher 
chromaticism in Schoenberg’s rows both achieved marginally non-significant p-values of .13 and .11, 
respectively.  

Second, similar to what von Hippel and Huron reported, Webern’s rows exhibited significantly 
lower degrees of tonal fit and significantly more semitone intervals and (014) trichords than the random 
rows. Although entropy was higher and IC was lower in Webern’s rows, the related variance could better 
be explained by these other variables. To explore the patterns of overlapping variance explained, individual 
logistic regression models were fitted with mean IC and mean entropy in combination with only one of the 
measures revised tonal fit (AIC = 147.99), (014) trichords (AIC = 152.71), or semitones (AIC = 136.40). 
Whereas mean IC and entropy remained significant predictors when combined with tonal fit and (014) 
trichords (all. p’s < .03), their contribution became highly non-significant when combined with number of 
semitones as predictor (both p’s > .92). The fact that semitones and the information-theoretic measures 
explained overlapping variance was additionally supported by the fact that a model with number of 
semitones as the only predictor achieved lower AIC than any of the other models (AIC = 132.42). 

Third and finally, the only significant predictor for Berg’s rows was mean IC which was 
significantly lower than for random rows. The revised tonal fit measure, on the other hand, did not achieve 
statistical significance. Interestingly, thus, while this could not be established with the distributional tonal 
fit measures, the lower average surprise evoked by note transitions in the Berg corpus is indeed consistent 
with the widespread consensus that Berg’s twelve-tone rows tend to show tonal characteristics (Headlam, 
1996). The fact that mirror symmetry and semitone predictors were no longer significant after the addition 
of mean IC suggests that low pitch unexpectedness was more predictive of Berg’s rows than semitone 
intervals and symmetrical structure per se. 
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Table 5. Multiple logistic regression analysis predicting whether rows were random or composed with the 
revised tonal fit measure, the information-theoretic measures, and the control variables entered as 
predictors (using the “enter” method), separately for each of the three composers. 
 
 Schoenberg (n = 42) Webern (n = 21) Berg (n = 23) 

Predictors 
 Odds ratio 

[95% CI] 
p  Odds ratio 

[95% CI] 
p  Odds ratio 

[95% CI] 
p 

Mean IC  1.04  
[0.64, 1.71] 

.87  0.72  
[0.28, 1.90] 

.51  0.38  
[0.19, 0.78] 

<.01** 

Mean entropy  0.02  
[0, 3.15] 

.13  5.93  
[0, 57904.05] 

.70  0.04  
[0, 12.94] 

.27 

Tonal fit (rev.)  <0.01  
[0, 0.02] 

<.01**  <0.01  
[0, 0.28] 

.04*  <0.01  
[0, 44.69] 

.19 

IHC  7.56 
[3.05, 18.75] 

<.01**  0.90 
[0.26, 3.10] 

.87  0.84 
[0.34, 2.04] 

.70 

Derived  2.49 
[0.39, 15.79] 

.33  10.10 
[0.88, 115.76] 

.06†  3.50 
[0.48, 25.58] 

.22 

Mirror symmetric  3.21 
[0.38, 26.81] 

.28  1.34 
[0.06, 31.23] 

.86  7.41 
[0.95, 57.91] 

.06† 

#semitones  1.28 
[0.94, 1.74] 

.11  2.06 
[1.21, 3.50] 

<.01**  1.23 
[0.81, 1.85] 

.33 

# (014) trichords  1.89 
[1.27, 2.83] 

<.01**  3.24 
[1.68, 6.26] 

<.01**  0.49 
[0.21, 1.16] 

.11 

# (016) trichords  1.33 
[0.81, 2.20] 

.26  1.02 
[0.43, 2.43] 

.97  0.92 
[0.44, 1.92] 

.83 

Constant  269078.20 .11  1.28 .99  6935713.99 .08† 
IC: Information content; IHC: inversionally hexachordally combinatorial; p-values result from Wald tests; 
**p < .01, *p < .05, †p < .10 
 

CONCLUSIONS 
 
Motivated by the theoretical importance of equality between all pitch classes in twelve-tone music and by a 
long-standing debate in music cognition research between distributional and more dynamic tonality 
concepts, this commentary provides two methodological expansions of von Hippel and Huron’s (2020) 
empirical report on tonality and anti-tonality in twelve-tone rows by Arnold Schoenberg, Anton Webern, 
and Alban Berg.  

First, a full replication with a novel tonal fit measure without the original bias towards row-initial 
and row-final sub-segments was presented. The only small deviations from findings with the original 
measure was that the median revised tonal fit for Alban Berg was no longer numerically higher than that 
for random rows, and that the original non-significant tendency towards higher-than-random tonal fit for 
Berg when conducting quantile regression was also no longer present. This suggests that Berg’s twelve-
tone rows are not truly more tonal than random rows when tonality is assessed in distributional terms. 
Alternatively, tonal traits could be more prominent at the beginning (or end) of the rows, but this 
speculation would require more detailed testing to be properly established. 
 Second, the unsupervised, variable-order n-gram model IDyOM was trained on a large corpus of 
tonal folksongs to emulate the expectations of Western-enculturated listeners. Before interpreting the 
results from these simulations, however, an important methodological caveat remains: the unsurprising 
finding that the tonally-trained model performed worse than a model trained on the twelve-tone rows 
themselves raises the question whether listeners truly resort to tonal listening schemata when listening to 
twelve-tone music. Previous evidence already suggests that listeners may not always revert to a stylistically 
inappropriate schema even though it would result in stronger predictions than a more stylistically 
appropriate schema that they have limited training in. Hansen, Vuust, and Pearce (2016), specifically, 
found that professional classical musicians and non-musicians did not seem to misapply general tonal 
expectations when listening to bebop solos by Charlie Parker. This finding can be explained in terms of 
“cognitive firewalls” which restrict the use of internalized probabilistic knowledge by contextual relevance 
(Cosmides & Tooby, 2000; Huron, 2006). Future research uncovering the specifics of schematic listening 
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behavior for dodecaphonic music may provide important context for the interpretation of the findings 
presented here. 
 Keeping the aforementioned methodological caveat in mind, statistical analysis of the IDyOM 
estimates did indeed seem to provide empirical evidence for von Hippel and Huron’s (2020) assertion of 
“tonally evocative rows” (p. 110) in Alban Berg’s dodecaphonic works. Berg’s rows contained pitches that 
were on average more expected than pitches in the corpus of random rows. At the same time, the 
expectations evoked by Berg’s rows were neither more nor less uncertain than those evoked by random 
rows. Logistic regression with structural control variables, furthermore, confirmed that the higher degrees 
of expectedness explained variance more effectively than structural factors. This variance was previously 
accounted for by predictors representing the prominence of semitones and mirror symmetry properties. 

Interestingly, Webern’s rows generated significantly more uncertain expectations in listeners, but 
resolved such high degrees of uncertainty with relatively highly expected pitch transitions on average. 
Because semitone intervals are extremely common in tonal music, this would be consistent with von Hippel 
and Huron’s (2020) finding that Webern’s well-known predilection for the semitone interval (Hanson, 
1983) extended into his dodecaphonic period. The multiple logistic regression analysis demonstrated very 
clearly that the number of semitone intervals present in Webern’s rows explains nearly the exact same 
variance as that explained by the combination of high uncertainty and low unexpectedness. Tonal fit, 
conversely, did explain unique variance not accounted for by the semitone predictor. Thus, it seems that 
Webern composed twelve-tone rows with relatively many semitone intervals which—as is the case for the 
leading-tone-to-tonic resolutions in tonal music—are both highly expected and lead to relatively uncertain 
expectations about what follows next (Huron, 2006). Butler’s (1989) characterization of semitones as rare 
intervals carrying “critical information about local harmonic goals” (p. 233), in other words, manifests in 
Webern’s dodecaphonic pieces in terms of row segments that score high on the distributional tonal fit 
measures. 

Finally, whereas Schoenberg’s rows achieved lower distributional tonal fit values and had a 
greater prominence of (014) trichords and inversional hexachordal combinatoriality than random rows, they 
did not seem to capitalize on different levels of entropy and information content. Thus, the information-
theoretic analysis overall failed to generalize von Hippel and Huron’s findings of distributional anti-tonality 
in Schoenberg’s music to the ongoing expectancy dynamics of tonally-enculturated listeners. This 
inconsistency perfectly exemplifies how distributional and sequential/dynamic measures are capturing 
different aspects of tonality that are not necessarily mutually dependent and overlapping. 

In his recent review of the long-standing debate about the distributional vs. sequential nature of 
musical tonality, Schmuckler (2016) concluded that “distributional and structural-functional approaches are 
really part of the same process, and that a complete description of tonality and key-finding will require both 
global distributional properties, along with more localized, structural-functional information” (p. 148). The 
two methodological expansions of von Hippel and Huron’s (2020) study offered here contribute fruitfully 
to both of these analytical perspectives. 
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NOTES 
 

[1] Correspondence can be addressed to: Dr. Niels Chr. Hansen, Aarhus Institute of Advanced Studies & 
Center for Music in the Brain, Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark, 
nchansen@aias.au.dk. 
 
[2] The same was the case for von Hippel and Huron’s (2020) original tonal fit measure, but these authors 
still decided to include sub-segments with cardinality 1 in their 44 correlation values. As indicated, this 
methodological decision had no detrimental effects on the outcome of the analysis. 
 
[3] Robust standard errors were obtained via a modification of the summary() function written by the 
author of the Economic Theory Blog specifically with the purpose of replicating the STATA analysis 
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method which von Hippel and Huron (2020) used in their original study. This modification was retrieved 
from https://raw.githubusercontent.com/IsidoreBeautrelet/economictheoryblog/master/robust_summary.R. 
 
[4] Although extensive discussions of Butler’s (1989) Intervallic Rivalry Theory and related concepts of 
tonality based on sequential real-time processing rather than on retrospective distributional aspects are 
absent from von Hippel and Huron’s (2020) account, the second author did acknowledge in a footnote in 
his Sweet Anticipation (Huron, 2006) that “it would appear that this research seems to give short shrift to 
the Browne/Butler/Brown approach to tonality. However, as we have demonstrated, order matters in the 
organization of tone rows, which was precisely the main point of contention between Krumhansl and 
Butler” (p. 406).  
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