
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Apr 1988

Micro Database Management System Language Micro Database Management System Language

Karen Yingling Tam

George Winston Zobrist
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Tam, Karen Yingling and Zobrist, George Winston, "Micro Database Management System Language"
(1988). Computer Science Technical Reports. 84.
https://scholarsmine.mst.edu/comsci_techreports/84

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/84?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

MICRO DATABASE MANAGEMENT SYSTEM LANGUAGE

K. Y. Tam* and G. W. Zobrist

CSc-88-3

Department of Computer Science
University of Missouri-Rolla

Rolla, Missouri 65401 (314)341-4491

*This report is substantially the M.S. thesis of the first
author, completed April, 1988.

ii

ABSTRACT

There are two approaches to solve computational prob
lems in a microcomputer environment:

1. Non-database approach: uses a high level program
ming language with non-database files as input
and/or output files.

2. Database approach: uses the programming language
embedded in the micro Data Base Management
System(DBMS), with the database defined by the
integrated database definition language as input
and/or ouput files.

Adopting the appropriate approach in any single appli
cation may save cost and time. This paper compares the two
different approaches while solving the same Control Section
(CSECT) Interaction Hierarchy problem and suggests which to
use when.

Page

ABSTRACT... ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS................................... iv
LIST OF ILLUSTRATIONS.................................vii

I. INTRODUCTION 1
II. HIGH LEVEL PROGRAMMING LANGUAGES 3

A. DEVELOPMENT OF PROGRAMMING LANGUAGES 3
B. TYPES OF HIGH LEVEL LANGUAGES............ 5

1. Procedural vs. Nonprocedural 6
2. General vs. Special Purpose............ 6
3. Interpreted vs. Compiled 7
4. Batch vs. Interactive 8

C. GENERAL FEATURES OF HIGH LEVEL LANGUAGES. . . 8
1. Data Representation.................... 8
2. The Assignment Statement 9
3. Arithmetic Expression 9
4. Logical Expression 10
5. Input and O u t p u t 10
6. Control Structures 11
7. Subprograms.......................... 13
8. Data Structures........................ 15
9. File Handling.......................... 17

III. MICRO DBMS PROGRAMMING LANGUAGE 18
A. OBJECTIVES OF MICRO D B M S 18

1. Data Independence.................... 18
2. Controlled Redundancy 18
3. Integrity Control 19
4. Ease of U s e 19
5. Security and Availability............ 20

iv

TABLE OF CONTENTS

V

Page

B. COMPONENTS OF A MICRO D B M S 2 0
C. SPECIAL FEATURES OF dBASE III PLUS COMMAND

LANGUAGE................................ 2 2
1. Variables............................ 23
2. Input and Output...................... 25
3. Control Structures 26
4. Modular Programming 26
5. Debugging Commands 27
6. Database Management Functions 28

IV. PROGRAMMING WITH dBASE III P L U S 3 0
A. CSECT INTERACTION PROBLEM DESCRIPTION . . . 30
B. INPUT/OUTPUT............................ 33
C. dBASE III METHODOLOGY.................... 33
D. PL/1 SOLUTION VS. dBASE III SOLUTION . . . 39

1. Methodologies........................ 39
2. Data Structures...................... 40
3. Record Ha n d l i n g 44
4. Variables............................ 45
5. File Definition...................... 45
6. Sorting and Indexing.................. 47
7. File Restructuring.................... 49
8. Execution S p e e d 50
9. User Friendly language................ 50
10. Lines of C o d i n g 50
11. Modular Programming 51

E. Summary of Advantages and Disadvantages . . 51
V. CONCLUSIONS................................. 54

BIBLIOGRAPHY 57

TABLE OF CONTENTS (CONTINUED)

VITA 58

vi

Page

APPENDICES... 59
A. dBASE CSECT Interaction Programs 59
B. dBASE Input/Output File Structures 73
C. dBASE Input/Output D a t a 75
D. dBASE OUTPUT REPORT 99

TABLE OF CONTENTS (CONTINUED)

Vll

LIST OF ILLUSTRATIONS

Figures Page

1. High Level Languages Comparison 24
2. dBASE Hierarchy Application Input Files 34
3. dBASE Hierarchy Application Output File 35
4. Example of Csect Hierarchy Report 36
5. Data Structure Used in PL/I Programs.......... 41
6. Label Checking Logic in PL/I Programs 43
7. Example of Powerful dBASE Command Language . . . 46
8. OUTPUT File Not Sorted on O R E C N O 48
9. Choosing a Programming Language 56

1

I. INTRODUCTION

As microcomputer technology continues to improve and
is widely accepted by users, management of data in a micro
computer environment has become an important data processing
subject. In responding to this data management need,
micro Data Base Management Systems(DBMS) have been developed
and available since early 1980's.

Surveys show that the most popular Micro DBMS today is
dBASE III PLUS[1]. It provides the basic DBMS features such
as data independence, central control of data, reduced re
dundancy, and some degree of data integrity. In addition,
it also offers a self-sufficient high level programming
command language. By incorporating the related data base
management functions of dBASE III PLUS, this command lan
guage provides microcomputer end users with a very powerful
programming tool.

The primary objective of this study is to investigate
the capabilities of today's micro DBMS command language by
implementing a Control Section(CSECT) Interaction Hierarchy
Report project using dBASE III PLUS. In order to achieve
the above objective, this paper first presents an overview
of the background and features of non-DBMS high level
languages and one of the most popular micro DBMS command
languages - DBASE III PLUS.

2

The purpose of the CSECT Interaction Hierarchy Report
is to assist software maintenance programmers with their
planning and implementation efforts. Details of the dBASE
III PLUS methodology for this CSECT project is presented in
the following section. A comparison of the dBASE III PLUS
and PL/I approaches for this same project is made to demon
strate the benefits of using a micro DBMS command language
instead of a traditional high level language.

3

II. HIGH LEVEL PROGRAMMING LANGUAGES

The hardware capabilities of computers have grown tre
mendously during the past two decades. These developments
have been roughly paralleled by progress in programming
languages. The benefits from improved hardware technology
cannot be fully utilized unless complementary languages are
developed to increase the usefulness of advanced computers.

Â _ DEVELOPMENT OF PROGRAMMING LANGUAGES

The programming language generations are grouped chro
nologically and are also categorized by their levels which
are defined by their distance from machine languages. Ma
chine language is the first generation of the programming
language. It came with the very early commercial computers
in the early 1950's. When using machine language, the
programmer must keep track of actual numerical addresses of
storage locations for instructions and data. The coding of
the program has to be at the 0's and l's level, which makes
it very difficult to read and maintain.

The next generation language developed was assembly
language. With assembly language the programmer uses sym
bolic names, or mnemonics, to specify machine operations.
There is a one-to-one correspondence between machine lan
guage instruction and assembly language instruction. As
with machine language, it can be used to develop programs
which are highly efficient in terms of storage space and

4

processing time. It also allows the programmer to more
fully utilize the computer's potential.

Despite the improvements over machine language, assem
bly language is still difficult to use. It requires a high
level of skill to be used effectively. A considerable
effort is required in order to learn assembly instructions,
and the language demands many instructions to perform a
modicum of processing.

High level languages are the third generation of pro
gramming languages. These have been developed for people
interface, whereas low level languages are oriented to the
computer. The instruction syntax adopted in high level
languages is close to English. Instructions written in a
high level language must be translated into machine
language to be used by the computer. This makes it easier
for programmers to express what they want the computer to
do without having to directly specify how the machine
instructions should be assembled to do it.

High level languages have been procedure-oriented and
are largely divided between business and scientific. COBOL
by Codasyl, is a commercial business-oriented language.
FORTRAN and ALGOL are examples of scientific programming
languages. However, PL/1 incorporates most of the features
found in COBOL and FORTRAN.

5

Statistics developed by Microelectronics and Computer
Technology Corporation of Austin, Texas, show that about 80
percent of the programs in a computer facility use 2 percent
of the machine cycles[2]. About 2 percent of the programs
use 50 percent of the machine cycles. The remaining 18
percent use 48 percent of the machine cycles. Programming
productivity is the issue in the 80 percent group. These
programs are the targeted for a new class of programming
language - the fourth generation languages (4GL).

While similar to third generation languages, 4GL's are
different in that the number of programmed instructions
required to get information is typically much less. 4GL's
are often referred to as "very high level" languages since
they exhibit the highest level of machine independence.
Most 4GLs are interactive, nonprocedural, and are capable of
database upkeep functions. The two languages selected for
the CSECT Interaction Hierarchy Report, PL/1 and dBASE III
PLUS, can be categorized as third generation high level
procedural language and fourth generation nonprocedural
language respectively.

EL TYPES OF HIGH LEVEL LANGUAGES

Since the first high level language was developed in
the late 1950s, a number of additional high level languages
have been introduced. Programming languages are often cate
gorized into four areas: 1) procedural and nonprocedural; 2)

general-purpose and special-purpose; 3) interpreted and
compiled; and 4) batch and non-interactive.

6

1. Procedural Vs. Nonprocedural

A procedural language is one in which the user speci
fies a set of executable operations that are to be performed
in sequence and which specify a procedure. Nonprocedural is
a relative term. The closer the user can come to stating
his problem without specifying the steps for solving it, the
more nonprocedural the language.

All third generation high level languages are procedure
oriented. The data manipulation language in dBASE III PLUS
can be used in either programming or command mode. When
commands are used in the command mode, such as "FIND
EMPLOYEE 12345", the language is called nonprocedural. The
same command can be incorporated into a dBASE program where
the language is used as other high level languages as a
procedural language.

2. General Vs. Special-Purpose

A general-purpose language is designed with no specific
type of application in mind. A special-purpose language is
one designed to satisfy a single objective. The objective
might involve application area, the ease of use for a partic
ular application, or the efficiency of the compiler or
object code. Most languages are created to serve a specific
purpose. Examples are COBOL for business data processing,

7

PASCAL for teaching programming concepts and LISP for list
processing. Special-purpose languages enable programmers to
solve narrowly defined problems.

A built-in micro DBMS language like the one in dBASE
III PLUS is also a special-purpose language. It is a
command language designed for simplifying the construction
of complex database management functions.

3. Interpreted Vs. Compiled

High level languages must be translated into machine
language before they can be executed. This is usually
accomplished in one of two ways: with a compiler or with an
interpreter.

A compiler translates the program in its entirety. The
result is a machine language program which can then be
executed as many times as desired. An interpreter translates
the source program one line at a time, first translating
the line and then executing it. The cycle is repeated for
each line of the program. Compiled programs usually run
faster than interpreted programs. This is because that
each line of a compiled program is translated once and
only, regardless of how many times it is executed.

An interpretive language is better in the aspect that
it permits interaction with the program during execution.
This simplifies testing and verification of program logic

and structure. BASIC and dBASE III PLUS are examples of
interpreted languages.

8

4. Batch Vs. Interactive

Batch programming is most often used to solve problems
for which immediate responses are not required. Most batch
programs are used to solve specific problems that occur
according to some predetermined schedule.

Interactive programming allows the programmer or end
user to communicate directly with the computer in a conver
sational fashion. An interactive language will report an
error for an incorrect input instantly upon entering a line.
The programmer can correct the error while the purpose of
the line is still in mind. Batch programs usually produce
an error report at the end of the input data set. The
programmer then corrects the input data offline and executes
the program again. dBASE III PLUS can be used to implement
both batch and interactive applications.

CL GENERAL FEATURES OF HIGH LEVEL LANGUAGES

1. Data Representation

All computers process data in one form or another. A
constant is a data value that does not change. A variable
can be thought of as a place to store a data value. Unlike
constants variables can take on new values. In most high
level languages a particular variable can hold only one

9

type of data(real, integer, or string). Some languages
require the user to declare in advance the variables that
will be used in the program and what type each of these
variables will be. Other languages incorporate default type
variables based on the first letter of the variable's name.

High level languages that are very particular about the
types of variables used, how they are declared, and how they
are used are called strongly-typed languages. Examples of
these are assembly and PL/1. Languages that are less
sensitive to such matters are said to be loosely-typed such
as dBASE III.

2. The Assignment Statement

An assignment statement is used to assign a particular
value to a variable. Most languages denote this operation
by a symbol called an assignment operator. They use either
the equal sign(=) or a colon followed by an equal sign (:=)
for the assignment operator. In both PL/1 and dBASE III
PLUS, a programmer can write X = X + 1. It does not mean
that X + 1 is equal to X. What this statement really says
is "Assign the value of X plus one to X".

3. Arithmetic Expression

An arithmetic expression operates on a numeric value
according to a given set of rules. In most high level
languages an arithmetic expression followed by an arithme-

tic operator (+, *, /, etc.)/ then followed by another
arithmetic expression is also an arithmetic expression.

10

The expression is one of the key features that distin
guishes high level languages from low level languages. In
a low level language only one thing can be done at a time,
that is one operation per statement. An arithmetic expres
sion in a high level language permits the programmer to
accomplish many calculations with only one statement.

4. Logical Expression

A logical expression evaluates to a logical value, that
value being true or false. The most common form of logical
expression involves relational operators such as >, <, =,
<=, >=, and <>. High level languages also feature logical
operators such as AND, OR, and NOT. More complex logical
expressions can be constructed by combining simpler logical
expressions using AND and OR. Ambiguity can be avoided in
a complex logical expression by liberal use of parentheses.

5. Input and Output

When programming in a microcomputer environment input
data can be input from a keyboard or a diskette. The output
can be directed to a screen, a diskette or a printer. Some
languages can handle all combinations. In most languages
the input function is handled by a READ statement and the
output function is handled by a WRITE or a PRINT statement.
The various languages differ in how much control the user

11

has over the format of the output. Useful formatting fea
tures include the ability to control the number of decimal
places printed, the total numer of columns allocated to a
number, the number of spaces between printed columns, and so
forth.

6. Control Structures

The natural flow of control in a program is sequential.
A more complicated control structure is needed for all but
the simplest applications. Following are the typical
control structures.

â _ IF-THEN-ELSE

The IF-THEN-ELSE contol structure allows the program
to handle basic decisions. If the logical expression is
true, the program executes the statement following THEN and
passes control to the statement following ENDIF. If the
logical expression is false, the program executes the state
ment following ELSE. In either case the next statement to
be executed is the statement following ENDIF.

CASE

The IF-THEN-ELSE statement allows a two-way selection:
the program selects one of two sets of statements to exe
cute. Often it is necessary for the program to choose
between more than two alternatives. The CASE statement
provides a convenient way to do this.

12

c. Conditional Loops

One thing that computers do especially well is repeti
tion. The control structure that performs repetitive tasks
in a computer language is called a loop. There are two
major types of loops in high level language, the indexed
loop and the conditional loop.

Whereas the indexed loop executes a group of statements
a specified number of times, the conditional loop executes a
group of statements and tests against the specified condi
tion each time through the loop until a specified condition
is met. A few languages offer a variant of the conditional
loop in which the conditional testing takes place at the
bottom of the loop rather than at the top.

cL GOTO

The GOTO statement allows program control to be trans
ferred to any arbitrary place in a program. While it
provides a great convenience, indiscriminant use of the GOTO
statement can lead to programs that are hard to read as well
as difficult to debug and modify. In some languages GOTO
is needed in order to emulate control structures such as
PERFORM-UNTIL (in COBOL) that are not directly implemented.

13

7. Subprograms

a. Subroutines

It is often more convenient to divide programs into
more-or-less self-contained segments or modules. Such
modules are called subroutines. A subroutine can be placed
within the program or be external to the program. Subrou
tines are usually activated by a CALL statement. When the
subroutine has finished, program control returns to the
statement following the CALL statement. Parameters and
arguments can be used to pass values back and forth between
the subroutine and the calling program.

There are several advantages to using subroutines: 1)
The use of a subroutine permits large tasks to be divided;
2) Since a CALL statement can occur as many times as neces
sary in a program, the use of subroutines can often save
considerable coding; 3) A commonly-used subroutine can be
easily transported from one program to another.

b. Functions

Functions are similar to subroutines except in the
manner in which they are invoked and in the manner in which
values are returned to the invoking program. Some functions
are supplied as part of a language such as square root(SQRT)
in FORTRAN. The function is invoked by writing its name in
an expression as if it were simply another variable. An
example in FORTRAN is X = SQRT (4.0).

14

Functions can also be defined by the user in much the
same manner as subroutines are defined. One difference is
that the name of the function is usually treated as if it
were a variable within the body of the function definition.
The value of the function is returned through the function
name.

c. Recursion

A function or a subroutine is said to be recursive if
it calls or invokes itself. Recursion is different from
iteration. Iteration is the repetition of a sequence of
instructions until a given condition is met. Each perfor
mance is carried to completion, the condition is examined, and
a new performance commenced if the result is unsatisfactory.
In contrast to this recursion involves a self-nesting. The
performance is not carried to completion before the condi
tion is examined. Instead, the condition is examined within
the performance. If the result is unsatisfactory, the
whole performance is called again as a subroutine of the as
yet uncompleted original one.

A recursive definition must always contain one non-
recursive alternative or it becomes circular in the
vicious sense. This is similar to an iterative process
since this must also contain some means of "getting out of
the loop" - whether by requiring a number of iterations
which can be shown to be finite, or by requiring an exit
when a convergence test has been ultimately satisfied.

15

8. Data Structures

There are many aspects to the use and representation of
data structures in the field of computers. Some of the most
commonly used data structures are arrays, lists, trees,
stacks, and queues[3]. Each of these data structures should be
carefully examined and selected to carry out the different
data processing needs.

An array is a data structure whose elements may be
selected by integer selectors called "indexes". The set of
all elements of an array are generally created and deleted
at the same time by means of declarations such as DIMENSION
A (1,100) in FORTRAN. The execution of the declaration
statement causes allocation of a block of storage space
large enough to hold the arrays.

Similar to array structure, list structures may be
characterized by their accessing creation and deletion oper
ators. In a linear list each list element has an unique
successor and the last element has an "empty" successor
field. Insertion and deletion of elements in a list is
accomplished by: 1) creation of a new list cell; 2) updating
pointers of existing list elements and the newly created
list elements. Elements of a list are accessed by walking
along a pointer chain starting at the head of the list.
List structures are flexible storage structures for objects
of variable sizes, or tables of fixed-size objects in which
insertions and deletions are frequently required.

16

A tree is a list in which there is one element called
the "root” with no predecessor and in which every other
element has an unique predecessor. Therefore, a tree is a
list that contains no circular lists. In addition, no two
list elements may have a common sublist as a successor.
Elements of a tree which have no successor are called
"leaves" of the tree. Tree elements, just as list elements,
are generally accessed by walking along a pointer chain.
However, the guarantee that there are no cycles or common
sublists makes it possible to define orderly procedures for
insertion and deletion of subtrees.

A stack is a linear list in which elements are acces
sed, created, and deleted in a last-in-first-out (LIFO)
order. In order to access an element in a stack it is
necessary to delete all the more recently entered elements
from the stack. Thus, only the top of the stack is accessi
ble. The two principle stack operations are pop and push.

A queue is a linear list in which elements are created
and deleted in a first-in-first-out (FIFO) order. The
insert operation can always be performed since there is no
limit to the number of elements a queue may contain. The
delete operation, however, can be applied only if the queue
is nonempty.

17

9. File Handling

Data stored in files can be organized and accessed in
different ways. A sequential file must be read from begin
ning to end. It is used most often when every record in the
file must be processed during a run. To read a record in the
middle of a sequential file, the program must read from the
first record all the way to the record desired.

Direct access files are frequently called random
access files. Any record in a direct access file can be
accessed directly. To access a record in a direct access
file, the record location must be known. Thus the program
mer must set up some means of keeping track of information
content and location. This usually requires maintaining an
index of some sort. Some languages such as COBOL provide
for automatic maintenance of an index for a file. ISAM file
is an example. This can remove a significant burden from
the programmer.

18

III. MICRO DBMS PROGRAMMING LANGUAGE

A^ OBJECTIVES OF MICRO DBMS

A micro DBMS provides a convenient and efficient means
to implement and access a database in a systematic manner.
A good micro DBMS should accomplish the following objec
tives [4] :

1. Data Independence

The most important feature that a DBMS offers is data
independence. An application is data dependent if it is
impossible to change the way the data is physically stored
or how it is accessed without affecting the application
drastically. Data independence allows new data items to be
added, deleted or the overall logical structure expanded
without forcing existing programs to be rewritten. A data
field may be stored in a form that will improve performance
or economize storage space, whileas different applications
can still view it the way they need to. Hardware and physi
cal storage techniques can also be changed without causing
application programs to be rewritten.

2. Controlled Redundancy

Data items will be stored only once except where there
are technical or economic reasons for redundant storage.
Different users who perceive the same data differently can
employ them in different ways. In a time-critical

19

processing situation, a trade-off between minimizing redun
dancy and maximizing processing time can be accepted.

3. Integrity Control

Integrity refers to the ability of a DBMS to ensure that
the database contain only accurate data and protect the
database from hardware, software and operational failure.
Examples of database integrity support are record locks,
recovery/restart, and security. In a multiuser environment
DBMS's usually use record locks to control concurrent record
updates. Recovery/restart requires saving of before and
after update record images to some device. When necessary
they can restore the before image of the record to a logical
point and restart the application without destroying the
integrity of the data. This is a complex process and usually
is implemented in a mainframe environment. Backup and
restore still is the most often used integrity control
measure in a microcomputer environment.

4♦ Ease of Use

Complexity is hidden from the users by the DBMS. Users
can gain access to data in a simple fashion. A query, non
procedural or report generation language should permit some
end users to bypass the application programming step.

20

5♦ Security and availability

With proper security unauthorized access to the data
will be prevented. The same data may be restricted in
limited ways to different users.

Data is quickly available to users at almost all times
when they are needed. A multiuser DBMS allows the same copy
of the database to be shared among multiple online users and
batch programs.

JL COMPONENTS OF A MICRO DBMS

As with dBASE III PLUS, most micro DBMSs provide the
programmers with the following application-building tools:

1. A data definition command language that allows
users to define databases with just a few com
mands. Database restructuring can also be done in
a similar way with minimal user involvement.

2. An online full screen data display facility allows
users to add, modify and display data in the data
base sequentially without programming.

3. Sorting and indexing are convenient tools to ar
range records in a specific order with one command.
Sorting or indexing can be performed on multiple
fields.

21

4. A menu-driven utility allows users to accomplish
most database management operations by selecting
appropriate menu and submenu options. Novice
programmers can use this tool until they are more
familiar with the software. Once they have gained
some expertise with the process, they can use
commands that allow them to specify their require
ments .

5. A full screen text editor that allows programmers
to code and edit the program source code.

6. A data manipulation language that gives the pro
gammer a more advanded and efficient way to build
an application. dBASE III PLUS command programs
can access the database fields defined earlier
with data definition commands, without further
defining it within the programs. Once dBASE files
are opened, they can be used for input and output.

7. A query facility that provides quick online dis
play of the requested information that meets a set
of conditions the user defines without program
ming. A menu-driven assistant utility can be
used to create a query file which stores the
filter conditions and can be invoked later.

8. A report generator that allows users to customize
their printer or screen reports using the ASSIST

22

menu-driven utility. A similar label generator is
also available.

9. A screen generator that allows easy creation of a
customized data entry screen. Each screen field
is tied to a data field of a database record.
More complex screen input/output functions can be
implemented in a program using screen I/O related
commands.

(L SPECIAL FEATURES OF dBASE III PLUS COMMAND LANGUAGE

Among all the components mentioned above, the data
manipulation language is the selected focus for this paper.
It is this embedded command language that makes dBASE III
PLUS a powerful data management tool. Thus it is worth
while to take a closer look at how dBASE III PLUS is differ
ent from the non-database high level procedural language
in a microcomputer environment.

dBASE III PLUS can operate in two modes: direct command
mode and programming mode. In direct command mode the
programmer issues a command at dBASE's "dot prompt". If
the syntax is correct dBASE immediately performs the command
and displays the results on the screen. With the direct
commands available in dBASE III PLUS the user can exploit
all the database management facilities dBASE has to offer.

23

For those whose needs are more complex, dBASE III PLUS
also provides a complete programming language. To code or
edit a dBASE program the programmer can access the dBASE
text editor via the MODIFY COMMAND statement. To execute a
program only requires one to issue a DO command with the
program name. A program can be executed in either the batch
mode or online interactive mode. The output listing can be
directed to a printer or a screen.

All but a few of the dBASE direct commands are designed
for practical use within a program as well as from the dot
prompt. In addition to the vocabulary of direct commands,
dBASE includes a set of instructions designed specifically
to define the logic and structure of a program. These
instructions provide the essential feature of a traditional
high level language, making dBASE far more than just a
command-driven database manager.

Figure 1 compares the general programming features
between dBASE III PLUS and some other high level languages.
The following sections present some of the important dBASE
III PLUS features.

1. Variables

A variable is simply a name that represents a certain
data value. Programs typically need storage space for spe
cific data items that are required during program execution.
In a dBASE program the major data structure usually con-

24

BASIC C COBOL dBASE FORTRAN PLZ1

1. Math
Capabilities

4 4 2 3 5 4

2. Character
Handling

5 5 4 5 2 4

3. Data
Structures

3 5 5 5 3 5

4. Control
Structures

3 5 3 3 3 4

(IF-THEN-ELSE, CASE, RECURSION, CONTROLLED LOOP)
5. Console

Input/Output
5 4 2 5 4 4

6. File
Input/Output

4 4 5 5 4 4

7. Subroutine
Interface

2 3 2 4 5 4

8. Low-level
Operation

3 5 2 2 2 3

9. User 5 3 3 5 3 4Friendliness
(English-like, Ease of Learning, Ease of Coding,
Ease of Debugging, Ease of Maintaining,
Self-documentation)

Rating Scale: 5 = Excellent 1 = Poor

Figure 1: High Level Languages Comparison[5,6]

25

sists of open databases with which the program is working.
However, other intermediate data items may also come into
play and the program sets aside memory space for such items
through the creation of variables. The type is determined
when data is stored in the variable. dBASE III PLUS varia
ble is loosely-typed. There is no need to declare variable
type before they are used. dBASE uses the STORE command or
"=” to assign a value to a variable. However, a program
can also store a value for a variable from the screen via
input commands such as INPUT, ACCEPT, @... GET. To gain
access to the data item the program simply refers to the
name of the variable in which the value is stored.

A variable in a dBASE program is a name assigned to a
memory location that can be used to hold a data element, not
a record. Most high level languages allow the programmer
to store related information in temporary storage as a
record so it can be retrieved and handled as a record.

2. Input and Output

dBASE has the input/output commands to receive informa
tion from the keyboard; and to send messages and information
to the display terminal or printer.

a. The print commands ? and ?? are simple ways to
send lines of text to the screen or printer.

b. The §... Say command presents formatted data at a
specific location on the screen. To switch output

26

to the printer no program change is required.
The "SET DEVICE TO PRINTER" command can be issued
at the dot prompt before printing.

c. The INPUT, ACCEPT, @... GET, READ, and WAIT com
mands accept information from the keyboard in a
variety of ways.

3. Control Structures

A control structure defines alternative courses of
action in a program. The choice of which course to take
depends upon the value - TRUE or FALSE - of a conditional
expression.

dBASE III PLUS supports the three most common control
structures found in other high level languages: IF-THEN-
ELSE, DO CASE, and DO WHILE. Nested loops are allowed. Two
special loop control related commands are LOOP and EXIT.
The LOOP command transfers execution to the beginning of the
DO WHILE ... ENDDO structure, and the EXIT command aborts the
looping process while execution continues with the command
line following the ENDDO.

4. Modular Programming

The dBASE language encourages modularized, top-down
approach programming. The GOTO command in dBASE is strictly
a file operation command, not a program logic transfer
command

27

Each program module ends with a RETURN command which
transfers excution back to the main program. The DO command
combined with the program name will call and transfer con
trol to that program. The RETURN command in the called
program returns control to the line following the DO command
in the calling program.

Data elements created in lower level modules are not
automatically passed to higher level modules. The PUBLIC
command can be used to declare that variables created in
lower level modules, be shared by higher level modules.
Variables can also be designated as PRIVATE so that the
variables are recognized only within the module that
creates them. Unlike variables, database records are
considered public by every module in the program structure.

5. Debugging Commands

Very few programs perform perfectly during the first
execution attempt. The process of locating and correcting
the sources of program errors is called debugging. The
dBASE program provides commands such as SET TALK and SET
ECHO to help with this critical stage of program develop
ment. With "SET TALK ON" the dBASE III PLUS interpreter
will display all the interactive messages on the screen.
If some interactive messages are undesirable, users can use
"SET ECHO OFF". This causes each command line to be dis
played as it is executed. This will help users to locate a
program error in a specific command line.

28

6. Database Management Functions

dBASE III PLUS database files are usually created in
the dot prompt command mode. Once a file is created a data
entry screen is available to load the file. Users can then
add/modify/delete data as in the command mode. However,
when routine massive updates are necessary, a set of dBASE
III PLUS programs are usually written to perform the task.
In the dBASE III PLUS program the user issues a "USE"
command to open a file. The user can open multiple files
if desired. dBASE III PLUS will keep track of the record
currency for all files opened. The user then uses the
"SELECT" command to move from one file to another. To
move from one record to another within the same file, the
user can issue commands in the program such as "GOTO 5",
which means go to record 5. Other commands include: "GO
TOP" - go to the top of the file; "GO BOTTOM" - go to the
bottom of the file; "SKIP 2" - move the record pointer
forward twice; and "SKIP -2" - move the record pointer
backward twice. The "LOCATE" command sequentially searches
the active database file for a record that satisfies a
specified condition, while the "FIND" command searches for
the first data record in an indexed file with a specified
search key.

Data can be displayed, added, modified, or deleted once
the desired record location is made current. The updated
information can be obtained within the program from the

29

screen or an updated file. The "DELETE" command does not
delete records from the file, it only marks the records in
an active database file with a deletion symbol(*). Records
with a deletion symbol can be removed physically by the
"PACK" command or can be recoverd by the "RECALL" command.
Other file manangement functions which can be performed
within the program are: 1) add data records from one data
base file to the end of another file with an "APPEND FROM"
command; 2) copy, rename, or erase a file; 3) create a new
file by merging specified data records from two open files
with the "JOIN" command; 4) rearrange data records in one
or more key fields in ascending or descending order with a
"SORT" command; and 5) create, a key file in which all
records are ordered according to the contents of the speci
fied key field with an "INDEX" command.

30

IV. PROGRAMMING WITH dBASE III PLUS

A^ CSECT INTERACTION PROBLEM DESCRIPTION

Microcomputer software vendors are constantly improving
their products by eliminating bugs, adding user requested
functions, and fully utilizing the most current microproces
sor technology breakthroughs. All these improvements re
quire program updates. A piece of successful comprehensive
software involves tens or even hundreds of programs and
subroutines. Changes made to a given program may affect the
program it calls or the program that calls it. Changes made
within a program may also affect the flow of control caused
by JUMP instructions within the program. An automated
program hierarchy report system was implemented in PL/1[7]
on the microcomputer to provide complete information for all
affected programs or subroutines. With this information,
software maintenance programmers can start their job quicker
with less errors. To explore the capability of a typical
micro DBMS command language, dBASE III PLUS was chosen for
its popularity to implement the same task.

Some software packages are implemented with assembly
language because of its better utilization of storage and
fast processing speed. When implementing a program hierar
chy report system for an assembly-written software, the
control section should be the object of analysis. A control
section (CSECT) is a part of an assembly program specified
by the programmer to be a relocatable unit. All elements of

31

are to be loaded into adjoining virtual storage locations.
A CSECT can be referred to by any other CSECT or separated
assembled modules. For example, in an assembly language
written software when changes are made to a CSECT called
by 10 other CSECTs, these 10 CSECTs need to be examined
to verify the necessity for modification. To find out how
many other CSECTs will be affected by changes made to a
single CSECT, one must answer the following questions:

1. What other CSECTs are called by this CSECT?
2. What other CSECTs call this CSECT?
3. What other CSECTs are jumped to by this CSECT?
4. What other CSECTs jump to this CSECT?

To answer questions 1 and 3 one must to examine all
the CALL and JUMP instructions within a particular CSECT to
determine what the targeted CSECTs are. To answer ques
tions 2 and 4 one must examine all the CALL and JUMP
instructions in other CSECTs to check if any of the target
CSECTs match the CSECT that is to be updated. This process
does not involve complicated decision making but is rather
repetitive. It is a perfect microcomputer programming task
which can help reserve the programmer's energy for more
creative work. Besides, the computer can do the job much
faster and more efficiently.

The Intel 8085A assembler instruction set is assumed
to be used in the assembly programs analyzed here. The task
can be implemented in two stages. First from the assembly

32
output listing organize the information into meaningful data
structures, so they can be used in the second stage. For
each CSECT:

a. What are the beginning and ending addresses for
this CSECT?

b. What are the labels within this CSECT? What are
the label addresses?

c. What are the exit points within this CSECT? Do
they exit to other CSECTs via JUMP or CALL
instructions? What are the exit addresses?

In the second stage the CSECT Interaction Hierarchy
analysis programs use the files built in the first stage to
examine every exit point in each CSECT. If an exit in CSECT
A has an exit type "CALL'* and the targeted CSECT B can be
found, an output record is created to show that CSECT A
calls CSECT B. Also another output record is created to
indicate that CSECT B is called by CSECT A.

If an exit in CSECT A jumps to a label within CSECT B,
an output record is created showing that CSECT A jumps to
CSECT B and another output record is built to show that
CSECT B is jumped to from CSECT A. If an exit label cannot
be found among all the CSECTs and all label names have been
processed, this exit is flagged as "unresolvable".

The CSECT Interaction Hierarchy Report should contain
the following information for each individual CSECT: 1) list
all the CSECTs it calls; 2) all the CSECTs it is called by;

3) all the CSECTs it jumps to; 4) and all the CSECTs from
which it is jumped. The unresolved exits should also be
indicated.

IK INPUT/OUTPUT

In this paper it is assumed that the first stage has
already been implemented. Three dBASE III PLUS input files
were created with the structures shown in Figure 2.

dBASE III PLUS CSECT Interaction Hierarchy programs
listed in Appendix A create an output data base file called
•'OUTPUT” to hold all information required for generating the
CSECT Interaction Hierarchy Report(See Appendix D). The
OUTPUT file structure is shown in Figure 3.

A sample of the CSECT Hierarchy Report is shown in
Figure 4. Complete input and output file structure and data
can be found in Appendix B and C respectively.

C. dBASE III METHODOLOGY

The hierarchy of CSECT interaction is constructed from
the three dBASE III PLUS input files; CSECT, EXIT, and LABEL
files. For each CSECT in the CSECT file, it is determined
whether it is part of a linked CSECT group. Each linked
group of CSECTs is assigned a number. If the CSECT is part
of a linked group, the link field in the CSECT record is
set to the assigned number. If the CSECT is not linked the
link field is set to zero. The link group numbers created
in the CSECT file are copied to the corresponding records

33

34

CSECT file: Provide CSECT information for all CSECTs.

Field Name Type Width Description

1 CSECTNO Numeric 3 Csect Number2 CSECTNAME Character 8 Csect Name3 GEGNADDRS Numeric 4 Csect Beginning Address4 ENDADDRS Numeric 4 Csect Ending Address
5 CSECTLINK Numeric 3 Csect Link Number

EXIT file: Provide exit information for all exits.

Field Name Type Width Description

1 ECSECTNO Numeric 3 Csect Number
2 ECSECTNAME Character 8 Csect Name
3 EXITNAME Numeric 8 Csect Exit Names
4 EXITADRS Numeric 4 Csect Exit Address
5 EXITYPE Character 1 Exit Type

(1 - Call, 2 - Jump)
6 EXITLINK Numeric 3 Csect Link Number

LABEL file: Provide label information for all labels

Field Name Type Width Description

1 LCSECTNO Numeric 3 Csect Number
2 LCSECTNAME Character 8 Csect Name
3 LABELNAME Character 8 Csect Label Name
4 LABELADRS Numeric 4 Csect Label Address
5 LABELINK Numeric 3 Csect Link Number

Figure 2: dBASE Hierarchy Application Input Files

35

OUTPUT file:

Field Name

1 OCSECTNO
2 ORECNO
3 OCSECT1
4 OEXITYPE

5 OCSECT2
6 UNRESOLVE

Provide information to build Csect Hierarchy
listing.

Type Width Description

Numeric 3 Csect Number
Numeric 3 Output Record Number
Character 8 Csect Name
Numeric 1 Relations Between 0CSECT1

& 0CSECT2
(1 - Call,
2 - Called by.
3 - Jump to,
4 - Jumped to by)

Character 8 Target Csect Name
Character 1 'Y' When Exit Address not

found

Figure 3: dBASE Hierarchy Application Output File

36

DATASET: TSS2525.CSECT.DATA

CSECT HIERARCHY
IAOEPARM

CSECT IAOEPARM DOES NOT CALL ANY CSECT
CSECT IAOEPARM IS NOT CALLED BY ANY CSECT
CSECT IAOEPARM DOES NOT JUMP TO ANY CSECT
CSECT IAOEPARM IS NOT JUMPED TO BY ANY CSECT
ICOEICOT

CSECT ICOEICOT DOES NOT CALL ANY CSECT
CSECT ICOEICOT IS NOT CALLED BY ANY CSECT
CSECT ICOEICOT DOES NOT JUMP TO ANY CSECT
CSECT ICOEICOT IS NOT JUMPED TO BY ANY CSECT
IEVEADDR

CSECT IEVEADDR DOES NOT CALL ANY CSECT
CSECT IEVEADDR IS NOT CALLED BY ANY CSECT
CSECT IEVEADDR DOES NOT JUMP TO ANY CSECT
CSECT IEVEADDR IS NOT JUMPED TO BY ANY CSECT
IKBEKBDT

CSECT IKBEKBDT DOES NOT CALL ANY CSECT
CSECT IKBEKBDT IS NOT CALLED BY ANY CSECT
CSECT IKBEKBDT DOES NOT JUMP TO ANY CSECT
CSECT IKBEKBDT IS NOT JUMPED TO BY ANY CSECT
IAOEAOFF

CSECT IAOEAOFF DOES NOT CALL ANY CSECT
CSECT IAOEAOFF IS NOT CALLED BY ANY CSECT
CSECT IAOEAOFF DOES NOT JUMP TO ANY CSECT
CSECT IAOEAOFF IS NOT JUMPED TO BY ANY CSECT

Figure 4: Example of CSECT Hierarchy Report

37
in the LABEL and EXIT file to avoid the need for cross-
referencing two tables. This allows minimizing of extra
I/Os.

The basic program algorithm consists of the following
steps:

1. Starting with the first CSECT in the CSECT file,
the linked field is checked to determine whether
the CSECT is part of a linked group. A CSECT is
part of a linked group if its link number is not
zero.

2. If the CSECT is part of a linked group and the
exit label is not blank, then:

a. The exit label is compared to the names of the
other CSECTs in the same linked group.

b. If the exit label is not found in 2.a., the
exit label is compared to the names of the
CSECTs not in the linked group.

c. If the exit label is not found in 2.b., the
exit label is compared to the labels within
the other CSECTs in the same linked group.

d. If the exit label is not found in 2.c., the
exit label is compared to the labels within
CSECTs which are not part of the linked
group

38

e. If the exit label is not found in 2.d., the
exit label is not a label that has been
processed and it is called "unresolvable".

3. If the CSECT is not part of a linked group
(unlinked), then:

a. the exit label is compared to the names of
the other CSECTs.

b. If the exit label is not found in 3.a., the
exit label is compared to the labels in the
other CSECTs.

c. If the exit label is not found in 3.b., the
exit label is not a label that has been
processed and it is called "unresolvable".

4. Repeat steps 2 and 3 for the rest of the exit
points in the same CSECT.

5. Repeat steps 2 to 4 for the rest of the CSECTs.

During the processing of steps 1 to 5 above, a CSECT
hierarchy output file is created. The output file is sorted
on OCSECT_NO, OEXITJTYPE, and ORECNO. The sorted output
file is then processed to produce the printout of the CSECT
hierarchy which consists of an interaction table for each
CSECT processed.

39

lb PL/1 SOLUTION VS. dBASE III SOLUTION

1. Methodologies

The dBASE III programs build the CSECT hierarchy into a
single dBASE III file called OUTPUT. Each record has two
CSECT names. The relation between the two CSECTs is repre
sented by a single digit number. A "1" means the first
CSECT calls the second CSECT. A "2" means the first CSECT
is called by the second CSECT. A "3" means the first CSECT
jumps to the second CSECT. A ”4" means the first CSECT is
jumped to from second CSECT.

The OUTPUT file is then sorted on the first CSECT7s
number and the relation flag so the print programs can
process the sorted OUTPUT file sequentially and produce
the report in the requested format [Figure 4]. The PL/1
program[7] handles the problem in a more complex way. It
first builds a circular CSECT list which contains all the
CSECTs to be processed. For every CSECT in the CSECT linked
list it then builds two other linked lists - EXIT_LIST and
EXITFROMLIST. The EXIT_LIST contains all the CSECTs that
are called or jumped to by this CSECT. The EXIT_FROM_LIST
contains all the CSECTs that call or jump to this CSECT.
The pointers to these two lists are saved in the CSECT
circular list.

When all CSECTs are processed the print subroutines
process the CSECT circular list from top to bottom. For
each CSECT to be printed, the two associated linked lists

have to be processed twice. The PL/1 subroutines examine
the EXIT_LIST to print all the CSECTs it calls and then it
examines the EXIT_FROM_LIST to print all the CSECTs that
call this CSECT. Then these two linked lists are re
examined to print all the CSECTs this CSECT jumps to and
all the CSECTs that jump to it.

The dBASE III methodology is more straightforward. It
can be divided into two parts. The first part builds the
hierarchy into a file. The second part is to print the
hierarchy from that file. Since dBASE III is coded in small
modules and does not require compiling, the programs in the
second part can be re-executed to reproduce the report
without rebuilding the output files. Alternatively they can
be easily modified to produce different reports based on the
same file.

2. Data Structures

Figure 5 shows the linked list data structure adopted
by the PL/1 program. Two types of pointers must be main
tained by the programmer in this case. The first type is
the "next record" pointer. Every record in the linked list
must carry a next record pointer in order to allow walking
through the list. Since the next CSECT pointer is unknown
until the next record is created, the current CSECT
pointer has to be saved. When the next CSECT record is
created and the pointer allocated, the saved pointer is
used to store this next CSECT pointer in the previous

40

CSECT

41

P3 P4 P5 P6

PI — >

P2 — >

CSECT Information • • • •

• • • •

• • • *
• • • •

• « • •

CSECT LIST

P7 P8 P9
• • •

• • •

• • •

• • •

LABEL_LIST SXIT_LIST EX I T_FROM_]LIST

'.': Pointer
PI : Pointer to the linked circular CSECT_LIST
P2 : Pointer to the current CSECT
P3 : Pointer to the linked LABEL_LIST
P4 : Pointer to the linked EXIT_LIST
P5 : Pointer to the linked EXIT_FROM_LIST
P6 thru P9: Pointers to the next entry in various linked

lists

Figure 5: Data Structure Used in PL/I programs

42

In the circular CSECT list other than next CSECT
pointers, each CSECT record has three other pointers. Each
of these pointers points to a different link list. Pointer
EXIT_HEAD_PTR points to EXIT_LIST which contains all the
exits in this CSECT and the corresponding exit-to CSECT
names. Pointer LABEL_HEAD_PTR points to LBEL_LIST which
contains label information for all the labels in this CSECT.
Pointer EXIT_FROM_HEAD points to a list of other CSECTs
which either CALLS or JUMPS TO this CSECT.

Very often multiple link lists are built or accessed
concurrently. Just trying to keep track of each pointer's
function is a difficult task. This cumbersome pointer main
tenance often inteferes with the logical thought process
needed for problem resolution.

To determine whether an exit label of a particular
CSECT matches a label in other CSECTs, the exit label
address must be checked to see if it falls within the
beginning and ending addresses of a CSECT. If it does then
the next task is to find the matching label in that CSECT.

To perform the same task in dBASE III PLUS programs,
LABEL_NAME in the LABEL file is examined. If a match is
found, the LCSECT_ NAME on the same record gives the CSECT
name of the matching label. Figure 6 shows the PL/1 program's
complex label checking process.

43

LINKCHECK: PROC;
NEXT = CURRENT_CSECT -> NEXT_CSECT;
/* DETERMIN IF THE EXIT ADDRESS IS GREATER THAN THE */
/* BEGINNING ADDRESS OF A CSECT AND LESS THAN OR EQUAL */
/* TO THE ENDING ADDRESS OF A CSECT. */
DO WHILE(NEXT ->= CURRENT_CSECT);
IF NEXT -> LINK = CURRENT_CSECT ->LINK THEN

IF (EXIT_POINT -> EXIT_ADR > NEXT -> BEGCSECTADR) &
(EXITPOINT -> EXIT_ADR <= NEXT -> END_CSECT_ADR)

THEN
DO;
CALL LABEL_CHECK;
RETURN-

END;
ELSE

ELSE
NEXT = NEXT -> NEXT_CSECT;

END;

LABEL_CHECK: PROC;
/* DETERMINE IF EXIT LABEL MATCHES A LABEL IN THE CSECT */
/* PREVIOUSLY FOUND. */
DO WHILE (LABEL_PTR ->= NULL);
IF LABEL_PTR -> LBEL_LIST.LBEL_NAME =

EXIT_POINT -> EXIT_LIST.EXIT_LBEL THEN
DO;
EXIT_POINT-> EXIT_LIST.CSECT_EXITED_TO =
NEXT -> CSECT_LIST.CSECT_NAME;

CALL UPDATE_DATA;
RETURN;

END;
ELSE

LABEL_PTR = LABEL_PTR -> LBEL_LIST.NEXT_LBEL;
END;
EXIT_POINT -> EXIT_LIST.CSECT_EXITED_TO =
NEXT -> CSECT LIST.CSECT NAME;

Figure 6. Label Checking Logic in PL/I Programs

44
3. Record Handling

In the PL/1 program input sequential files are read
into storage and are built into linear linked list data
structures. Each item in the list has a pointer used to
access the next item in the list.

If CSECTLIST is the name of a linked list, CURRENT_
CSECT is the external pointer that points to the list and
NEXT_CSECT is the internal pointer that points to the next
record in the list. The syntax for updating the external
pointer in order to point to the next CSECT in the list
structure in the PL/1 program is:

CURRENT_CSECT = CURRENT_CSECT -> CSECT_LIST.NEXT_CSECT.
When there is a need to skip a record, the syntax will

repeat as follows:
CURRENT_CSECT = CURRENT_CSECT -> CSECT_LIST.NEXT_CSECT
CURRENT_CSECT = CURRENT_CSECT -> CSECT_LIST.NEXT_CSECT

dBASE III PLUS command language has an integrated DBMS.
dBASE III PLUS keeps track of records for the users. In
order to get to the next record the programmer simply
codes "SKIP 1" or "GOTO NEXT". To skip one record and get
to the third record simply code "SKIP 2".

Another powerful record handling feature is the LOCATE
command. The LOCATE command will search an entire file from
top to bottom until the selection criteria specified in the
command is met or the end of the file is reached. The
programmer does not need to code the loop control structure
or set up a counter to handle the repetitive reading of the

45

records. This makes the program source code shorter in
length and much easier to maintain. The LOCATE command is
an example of the nonprocedural language capability of dBASE
III PLUS. The dBASE III PLUS programmer can use this com
mand to tell the computer which records he wants instead of
giving detailed instructions for the process. Figure 7
shows examples of searching a CSECT within the same linked
CSECT group with PL/1 and dBASE III PLUS. It is obvious
that the dBASE syntax is more English-like and user friendly.

4. Variables

In PL/1 variables are strongly-typed. Each variable
must be declared as a certain type and length before it can
be used. dBASE variables are loosely-typed. There is no
need to declare a variable. The variable's type is deter
mined by the value stored in it. The variable types in
dBASE are oriented toward data processing business applica
tions and are: character, numeric, date, memo, and logical.

5. File Definition

All dBASE III files are defined outside the program.
The file definition and creation is independent of the
program. The CREATE command with an acceptable file name
brings up the field definition screen for defining the
specification of each data field, such as its name, type and
width. In the PL/1 program both the input and output
files have to be defined.

46

/* DETERMINE IF THE EXIT LABEL MATCHES A NAME OF A CSECT */
/* IN THE SAME LINKED GROUP */

dBASE III PLUS:

LOCATE FOR CSECTNAME = TEXITNAME .AND. CSECTLINK =
TEXITLINK .AND. CSECTNO <> TCSECTNO

IF .NOT. EOF()
DO OUTPUT

ENDIF

PL/I:

DO WHILE (NEXT ->= CURRENT_CSECT);
IF CURRENT_CSECT -> LINK = NEXT -> LINK THEN
IF EXIT_POINT -> EXIT_LBEL = NEXT ->

CSECT_LIST.CSECT_NAME THEN
DO;
EXIT_POINT -> CSECT_EXITED_TO = 7
CALL UPDATE_DATA;
RETURN;

END;
ELSE

ELSE
«

NEXT = NEXT -> NEXT_CSECT;
END;
NEXT = CURRENT CSECT -> NEXT CSECT;

Figure 7 Example of Powerful dBASE Command Language

47
6♦ Sorting and Indexing

In a linked list structure if the CSECTs must be stored
in a certain sequence, it is the programmer's responsibility
to plan ahead and implement the record insertion logic along
with the necessary sorting criteria into the program.

In a dBASE environment sorting can be added to the
program logic by inserting a SORT command. The SORT command
does not change the record sequence in the original file.
It creates an output file to hold the resequenced data.
Sorting can also be done while in the command mode by keying
the same SORT command at the dot prompt on the screen. This
is very helpful for testing multiple sorted fields.

In the OUTPUT file created by dBASE CSECT interact
programs, the data item OCSECTNO identifies the source
CSECT. 0CSECT1 is the name of the source CSECT. 0CSECT2 is
the name of the targeted CSECT. OEXITYPE is the exit type.
If OEXITYPE = 1, it means OCSECT1 calls OCSECT2; if
OEXITYPE = 1 and UNRESOLVE = "Y", then it means 0CSECT1
calls an unresolvable 0CSECT2. OEXITYPE = 2 means 0CSECT1
is called by 0CSECT2; OEXITYPE = 3 means 0CSECT1 jumps to
0CSECT2; and OEXITYPE = 4 means 0CSECT1 is jumped to by
0CSECT2.

These output records are created for every exit in each
CSECT in a sequential manner. An example of an unsorted
file is shown in Figure 8. Sorting on OCSECTNO and OEXITYPE
will group all OUTPUT records for each CSECT together in the

1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
26
9

10
10
11
11
12
12
13
26
13
13
26
13
14
14
15
15
16
16
17
17
19
19
20
20
21
21
22
17
22
22

48

1IAOEPARM1
2IAOEPARM3
3ICOEICOT1
4ICOEICOT3
5IEVEADDR1
6IEVEADDR3
7IKBEKBDT1
8IKBEKBDT3
9IAOEAOFF1
10IAOEAOFF3
11ICCEPARM1
12ICCEPARM3
131EVEADDR1
14IEVEADDR3
15IIOEAREA1
16IIOEAREA3
171CCECLMP1ITEEABRT
181TEEABRT2ICCECLMP
191CCECLMP1IWTEWAITY
20IEXEPARM1
21IEXEPARM3
22IEVEADDR1
23IEVEADDR3
241IOEAREA1
25IIOEAREA3
2 6IEXEEXER1ITEEABRT
2 7ITEEABRT2IEXEEXER
281EXEEXER1IWTEWAITY
2 9IEXEEXER1ITEEABRT
30ITEEABRT2IEXEEXER
31IEXEEXER1IWTEWAITY
32IITEPARM1
33IITEPARM3
34IEVEADDR1
35IEVEADDR3
36IIOEAREA1
37IIOEAREA3
38IITEINIT1
39IITEINIT3
40IEVEADDR1
41IEVEADDR3
42IIOEAREA1
43IIOEAREA3
44IKBEKBDT1
45IKBEKBDT3
4 6IMDEMAIN1IITEINIT
47IITEINIT2IMDEMAIN
48IMDEMAIN1IDMEDISPY
4 9IMDEMAIN1IWTEWAITY

Figure 8: OUTPUT File Not Sorted on ORECNO

49
call, called by, jump to, and jumped to by sequence which
is required on the printout. However if a CSECT has multi
ple OUTPUT records for a particular exit type, i.e. one
csect calls five other csects, the sorted order for these
call exits does not necessarily conform to the original
exit sequence. One way to preserve the original exit
sequence is to add a field called "ORECNO". This is the
sequence of the output records in the order in which they
are created. The first OUTPUT record will have a value of
one, the next will have a value of two, etc,. Then sorting
on OCSECTNO, OEXITYPE and ORECNO will satisfy the printout
request completely.

7. File Restructuring

The OUTPUT file in this application did not have the
field ORECNO when it was created. It was discovered later
that this field was necessary to produce the hierarchy
report in the original exit sequence. The MODIFY STRUCTURE
command provides a very convenient way to change the file
structure while preserving all the data in the restructured
file. Once the command is issued in the command mode, the
file structure screen is displayed. The user can then
modify the structure online. No further action is required
from the user. This convenient feature shortens the appli
cation implementation time. Contrarily, a file restructuring
in a PL/1 application always requires program modification
and file conversion by the programmer or user.

50

8. Execution Speed

dBASE III PLUS is a relational DBMS. This means each
file it creates is a table or sequential file and is ideal
for processing sequential data. In order to access a record
directly dBASE III PLUS uses a binary search technique to
build and access an index file. The index file only con
tains the sorted ascending indexed fields and the pointers
to the corresponding records in the database file. It is
usually faster to sort the smaller index file than the
database file itself. However in this paper to build the
304 OUTPUT records from 75 CSECT records, 174 EXIT records,
and 288 LABEL records, it takes about 30 minutes execution
time on a 10 Mhz turbo IBM PC-XT compatible system.

9. User Friendly Language

The dBASE programming language is very English-like. Its
high level syntax is very similar to those languages used by
business application programmers such as COBOL or BASIC.
dBASE III PLUS is easy to understand, easy to read, and
easy to code. The same set of user friendly commands used
in the command mode for quick inquiry can also be used in
the programming mode for more complex data processing.

10. Lines of Coding

Some dBASE III PLUS features simplify and shorten
the program coding. For example, in dBASE III PLUS there is
no need to declare a variable before accessing it. The

51
statement "MOVE 1 TO X" declares variable "X" as a numeric
variable and initializes it with a value of "1". The diffi
cult problem of pointer maintenance in PL/1 is handled by
dBASE III PLUS, not the user. All the files are defined
outside the program code, and once defined it can be used in
any program without redefining the files within the program.
Without coding file and variable definitions in the program,
the dBASE III PLUS programs for the CSECT Hierarchy Report
uses 350 lines of source code, while the PL/1 solution uses
580 lines.

11. Modular Programming

The dBASE solution is coded in 12 different programs
using between 6 and 60 lines of code. The storage restric
tion of 4K in program size and lack of COBOL paragraph or
PL/1 procedure counterparts force programmers to use a
modular programming technique. With this technique as
each module is designed, the programmer can test it for
syntax and logic errors before linking the modules together
to form a complete system. It is also easier to reorganize
the program modules when necessary. Reorganizing a dBASE
III PLUS application usually involves modifying only some
of the program modules and is often a simple task.

E. Summary of Advantages and Disadvantages

In this particular application all the functional re
quirements are successfully implemented using dBASE III PLUS

52
without complex file structures and programming logic. In
many cases dBASE III PLUS offers more advantages than PL/1.

1. Advantages of the dBASE III PLUS Solution
- variable declaration is not required

data can be prepared on line
files can be sorted on multiple fields with a single
command online
files can be displayed with a single command
files can be redesigned and restructured with a few
commands
on line inquiry is possible with simple commands
on line debugging is possible

- testing can be isolated to a module level
functional changes can be done at a module level
a CSECT Interaction Hierarchy Report can be displayed
online with minimum changes
a CSECT Hierarchy Report can be regenerated without
reconstructing the CSECT hierarchy

2. Advantages of the PL/1 Solution
- compiled object code offers a faster execution time
- the program can be run on a mainframe with minimum

changes
- better utilization of storage because storage is

addressable at bit level

3. Disadvantages of the dBASE III PLUS solution
slow execution time with the interpreted dBASE III
PIUS programs

53

4. Disadvantages of PL/1 solution
the link list structure is hard to follow
slow program development and testing.

54

V. CONCLUSIONS

A comparison of PL/1 and dBASE III PLUS solutions for
the CSECT Hierarchy problem has been presented. While each
language has its advantages and disadvantages, dBASE III
PLUS is a better tool for this particular application
because of its convenient features such as: integrated data
base management function, data manipulation command lan
guage, mutiple field indexing and sorting, query capability,
and menu-driven data definition.

There is no universal language that is best for all
applications. The reason is that every programming language
is designed with specific interests in mind. As data pro
cessing applications are often divided into two major cate
gories - business oriented and science oriented - programming
languages are often implemented to meet the requirements of
only the requisite category.

PL/1 is equipped with features that are required and
suited for scientific applications. These features include
float data type, recursion, and arithmetic built-in func
tions. Unliked PL/1 dBASE III PLUS is designed for busi
ness applications. Extremely complex applications have been
programmed with dBASE III plus and are available on the
market. The Application Junction catalog published by
Ashton-Tate provides a sampling of over 700 dBASE programs
that cover a wide variety of applications[8].

55
Gary Elfring [9] suggests that the actual process of

selecting a language should be broken into 3 major steps as
shown in Figure 9. The first step is to characterize the
application for which the language is being selected. Nekt,
one must identify the features that a language should have
in order to implement the previously described application.
Finally, some practical consideration such as the availa
bility, performance, and compatibility shoud be taken into
account. Figure 9 provides a list of questions which should
be answered before the selection decision is made. Both
dBASE III PLUS and PL/1 are reasonable choices for the CSECT
Hierarchy Report system according to the aspects presented
in the Figure 9.

While both dBASE III PLUS and PL/1 can equally satisfy
the functionalities required by the selected application,
the user friendliness features become an important language
selection factor. dBASE III PLUS command language's user
friendliness features in areas such as training, coding,
testing, maintenance and simplified file structures makes it
a better choice than the non-DBMS procedural PL/1 for this
CSECT project.

56

Step l. Identify the Application

- What is the type or class of application?
- What level of language is needed?
- Is it too big to be expressed as one module?
- Is it too big to be fully understood by one program
mer?

Step 2. Idendify Language Features

- What audience was the language designed for?
- What class of problems was the language designed to
resolve?

- Can the syntax be understood?
- Is it terse or verbose?
- Is it consistent?
- What data types are supported?
- How are data types treated?
- Does the language support structured programming?
- Are exceptions possible?
- Is portability needed?
- How portable is the language?
- How is I/O handled?
- Is access to other programming languages needed?
- Is stand-alone product support required?
- Is real-time control needed?

Step 3. Practical Considerations

- How available is the language?
- How popular is the language?
- How does a user learn the language?
- What is the source of this information?
- What are the characteristics of the compiler?
- Is the code produced quick, compact, and predictable?
- What kind of software libraries are availble?

Figure 9. Choosing a Programming Language[9]

BIBLIOGRAPHY

"Corporate Bestsellers," Software News, August 1985,
32.
Chorafas, Dimitris N., Fourth and Fifth Generation
Programming Languages, Vol. 1 McGraw-Hill Book Company
1986, 53-54.
"Data Structure," Encyclopedia of Computer Science,
Van Nostrand Reinhold Company, 1st Edition, 1976,
433-436.
Martin, James, Computer Database Organization, 2nd
Edition, Prentice-Hall, NJ., 33-46.
Mandell, Steven L., Computers and Data Processing -
Concepts and Applications, 3rd Edition, West
Publishing Company, 1985, 243.
Taylor, Charles F., The Master Handbook of High-Level
Microcomputer Language, TAB Books Inc., 1984, 351.
Kullman, Annette and Zobrist, George, "Program
Hierarchy for Microcode", Proceedings of 28th Midwest
Circuit and Systems Symposium, Louisville, Kentucky,
August 1985.
Layman, Don. "All Aboard at Application Junction," PC
Magazine, February 7, 1984, 144.
Elfring, Gary, "Choosing a Programming Language", Byte
June 1985, Vol. 10(No. 6), 235.

58

VITA

Karen Yingling Tam was born on October 16, 1955 in
Taipei, Taiwan. She received her secondary education in
Taichung, Taiwan. In May 1977, she graduated from Soochow
University in Taipei, Taiwan with a B. A. in Social Work.
During the next two years, she worked as a social worker to
counsel teenagers with emotional problems.

In 1979, she came to the United States and began her
data processing education at Washington University, St.
Louis, Missouri. She received her B.S. in Systems and Data
Processing from Washington University in 1982.

In 1982, while working at Concordia Publishing House as
an application programmer, she began her graduate study in
Computer Science at the University of Missouri-Rolla. One
and half years later she was transferred to the Technical
Support group and promoted to System Programmer.

Karen Tam has been married to Edwin Tam since 1984. In
April 1985, the Tam family moved to Akron, Ohio. Karen is
currently working as System Programmer at American Seaway
Foods, Inc., Cleveland, Ohio.

59

APPENDIX A
dBASE CSECT INTERACTION PROGRAMS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

* PROGRAM : INTERACT (MAININLINE)*
*
* FUNCTION : THIS PROGRAM CONSTRUCTS A
* INTERACTIONS.*
SET DEFA TO B
DO LNKCSECT
DO LNKOTHER
CLOSE DATABASES
SELECT 1
USE EXIT
DO WHILE .NOT. EOF ()

STORE ECSECTNO TO TECSECTNO
STORE ECSECTNAME TO TCSECTI
STORE EXITNAME TO TEXITNAME
STORE EXITADRS TO TEXITADRS
IF EXITYPE = 'C7

STORE 1 TO TEXITYPE
ELSE

IF EXITYPE = 'J'
STORE 3 TO TEXITYPE

ENDIF
ENDIF
STORE EXITLINK TO TEXITLINK
STORE 'N' TO TNOEXIT
STORE 'N' TO TUNRESLV
IF EXITNAME = • •

STORE 'Y' TO TNOEXIT
DO OUTPUT
SELECT 1
SKIP
LOOP

ELSE
STORE 'N' TO TUNRESLV
IF EXITLINK = 0

DO UNLINKED
ELSE

DO LINKED
ENDIF

ENDIF
SELECT 1
SKIP

ENDDO
CLOSE DATABASES
DO PRINTOUT

CALLS:LNKCSECT
LNKOTHER

LIST OF CSECT

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

60

* PROGGRAM : LNKCSECT CALLED BY:INTERACT*
* FUNCTION : THIS PROGRAM ASSIGNS A NUMBER TO CSCETS
* BELONG TO THE SAME LINKED GROUP.*
STORE 1 TO TCOUNTER
STORE 1 TO TLINKNUM
SELECT 1
USE CSECT
REPL CSECTLINK WITH TLINKNUM
STORE ENDADRS TO TENDADRS
DO WHILE .NOT. EOF()

SKIP
IF EOF()

EXIT
ELSE

IF BEGNADRS >= TENDADRS
REPL CSECTLINK WITH TLINKNUM
STORE TCOUNTER + 1 TO TCOUNTER

ELSE
IF TCOUNTER = 1

SKIP -1
REPL CSECTLINK WITH 0
SKIP
REPL CSECTLINK WITH TLINKNUM

ELSE
STORE TLINKNUM + 1 TO TLINKNUM
REPL CSECTLINK WITH TLINKNUM

ENDIF
STORE 1 TO TCOUNTER

ENDIF
STORE ENDADRS TO TENDADRS

ENDIF
ENDDO
RETURN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

61

*
* PROGRAM : LNKOTHER CALLED BY: INTERACT*
* FUNCTION*
*

THIS PROGRAM COPIES THE.LINKED.GROUP.
NUMBER ESTABLISHED IN CSECT FILE TO.
EXIT FILE.

SELECT 1
USE CSECT
STORE CSECTNO TO TCSECTNO
STORE CSECTLINK TO TCSECTLINK
DO WHILE .NOT. EOF()

SELECT 2
USE EXIT
LOCATE FOR ECSECTNO = TCSECTNO
REPL EXITLINK WITH TCSECTLINK
SKIP
DO WHILE ECSECTNO = TCSECTNO

REPL EXITLINK WITH TCSECTLINK
SKIP

ENDDO
SELECT 3
USE LABEL
LOCATE FOR LCSECTNO = TCSECTNO
REPL LABELINK WITH TCSECTLINK
SKIP
DO WHILE LCSECTNO = TCSECTNO

REPL LABELINK WITH TCSECTLINK
SKIP

ENDDO
SELECT I
SKIP
STORE CSECTNO TO TCSECTNO
STORE CSECTLINK TO TCSECTLINK

ENDDO
RETURN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

62

* PROGRAM : LINKED CALLED BY: INTERACT
* CALLS : OUTPUT*
* FUNCTION : THIS PROGRAM PROCESSES THE CSECTS WHICH
* BELONG TO A LINKED GROUP.*
SELECT 2
USE CSECT
LOCATE FOR CSECTNAME = TEXITNAME .AND. CSECTLINK =
TEXITLINK .AND. CSECTNO <> TECSECTNO .AND. TEXITADRS
> BEGNADRS .AND. TEXITADRS <= ENDADRS

IF .NOT. EOF()
STORE CSECTNO TO TCSECTNO
STORE CSECTNAME TO TCSECT2
USE OUTPUT
DO OUTPUT

ELSE
LOCATE FOR CSECTNAME = TEXITNAME .AND. CSECTNO <>
TECSECTNO .AND. TEXITADRS > BEGNADRS .AND. TEXITADRS
<= ENDADRS
IF .NOT. EOF()

STORE CSECTNO TO TCSECTNO
STORE CSECTNAME TO TCSECT2
DO OUTPUT

ELSE
USE LABEL
LOCATE FOR LABELNAME = TEXITNAME .AND. LABELINK.=
TEXITLINK .AND. LCSECTNO <> TECSECTNO .AND.
TEXITADRS = LABELADRS
IF .NOT. EOF()

STORE LCSECTNO TO TCSECTNO
STORE LCSECTNAME TO TCSECT2
DO OUTPUT

ELSE
LOCATE FOR LABELNAME = TEXITNAME .AND. LCSECTNO
OTECSECTNO .AND. TEXITADRS = LABELADRS
IF .NOT. EOF()

STORE LCSECTNO TO TCSECTNO
STORE LCSECTNAME TO TCSECT2 DO OUTPUT

ELSE
STORE 'Y' TO TUNRESLV
DO OUTPUT

ENDIF
ENDIF

ENDIF
ENDIF
RETURN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

63

* PROGRAM : UNLINKED CALLED BY: INTERACT
* CALLS : OUTPUT*
* FUNCTION : THIS PROGRAM PROCESSES THE CSECTS WHICH
* DON'T BELONG TO ANY LINKED GROUP.*
SELECT 2
USE CSECT
LOCATE FOR CSECTNAME = TEXITNAME .AND. CSECTNO <>

TECSECTNO .AND. TEXITADRS > BEGNADRS .AND.
TEXITADRS <= ENDADRS

IF .NOT. EOF()
STORE CSECTNAME TO TCSECT2
DO OUTPUT

ELSE
USE LABEL
LOCATE FOR LABELNAME = TEXITNAME .AND. LCSECTNO <>

TECSECTNO .AND. TEXITADRS = LABELADRS
IF .NOT. EOF()

STORE LCSECNAME TO TCSECT2
DO OUTPUT

ELSE
STORE 'Y# TO TUNRESLV

ENDIF
ENDIF
RETURN

*

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

64

OUTPUT

FUNCTION : THIS PROGRAM BUILDS OUTPUT FILE

*
* PROGRAM*
*
*
*
*
SELECT 2
USE OUTPUT
APPEND BLANK
IF TUNRESLV = '¥'

REPL OCSECTNO
REPL ORECNO
REPL OCSECTI
REPL OEXITYPE
REPL OCSECT2
REPL UNRESOLVE WITH

ELSE
IF TNOEXIT = ' Y7

REPL OCSECTNO WITH TECSECTNO
REPL ORECNO
REPL OCSECTI
REPL OEXITYPE WITH
APPEND BLANK
REPL OCSECTNO WITH TECSECTNO
REPL ORECNO
REPL OCSECTI
REPL OEXITYPE WITH

ELSE
REPL OCSECTNO WITH TECSECTNO
REPL ORECNO
REPL OCSECTI

CALLED BY:

WITH TECSECTNO
WITH RECNO()
WITH TCSECT1
WITH 1
WITH TEXITNAMEŶ,

WITH RECNO()
WITH TCSECT1 1

WITH RECNO()
WITH TCSECTI

3

WITH RECNO()
WITH TCSECTI

REPL OEXITYPE WITH TEXITYPE
REPL OCSECT2 WITH TCSECT2
APPEND BLANK
REPL OCSECTNO WITH TCSECTNO

WITH RECNO()
WITH TCSECT2
WITH TCSECTI

REPL ORECNO
REPL OCSECTI
REPL OCSECT2
IF TEXITYPE = 1

REPL OEXITYPE WITH 2
ELSE

IF EXITTYPE = 3
REPL OEXITYPE WITH

ENDIF
ENDIF

ENDIF
ENDIF
RETURN

INTEFACT
UNLINKED
LINKED

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

65

*
* PROGRAM : PRINTOUT*
*
*
*
*
* FUNCTION:*

CALLED BY: INTERACT
CALLS : BEGNCHCK

ENDCHCK
GAPCHCK
PRINTIT

* 1.
* 2.
* 3.*
*
*
*
*
*
*
*
* 4.*
*
*
*
*

SORT OUPUT FILE ON CSECT EBER AND EXIT TYPE
PRINT OUTPUT HEADING
IF THIS IS A NEW CSECT,
A) CALL 'ENDCHCK' TO PRINT APPROPRIATE INTERAC

TION INFORMATION BEFORE PROCESSING CURRENT
ENTRY;

B) CALL 'BEGNCHCK7 TO PRINT NEW CSECT HEADING
AND TO CHECK IF EXIT TYPE STARTS WITH 1.
IF NOT, PRINT APPROPRIATE INTERACTION
INFORNATION BEFORE PROCESSING CURRENT ENTRY;
ELSE CALL 'PRINTIT7 TO PROCESS CURRENT ENTRY.

IF THIS IS NOT A NEW CSECT, CALL 'GAPCHCK7 TO
CHECK IF THERE IS A GAP BETWEEN PREVIOUS ENTRY
EXIT TYPE AND CURRENT ENTRY EXIT TYPE. IF SO,
PRINT APPROPRIATE INFOPNATION BEFORE PROCESSING
CURRENT ENTRY; ELSE CALL 'PRINTIT7 TO PROCESS
CURRENT ENTRY.*

SET DEVICE TO PRINT
SET TALK OFF
STORE 5 TO TLINENUM
@ TLINENUM,15 SAY "DATASET: TSS2525.CSECT.DATA"
STORE TLINENUM+2 TO TLINENUM
@ TLINENUM,28 SAY "CSECT HIEARARCHY"
STORE TLINENUM+3 TO TLINENUM
USE OUTPUT
SORT ON OCSECTNO,OEXITYPE,ORECNO TO SORTOUT
USE SORTOUT
STORE 0 TO TEXITYPE
DO BEGNCHCK
DO PRINTIT
STORE OCSECTNO TO TCSECTNO
STORE OCSECTI TO TCSECTI
STORE OEXITYPE TO TEXITYPE
STORE OCSECT2 TO TCSECT2
SKIP
DO WHILE .NOT. EOF()

IF OCSECTNO <> TCSECTNO
DO ENDCHCK
DO BEGNCHCK

ELSE
DO GAPCHCK

ENDIF
DO PRINTIT
STORE OCSECTNO TO TCSECTNO

66

54 STORE OCSECTI TO TCSECTI
55 STORE OEXITYPE TO TEXITYPE
56 STORE OCSECT2 TO TCSECT2
57 SKIP58 ENDDO
59 RETURN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

67

PROGRAM
FUNCTION:

BEGNCHCK CALLEDCALLS BY: PRINTOUT
PRNTCHCK

1. PRINT CSECT HEADING.
2. IF CSECT EXIT TYPE STARTS WITH 2 THEN THIS

CSECT DOES NOT CALL ANY CSECT.
3. IF CSECT EXIT TYPE STARTS WITH 3 THEN THIS

CSECT DOES NOT CALL ANY CSECT AND IS NOT CALLED
BY ANY CSECTS.

4. IF CSECT EXIT TYPE STARTS WITH 4 THEN THIS CSECT
DOES NOT CALL ANY CSECT, IS NOT CALLED BY ANY
CSECT, AND DOES NOT JUMP TO ANY CSECT.

TLINENUM,14 SAY OCSECTI
STORE TLINENUM+1 TO TLINENUM
@ TLINENUM,14 SAY "________"
STORE TLINENUM+1 TO TLINENUM
DO PRNTCHCK
IF OEXITYPE >= 2

@ TLINENUM,14
§ TLINENUM,20
@ TLINENUM,29
DO PRNTCHCK

ENDIF
IF OEXITYPE >= 3

@ TLINENUM,14
@ TLINENUM,20
@ TLINENUM,29
DO PRNTCHCK

ENDIF
IF OEXITYPE = 4

@ TLINENUM,14
@ TLINENUM,20
@ TLINENUM,29
DO PRNTCHCK

ENDIF
RETURN

SAY •'CSECT"
SAY OCSECTI
SAY "DOES NOT CALL ANY CSECT"

SAY "OCSECT"
SAY OCSECTI
SAY "IS NOT CALLED BY ANY CSECT"

SAY "CSECT"
SAY OCSECTI
SAY "DOES NOT JUMPED TO ANDY CSECT"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

68

* PROGRAM : ENDCHCK*
*

*
CALLED BY: PRINTOUT
CALLS : PRNTCKCK

* FUNCTION:*
*
*
*
*
*
*
*
*
*

1. IF CSECT EXIT TYPE ENDS WITH 1 THEN THIS CSECT
IS NOT CALLED BY ANY CSECT, DOES NOT JUMP TO
ANY CSECT, AND IS NOT JED TO BY ANY CSECT.

2. IF CSECT EXIT TYPE ENDS WITH 2 THEN THIS CSECT
DOES NOT JUMP TO ANY CSECT AND IS NOT JUMPED
TO BY ANY CSECT.

3. IF CSECT EXIT TYPE ENDS WITH 3 THEN THIS CSECT
IS NO JUMPED TO BY ANY CSECT.

IF TEXITYPE < 2
@ TLINENUM,14 SAY
@ TLINENUM,20 SAY
@ TLINENUM,29 SAY
DO PPNTCHCK

ENDIF
IF TEXITYPE < 3

§ TLINENUM,14 SAY
§ TLINENUM,20 SAY
@ TLINENUM,29 SAY
DO PRNTCHCK

ENDIF
IF TEXITYPE < 4

@ TLINENUM,14 SAY
@ TLINENUM,20 SAY
@ TLINENUM,29 SAY
STORE TLINENUM TO
DO PRNTCHCK

ENDIF
RETURN

"CSECT"
TCSECTI
"IS NOT CALLED BY ANY CSECT"

"CSECT"
TCSECTI
"DOES NOT JUMP TO ANY CSECT"

"CSECT"
TCSECTI
"IS NOT JUMPED TO BY ANY CSECT"
TLINENUM

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

69

*
* PROGRAM : GAPCHCK CALLED BY: PRINTOUT
* CALLS : PRNTCKCK*
* FUNCTION:*
*
*
*
*
*
*
*
*
*
*

1.

2.

IF PREVIOUS ENTRY EXIT TYPE IS 1, AND
A. IF CURRENT ENTRY EXIT TYPE IS 3, THEN

THIS CSECT IS NOT CALLED BY ANY CSECT;
B. IF CURRENT ENTRY EXIT TYPE IS 4, THEN

THIS CSECT IS NOT CALLED BY ANY CSECT
AND DOES NOT JUMP TO ANY CSECT.

IF PREVIOUS ENTRY EXIT TYPE IS 2 AND CURRENT
ENTRY EXIT TYPE IS 4 THEN THIS CSECT IS NOT
JUMPED TO BY ANY CSECT.

IF TEXITYPE = 1
IF OEXITYPE >= 3

§ TLINENUM,14
@ TLINENUM,20
@ TLINENUM,29
DO PRNTCHCK

ENDIF
IF OEXITYPE = 4

@ TLINENUM,14
§ TLINENUM,20
@ TLINENUM,29
DO PRNTCHCK

ENDIF
ELSE

IF TEXITYPE = 2 ,
@ TLINENUM,14
@ TLINENUM,20
@ TLINENUM,29
DO PRNTCHCK

ENDIF
ENDIF
RETURN

SAY "CSECT"
SAY OCSECTI
SAY "IS NOT CALLED BY ANY CSECT"

SAY "CSECT"
SAY OCSECTI
SAY "DOES NOT JUMP TO ANY CSECT"

AND. OEXITYPE = 4
SAY "CSECT"
SAY OCSECTI
SAY "DOES NOT JUMP TO ANY CSECT"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

70

* PROGRAM : PRNTCHCK CALLED BY: BEGNCHCK*
*
*
*

GAPCHCK
ENDCHCK
PRINT IT

* FUNCTION: IF NEW PAGE, PRINTS PAGE HEADING.
STORE TLINENUM+1 TO TLINENUM
IF TLINENUM >=60

EJECT
@ 5,15 SAY "DATASET: TSS2525.CSECT.DATA"
STORE 8 TO TLINENUM

*

ENDIF
RETURN

12
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
27
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

71

*
* PROGRAM : PRINTIT CALLED BY: PRINTOUT
* CALLS : PRNTCHCK*
* FUNCTION:*
* 1. *
**
*
* 2.*
* 3.*
*
*
*
* 4.*
*

IF CURRENT OUTPUT ENTRY EXIT TYPE IS 1, AND
IF OCSECT2 IS EMPTY THEN OCSECTI DOES NOT

CALL ANY CSECT;
IF OCSECT2 IS NOT EMPTY THEN OCSECTI CALLS

OCSECT2.
IF CURRENT OUTPUT ENTRY EXIT TYPE IS 2 THEN

OCSECTI IS CALLED BY OCSECT2.
IF CURRENT OUTPUT ENTRY EXIT TYPE IS 3, AND

IF OCSECT2 IS EMPTY THEN OCSECTI DOES NOT
JUMP TO ANY CSECT;

IF OCSECT2 IS NOT EMPTY THEN OCSECTI JUMPS
TO OCSECT2.

IF CURRENT OUTPUT ENTRY EXIT TYPE IS 4 THEN
THIS OCSECTI IS JUMPED TO FROM OCSECT2.

IF OEXITYPE = 1
IF OCSECT2 = " "

§ TLINENUM, 14 SAY ••CSECT"
§ TLINENUM,20 SAY OCSECTI
§ TLINENUM,29 SAY "DOES NOT CALL ANY CSECT”

ELSE
IF OEXITYPE <> TEXITYPE

@ TLINENUM,14 SAY "CSECT"
§ TLINENUM,20 SAY OCSECTI
@ TLINENUM,29 SAY "CALLS "

ENDIF
IF UNRESOLVE = 'Y'

@ TLINENUM,35 SAY "UNRESOLVED LABEL"
§ TLINENUM,52 SAY OCSECT2

ELSE
@ TLINENUM,35 SAY "CSECT "
@ TLINENUM,41 SAY OCSECT2

ENDIF
ENDIF

ELSE
IF OEXITYPE = 2

IF OEXITYPE <> TEXITYPE
@ TLINENUM,14 SAY "CSECT"
@ TLINENUM,20 SAY OCSECTI
@ TLINENUM,29 SAY "IS CALLED BY "

ENDIF
@ TLINENUM,42 SAY "CSECT "
§ TLINENUM,48 SAY 0CSECT2

ELSE
IF OEXITYPE = 3

IF OCSECT2 = " "
@ TLINENUM,14 SAY "CSECT"
@ TLINENUM,20 SAY OCSECTI

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

72

§ TLINENUM, 29 SAY "DOES NOT JUMP TO ANY CSECT"
ELSE

IF OEXITYPE <> TEXITYPE
@ TLINENUM,14 SAY "CSECT"
@ TLINENUM,20 SAY OCSECTI
@ TLINENUM,29 SAY "JUMPS TO"

ENDIF
@ TLINENUM,38 SAY "CSECT"
@ TLINENUM,44 SAY OCSECT2

ENDIF
ELSE

IF OEXITYPE <> TEXITYPE
@ TLINENUM,14 SAY "CSECT"
@ TLINENUM,20 SAY OCSECTI
@ TLINENUM,29 SAY "IS JUMPED TO BY"

ENDIF
@ TLINENUM,45 SAY "CSECT"
@ TLINENUM,51 SAY OCSECT2

ENDIF
ENDIF

ENDIF
DO PRNTCHCK
RETURN

73

APPENDIX B
dBASE INPUT/OUPUT FILE STRUCTURES

Structure for database: CSECT.dbf
Number of data records: 75
Field Field Name Type Width

1 CSECTNO Numeric 3
2 CSECTNAME Character 8
3 BEGNADRS Numeric 4
4 ENDADRS Numeric 4
5 CSECTLINK Numeric 3

** Total ** 23

Structure for datbase: EXIT.dbf
Number of data records: 176
Field Field Name Type Width

1 ECSECTNO Numeric 3
2 ECSECTNAME Character 8
3 EXITNAME Character 8
4 EXITADRS Numeric 4
5 EXITYPE Character 16 EXITLINK Numeric 3** Total ** 28

Structure for database: LABEL.dbf
Number of data records: 288
Field Field Name Type Width

1 LCSECTNO Numeric 3
2 LCSECTNAME Character 8
3 LABELNAME Character 8
4 LABELADRS Numeric 4
5 LABELINK Numeric 3

** Total ** 27

Structure for database: OUTPUT.dbf
Number of data records: 304
Field Field Name Type Width

1 OCSECTNO Numeric 3
2 ORECNO Numeric 3
3 OCSECTI Character 8
4 OEIXTYPE Numeric 1
5 OCSECT2 Character 8
6 UNRESOLVE Character 1

** Total ** 25

74

Structure for database: SORTOUT.dbf
Number of data records: 304
Field Field Name Type Width

1 OCSECTNO Numeric 3
2 ORECNO Numeric 3
3 OCSECTI Character 8
4 OEXITYPE Numeric 1
5 0CSECT2 Character 8
6 UNRESOLVE Character 1

** Total ** 25

75

APPENDIX C
dBASE INPUT/OUTPUT DATA

CSECT FILE
1IAOEPARM 0 0 12ICOEICOT 12 12 1
3IEVEADDR 303 303 14IKBEKBDT 303 303 1
5IAOEAOFF16061791 16ICCEPARM 0 0 27IEVEADDR 0 0 28IIOEAREA 0 0 2
9ICCECLMP 0 158 210IEXEPARM 0 0 311IEVEADDR 0 0 312IIOEAREA 0 0 313IEXEEXER 0 156 314IITEPARM 0 0 415IEVEADDR 0 0 4

16IIOEAREA 0 0 417IITEINIT 0 56 418IMDEPARM 0 0 519IEVEADDR 446 446 520IOEAREA 446 446 521IKBEKBDT 446 446 522IMDEMAIN17492206 5
23ITEEPARM 0 0 6
24IEVEADDR 287 287 6
25IIOEAREA 287 287 626ITEEABRT 287 417 6
27IBOEPARM 0 0 728ICOEICOT 2 2 729IEVEADDR 293 293 7
30IIOEAREA 293 293 7
31IBOEBCOT 293 579 7
32IBTEPARM 0 0 833IEVEADDR 745 745 8
34IIOEAREA 745 745 8
35IKBEKBDT 745 745 8
36IBTEBLDT20482426 8
37EBTSTAND24272489 8
38EBTDIEVA24902552 8
39EBTUPADS25532601 8
40EBTUPADD26022650 8
41IPTEPARM 0 0 9
42IEVEADDR 10 10 943IKBEKBDT 10 10 9
44IPTEPROC13131446 9
45EPTNORMP14471538 9
46EPTLOCKP15391709 9
47EPTSHIFT17101877 9

76

48EPTSPACE18782017 9
49IRKEPARM 0 0 10
50IEVEADDR 37 37 10
51IRKERKBT 37 174 10
52ISEEPARM 0 0 11
53IEVEADDR 1 1 11
54IKBEKBDT 1 1 11
550DRRDMFR13041406 11
56ISGEPARM 0 0 12
57IEVEADDR 9 9 12
58IKBEKBDT 9 9 12
59ISGESNDG13121422 12
60ITKEPARM 0 0 13
61IEVEADDR 5 5 13
62IIOEAREA 5 5 13
63IKBEKBDT 5 5 13
64ITKETEST13082265 13
65ETKUPADS22662314 13
66ETLREAD[23152515 13
67IUCEPARM 0 0 14
68IEVEADDR 0 0 14
69IIOEAREA 0 0 14
70IUCEUNCL 0 150 14
71IAOEPARM 0 0 15
72ICOEICOT 12 12 15
73IEVEADDR 303 303 15
74IKBEKBDT 303 303 15
75IAOEAOFF16061880 15

77

EXIT FILE
1IAOEPARM 0 12ICOEICOT 0 13IEVEADDR 0 14IKBEKBDT 0 15IAOEAOFF 0 16ICCEPARM 0 2
7IEVEADDR 0 2
8II0EAREA 0 2
9ICCECLMPITEEABRT OC 2
91CCECLMPIWTEWAIT810 2 C 2
10IEXEPARM 0 311IEVEADDR 0 3
12IIOEAREA 0 3
13IEXEEXERITEEABRT OC 3
13IEXEEXERIWTEWAIT8102C 3
13IEXEEXERITEEABRT OC 3
13IEXEEXERIWTEWAIT8102C 314IITEPARM 0 4
15IEVEADDR 0 416II0EAREA 0 4
17IITEINIT 0 419IEVEADDR 0 5
20IIOEAREA 0 521IKBEKBDT 0 5
2 2IMDEMAINIITEINIT OC 5
22IMDEMAINIDMEDISP8099C 5
22IMDEMAINIWTEWAIT8102C 5
2 2IMDEMAINIWTEWAIT81020 5
22IMDEMAINIDMEDISP8099C 5
2 2IMDEMAINIBOEBCOT OC 5
22IMDEMAINIDMEDISP8099C 5
22IMDEMAINIRKERKBT OC 5
22IMDEMAINIDMEDISP8099C 5
22IMDEMAINIBTEBLDT OC 5
2 2IMDEMAINIDMEDISP8099C 5
22IMDEMAINICCECLMP OC 5
2 2IMDEMAINIUCEUNCL OC 5
22IMDEMAINIWSEWRIT8156C 5
22IMDEMAINIWTEWAIT8102C 5
2 2IMDEMAINIWTEWAIT810 2 C 5
2 2IMDEMAINIDMEDISP8 09 9C 5
2 2IMDEMAINIEXEEXER OC 5
22IMDEMAINIDMEDISP8099C 5
2 2IMDEMAINITKETEST OC 5
22IMDEMAINIDMEDISP8099C 5
22IMDEMAINIAOEAOFF OC 5
22IMDEMAINIDMEDISP8099C 5
22IMDEMAINIPTEPROC OC 5
22IMDEMAINIDMEDISP8099C 5
22IMDEMAINIUCEUNCL OC 5
22IMDEMAINIDMEDISP8099C 5

78

2 2IMDEMAINIWSEWRIT815 6C 5
22IMDEMAINIDMEDISP8099C 5
22IMDEMAINIWSEWRIT8156C 5
22IMDEMAINIDMEDISP8099C 5
22IMDEMAINISGESNDG OC 5
22IMDEMAINIDMEDISP8099C 5
2 2IMDEMAINISEESNDE OC 5
22IMDEMAINIDMEDISP8099C 5
22IMDEMAINIWSEWRIT8156C 5
22IMDEMAINIDMEDISP8099C 5
22IMDEMAINISGESNDG OC 5
22IMDEMAINIDMEDISP8099C 5
22IMDEMAINIUCEUNCL OC 5
2 2IMDEMAINIWSEWRIT815 6C 5
22IMDEMAINIDMEDISP8099C 5
22IMDEMAINIUCEUNCL OC 5
2 2IMDEMAINIWSEWRIT815 6C 5
22IMDEMAINIDMEDISP8099C 5
22IMDEMAINIWTEWAIT8102C 5
23ITEEPARM 0 6
24IEVEADDR 0 6
25IIOEAREA 0 6
26ITEEABRTIDMEDISP8099C 6
27IBOEPARM 0 7
28ICOEICOT 0 7
29IEVEADDR 0 7
3 OIIOEAREA 0 7
31IBOEBCOTIWTEWAIT8102C 7
311BOEBCOTIWTEWAIT810 2 C 7
31IBOEBCOTITEEABRT OC 7
31IBOEBCOTITEEABRT OC 7
31IBOEBCOTIWTEWAIT8102C 7
32IBTEPARM 0 8
33IEVEADDR 0 8
34IIOEAREA 0 8
35IKBEKBDT 0 8
36IBTEBLDTEBTSTAND2427C 8
36IBTEBLDTEBTDIEVA2490C 8
36IBTEBLDTEBTSTAND2427C 8
36IBTEBLDTEBTUPADS2553C 8
36IBTEBLDTEBTUPADD2602C 8
36IBTEBLDTEBTDIEVA2490C 8
36IBTEBLDTEBTUPADS2553C 8
36IBTEBLDTEBTSTAND2427C 8
3 6IBTEBLDTITEEABRT OC 8
37EBTSTAND 0 8
38EBTDIEVA 0 8
39EBTUPADS 0 8
4 OEBTUPADD 0 8
41IPTEPARM 0 9
42IEVEADDR 0 9
43IKBEKBDT 0 9
4 4IPTEPR0CEPTN0RMP14 4 7C 9
44IPTEPROCEPTLOCKP1539C 9

79

441PTEPROCEPTSPACE18 7 8 C
44IPTEPROCEPTSHIFT1710C
45EPTNORMP 0
46EPTLOCKP 0
47EPTSHIFT 0
48EPTSPACE 0
49IRKEPARM 0
50IEVEADDR 0
51IRKERKBTIWSEWRIT8156C
51IRKERKBTIDMEDISP8099C
51IRKERKBTIWSEWRIT8156C
52ISEEPARM 0
53IEVEADDR 0
54IKBEKBDT 0
55ISEESNDEIWSEWRIT8156C
55ISEESNDEIWSEWRIT8156C
56ISGEPARM 0
57IEVEADDR 0
58IKBEKBDT 0
59ISGESNDGIWSEWRIT8156C
59ISGESNDGIWSEWRIT8156C
59ISGESNDGIWSEWRIT8156C
60ITKEPARM 0
61IEVEADDR 0
62IIOEAREA 0
63IKBEKBDT 0
64ITKETESTITEEABRT OC
64ITKETESTIWTEWAIT8102C
64ITKETESTETKREADP2315C
6 4ITKETESTETKUPADS2 26 6C
64ITKETESTITEEABRT OC
6 4ITKETESTITEEABRT OC
64ITKETESTETKREADP2315C
64ITKETESTETKUPADS2 2 66C
64ITKETESTITEEABRT OC
64ITKETESTETKREADP2315C
6 4ITKETESTETKUPADS 2 2 6 6C
64ITKETESTITEEABRT OC
64ITKETESTITEEABRT OC
64ITKETESTITEEABRT OC
6 4ITKETESTETKREADP2315C
6 4ITKETESTETKREADP2315C
6 4ITKETESTETKUPADS 2 2 6 6C
64ITKETESTITEEABRT OC
6 4ITKETESTETKREADP2315C
6 4ITKETESTETKUPADS2 2 6 6C
64ITKETESTITEEABRT OC
6 4ITKETESTETKREADP2315C
641TKETESTETKUPADS2 2 6 6C
65ETKUPADS 0
6 6ETKREADPIWTEWAIT8102 C
66ETKREADPITEEABRT OC
6 6ETKREADPIWTEWAIT810 2C
67IUCEPARM 0

9
9
9
9
9
9

10
10
10
10
10
11
11
11
11
11
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
14

80

67IUCEPARM 0 14
68IEVEADDR 0 14
69IIOEAREA 0 14
7 OIUCEUNCLITEEABRT OC 14
7 OIUCEUNCLITEEABRT OC 14
71IAOEPARM 0 15
72ICOEICOT 0 15
73IEVEADDR 0 15
74IKBEKBDT 0 15
7 51AOEAOFFIBOEBCOT OC 15
7 5IAOEAOFFIBOEBCOT OC 15
7 51AOEAOFFIBOEBCOT OC 15
7 51AOEAOFFIBOEBCOT OC 15
75IAOEAOFFIBOEBCOT OC 15
75IAOEAOFFIBOEBCOT OC 15
7 5IAOEAOFFIBTEBLDT OC 15
75IAOEAOFFIBTEBLDT OC 15

81

LABEL FILE
1IA0EPARMIA0EPARM 0
2ICOEICOTICOEICOT 12
3IEVEADDRIEVEADDR 303
4IKBEKBDTIKBEKBDT 303
5IAOEAOFFIAOEAOFF1606
5IAOEAOFFLBTBWHL11642
5IAOEAOFFLSTELSE51696
5IAOEAOFFLSTELSE71710
5IAOEAOFFLSTENDF81717
5IAOEAOFFLBTADDUM17 3 7
5IAOEAOFFLBTENIF91774
5IAOEAOFFLBTEWHL11787
6ICCEPARMICCEPARM 0
7IEVEADDRIEVEADDR 0
8IIOEAREAIIOEAREA 0
9ICCECLMPICCECLMP 0
9ICCECLMP@@DL0009 45
9ICCECLMP@@EN0010 63
9ICCECLMP@@DL0028 123
9ICCECLMP@@EN0029 141
9ICCECLMP@@EL0029 143
10IEXEPARMIEXEPARM 0
111EVEADDRIEVEADDR 0
12IIOEAREAIIOEAREA 0
13IEXEEXERIEXEEXER 0
13IEXEEXER® @ DLO 006 22
13IEXEEXER®@DL0010 47
13IEXEEXER®@EN0011 65
13IEXEEXER® @DLO026 109
13IEXEEXER®®EN0027 127
14IITEPARMIITEPARM 0
151EVEADDRIEVEADDR 0
16IIOEAREAIIOEAREA 0
17IITEINITIITEINIT 0
18IMDEPARMIMDEPARM 0
19IEVEADDRIEVEADDR 446
20IIOEAREAIIOEAREA 446
21IKBEKBDTIKBEKBDT 446
2 2IMDEMAINIMDEMAIN17 4 9
22IMDEMAIN®@DL00521780
22IMDEMAIN@@EN00531795
22IMDEMAIN@@DL00641800
22IMDEMAIN®@DL00651800
22IMDEMAIN@@EN00661817
22IMDEMAIN®@EN00781887
22IMDEMAIN@@EN00971964
22IMDEMAIN®@00104 2021
2 2IMDEMAIN® @EN01112049
22IMDEMAIN@@EL01112063
22IMDEMAIN@@EN01182085
22IMDEMAIN®@EL01182094

1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

82

22IMDEMAIN®@ENO1032097
22IMDEMAIN®@EN01262130
22IMDEMAIN@@EL01032134
22IMDEMAIN®®EN00922137
22IMDEMAIN@@EL00922154
22IMDEMAIN00ENOO852157
22IMDEMAIN@@EL00852180
2 2IMDEMAINLNEWKBRD2180
22IMDEMAIN®@DL01392186
22IMDEMAIN®®EN01402201
2 3ITEEPARMITEEPARM 0
24IEVEADDRIEVEADDR 287
25IIOEAREAIIOEAREA 287
26ITEEABRTITEEABRT 287
2 6ITEEABRTL02 356
2 6ITEEABRTLO 3 362
2 6ITEEABRTLO 8 3 68
2 6ITEEABRTL2 8 374
2 6ITEEABRTL2 9 380
26ITEEABRTLOA 386
2 6ITEEABRTL2A 392
2 6ITEEABRTL4 4 398
2 6ITEEABRTLERR0R 404
2 6ITEEABRTLENDCASE 407
2 6ITEEABRT®@DLO040 416
27IBOEPARMIBOEPARM 0
28ICOEICOTICOEICOT 2
29IEVEADDRIEVEADDR 293
3OIIOEAREAIIOEAREA 293
31IB0EBC0TIB0EBC0T 293
31IBOEBCOT@0DLOOO9 339
3 2IBTEPARMIBTEPARM 0
33IEVEADDRIEVEADDR 745
34IIOEAREAIIOEAREA 745
35IKBEKBDTIKBEKBDT 745
36IBTEBLDTIBTEBLDT2048
36IBTEBLDT@@EN00172089
36IBTEBLDTLBTBWHL32146
361BTEBLDTLBTEWHL32161
36IBTEBLDT@@EN00232164
3 61BTEBLDTLBTBWHL12205
3 6IBTEBLDTLBTTHEN2 2248
3 6IBTEBLDTLBTELSE22254
361BTEBLDTLBTTHEN32291
36IBTEBLDTLBTELSE32297
36IBTEBLDTLBTELSE42319
36IBTEBLDTLBTENIF92325
3 6IBTEBLDTLBTEWHL12328
3 6IBTEBLDTLBTBWHL2 2328
361BTEBLDTLBTEWHL22343
36IBTEBLDT@@EL00232343
3 6IBTEBLDTSETUP 2351
36IBTEBLDT00DLOO32238O
36IBTEBLDT@@EN00332398

5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

83

3 7 EBTSTANDEBTSTAND2 427
37EBTSTANDLSTELSE52448
3 7EBTSTANDLSTELSE72461
3 7EBTSTANDLSTENDF82467
37EBTSTANDLSTREPT12474
3 8 EBTDIEVAEBTDIEVA2 490
38EBTDIEVALDIELSE52511
38EBTDIEVALDIELSE72524
3 8EBTDIEVALDIENDF82530
3 8EBTDIEVALDIREPT12 53 7
39EBTUPADSEBTUPADS2553
3 9EBTUPADSLUPELSE52 57 3
3 9EBTUPADSLUPELSE72585
39EBTUPADSLUPENDF82590
4 0EBTUPADDEBTUPADD2602
4 0EBTUPADDLUPELSE42622
40EBTUPADDLUPELSE62634
4 0EBTUPADDLUPENDF92639
41IPTEPARMIPTEPARM 0
42IEVEADDRIEVEADDR 10
4 3IKBEKBDTIKBEKBDT 10
44IPTEPROCIPTEPROC1313
44IPTEPROCLPTWHIL01355
44IPTEPROCLPTELSE51384
44IPTEPROCLPTELSE71399
44IPTEPROC00ENOOO51418
44IPTEPROC00ELOOO51421
4 41PTEPROCLPTENDF81421
4 4IPTEPROCLPTENDW91442
4 5EPTNORMPEPTNORMP14 4 7
45EPTNORMP$$0O15 1478
45EPTNORMP$$0022 1503
45EPTNORMP00ENOO2O1513
45EPTNORMP@@EL00201524
45EPTNORMP00ENOO131527
45EPTNORMP00ELOO131538
4 6EPTLOCKPEPTLOCKP153 9
46EPTLOCKP$$0033 1570
4 6EPTLOCKP$ $0040 1599
4 6EPTLOCKP$ $ 0 0 4 7 1624
46EPTLOCKP00ENOO451631
46EPTLOCKP00ENOO381634
46EPTLOCKP$$0056 1654
4 6EPTLOCKP$$0063 1682
4 6EPTLOCKP00ENO0611689
46EPTLOCKP00ENOO541689
46EPTLOCKP00ELOO381689
46EPTLOCKP00ENOO311689
4 6EPTLOCKPLPTLNDF81709
47EPTSHIFTEPTSHIFT1710
47EPTSHIFT$$0074 1741
47EPTSHIFT$$0081 1770
47EPTSHIFT$$0088 1796
47EPTSHIFT$$0095 1825

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

84

47EPTSHIFT$$0102 1850
47EPTSHIFT00ENO1OO1857
47EPTSHIFT00ENOO931857
47EPTSHIFT00ENOO861857
47EPTSHIFT00ENOO791857
47EPTSHIFT00ENOO721857
4 7EPTSHIFTLPTSNDF81877
48EPTSPACEEPTSPACE1878
48EPTSPACE$$0114 1909
48EPTSPACE$$0121 1935
48EPTSPACE$$0128 1964
48EPTSPACE$$0135 1990
48EPTSPACE00ENO1331997
48EPTSPACE00ENO1261997
48EPTSPACE00ENO1191997
48EPTSPACE00ENO1121997
4 8EPTSPACELPTSNDF92017
4 9IRKEPARMIRKEPARM 0
50IEVEADDRIEVEADDR 37
51IRKERKBTIRKERKBT 37
51IRKERKBT00DLOOO7 65
51IRKERKBT00DLOO13 78
51IRKERKBT00DLOO15 96
51IRKERKBT00DTOO13 106
51IRKERKBT$$0023 130
52ISEEPARMISEEPARM 0
53IEVEADDRIEVEADDR 1
54IKBEKBDTIKBEKBDT 1
55ISEESNDEISEESNDE1304
55ISEESNDE00DLOOO51332
55ISEESNDE00ENOOO61341
55ISEESNDE00ENOO111354
55ISEESNDE00ENOO171364
55ISEESNDE00ELOO171366
55ISEESNDE00ELOO111366
55ISEESNDE00ENOO251385
55ISEESNDE00ELOO251386
55ISSESNDE00ELOOO61389
5 6ISGEPARMISGEPARM 0
57IEVEADDRIEVEADDR 9
58IKBEKBDTIKBEKBDT 9
59ISGESNDGISGESNDG1312
59ISGESNDG00DLOOO71365
59ISGESNDG00DTOOO71393
60ITKEPARMITKEPARM 0
61IEVEADDRIEVEADDR 5
62IIOEAREAIIOEAREA 5
6 3IKBEKBDTIKBEKBDT 5
64ITKETESTITKETEST1308
64ITKETEST00DLOO1O1363
64ITKETEST00ENOO111381
64ITKETESTLTKBWHL11405
6 4ITKETESTLTKEWHL11433
64ITKETEST00DLOO261458

9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
13

85

64ITKETEST@@EN00271476 13
64ITKETEST@§DL00431520 13
64ITKETEST00ENOO441538 13
6 4ITKETESTLTKBWHL21573 13
64ITKETESTLTKIFTH11597 13
64ITKETESTLTKIFEN11610 13
6 4ITKETESTLTKEWHL21616 13
64ITKETEST@@DL00631647 13
64ITKETEST@@EN00641665 13
64ITKETEST@@DL00781681 13
64ITKETESTLTKBWHL31706 13
6 4ITKETESTLTKIFTH21731 13
6 4ITKETESTLTKIFEN2174 4 13
6 4ITKETESTLTKEWHL31750 13
64ITKETEST@@DL00891783 13
64ITKETEST@@EN00901801 13
64ITKETEST@@DL01041817 13
64ITKETEST@@DL01141856 13
64ITKETEST@@EN01151874 13
64ITKETEST@@DL01311918 13
64ITKETEST@@EN01321936 13
64ITKETESTLTKBWHL41971 13
64ITKETESTLTKIFEL32012 13
64ITKETESTLTKIFEN32025 13
6 4ITKETESTLTKEWHL4 2031 13
64ITKETEST@§DL01502056 13
64ITKETEST@@EN01512074 13
64ITKETEST@@DL01622081 13
6 4ITKETESTLTKBWHL5 2106 13
6 4ITKETESTLTKIFEN42144 13
6 4ITKETESTLTKEWHL5 2150 13
6 4ITKETEST0 @DL01722175 13
64ITKETEST@@EN01732193 13
6 4ITKETESTLTKBWHL6 2217 13
64ITKETESTLTKIFEN52251 13
6 4ITKETESTLTKEWHL6 2257 13
6 5ETKUPADSETKUPADS 2266 13
65ETKUPADSLUPELSE52286 13
6 5ETKUPADSLUPELSE7 2298 13
6 5ETKUPADSLUPENDF8 2303 13
6 6ETKREADPETKREADP2 315 13
6 6 ETKREADP@ @ DLO187 2 3 3 8 13
66ETKREADP@@DT01872338 13
66ETKREADPLTKREP012376 13
66ETKREADP@@EN01962394 13
6 6ETKREADPLTKIFEL12421 13
66ETKREADPLTKENIF12427 13
6 6 ETKREADPLTKEMULT2469 13
6 6ETKREADPLTKMULT0 2473 13
6 6ETKREADPLTKMULT12 485 13
6 6ETKREADPLTKDONE9 2490 13
6 6ETKREADPLTKENIF3 2500 13
66ETKREADPLTKENIF62525 13
67IUCEPARMIUCEPARM 0 14

86

681EVEADDRIEVEADR 0
6 9IIOEAREAIIOEAREA 0
7 0IUCEUNCLIUCEUNCL 0
7 0IUCEUNCL0 @ DLO Oil 57
7OIUCEUNCL00ENOO12 75
7OIUCEUNCL00DLOO27 111
70IUCEUNCL@@EN0028 129
71IAOEPARMIAOEPARM 0
7 2ICOEICOTICOEIC02 12
73IEVEADDRIEVEADDR 303
74IKBEKBDTIKBEKJ3DT 303
7 5IAOEAOFFIAOEAOFFI60 6
7 51AOEAOFFLBTBWHL11642
7 51AOEAOOFRIGTSPOT1669
75IAOEAOFFBRANCHPT1672
7 5IAOEAOFFLSTELSE51749
75IAOEAOFFLSTELSE71799
7 5IAOEAOFFLSTENDF818 06
7 5IAOEAOFFLBTADDUM18 2 6
7 5IAOEAOFFLBTENIF918 63
75IAOEAOFFLBTEWHL11876

14
14
14
14
14
14
14
15
15
15
15
15
15
15
15
15
15
15
15
15
15

87

OUTPUT FILE
1 1IAOEPARM1
1 2IAOEPARM3
2 3ICOEICOT1
2 4ICOEICOT3
3 5IEVEADDR1
3 6IEVEADDR3
4 7IKBEKBDT1
4 8IKBEKBDT3
5 9IAOEAOFF1
5 10IAOEAOFF3
6 11ICCEPARM1
6 12ICCEPARM3
7 13IEVEADDR1
7 14IEVEADDR3
8 15IIOEAREA1
8 16IIOEAREA3
9 17ICCECLMP1ITEEABRT

26 18ITEEABRT2ICCECLMP
9 19ICCECLMP1IWTEWAITY
10 2 0IEXEPARM1
10 21IEXEPARM3
11 2 2IEVEADDR1
11 23IEVEADDR3
12 241IOEAREA1
12 25IIOEAREA3
13 2 6IEXEEXER1ITEEABRT
26 27ITEEABRT2IEXEEXER
13 28IEXEEXER1IWTEWAITY
13 29IEXEEXER1ITEEABRT
26 30ITEEABRT2IEXEEXER
13 31IEXEEXER1IWTEWAITY
14 32IITEPARM1
14 33IITEPARM3
15 34IEVEADDR1
15 35IEVEADDR3
16 36IIOEAREA1
16 37IIOEAREA3
17 38IITEINIT1
17 39IITEINIT3
19 40IEVEADDR1
19 41IEVEADDR3
20 42IIOEAREA1
20 431IOEAREA3
21 44IKBEKBDT1
21 45IKBEKBDT3
22 46IMDEMAIN1IITEINIT
17 47IITEINIT2IMDEMAIN
22 48IMDEMAIN1IDMEDISPY
22 49IMDEMAIN11WTEWAITY
22 50IMDEMAIN1IWTEWAITY
22 51IMDEMAIN1IDMEDISPY

88

22 52IMDEMAINIIBOEBCOT
31 53IBOEBCOT2IMDEMAIN
22 54IMDEMAIN1IDMEDISPY
22 55IMDEMAIN1IRKERKBT
51 56IRKERKBT2IMDEMAIN
22 57IMDEMAIN1IDMEDISPY
22 58IMDEMAINIIBTEBLDT
36 59IBTEBLDT2IMDEMAIN
22 60IMDEMAIN1IDMEDISPY
22 61IMDEMAINIICCECLMP
9 62ICCECLMP2IMDEMAIN
22 63IMDEMAIN1IUCEUNCL
70 64IUCEUNCL2IMDEMAIN
22 65IMDEMAIN1IWSEWRITY
22 66IMDEMAINIIWTEWAITY
22 67IMDEMAINIIWTEWAITY
22 68IMDEMAIN1IDMEDISPY
22 69IMDEMAIN1IEXEEXER
13 70IEXEEXER2IMDEMAIN
22 71IMDEMAIN1IDMEDISPY
22 72IMDEMAINIITKETEST
64 73ITKETEST2IMDEMAIN
22 74IMDEMAIN1IDMEDISPY
22 75IMDEMAIN1IAOEAOFF
5 76IAOEAOFF2IMDEMAIN
22 77IMDEMAINIIDMEDISPY
22 7 8IMDEMAIN11PTEPROC
44 79IPTEPROC2IMDEMAIN
22 80IMDEMAIN1IDMEDISPY
22 81IMDEMAIN1IUCEUNCL
70 82IUCEUNCL2IMDEMAIN
22 83IMDEMAIN1IDMEDISPY
22 8 4IMDEMAIN1IWSEWRITY
22 85IMDEMAIN1IDMEDISPY
22 86IMDEMAIN1IWSEWRITY
22 87IMDEMAIN1IDMEDISPY
22 88IMDEMAIN1ISGESNDG
59 891SGESNDG2IMDEMAIN
22 90IMDEMAIN1IDMEDISPY
22 91IMDEMAINIISEESNDE
55 92ISEESNDE2IMDEMAIN
22 93IMDEMAIN1IDMEDISPY
22 9 4IMDEMAIN1IWSEWRITY
22 95IMDEMAIN1IDMEDISPY
22 96IMDEMAIN1ISGESNDG
59 97ISGESNDG2IMDEMAIN
22 98IMDEMAIN1IDMEDISPY
22 99IMDEMAINIIUCEUNCL
70100IUCEUNCL2IMDEMAIN
2 2101IMDEMAIN1IWSEWRITY
22102IMDEMAIN1IDMEDISPY
22103IMDEMAINIIUCEUNCL
70104IUCEUNCL2IMDEMAIN
22105IMDEMAIN1IWSEWRITY

89

22106IMDEMAIN1IDMEDISPY
22107IMDEMAINIIWTEWAITY
23108ITEEPARM1
23109ITEEPARM3
241101EVEADDR1
24111IEVEADDR3
25112IIOEAREA1
25113IIOEAREA3
26114ITEEABRT1IDMEDISPY
27115IBOEPARM1
27116IBOEPARM3
28117ICOEICOT1
28118ICOEICOT3
29119IEVEADDR1
291201EVEADDR3
30121IIOEAREA1
30122IIOEAREA3
3112 3IBOEBCOT1IWTEWAITY
3112 4IBOEBCOT1IWTEWAITY
31125IBOEBCOT1ITEEABRT
261261TEEABRT2IBOEBCOT
311271BOEBCOT1ITEEABRT
26128ITEEABRT2IBOEBCOT
311291BOEBCOT1IWTEWAITY
32130IBTEPARM1
32131IBTEPARM3
33132IEVEADDR1
33133IEVEADDR3
34134IIOEAREA1
34135IIOEAREA3
35136IKBEKBDT1
35137IKBEKBDT3
3 613 8IBTEBLDT1EBTSTAND
3713 9EBTSTAND2IBTEBLDT
36140IBTEBLDT1EBTDIEVA
3 8141EBTDIEVA2IBTEBLDT
361421BTEBLDT1EBTSTAND
37143EBTSTAND2IBTEBLDT
361441BTEBLDT1EBTUPADS
3914 5EBTUPADS2IBTEBLDT
361461BTEBLDT1EBTUPADD
4 014 7EBTUPADD2IBTEBLDT
36148IBTEBLDT1EBTDIEVA
3814 9EBTDIEVA2IBTEBLDT
36150IBTEBLDT1EBTUPADS
3 9151EBTUPADS 2IBTEBLDT
36152IBTEBLDT1EBTSTAND
37153EBTSTAND2IBTEBLDT
361541BTEBLDT1ITEEABRT
26155ITEEABRT2IBTEBLDT
37156EBTSTAND1
37157EBTSTAND3
38158EBTDIEVA1
38159EBTDIEVA3

90

39160EBTUPADS1
39161EBTUPADS3
40162EBTUPADD1
40163EBTUPADD3
41164IPTEPARM1
41165IPTEPARM3
42166IEVEADDR1
42167IEVEADDR3
43168IKBEKBDT1
43169IKBEKBDT3
441701PTEPROC1EPTNORMP
45171EPTNORMP2IPTEPROC
44172IPTEPROC1EPTLOCKP
46173EPTLOCKP2IPTEPROC
4 4174IPTEPROC1EPTSPACE
48175EPTSPACE2IPTEPROC
4 417 6IPTEPROC1EPTSHIFT
4717 7EPTSHIFT21PTEPROC 45178EPTNORMP1
45179EPTNORMP3
46180EPTLOCKP1
46181EPTLOCKP3
47182EPTSHIFT1
4718 3EPTSHIFT3
48184EPTSPACE1
48185EPTSPACE3
49186IRKEPARM1
49187IRKEPARM3
50188IEVEADDR1
50189IEVEADDR3
51190IRKERKBT1IWSEWRITY
51191IRKERKBT1IDMEDISPY
51192IRKERKBT1IWSEWRITY
52193ISEEPARM1
52194ISEEPARM3
53195IEVEADDR1
53196IEVEADDR3
54197IKBEKBDT1
54198IKBEKBDT3
55199ISEESNDE1IWSEWRITY
55200ISEESNDE1IWSEWRITY
56201ISGEPARM1
56202ISGEPARM3
57203IEVEADDR1
57204IEVEADDR3
58205IKBEKBDT1
58206IKBEKBDT3
59207ISGESNDG1IWSEWRITY
59208ISGESNDG1IWSEWRITY
592 09ISGESNDG1IWSEWRITY
60210ITKEPARM1
60211ITKEPARM3
61212IEVEADDR1
61213IEVEADDR3

91

622141I0EAREA1
62215IIOEAREA3
63216IKBEKBDT1
63217IKBEKBDT3
64218ITKETEST1ITEEABRT
2 6219ITEEABRT2ITKETEST
64220ITKETEST1IWTEWAITY
64221ITKETEST1ETKREADP
66222 ETKREADP2ITKETEST
64223ITKETEST1ETKUPADS
65224ETKUPADS2ITKETEST
64225ITKETEST1ITEEABRT
2622 6ITEEABRT2ITKETEST
64227ITKETEST1ITEEABRT
26228ITEEABRT2ITKETEST
64229ITKETEST1ETKREADP
6623 0ETKREADP2ITKETEST
64231ITKETEST1ETKUPADS
65232 ETKUPADS2ITKETEST
64233ITKETEST1ITEEABRT
26234ITEEABRT2ITKETEST
6423 5ITKETEST1ETKREADP
66236ETKREADP2ITKETEST
64237ITKETEST1ETKUPADS
65238ETKUPADS2ITKETEST
64239ITKETEST1ITEEABRT
26240ITEEABRT2ITKETEST
64241ITKETEST1ITEEABRT
26242ITEEABRT2ITKETEST
64243ITKETEST1ITEEABRT
26244ITEEABRT2ITKETEST
64245ITKETEST1ETKREADP
66246ETKREADP2ITKETEST
64247ITKETEST1ETKREADP
6624 8ETKREADP2ITKETEST
64249ITKETEST1ETKUPADS
6525 OETKUPADS2ITKETEST
64251ITKETEST1ITEEABRT
26252ITEEABRT2ITKETEST
64253ITKETEST1ETKREADP
66254 ETKREADP2ITKETEST
64255ITKETEST1ETKUPADS
65256ETKUPADS2ITKETEST
64257ITKETEST1ITEEABRT
26258ITEEABRT2ITKETEST
64259ITKETEST1ETKREADP
6 62 6 0ETKREADP2ITKETEST
64261ITKETEST1ETKUPADS
65262ETKUPADS2ITKETEST
65263ETKUPADS1
65264ETKUPADS3
662 65ETKREADP1IWTEWAITY
66266ETKREADP1ITEEABRT
26267ITEEABRT2ETKREADP

92

66268 ETKREADP1IWTEWAITY
67269IUCEPARM1
67270IUCEPARM3
67271IUCEPARM1
67272IUCEPARM3
682731EVEADDR1
682741EVEADDR3
69275IIOEAREA1
69276IIOEAREA3
7 0277IUCEUNCL1ITEEABRT
26278ITEEABRT2IUCEUNCL
70279IUCEUNCL1ITEEABRT
26280ITEEABRT2IUCEUNCL
712 81IAOEPARM1
71282IAOEPARM3
72283ICOEICOT1
72284ICOEICOT3
732851EVEADDR1
73286IEVEADDR3
74287IKBEKBDT1
74288IKBEKBDT3
75289IAOEAOFFIIBOEBCOT
312901BOEBCOT2IAOEAOFF7529IIAOEAOFF1IBOEBCOT
312921BOEBCOT2IAOEAOFF
75293IAOEAOFF1IBOEBCOT
31294IBOEBCOT2IAOEAOFF
75295IAOEAOFF1IBOEBCOT
312961BOEBCOT2IAOEAOFF
75297IAOEAOFF1IBOEBCOT
3129 8IBOEBCOT2IAOEAOFF
75299IAOEAOFF1IBOEBCOT
313 0 OIBOEBCOT2IAOEAOFF
75301IAOEAOFF1IBTEBLDT
363021BTEBLDT2IAOEAOFF
75303IAOEAOFFIIBTEBLDT
36304IBTEBLDT2IAOEAOFF

93

SORTOUT FILE
1 1IAOEPARM1
1 2IAOEPARM3
2 3ICOEICOT1
2 4ICOEICOT3
3 5IEVEADDR1
3 6IEVEADDR3
4 7IKBEKBDT1
4 8IKBEKBDT3
5 9IAOEAOFF1
5 76IAOEAOFF2IMDEMAIN5 10IAOEAOFF3
6 11ICCEPARM1
6 12ICCEPARM3
7 13IEVEADDR1
7 14IEVEADDR3
8 15IIOEAREA1
8 16IIOEAREA3
9 17ICCECLMP1ITEEABRT
9 19ICCECLMP1IWTEWAITY 9 62ICCECLMP2IMDEMAIN
10 2 0IEXEPARM1
10 21IEXEPARM3
11 2 2IEVEADDR1
11 2 3IEVEADDR3
12 24IIOEAREA1
12 25IIOEAREA3
13 2 6IEXEEXER1ITEEABRT
13 2 8IEXEEXER1IWTEWAITY
13 291EXEEXER1ITEEABRT
13 31IEXEEXER1IWTEWAITY
13 70IEXEEXER2IMDEMAIN14 32IITEPARM1
14 33IITEPARM3
15 34IEVEADDR1
15 35IEVEADDR3
16 36IIOEAREA1
16 37IIOEAREA3
17 38IITEINIT1
17 471ITEINIT2IMDEMAIN
17 39IITEINIT3
19 40IEVEADDR1
19 41IEVEADDR3
20 421IOEAREA1
20 43IIOEAREA3
21 44IKBEKBDT1
21 45IKBEKBDT3
22 46IMDEMAIN1IITEINIT
22 48IMDEMAINIIDMEDISPY
22 4 9IMDEMAIN1IWTEWAITY
22 50IMDEMAIN1IWTEWAITY
22 51IMDEMAIN1IDMEDISPY

94

22 52IMDEMAINIIBOEBCOT
22 54IMDEMAIN1IDMEDISPY
22 551MDEMAIN1IRKERKBT
22 57IMDEMAIN1IDMEDISPY
22 58IMDEMAIN1IBTEBLDT
22 60IMDEMAIN1IDMEDISPY
22 61IMDEMAINIICCECLMP
22 63IMDEMAINIIUCEUNCL
22 6 5IMDEMAIN1IWSEWRITY
22 66IMDEMAINIIWTEWAITY
22 67IMDEMAINIIWTEWAITY
22 68IMDEMAINIIDMEDISPY
22 69IMDEMAINIIEXEEXER
22 71IMDEMAIN1IDMEDISPY
22 7 2IMDEMAIN1ITKETEST
22 7 4IMDEMAIN1IDMEDISPY
22 75IMDEMAINIIAOEAOFF
22 7 7IMDEMAINIIDMEDISPY
22 78IMDEMAIN1IPTEPROC
22 80IMDEMAINIIDMEDISPY
22 81IMDEMAIN1IUCEUNCL
22 8 3IMDEMAIN1IDMEDISPY
22 8 4IMDEMAIN1IWSEWRITY
22 85IMDEMAIN1IDMEDISPY
22 86IMDEMAINIIWSEWRITY
22 87IMDEMAIN1IDMEDISPY
22 88IMDEMAIN1ISGESNDG
22 90IMDEMAIN1IDMEDISPY
22 91IMDEMAIN1ISEESNDE
22 93IMDEMAIN1IDMEDISPY
22 9 4IMDEMAIN1IWSEWRITY
22 95IMDEMAINIIDMEDISPY
22 9 6IMDEMAIN1ISGESNDG
22 9 8IMDEMAINIIDMEDISPY
22 99IMDEMAIN1IUCEUNCL
22101IMDEMAIN1IWSEWRITY
22102IMDEMAIN1IDMEDISPY
22103IMDEMAINIIUCEUNCL
22105IMDEMAIN1IWSEWRITY
22106IMDEMAIN1IDMEDISPY
22107IMDEMAIN1IWTEWAITY
23108ITEEPARM1
23109ITEEPARM3
241101EVEADDRI
241111EVEADDR3
25112IIOEAREA1
25113IIOEAREA3
26114ITEEABRT1IDMEDISPY
26 18ITEEABRT2ICCECLMP
26 27ITEEABRT2IEXEEXER
26 3 0ITEEABRT2IEXEEXER
2 612 6ITEEABRT2IBOEBCOT
26128ITEEABRT2IBOEBCOT
26155ITEEABRT2IBTEBLDT

95

2 6 219ITEEABRT2ITKETEST
26226ITEEABRT2ITKETEST
26228ITEEABRT2ITKETEST
26234ITEEABRT2ITKETEST
2 62 4 0ITEEABRT2ITKETEST
26242ITEEABRT2ITKETEST
26244ITEEABRT2ITKETEST
2 6 2 52ITEEABRT2ITKETEST
2 6 2 58ITEEABRT2ITKETEST
26267ITEEABRT2ETKREADP
26278ITEEABRT2IUCEUNCL
2628 0ITEEABRT2IUCEUNCL
27115IB0EPARM1
27116IBOEPARM3
28117ICOEICOT1
28118ICOEICOT3
29119IEVEADDR1
29120IEVEADDR3
301211IOEAREA1
30122IIOEAREA3
31123IBOEBCOT1IWTEWAITY
31124IBOEBCOT1IWTEWAITY
31125IBOEBCOT1ITEEABRT
3112 7IBOEBCOT1ITEEABRT
31129IBOEBCOT1IWTEWAITY
31 53IBOEBCOT2IMDEMAIN
312 9OIBOEBCOT2IAOEAOFF
312921BOEBCOT2IAOEAOFF
31294IBOEBCOT2IAOEAOFF
31296IBOEBCOT2IAOEAOFF
31298IBOEBCOT2IAOEAOFF
313OOIBOEBCOT2IAOEAOFF
32130IBTEPARM1
32131IBTEPARM3
33132IEVEADDR1
33133IEVEADDR3
34134IIOEAREA1
34135IIOEAREA3
35136IKBEKBDT1
35137IKBEKBDT3
36138IBTEBLDT1EBTSTAND
36140IBTEBLDT1EBTDIEVA
3 614 2IBTEBLDT1EBTSTAND
3614 4IBTEBLDT1EBTUPADS
3614 61BTEBLDTIEBTUPADD
3 614 8IBTEBLDT1EBTDIEVA
3 6150IBTEBLDT1EBTUPADS
3 61521BTEBLDT1EBTSTAND
36154IBTEBLDT1ITEEABRT
36 59IBTEBLDT2IMDEMAIN
36302IBTEBLDT2IAOEAOFF
3 63 04IBTEBLDT2IAOEAOFF
37156EBTSTAND1
37139EBTSTAND2IBTEBLDT

96

37143EBTSTAND2IBTEBLDT
37153EBTSTAND2IBTEBLDT
37157EBTSTAND3
3 8158EBTDIEVA1
3 8141EBTDIEVA2IBTEBLDT
3 8149EBTDIEVA2IBTEBLDT
38159EBTDIEVA3
39160EBTUPADS139145EBTUPADS2IBTEBLDT
3 9151EBTUPADS2IBTEBLDT
39161EBTUPADS 3
40162EBTUPADD1
4 014 7EBTUPADD21BTEBLDT
40163EBTUPADD3
41164IPTEPARM1
41165IPTEPARM3
42166IEVEADDR1
42167IEVEADDR3
43168IKBEKBDT1
43169IKBEKBDT3
4417OIPTEPROC1EPTNORMP
44172IPTEPROC1EPTLOCKP
44174IPTEPROC1EPTSPACE
4 417 6IPTEPROC1EPTSHIFT
44 79IPTEPROC2IMDEMAIN
45178EPTNORMP1
45171EPTNORMP2IPTEPROC
45179EPTNORMP3
46180EPTLOCKP1
46173EPTLOCKP2IPTEPROC
46181EPTLOCKP3
47182EPTSHIFT1
47177EPTSHIFT2IPTEPROC
47183EPTSHIFT3
48184EPTSPACE1
4 817 5EPTSPACE2IPTEPROC
48185EPTSPACE3
49186IRKEPARM1
49187IRKEPARM3
50188IEVEADDR1
501891EVEADDR3
51190IRKERKBT1IWSEWRITY
51191IRKERKBT1IDMEDISPY
51192IRKERKBT1IWSEWRITY
51 56IRKERKBT2IMDEMAIN
52193ISEEPARM1
52194ISEEPARM3
53195IEVEADDR1
53196IEVEADDR3
54197IKBEKBDT1
54198IKBEKBDT3
55199ISEESNDE1IWSEWRITY
55200ISEESNDE1IWSEWRITY
55 92ISEESNDE2IMDEMAIN

97

56201ISGEPARM1
56202ISGEPARM3
57203IEVEADDR1
57204IEVEADDR3
58205IKBEKBDT1
58206IKBEKBDT359207ISGESNDG1IWSEWRITY
59208ISGESNDG1IWSEWRITY
59209ISGESNDG1IWSEWRITY
59 89ISGESNDG2IMDEMAIN
59 97ISGESNDG2IMDEMAIN
60210ITKEPARM1
60211ITKEPARM3
61212IEVEADDR1
61213IEVEADDR3
62214IIOEAREA1
62215IIOEAREA3
63216IKBEKBDT1
63217IKBEKBDT3
64218ITKETEST1ITEEABRT
6422 0ITKETEST1IWTEWAITY
64221ITKETEST1ETKREADP
64223ITKETEST1ETKUPADS
6422 5ITKETEST1ITEEABRT
64227ITKETEST1ITEEABRT
64229ITKETEST1ETKREADP
64231ITKETEST1ETKUPADS
64233ITKETEST1ITEEABRT
642 3 5ITKETEST1ETKREADP
6423 7ITKETEST1ETKUPADS
64239ITKETEST1ITEEABRT
64241ITKETEST1ITEEABRT
64243ITKETEST1ITEEABRT
64245ITKETEST1ETKREADP
64247ITKETEST1ETKREADP
64249ITKETEST1ETKUPADS
64251ITKETEST1ITEEABRT
64253ITKETEST1ETKREADP
64255ITKETEST1ETKUPADS
64257ITKETEST1ITEEABRT
64 2 59ITKETEST1ETKREADP
642 61ITKETEST1ETKUPADS
64 73ITKETEST2IMDEMAIN
65263 ETKUPADS1
65224ETKUPADS 2ITKETEST
65232 ETKUPADS 2ITKETEST
65238ETKUPADS2ITKETEST
6525 OETKUPADS2ITKETEST
6525 6ETKUPADS2ITKETEST
65262ETKUPADS2ITKETEST
65264ETKUPADS3
66265ETKREADP1IWTEWAITY
662 66ETKREADP1ITEEABRT
662 68ETKREADP1IWTEWAITY

98

66222 ETKREADP2ITKETEST
662 3 0ETKREADP2ITKETEST
6623 6ETKREADP2ITKETEST
6624 6ETKREADP2ITKETEST
662 4 8ETKREADP2ITKETEST
66254ETKREADP2ITKETEST
662 6 0ETKREADP2ITKETEST
67269IUCEPARM1
67271IUCEPARM1
67270IUCEPARM3
67272IUCEPARM3
68273IEVEADDR1
68274IEVEADDR3
69275IIOEAREA1
69276IIOEAREA3
7 02 77IUCEUNCL1ITEEABRT
70279IUCEUNCL1ITEEABRT
70 64IUCEUNCL2IMDEMAIN
70 82IUCEUNCL2IMDEMAIN
70100IUCEUNCL2IMDEMAIN
70104IUCEUNCL2IMDEMAIN
71281IAOEPARM1
71282IAOEPARM3
72283ICOEICOT1
72284ICOEICOT3
73285IEVEADDR1
732 8 6IEVEADDR3
74287IKBEKBDT1
742881KBEKBDT3
75289IAOEAOFFIIBOEBCOT
75291IAOEAOFF1IBOEBCOT
75293IAOEAOFFIIBOEBCOT
75295IAOEAOFF1IBOEBCOT
75297IAOEAOFF1IBOEBCOT
75299IAOEAOFF1IBOEBCOT
753 0IIAOEAOFF1IBTEBLDT
753 03IAOEAOFF1IBTEBLDT

99
APPENDIX D

dBASE OUTPUT REPORT

DATASET: TSS2525.CSECT.DATA
CSECT HIEARARCHY

IAOEPARM

CSECT IAOEPARM DOES NOT CALL ANY CSECT
CSECT IAOEPARM IS NOT CALLED BY ANY CSECT
CSECT IAOEPARM DOES NOT JUMP TO ANY CSECT
CSECT IAOEPARM IS NOT JUMPED TO BY ANY CSECT
ICOEICOT

CSECT ICOEICOT DOES NOT CALL ANY CSECT
CSECT ICOEICOT IS NOT CALLED BY ANY CSECT
CSECT ICOEICOT DOES NOT JUMP TO ANY CSECT
CSECT ICOEICOT IS NOT JUMPED TO BY ANY CSECT
IEVEADDR

CSECT IEVEADDR DOES NOT CALL ANY CSECT
CSECT IEVEADDR IS NOT CALLED BY ANY CSECT
CSECT IEVEADDR DOES NOT JUMP TO ANY CSECT
CSECT IEVEADDR IS NOT JUMPED TO BY ANY CSECT
IKBEKBDT

CSECT IKBEKBDT DOES NOT CALL ANY CSECT
CSECT IKBEKBDT IS NOT CALLED BY ANY CSECT
CSECT IKBEKBDT DOES NOT JUMP TO ANY CSECT
CSECT IKBEKBDT IS NOT JUMPED TO BY ANY CSECT
IAOEAOFF

CSECT IAOEAOFF DOES NOT CALL ANY CSECT
CSECT IAOEAOFF IS CALLED BY CSECT IMDEMAIN
CSECT IAOEAOFF DOES NOT JUMP TO ANY CSECT
CSECT IAOEAOFF IS NOT JUMPED TO BY ANY CSECT
ICCEPARM

CSECT ICCEPARM DOES NOT CALL ANY CSECT

100
DATASET: TSS2525.CSECT.DATA

CSECT ICCEPARM IS NOT CALLED BY ANY CSECT
CSECT ICCEPARM DOES NOT JUMP TO ANY CSECT
CSECT ICCEPARM IS NOT JUMPED TO BY ANY CSECT
IEVEADDR

CSECT IEVEADDR DOES NOT CALL ANY CSECT
CSECT IEVEADDR IS NOT CALLED BY ANY CSECT
CSECT IEVEADDR DOES NOT JUMP TO ANY CSECT
CSECT IEVEADDR IS NOT JUMPED TO BY ANY CSECT
IIOEAREA

CSECT IIOEAREA DOES NOT CALL ANY CSECT
CSECT IIOEAREA IS NOT CALLED BY ANY CSECT
CSECT IIOEAREA DOES NOT JUMP TO ANY CSECT
CSECT IIOEAREA IS NOT JUMPED TO BY ANY CSECT
ICCECLMP

CSECT ICCECLMP CALLS CSECT ITEEABRT
UNRESOLVED LABEL IWTEWAIT

CSECT ICCECLMP IS CALLED BY CSECT IMDEMAIN
CSECT ICCECLMP DOES NOT JUMP TO ANY CSECT
CSECT ICCECLMP IS NOT JUMPED TO BY ANY CSECT
IEXEPARM

CSECT IEXEPARM DOES NOT CALL ANY CSECT
CSECT IEXEPARM IS NOT CALLED BY ANY CSECT
CSECT IEXEPARM DOES NOT JUMP TO ANY CSECT
CSECT IEXEPARM IS NOT JUMPED TO BY ANY CSECT
IEVEADDR

CSECT IEVEADDR DOES NOT CALL ANY CSECT
CSECT IEVEADDR IS NOT CALLED BY ANY CSECT
CSECT IEVEADDR DOES NOT JUMP TO ANY CSECT
CSECT IEVEADDR IS NOT JUMPED TO BY ANY CSECT
IIOEAREA

CSECT IIOEAREA DOES NOT CALL ANY CSECT
CSECT IIOEAREA IS NOT CALLED BY ANY CSECT
CSECT IIOEAREA DOES NOT JUMP TO ANY CSECT

101
DATASET: TSS2525.CSECT.DATA

CSECT IIOEAREA IS NOT JUMPED TO BY ANY CSECT
IEXEEXER

CSECT IEXEEXER CALLS CSECT ITEEABRT
UNRESOLVED LABEL IWTEWAIT
CSECT ITEEABRT
UNRESOLVED LABEL IWTEWAIT

CSECT IEXEEXER IS CALLED BY CSECT IMDEMAIN
CSECT IEXEEXER DOES NOT JUMP TO ANY CSECT
CSECT IEXEEXER IS NOT JUMPED TO BY ANY CSECT
IITEPARM

CSECT IITEPARM DOES NOT CALL ANY CSECT
CSECT IITEPARM IS NOT CALLED BY ANY CSECT
CSECT IITEPARM DOES NOT JUMP TO ANY CSECT
CSECT IITEPARM IS NOT JUMPED TO BY ANY CSECT
IEVEADDR

CSECT IEVEADDR DOES NOT CALL ANY CSECT
CSECT IEVEADDR IS NOT CALLED BY ANY CSECT
CSECT IEVEADDR DOES NOT JUMP TO ANY CSECT
CSECT IEVEADDR IS NOT JUMPED TO BY ANY CSECT
IIOEAREA

CSECT IIOEAREA DOES NOT CALL ANY CSECT
CSECT IIOEAREA IS NOT CALLED BY ANY CSECT
CSECT IIOEAREA DOES NOT JUMP TO ANY CSECT
CSECT IIOEAREA IS NOT JUMPED TO BY ANY CSECT
IITEINIT

CSECT IITEINIT DOES NOT CALL ANY CSECT
CSECT IITEINIT IS CALLED BY CSECT IMDEMAIN
CSECT IITEINIT DOES NOT JUMP TO ANY CSECT
CSECT IITEINIT IS NOT JUMPED TO BY ANY CSECT
IEVEADDR

CSECT IEVEADDR DOES NOT CALL ANY CSECT
CSECT IEVEADDR IS NOT CALLED BY ANY CSECT
CSECT IEVEADDR DOES NOT JUMP TO ANY CSECT

102
DATASET: TSS2525.CSECT.DATA

CSECT IEVEADDR IS NOT JUMPED TO BY ANY CSECT
IIOEAREA

CSECT IIOEAREA
CSECT IIOEAREA
CSECT IIOEAREA
CSECT IIOEAREA

DOES NOT CALL ANY CSECT
IS NOT CALLED BY ANY CSECT
DOES NOT JUMP TO ANY CSECT
IS NOT JUMPED TO BY ANY CSECT

IKBEKBDT

CSECT IKBEKBDT
CSECT IKBEKBDT
CSECT IKBEKBDT
CSECT IKBEKBDT

DOES NOT CALL ANY CSECT
IS NOT CALLED BY ANY CSECT
DOES NOT JUMP TO ANY CSECT
IS NOT JUMPED TO BY ANY CSECT

IMDEMAIN

CSECT IMDEMAIN CALLS CSECT IITEINIT
UNRESOLVED LABEL IDMEDISP
UNRESOLVED LABEL IWTEWAIT
UNRESOLVED LABEL IWTEWAIT
UNRESOLVED LABEL IDMEDISP
CSECT IBOEBCOT
UNRESOLVED LABEL IDMEDISP
CSECT IRKERKBT
UNRESOLVED LABEL IDMEDISP
CSECT IBTEBLDT
UNRESOLVED LABEL IDMEDISP
CSECT ICCECLMP
CSECT IUCEUNCL
UNRESOLVED LABEL IWSEWRIT
UNRESOLVED LABEL IWTEWAIT
UNRESOLVED LABEL IWTEWAIT
UNRESOLVED LABEL IDMEDISP
CSECT IEXEEXER
UNRESOLVED LABEL IDMEDISP
CSECT ITKETEST
UNRESOLVED LABEL IDMEDISP
CSECT IAOEAOFF
UNRESOLVED LABEL IDMEDISP
CSECT IPTEPROC
UNRESOLVED LABEL IDMEDISP
CSECT IUCEUNCL
UNRESOLVED LABEL IDMEDISP
UNRESOLVED LABEL IWSEWRIT
UNRESOLVED LABEL IDMEDISP
UNRESOLVED LABEL IWSEWRIT

103
DATASET: TSS2525.CSECT.DATA

CSECT IMDEMAIN
CSECT IMDEMAIN
CSECT IMDEMAIN

UNRESOLVED LABEL IDMEDISP
CSECT ISGESNDG
UNRESOLVED LABEL IDMEDISP
CSECT ISEESNDE
UNRESOLVED LABEL IDMEDISP
UNRESOLVED LABEL IWSEWRIT
UNRESOLVED LABEL IDMEDISP
CSECT ISGESNDG
UNRESOLVED LABEL IDMEDISP
CSECT IUCEUNCL
UNRESOLVED LABEL IWSEWRIT
UNRESOLVED LABEL IDMEDISP
CSECT IUCEUNCL
UNRESOLVED LABEL IWSEWRIT
UNRESOLVED LABEL IDMEDISP
UNRESOLVED LABEL IWTEWAIT

IS NOT CALLED BY ANY CSECT
DOES NOT JUMP TO ANY CSECT
IS NOT JUMPED TO BY ANY CSECT

ITEEPARM

CSECT ITEEPARM
CSECT ITEEPARM
CSECT ITEEPARM CSECT ITEEPARM

DOES NOT CALL ANY CSECT
IS NOT CALLED BY ANY CSECT
DOES NOT JUMP TO ANY CSECT
IS NOT JUMPED TO BY ANY CSECT

IEVEADDR

CSECT IEVEADDR
CSECT IEVEADDR
CSECT IEVEADDR
CSECT IEVEADDR

DOES NOT CALL ANY CSECT
IS NOT CALLED BY ANY CSECT
DOES NOT JUMP TO ANY CSECT
IS NOT JUMPED TO BY ANY CSECT

IIOEAREA

CSECT IIOEAREA
CSECT IIOEAREA
CSECT IIOEAREA
CSECT IIOEAREA

DOES NOT CALL ANY CSECT
IS NOT CALLED BY ANY CSECT
DOES NOT JUMP TO ANY CSECT
IS NOT JUMPED TO BY ANY CSECT

ITEEABRT

CSECT ITEEABRT CALLS UNRESOLVED LABEL IDMEDISP
CSECT ITEEABRT IS CALLED BY CSECT ICCECLMP

CSECT IEXEEXER
CSECT IEXEEXER

104
DATASET: TSS2525.CSECT.DATA

CSECT IBOEBCOT
CSECT IBOEBCOT
CSECT IBTEBLDT
CSECT ITKETEST
CSECT ITKETEST
CSECT ITKETEST
CSECT ITKETEST
CSECT ITKETEST
CSECT ITKETEST
CSECT ITKETEST
CSECT ITKETEST
CSECT ITKETEST
CSECT ETKREADP
CSECT IUCEUNCL
CSECT IUCEUNCL

CSECT ITEEABRT DOES NOT JUMP TO ANY CSECT
CSECT ITEEABRT IS NOT JUMPED TO BY ANY CSECT
IBOEPARM

CSECT IBOEPARM
CSECT IBOEPARM
CSECT IBOEPARM
CSECT IBOEPARM

DOES NOT CALL ANY CSECT
IS NOT CALLED BY ANY CSECT
DOES NOT JUMP TO ANY CSECT
IS NOT JUMPED TO BY ANY CSECT

ICOEICOT

CSECT ICOEICOT
CSECT ICOEICOT
CSECT ICOEICOT
CSECT ICOEICOT

DOES NOT CALL ANY CSECT
IS NOT CALLED BY ANY CSECT
DOES NOT JUMP TO ANY CSECT
IS NOT JUMPED TO BY ANY CSECT

IEVEADDR

CSECT IEVEADDR
CSECT IEVEADDR
CSECT IEVEADDR
CSECT IEVEADDR

DOES NOT CALL ANY CSECT
IS NOT CALLED BY ANY CSECT
DOES NOT JUMP TO ANY CSECT
IS NOT JUMPED TO BY ANY CSECT

IIOEAREA

CSECT IIOEAREA
CSECT IIOEAREA
CSECT IIOEAREA
CSECT IIOEAREA

DOES NOT CALL ANY CSECT
IS NOT CALLED BY ANY CSECT
DOES NOT JUMP TO ANY CSECT
IS NOT JUMPED TO BY ANY CSECT

IBOEBCOT

105
DATASET: TSS2525.CSECT.DATA

CSECT IBOEBCOT CALLS UNRESOLVED LABEL IWTEWAIT
UNRESOLVED LABEL IWTEWAIT
CSECT ITEEABRT
CSECT ITEEABRT
UNRESOLVED LABEL IWTEWAIT

CSECT IBOEBCOT IS CALLED BY CSECT IMDEMAIN
CSECT IAOEAOFF
CSECT IAOEAOFF
CSECT IAOEAOFF
CSECT IAOEAOFF
CSECT IAOEAOFF
CSECT IAOEAOFF

CSECT IBOEBCOT DOES NOT JUMP TO ANY CSECT
CSECT IBOEBCOT IS NOT JUMPED TO BY ANY CSECT
IBTEPARM

CSECT IBTEPARM DOES NOT CALL ANY CSECT
CSECT IBTEPARM IS NOT CALLED BY ANY CSECT
CSECT IBTEPARM DOES NOT JUMP TO ANY CSECT
CSECT IBTEPARM IS NOT JUMPED TO BY ANY CSECT
IEVEADDR

CSECT IEVEADDR DOES NOT CALL ANY CSECT
CSECT IEVEADDR IS NOT CALLED BY ANY CSECT
CSECT IEVEADDR DOES NOT JUMP TO ANY CSECT
CSECT IEVEADDR IS NOT JUMPED TO BY ANY CSECT
IIOEAREA

CSECT IIOEAREA DOES NOT CALL ANY CSECT
CSECT IIOEAREA IS NOT CALLED BY ANY CSECT
CSECT IIOEAREA DOES NOT JUMP TO ANY CSECT
CSECT IIOEAREA IS NOT JUMPED TO BY ANY CSECT
IKBEKBDT

CSECT IKBEKBDT
CSECT IKBEKBDT
CSECT IKBEKBDT
CSECT IKBEKBDT

DOES NOT CALL ANY CSECT
IS NOT CALLED BY ANY CSECT
DOES NOT JUMP TO ANY CSECT
IS NOT JUMPED TO BY ANY CSECT

IBTEBLDT

CSECT IBTEBLDT CALLS CSECT EBTSTAND

106
DATASET: TSS2525.CSECT.DATA

CSECT EBTDIEVA
CSECT EBTSTAND
CSECT EBTUPADS
CSECT EBTUPADD
CSECT EBTDIEVA
CSECT EBTUPADS
CSECT EBTSTAND
CSECT ITEEABRT

CSECT IBTEBLDT IS CALLED BY CSECT IMDEMAIN
CSECT IAOEAOFF
CSECT IAOEAOFFCSECT IBTEBLDT DOES NOT JUMP TO ANY CSECT

CSECT IBTEBLDT IS NOT JUMPED TO BY ANY CSECT
EBTSTAND

CSECT EBTSTAND
CSECT EBTSTAND

CSECT EBTSTAND
CSECT EBTSTAND

DOES NOT CALL ANY CSECT
IS CALLED BY CSECT IBTEBLDT

CSECT IBTEBLDT
CSECT IBTEBLDT

DOES NOT JUMP TO ANY CSECT
IS NOT JUMPED TO BY ANY CSECT

EBTDIEVA

CSECT EBTDIEVA DOES NOT CALL ANY CSECT
CSECT EBTDIEVA IS CALLED BY CSECT IBTEBLDT

CSECT IBTEBLDT
CSECT EBTDIEVA DOES NOT JUMP TO ANY CSECT
CSECT EBTDIEVA IS NOT JUMPED TO BY ANY CSECT
EBTUPADS

CSECT EBTUPADS
CSECT EBTUPADS
CSECT EBTUPADS
CSECT EBTUPADS

DOES NOT CALL ANY CSECT
IS CALLED BY CSECT IBTEBLDT

CSECT IBTEBLDT
DOES NOT JUMP TO ANY CSECT
IS NOT JUMPED TO BY ANY CSECT

EBTUPADD

CSECT EBTUPADD
CSECT EBTUPADD
CSECT EBTUPADD
CSECT EBTUPADD

DOES NOT CALL ANY CSECT
IS CALLED BY CSECT IBTEBLDT
DOES NOT JUMP TO ANY CSECT
IS NOT JUMPED TO BY ANY CSECT

IPTEPARM

107
DATASET: TSS2525.CSECT.DATA

CSECT IPTEPARM DOES NOT CALL ANY CSECT
CSECT IPTEPARM IS NOT CALLED BY ANY CSECT
CSECT IPTEPARM DOES NOT JUMP TO ANY CSECT
CSECT IPTEPARM IS NOT JUMPED TO BY ANY CSECT
IEVEADDR

CSECT IEVEADDR DOES NOT CALL ANY CSECT
CSECT IEVEADDR IS NOT CALLED BY ANY CSECT
CSECT IEVEADDR DOES NOT JUMP TO ANY CSECT
CSECT IEVEADDR IS NOT JUMPED TO BY ANY CSECT
IKBEKBDT

CSECT IKBEKBDT DOES NOT CALL ANY CSECT
CSECT IKBEKBDT IS NOT CALLED BY ANY CSECT
CSECT IKBEKBDT DOES NOT JUMP TO ANY CSECT
CSECT IKBEKBDT IS NOT JUMPED TO BY ANY CSECT
IPTEPROC

CSECT IPTEPROC CALLS CSECT EPTNORMP
CSECT EPTLOCKP
CSECT EPTSPACE
CSECT EPTSHIFT

CSECT IPTEPROC IS CALLED BY CSECT IMDEMAIN
CSECT IPTEPROC DOES NOT JUMP TO ANY CSECT
CSECT IPTEPROC IS NOT JUMPED TO BY ANY CSECT
EPTNORMP

CSECT EPTNORMP DOES NOT CALL ANY CSECT
CSECT EPTNORMP IS CALLED BY CSECT IPTEPROC
CSECT EPTNORMP DOES NOT JUMP TO ANY CSECT
CSECT EPTNORMP IS NOT JUMPED TO BY ANY CSECT
EPTLOCKP

CSECT EPTLOCKP DOES NOT CALL ANY CSECT
CSECT EPTLOCKP IS CALLED BY CSECT IPTEPROC
CSECT EPTLOCKP DOES NOT JUMP TO ANY CSECT
CSECT EPTLOCKP IS NOT JUMPED TO BY ANY CSECT
EPTSHIFT

108
DATASET: TSS2525.CSECT.DATA

CSECT EPTSHIFT DOES NOT CALL ANY CSECT
CSECT EPTSHIFT IS CALLED BY CSECT IPTEPROC
CSECT EPTSHIFT DOES NOT JUMP TO ANY CSECT
CSECT EPTSHIFT IS NOT JUMPED TO BY ANY CSECT
EPTSPACE

CSECT EPTSPACE DOES NOT CALL ANY CSECT
CSECT EPTSPACE IS CALLED BY CSECT IPTEPROC
CSECT EPTSPACE DOES NOT JUMP TO ANY CSECT CSECT EPTSPACE IS NOT JUMPED TO BY ANY CSECT
IRKEPARM

CSECT IRKEPARM DOES NOT CALL ANY CSECT
CSECT IRKEPARM IS NOT CALLED BY ANY CSECT
CSECT IRKEPARM DOES NOT JUMP TO ANY CSECT
CSECT IRKEPARM IS NOT JUMPED TO BY ANY CSECT
IEVEADDR

CSECT IEVEADDR DOES NOT CALL ANY CSECT
CSECT IEVEADDR IS NOT CALLED BY ANY CSECT
CSECT IEVEADDR DOES NOT JUMP TO ANY CSECT
CSECT IEVEADDR IS NOT JUMPED TO BY ANY CSECT
IRKERKBT

CSECT IRKERKBT CALLS UNRESOLVED LABEL IWSEWRIT
UNRESOLVED LABEL IDMEDISP
UNRESOLVED LABEL IWSEWRIT

CSECT IRKERKBT IS CALLED BY CSECT IMDEMAIN
CSECT IRKERKBT DOES NOT JUMP TO ANY CSECT
CSECT IRKERKBT IS NOT JUMPED TO BY ANY CSECT
ISEEPARM

CSECT ISEEPARM DOES NOT CALL ANY CSECT
CSECT ISEEPARM IS NOT CALLED BY ANY CSECT
CSECT ISEEPARM DOES NOT JUMP TO ANY CSECT
CSECT ISEEPARM IS NOT JUMPED TO BY ANY CSECT
IEVEADDR

CSECT IEVEADDR DOES NOT CALL ANY CSECT

109
DATASET: TSS2525.CSECT.DATA

CSECT IEVEADDR IS NOT CALLED BY ANY CSECT
CSECT IEVEADDR DOES NOT JUMP TO ANY CSECT
CSECT IEVEADDR IS NOT JUMPED TO BY ANY CSECT
IKBEKBDT

CSECT IKBEKBDT DOES NOT CALL ANY CSECT
CSECT IKBEKBDT IS NOT CALLED BY ANY CSECT
CSECT IKBEKBDT DOES NOT JUMP TO ANY CSECT
CSECT IKBEKBDT IS NOT JUMPED TO BY ANY CSECT
ISEESNDE

CSECT ISEESNDE CALLS UNRESOLVED LABEL IWSEWRIT
UNRESOLVED LABEL IWSEWRIT

CSECT ISEESNDE IS CALLED BY CSECT IMDEMAIN
CSECT ISEESNDE DOES NOT JUMP TO ANY CSECT
CSECT ISEESNDE IS NOT JUMPED TO BY ANY CSECT
ISGEPARM

CSECT ISGEPARM DOES NOT CALL ANY CSECT
CSECT ISGEPARM IS NOT CALLED BY ANY CSECT
CSECT ISGEPARM DOES NOT JUMP TO ANY CSECT
CSECT ISGEPARM IS NOT JUMPED TO BY ANY CSECT
IEVEADDR

CSECT IEVEADDR DOES NOT CALL ANY CSECT
CSECT IEVEADDR IS NOT CALLED BY ANY CSECT
CSECT IEVEADDR DOES NOT JUMP TO ANY CSECT
CSECT IEVEADDR IS NOT JUMPED TO BY ANY CSECT
IKBEKBDT

CSECT IKBEKBDT DOES NOT CALL ANY CSECT
CSECT IKBEKBDT IS NOT CALLED BY ANY CSECT
CSECT IKBEKBDT DOES NOT JUMP TO ANY CSECT
CSECT IKBEKBDT IS NOT JUMPED TO BY ANY CSECT
ISGESNDG

CSECT ISGESNDG CALLS UNRESOLVED LABEL IWSEWRIT
UNRESOLVED LABEL IWSEWRIT
UNRESOLVED LABEL IWSEWRIT

110
DATASET: TSS2525.CSECT.DATA

CSECT ISGESNDG IS CALLED BY CSECT IMDEMAIN
CSECT IMDEMAIN

CSECT ISGESNDG DOES NOT JUMP TO ANY CSECT
CSECT ISGESNDG IS NOT JUMPED TO BY ANY CSECT
ITKEPARM

CSECT ITKEPARM DOES NOT CALL ANY CSECT
CSECT ITKEPARM IS NOT CALLED BY ANY CSECT
CSECT ITKEPARM DOES NOT JUMP TO ANY CSECT
CSECT ITKEPARM IS NOT JUMPED TO BY ANY CSECT
IEVEADDR

CSECT IEVEADDR DOES NOT CALL ANY CSECT
CSECT IEVEADDR IS NOT CALLED BY ANY CSECT
CSECT IEVEADDR DOES NOT JUMP TO ANY CSECT
CSECT IEVEADDR IS NOT JUMPED TO BY ANY CSECT
IIOEAREA

CSECT IIOEAREA DOES NOT CALL ANY CSECT
CSECT IIOEAREA IS NOT CALLED BY ANY CSECT
CSECT IIOEAREA DOES NOT JUMP TO ANY CSECT
CSECT IIOEAREA IS NOT JUMPED TO BY ANY CSECT
IKBEKBDT

CSECT IKBEKBDT DOES NOT CALL ANY CSECT
CSECT IKBEKBDT IS NOT CALLED BY ANY CSECT
CSECT IKBEKBDT DOES NOT JUMP TO ANY CSECT
CSECT IKBEKBDT IS NOT JUMPED TO BY ANY CSECT
ITKETEST

CSECT ITKETEST CALLS CSECT ITEEABRT
UNRESOLVED LABEL IWTEWAIT
CSECT ETKREADP
CSECT ETKUPADS
CSECT ITEEABRT
CSECT ITEEABRT
CSECT ETKREADP
CSECT ETKUPADS
CSECT ITEEABRT
CSECT ETKREADP
CSECT ETKUPADS

Ill
DATASET: TSS2525.CSECT.DATA

CSECT ITEEABRT
CSECT ITEEABRT
CSECT ITEEABRT
CSECT ETKREADP
CSECT ETKREADP CSECT ETKUPADS
CSECT ITEEABRT
CSECT ETKREADP
CSECT ETKUPADS
CSECT ITEEABRT
CSECT ETKREADP
CSECT ETKUPADS

CSECT ITKETEST IS CALLED BY CSECT IMDEMAIN
CSECT ITKETEST DOES NOT JUMP TO ANY CSECT
CSECT ITKETEST IS NOT JUMPED TO BY ANY CSECT
ETKUPADS

CSECT ETKUPADS DOES NOT CALL ANY CSECT
CSECT ETKUPADS IS CALLED BY CSECT ITKETEST

CSECT ITKETEST
CSECT ITKETEST
CSECT ITKETEST
CSECT ITKETEST
CSECT ITKETEST

CSECT ETKUPADS DOES NOT JUMP TO ANY CSECT
CSECT ETKUPADS IS NOT JUMPED TO BY ANY CSECT
ETKREADP

CSECT ETKREADP CALLS UNRESOLVED LABEL IWTEWAIT
CSECT ITEEABRT
UNRESOLVED LABEL IWTEWAIT

CSECT ETKREADP IS CALLED BY CSECT ITKETEST
CSECT ITKETEST
CSECT ITKETEST
CSECT ITKETEST
CSECT ITKETEST
CSECT ITKETEST
CSECT ITKETEST

CSECT ETKREADP DOES NOT JUMP TO ANY CSECT
CSECT ETKREADP IS NOT JUMPED TO BY ANY CSECT
IUCEPARM

CSECT IUCEPARM DOES NOT CALL ANY CSECT
CSECT IUCEPARM DOES NOT CALL ANY CSECT
CSECT IUCEPARM IS NOT CALLED BY ANY CSECT

112
DATASET: TSS2525.CSECT.DATA

CSECT IUCEPARM
CSECT IUCEPARM
CSECT IUCEPARM
IEVEADDR

DOES NOT JUMP
DOES NOT JUMP
IS NOT JUMPED

TO ANY CSECT
TO ANY CSECT
TO BY ANY CSECT

CSECT IEVEADDR
CSECT IEVEADDR
CSECT IEVEADDR
CSECT IEVEADDR

DOES NOT CALL ANY CSECT
IS NOT CALLED BY ANY CSECT
DOES NOT JUMP TO ANY CSECT
IS NOT JUMPED TO BY ANY CSECT

IIOEAREA

CSECT IIOEAREA
CSECT IIOEAREA
CSECT IIOEAREA
CSECT IIOEAREA

DOES NOT CALL ANY CSECT
IS NOT CALLED BY ANY CSECT
DOES NOT JUMP TO ANY CSECT
IS NOT JUMPED TO BY ANY CSECT

IUCEUNCL

CSECT IUCEUNCL CALLS CSECT ITEEABRT
CSECT ITEEABRT

CSECT IUCEUNCL IS CALLED BY CSECT IMDEMAIN
CSECT IMDEMAIN
CSECT IMDEMAIN
CSECT IMDEMAINCSECT IUCEUNCL DOES NOT JUMP TO ANY CSECT

CSECT IUCEUNCL IS NOT JUMPED TO BY ANY CSECT
IAOEPARM

CSECT IAOEPARM DOES NOT CALL ANY CSECT
CSECT IAOEPARM IS NOT CALLED BY ANY CSECT
CSECT IAOEPARM DOES NOT JUMP TO ANY CSECT
CSECT IAOEPARM IS NOT JUMPED TO BY ANY CSECT
ICOEICOT

CSECT ICOEICOT DOES NOT CALL ANY CSECT
CSECT ICOEICOT IS NOT CALLED BY ANY CSECT
CSECT ICOEICOT DOES NOT JUMP TO ANY CSECT
CSECT ICOEICOT IS NOT JUMPED TO BY ANY CSECT
IEVEADDR

113
DATASET: TSS2525.CSECT.DATA

CSECT IEVEADDR
CSECT IEVEADDR
CSECT IEVEADDR
CSECT IEVEADDR

DOES NOT CALL ANY CSECT
IS NOT CALLED BY ANY CSECT
DOES NOT JUMP TO ANY CSECT
IS NOT JUMPED TO BY ANY CSECT

IKBEKBDT

CSECT IKBEKBDT
CSECT IKBEKBDT
CSECT IKBEKBDT
CSECT IKBEKBDT

DOES NOT CALL ANY CSECT
IS NOT CALLED BY ANY CSECT
DOES NOT JUMP TO ANY CSECT
IS NOT JUMPED TO BY ANY CSECT

IAOEAOFF

CSECT IAOEAOFF CALLS CSECT IBOEBCOT
CSECT IBOEBCOT
CSECT IBOEBCOT
CSECT IBOEBCOT
CSECT IBOEBCOT
CSECT IBOEBCOT
CSECT IBTEBLDT
CSECT IBTEBLDT

	Micro Database Management System Language
	Recommended Citation

	tmp.1607088292.pdf.WMIq_

