
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 May 1988

Computer control of a PBX washout plant Computer control of a PBX washout plant

Scott Cameron Sharp

Chung You Ho
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Sharp, Scott Cameron and Ho, Chung You, "Computer control of a PBX washout plant" (1988). Computer
Science Technical Reports. 83.
https://scholarsmine.mst.edu/comsci_techreports/83

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/83?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

COMPUTER CONTROL OF A PBX WASHOUT PLANT

S. C. Sharp* and C. Y. Ho

CSc-88-4

Department of Computer Science
University of Missouri-Rolla

Rolla, Missouri 65401 (314)341-4491

*This report is substantially the M.S. thesis of the first
author, completed May, 1988.

ii

ABSTRACT

A fully automated, computer controlled plant has been
designed specifically for safe removal of plastic bonded
explosives (PBX) from obsolete military munitions. This PBX
washout plant consists of a two stage delivery system and
robotically operated high pressure waterjet lance. The
assigned task was to develop control packages for each
component.

The first stage of the delivery system is a battery
operated overhead trolley. Its control package consist of a
dedicated computer, DC motor and custom positioning
subprograms. The dedicated computer communicates through an
infrared link to the operator's computer. This link was
developed due to requirements of a hazardous environment.
Probable software solutions for the communication are
presented given current system configurations.

The trolley positions the munition directly above a
hydraulically operated table - the second stage of the
delivery system. This stage's control package incorporates
three closed loop, first order circuits and software. The
table positions the munition for explosive removal by the
waterjet.

The robotic waterjet lance is hydraulically controlled
through four closed loop, first order circuits. The
concepts of its controlling software is presented to better
understand the currently developed software.

Ill

ACKNOWLEDGEMENTS
I would like to thank Dr. David Summers for the oppor

tunity to assist Mr. John Tyler and Mr. Jen Sriwattanathamma
in both the new conceptual phase and ongoing technical
development phase of the PBX Washout Plant.

I am grateful for the patience and constant support of
my thesis advisor, Dr. Peter C. Y. Ho, for without his
efforts this thesis would not have been completed. I am
also indebted to Dr. Arlan DeKock and Dr. Kelvin Erickson
for their comments on initial drafts, and for their
technical insight while serving as thesis committee members.

In addition, I would like to extend my warmest thanks
to the faculty and staff of the Rock Mechanics and Explosive
Research Center for the financial support, and encouragement
they have so consistently offered to me. Finally, a special
thanks to my family for their unending support and under
standing throughout my educational career.

IV

TABLE OF CONTENTS

ABSTRACT... ii
ACKNOWLEDGEMENT....................................... iii
TABLE OF CONTENTS...................................... iv
LIST OF ILLUSTRATIONS.................................. vi

I. INTRODUCTION.................................. 1
A. PBX WASHOUT PLANT........................ 2
B. COMPUTER SYSTEMS......................... 6
C. PLANT ALGORITHM.......................... 8

II. WOMBAT CONTROL............................... 10
A. COORDINATE SYSTEM....................... 10
B. POSITION CONTROL........................ 11
C. POSITION MONITORING..................... 13
D. SAMPLE PROGRAMS......................... 15

III. MONORAIL SYSTEM CONTROL...................... 20
A. MOTOR CONTROL........................... 20
B. MONORAIL PROGRAMS REQUIREMENTS..........22
C. COMMUNICATION EXTENDED KEYWORDS......... 26

1. SetUpCom1.......................... 26
2. ReadCom1........................... 26
3. SendCom1........................... 26

D. MOTOR CONTROL EXTENDED KEYWORDS......... 27
1. Init_Lab40......................... 27
2. Soft_Reset......................... 28
3. Set_Filter_Vars.................... 28
4. Enter_Final_Position............... 28
5 . Set_Accel.......................... 29
6. Set_Vel............................ 29
7. Set_Time........................... 30
8. Display_Position................... 30
9. Execute_Move....................... 30
10 Quit............................... 31

E. SAMPLE PROGRAMS......................... 31

V

F. MONORAIL SYSTEM COMMUNICATION...........35
1. Monorail Computer Communication.... 37

a. Hardware Port Access..........37
b. SetUpCom1 Procedure...........38
c. Read_Line_Status_Reg

Procedure..................... 40
d. Send_Driver Procedure.........41
e. Read_Driver Procedure......... 42

2. Plant Computer Communication.......44
a. SetUpCom1 Subroutine......... 44
b. Communication Statements..... 46

3. Byte Oriented Communication
Protocol........................... 47

G. MOTOR CONTROL HARDWARE.................. 53
1. LAB 40 Extended Bus System.........54
2. Hewlett Packard HCTL-1000 Function

Module............................. 56
a. Register Access...............56
b. Trapezoidal Profile

Generator.....................63
c. Initialization Process........64
d. Filter Parameters.............65
e. Position Profile

Parameters....................66
f. Position Registers............69
g. Move Execution................71

IV. TABLE SYSTEM CONTROL........................74
A. TABLE SYSTEM ALGORITHM.................74
B. HYDRAULIC SYSTEM CONTROL...............75
C. STRAIN GAUGE EXTENDED KEYWORD......... 76

V. CONCLUSION.................................. 82
BIBLIOGRAPHY...85
VITA... 88
APPENDICES

A. SLAVE EXTENDED KEYWORDS......................89
B. MASTER EXTENDED KEYWORDS.................... 102

vi

LIST OF ILLUSTRATIONS

Figure Page

1. Delivery System Components and the WOMBAT...........3
2. Overhead View of PBX Washout Plant.................. 5
3. Basic WOMBAT Program...............................16
4. WOMBAT Program with Abort/Backup/Continue......... 18
5. Slave1 and Master1 Programs........................ 32
6. Sample Master1 Execution.......................... 33
7. Slave2 and Master2 Programs........................ 34
8 . Communication Levels.............................. 36
9. Read Line Status Procedure......................... 40
10. Send_Driver Procedure..............................41
11. Read_Driver Procedure..............................43
12. Lower Level Communication Example..................46
13. Basic BOCP Scheme.................................. 50
14. BOCP Scheme with Error Handling.................... 52
15. HP HCTL-1000 Register Access Subprograms...........58
16. Simplified Block Diagram of LAB 40-HP Connection...59
17. Simplified HP HCTL-1000 Registers Block Diagram.... 62
18. Sample Table Control Program....................... 77
19. Read Strain Guage Subroutine....................... 78
20. Read_Strain_Guage Procedure........................ 79
21. Table Control Program with Strain Detection........81

1

I. INTRODUCTION
The Rock Mechanics and Explosive Research Center

(RMERC) of the University of Missouri-Rolla (UMR) has been
conducting research for the Naval Weapons Support Center of
Crane, Indiana. The problem deals with the disposal of a
stockpile of obsolete military munitions. The munitions
must be disposed of in an environmentally safe fashion which
rules out detonation or burial. RMERC has previously deter
mined that a high pressure water jet can remove the explo
sive material from inside a munition shell. The explosive
materials are held in the shells with plastic binders. The
removed explosive material can be separated from the plastic
binders through chemical separation. The explosive material
can then be reused. The research is being continued to the
point of designing a pilot plant that will automate the pro
cess of transporting a variety of different sizes and types
of shells to a robot that will wash out the explosive mate
rial inside a shell. The pilot plant is known as the Plas
tic Binded Explosive (PBX) Washout Plant^1'2). This thesis
presents software solutions for controlling the components
of the PBX washout plant.

It is assumed that the reader has a knowledge of gen
eral computer hardware concepts. A knowledge of Borland's
Turbo P a s c a l a n d the BASIC language is also assumed. The
BASIC language used in this thesis is Analog Device's
MacBASIC^4'5'6). This version of BASIC has some extended
capabilities that will be presented as needed.

2

A. PBX WASHOUT PLANT
The PBX washout plant is centered around a computer

controlled hydraulic robot that manipulates a high pressure
water jet. This robot is known as the Waterjet Ordnance and
Munition Blastcleaner with Automated Tellurometry (WOMBAT)
(1,2) _ The coinpUter sends position commands to electronic
circuits that control hydraulic valves used to move the
WOMBAT. The water jet itself is not computer controlled.

The WOMBAT system has been previously developed and has
been used but without any type of automated delivery pro
cess. With this system, the plant operator manually con
nects a shell to the WOMBAT'S faceplate for each washout.
This loading and unloading process is time consuming and
more importantly, dangerous. The process of automating the
PBX washout plant includes developing a delivery system that
will connect any of the shells specified in the PBX washout
plant contracts to the WOMBAT. Each type of shell has a
faceplate adapter.

The delivery system consists of two components. The
first is a Monorail system^1,2) and the second is the Table
systemt1'2). The monorail system consists of an overhead
monorail track and a carrier that moves on the track with a
computer controlled electric motor. The carrier is known as
the monorail carrier. Figure 1 shows the configuration of
the delivery system components and the WOMBAT. This and
other drawings of the components of the PBX washout plant
are availible at RMERC.

3

4

The washout process is performed inside one of the UMR
Experimental Mines. The monorail track leads to the WOMBAT.
A shell is loaded on the monorail carrier at the end of the
track furthest from the WOMBAT. This area is known as the
loading station. The monorail carrier delivers the shell to
the area in front of the robot which is known as the washout
area. Figure 2 contains an overhead diagram of the PBX
washout plant.

The second component, the Table system, consists of a
hydraulic table with a grasping mechanism to hold a shell.
It is controlled in a manner similar to the WOMBAT's
control. After a shell has been delivered to the washout
area by the monorail system it is connected to the WOMBAT by
the Table system and is ready for the washout process. The
delivery system also removes the previously washed out
shell. The washed out material is collected in a container
on the monorail carrier during the washout. The container
and the washout material also return to the loading station.

The final step of automating the PBX washout plant will
be an explosive reclaiming system for the washed out mate
rial. This system is known as Remotely Operated Binder
Extraction Technique (R O B E T) 2) . It chemically separates
the explosive material from the plastic binders. A small
scale version of ROBET has been developed at RMERC. It has
proven to be efficient. In the current stages of the PBX
washout plant project, the washed out materials and cleaned
shells are returned to the loading station where the washout

Figure 2. Overhead View of PBX Washout Plant.

6

material is saved and analyzed later. In future stages of
the PBX washout plant, the washed out material is to be
taken to a large scale ROBET system. It will be located
inside the mine along an extension of the monorail track.
The control of the ROBET system is not covered in this
thesis.

B. COMPUTER SYSTEMS
Two computer systems are used on the automated PBX

washout plant. The first computer is the plant computer.
It controls the WOMBAT, the Table and the Monorail systems.
It will eventually control the ROBET system in the final
stage of automation of the PBX pilot plant. The second
computer, the monorail computer, aids the plant computer in
the control of the monorail system. It is dedicated to
receiving motor commands and data from the plant computer
and sending position data back.

The plant computer is an Analog Devices Macsym 350
system. It consists of two body parts: the Macsym 150
and the Macsym 2 0 0 . The Macsym 150 is the main computer
component of the system. It contains slots in which RS-232
c a r d s c a n be placed. The Macsym 200 is an external card
cage component that is connected to the Macsysm 150.

The Macsym 200 can contain up to sixteen Analog/Digital
Input/Output (ADIO) cards. The Macsym 200 used at the PBX
washout plant contains a four channel, twelve bit digital to
analog (D/A) output card^10 ̂ and a 32 channel analog to dig
ital (A/D) input card^11^.

7

The plant operator interacts with the Macsym 150 unit
which is located outside of the mine in a trailer. The
Macsym 200 is located in the mine near the WOMBAT and Table
systems where it controls their hydraulic systems. The
plant operator controls the PBX washout plant with the
assistance of several video monitors showing different views
of the plant.

The Macsym system is programmed in an extended version
of BASIC known as MacBASIC. MacBASIC contains special
instructions for the extended capabilities of the Macsym
200's ADIO cards. It is a line number based language? the
sequence of execution is oriented by the next greatest line
number. It has graphics capabilities that may be used to
plot positions from various feedback channels.

The second computer is the monorail computer. It must
be small in size because it rides on the monorail carrier.
An IBM XT compatible computer(12-17) is desirable because of
the availablity of hardware(18•19/2°) to control the mono-
rail carrier's motor. A Micro PC system was purchased from
Faraday Electronics Incorporated, Sunnyvale, California(.
Its physical design is different from that of an IBM XT and
most IBM XT compatibles. Many of the integrated circuits
from an IBM XT have been combined into a single large scale
integrated circuit chip. With this chip, the entire mother
board is replaced by a short card that fits into a six slot
backplane. The backplane contains this computer card plus
add-on cards normally found in an IBM XT computer.

8

The monorail computer is programmed in Borland's Turbo
Pascal Version 3.0. This is a procedural language that has
extended capabilities that allow access to hardware ports.
The programs can be compiled into machine code that is exe
cutable from the Disk Operating System (DOS)^3'21).

The monorail computer controls the electric motor with
the use of a Hewlett Packard (HP) HCTL-1000 motor control
processor(2®'22) . The HP HCTL-1000 is contained on a board
external to the monorail computer. The board is connected
to the monorail computer through an external bus system. A
second external board is also connected to the monorail
computer through the external bus system. This board is an
A/D input system that aids the Table system by measuring the
load on the monorail carrier.

The two computer systems communicate over an infrared
communication link^1'2). This link actually replaces a RS-
232 cable. Each computer's RS-232 port is connected to its
own infrared transmitter and receiver. The communication
between the transmitters and the receivers occurs through
the open air without any physical connections.

C. PLANT ALGORITHM
A shell that is to be washed out at the PBX washout

plant is first strapped to the monorail carrier at the
loading station. Once the shell is strapped to the carrier
and a faceplate adapter is mounted to the shell, it is ready
to be transported to the washout area. Values which repre
sent positions along the monorail track are sent to the

9

HP HCTL-1000. The monorail carrier will perform the move
when instructed by the plant operator. Video monitors help
ver-ify the final position of the shell when the washout
area is reached. The shell can now be connected to the
WOMBAT.

The Table system is used to connect the shell to the
WOMBAT. The table will rise and grasp the shell. It will
then move the shell until the shell is firmly pressed
against the faceplate of the WOMBAT. This completes the
delivery and connection steps of the washout process. The
table will keep the shell pressed firmly to the faceplate
until the washout has been completed.

The shell is now ready to be washed out by the WOMBAT.
The washout is performed by moving the water jet in circular
paths at increasing depths into the shell. If, at any time
during the washout, the operator believes there might be a
problem, an abort button can be pressed which immediately
halts the WOMBAT's movement. This feature is important
because of dangerous problems that may occur during the
washout process.

After the shell is washed out, it can be disconnected
from the WOMBAT. The front of the table lowers, tipping the
shell to drain any excess material. The shell is then
released to the monorail carrier. The monorail carrier
returns the shell to the loading area along with the removed
material which was collected during the washout.

10

II. WOMBAT CONTROL
The WOMBAT is a hydraulically powered 3-axis robot that

is computer controlled. Its purpose is to manipulate a
shaft with a high pressure water jet nozzle on its end. The
shaft and the nozzle are known as the lance. The WOMBAT is
enclosed in a large metal case with the lance protruding
perpendicularly from the case and pointing along the path of
the monorail track. The shaft of the lance will rotate
during the circular paths of a washout. This allows the
spray of the water jet from the lance, which is slightly
angled, to reach a broader area.

A. COORDINATE SYSTEM.
The coordinate system of the W O M B A T i s defined as a

right hand coordinate system with respect to the lance. The
Z coordinate of the WOMBAT is defined by the direction of
spray from the lance. With the middle finger in the Z
direction, the X coordinate, defined by the thumb, is par
allel to the ground. The Y coordinate, defined by the index
finger, is perpendicular to the ground.

The reach of the WOMBAT'S lance is the three dimen
sional range that contains all possible positions of the tip
of the lance. The volume of the three dimensional range is
a box with all sides either parallel or perpendicular to the
case of the WOMBAT. The range in the Z direction is nega
tive to positive eight inches. The X and Y coordinates have
a range of negative to positive four inches. The home posi
tion, (0,0,0), is at the center of the box. The lance can

11

be moved in any combination of moves in the three coordinate
directions.

The movements of the WOMBAT are performed by hydraulic
rams. A ram moves in one dimension. There are three sets
of rams on the WOMBAT which are positioned to control the
movement of the lance in the three coordinate directions.
The flow of hydraulic fluid causes a movement at the end of
a ram. Hydraulic valves are used to control the flow of
fluid in a hydraulic ram. The hydraulic valves used on the
WOMBAT system are controlled by a voltage signal.

B. POSITION CONTROL.
A four channel, twelve bit D/A output card is used to

control the movement of the WOMBAT's rams. The output volt
age signals are connected to the circuits that control the
hydraulic system of the WOMBAT. This card's voltage range
is positive to negative ten volts. The range is divided
into 4096 subintervals giving a resolution of approximately
0.005 volts.

The output voltages are used as a position command. A
positive (negative) ten volt output instructs a move to
approximately positive (negative) eight inches along the Z
direction and approximately positive (negative) four inches
in the X and Y directions. Intermediate positions are ob
tained with appropriately scaled voltage commands.

The special MacBASIC keyword AOT^4'5'6 ̂ controls the
four channels of voltage on a D/A card. This keyword
receives a value in an assignment statement which is the

12

voltage at a channel. It requires two parameters to define
a channel. The first parameter is the slot within the
Macsym 200 that contains the D/A card. This parameter
should remain constant in programs that use the D/A card
because the card is generally not moved to a new slot. An
integer variable, W_0UT', is assigned the value for the slot
containing the WOMBAT's D/A card in example programs
presented later.

The second parameter of the AOT keyword is the channel
on the selected card. Four integer variables are used in
the example programs to give symbolic names to each
channel's use on the WOMBAT system. These variables are
Xaxis', Yaxis', Zaxis' and ROT'. MacBASIC uses the
apostrophe character (') after a variable name to indicate
an integer variable. The first three variables represent
the channels that control the respective axes of the WOMBAT.
ROT' represents the channel that controls the rotation of
the lance. For example, the statement

AOT (W_0UT',Xaxis') = 0
is used to set the lance to the Home position in the X
direction.

It is often desirable to specify a movement of the
lance in inches. Conversion factors that convert inches to
the voltage representing the position are used in the
examples presented later. The real variables C0NV_X,
C0NV_Y, C0NV_Z and C0NV_RPM are set to the values for the

13

conversion factors of the three axes and the rotation
respectively. For example, the statement

AOT (W_OUT',Yaxis') = 4 * CONV_Y
is used to set the Y direction of the lance to four inches.
The values of the conversion factors are not the values 2.5
(10 volts / 4 in) for the X and Y channels and 1.25 (10
volts / 8 in) for the Z channel because of physical offsets
in the WOMBAT. The actual values for the conversion factors
were derived from physical measurements of WOMBAT positions
at different position commands.

C. POSITION MONITORING.
The circuits controlling the valves receive a second

signal from a Linear Variable Differential Transducer (LVDT)
which is used to measure the position of a ram. The voltage
read from the circuits will be within the negative to posi
tive ten volt range like the D/A card. The LVDT actually
have an AC signal. The control circuits convert the LVDT's
AC signal to the negative to positive ten volt range before
it is read by the A/D card. This allows the command posi
tion output range and actual position input range to be
identical.

The MacBASIC keyword AIN^4'5'6) is used to read a
voltage from a LVDT. This keyword returns a value to a real
variable in an assignment statement. The value returned
represents the voltage read at one of the A/D card/s
channels. This keyword requires four parameters. The first
two parameters are the same as the AOT keyword; the slot and

14

channel of a A/D card. The integer variable W_IN', which
holds the number of the slot of the WOMBAT's A/D card, is
used in the examples presented later. The same integer
variables Xaxis', Yaxis', Zaxis' and ROT' are used for the
channels of the three axes and the rotation respectively.

The last two parameters of the AIN keyword should
always be zero when used on the WOMBAT system. As an exam
ple of the use of the AIN command, the statement

Z_FBACK = AIN (W_IN',Zaxis',0,0)
is used to read the voltage representing the position of the
lance in the Z direction. The conversion factors, C0NV_X,
CONV_Y, C0NV_Z and C0NV_RPM, still apply but their recipro
cals must be used. For example, the statement

ROT_RPMs = AIN (W_IN',R0T',0,0) / CONV_RPM
is used to read the rotation in revolutions per minute.

The rotation feedback does not come from a LVDT.
Instead, a circuit will convert the signal from an encoder
to the negative to positive ten voltage range. The physical
range of the motor performing the rotation is approximately
200 revolutions per minute (RPM) in either direction. A
positive (negative) ten volt signal either sent to the D/A
output channel or received from the A/D input channel repre
sents approximately positive (negative) 200 RPM.

Given the command position signal from the D/A card and
the actual position signal from the LVDTs, the circuits
control the hydraulic valves such that the ram will move to

the correct position and remain there. These circuits use
closed loop, first order control theory.

D. SAMPLE PROGRAMS.
This section presents examples of software that can

control the WOMBAT. The actual programs(23) are much more
extensive than the examples presented here. The purpose of
this section is to aid in the understanding of the control
of the WOMBAT. The first example program performs the basic
movement of the lance that occurs during a washout. It is
expanded upon in the second example program to include the
abort feature.

The typical path of the lance during a washout involves
several circular paths in a plane perpendicular to the Z
axis at increasing depths into the shell. Given the radius,
r, of the circular path, and a position in the Z direction,
the lance is moved in a circular path in the X and Y
directions. This is performed by dividing the path of the
circle into m equal distance points on the circle. This
defines a path that approximates the circle. The number of
points, m, defining the circle should be large enough to
define a smooth path without surpassing the resolution of
the D/A card.

The lance must be fully retracted in the Z direction
before a shell is mounted to the WOMBAT. This should be
done by the delivery programs. Both example programs
require this to have been previously performed before they

15

16

are executed. Figure 3 contains the code to perform a basic
washout.

10 9aa preset constants aaa
20 ROT' = 3 C0NV_RPM =0.1
30 U_0UT< = 1 Xaxis' = 0 Yaxis' = 1 Zaxis' = 2
40 C0NV_X =2.098 CONVJT = 2.098 C0NV_Z = 1.208

50 3 Z position starts fully retracted
60 AOT <W_0UT',Zaxis') = -10

70 INPUT "RADIUS OF SHELL" r
80 INPUT "NUMBER OF SUBMOVES DURING CIRCULAR PATH " m
90 INPUT "STARTING DEPTH INTO SHELL " Z_START
100 INPUT "FINAL DEPTH INTO SHELL " Z_FINAL
110 INPUT "NUMBER OF STEPS INTO SHELL » n
120 INPUT "Rev / Min “ rpm

130 SUB_Deg = 2*3.1416/m a 2Pi/m
140 Z_STEP = (ZJINAL - Z_START) / n

150 0 MOVE TO (r,0,-8)
160 AOT (W_0UT',X) = r * CONV_X
170 AOT (UJXJT'.Y) = 0
180 a start rotation and move to (r,0,Z_start) 3
190 AOT (U_OUT', ROT') = rpm * CONV_RPM
200 AOT (W_OUT',Z) = Z_START * CONV_Z

210 FOR I = 1 TO n a LOOP FOR Z STEPS
220 FOR J = 1 TO m a LOOP FOR CIRCULAR STEPS
230 Theta = J * SUB_Deg a DETERMINE ANGLE OF NEXT SUBSTEP
240 AOT (W_OUT\Xaxis') = r*COS(Theta)*CONV_X a COMPUTE X FROM THETA
250 AOT (WJXJT', Yaxis') = r*SIN(Theta)*CONV_Y a COMPUTE Y FROM THETA
260 NEXT J
270 AOT (WJXJT'.Z) = Z_START + 1*Z_STEP
280 NEXT I
290 AOT <U_OUT\ROT') = 0
300 AOT (WJXJT'.Z) = -8 * CONV_Z
310 END

Figure 3. Basic WOMBAT Program.

With a shell mounted to the faceplate of the WOMBAT,
the lance is first moved in the X direction by the distance
of the radius, r, and remains at zero in the Y direction.
This defines the starting position of the circular path

17

The washout starts by spinning the lance at a specified
RPM, moving the lance to the starting Z distance and per
forming the first circle path in that Z plane. At the end
of the circular path, the lance has returned to the starting
point of the circular path. The lance then moves in the Z
direction, which is into the shell, by the Z increment and
another circular move is performed. This process of circu
lar paths at increasing depths continues until the circular
path at the final Z distance has been completed. After the
final circular path, the lance fully retracts in the Z
direction and the rotation stops. Assistant plant operators
control the high pressure water jet system during the
washout.

A washout program should include an abort feature that
will stop the movement of the lance immediately. This
involves detecting an abort signal and leaving the loop that
is performing the movement of the lance. Figure 4 contains
the second example program which shows the basic structure
of the abort feature used on the actual WOMBAT program. It
allows the lance to back up a specified number of substeps
along the circular path when an abort signal is detected.
The washout can continue only after the lance has completed
the backup movement.

The abort service code allows the washout program to
stop executing without interrupting the program at the
keyboard. A method of program termination is required
because a Control-B, which interrupts the execution from the

18

keyboard, will cause the Macsym 200 to reset all boards in
it. This will set all D/A outputs to zero which causes the
lance to jump to the home position. Serious problems can
occur to certain types of shells which have a solid pipe
through their center or shells that still have explosive
material in the negative Z direction. The lance can slam
into the pipe when it jumps to the home position or into
explosive material. A Control-B should only be performed
when the WOMBAT's hydraulic pump is turned off.

10 5)5)3 preset constants 5)33
20 W_IN' = 0 W_0UT' = 1
30 Akey' = 4 ROT' = 3
40 Xaxis' = 0 Yaxis' = 1 Zaxis' = 2
50 C0NV_X = 2.098 C0NV_Y = 2.098
60 C0NV_Z = 1.208 C0NV_RPM =0.1

70 INPUT "RADIUS OF SHELL" r
80 INPUT "SUBMOVES PER CIRCULAR PATH » m
90 INPUT "STARTING DEPTH INTO SHELL " Z_START
100 INPUT "FINAL DEPTH INTO SHELL " Z_FINAL
110 INPUT "NUMBER OF STEPS INTO SHELL “ n
120 INPUT “Rev / Min " rpm

130 BegDeg = 0 EndDeg = 2*3.1416
140 SUB_Deg = EndDeg/m
150 Z_STEP = (Z_FINAL - Z_START) / n
160 PasStart = Z_START PassEnd = Z_FINAL

170 AOT (W_0UT',X) = r * C0NV_X
180 AOT (U_0UT',Y) = 0
190 AOT (WJXJT'.ROT') = rpm * CONV_RPM
200 AOT (WJXJT',2) = Z_START * C0NV_Z

210 3 3 3 start/continue washout 3 3 3
220 GOSUB 260 3 CIRCULAR PATHS
230 AOT (W_0UT',Z) = -8*C0NV_Z
240 AOT (U_0UT',R0T') = 0
250 END

260 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
270 a 3 3 CIRCULAR PATHS 3 3 3
280 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
290 FOR Pass = PasStart TO PassEnd STEP Z_STEP
300 FOR Theta = BegDeg TO EndDeg STEP SUB_deg
310 AOT (W_0UT',Xaxis') = r*C0S(Theta)*C0NV_X
320 AOT (W_0UT',Yaxis') = r*SIN(Theta)*C0NV_Y
330 ABORTkey = AIN (W_IN',Akey',0,0)
340 if abs(ABORTkey) > 2 then
350 PasStart = PASS BegDeg = THETA
360 RESET FOR GOTO 410 3AB0RT_SERVICE
370 NEXT Theta
380 AOT (WJXJT'.Z) = Pass * C0NV_Z
390 NEXT Pass
400 RETURN

410 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
420 3 3 3 ABORT_SERVICE 3 3 3
430 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
440 INPUT "NUMBER OF SUBSTEPS TO BACKUP » Bstep
450 ! »*** RESET ABORT KEY BEFORE BACKING UP "
460 INPUT "Enter Y to backup, N to stop Washout" X$
470 IF XS <> "Y" THEN END

480 PassEnd = PasStart SUB_deg = -abs(SUB_deg)
490 EndDeg = BegDeg-(Bstep*SUB_Deg)
500 GOSUB 260 3 CIRCULAR PATHS
510 PassEnd = Z_FINAL SUBdeg = abs(SUB_deg)
520 BegDeg = EndDeg EndDeg = 2*3.1416
530 INPUT "Enter Y to continue washout " X$
540 IF X$ = "Y" then GOTO 210 3 continue washout
550 GOTO 410 3 ABORT SERVICE

Figure 4. WOMBAT Program with Abort/Backup/Continue

19

The abort button used at the pilot plant is connected
to a channel of the A/D input card. The integer variable
Akey' represents this channel. The slot containing the A/D
card is still represented with W_IN'. As long as the button
is not pressed, the voltage read from the abort channel will
be near zero. When it is pressed, the voltage will be near
ten volts (possibly negative ten volts if the button's
connection is reversed). By checking the value read at this
channel before the statements performing the substep moves,
the abort condition can be detected when the absolute value
of the voltage at this channel rises above a threshold
slightly above zero. The threshold has been set at a value
representing two volts in the example.

The segment of code containing the loops to perform the
lance movement is a subroutine. This allows the abort
service code to change the parameters of the loops and
reexecute the subroutine to move the lance backwards along
the circular path. The parameters are then restored so the
remainder of the washout path will finish.

20

III. MONORAIL SYSTEM CONTROL
The Monorail system is part of the shell delivery

system of the pilot washout plant. It consists of an over
head rail and a carrier. The carrier is powered by an elec
tric motor. It receives power from two batteries located on
the carrier. Precise control of the motor is necessary
because the carrier is moving explosive material. The mono-
rail computer is used to control the motor. It is located
on the carrier and has the ability to communicate with the
plant computer.

A. MOTOR CONTROL.
The external bus system that connects the monorail

computer to the HP HCTL-1000 motor control processor is
known as the Local Application Bus (LAB) 40 System
(18,19,20) ̂ The HP HCTL-1000 is on an external function
module. A ribbon cable is used to connect the HP HCTL-1000
function module to the plant computer. A second external
function module is also connected to the plant computer on
the ribbon cable. This function module is an A/D input
system. It aids the table system by measuring the load of
the monorail carrier. It will be discussed in the Table
System Control section.

The HP HCTL-1000 performs position-to-position motor
moves through trapezoidal velocity profiling. A motor move
starts by accelerating at a specified acceleration rate
until it reaches a specified maximum velocity. The motor
will remain at the maximum velocity until the HP HCTL-1000

21

determines that the motor must decelerate so that the motor
will stop at the final position. If the velocity of a trap
ezoidal profile motor move is plotted over time, its profile
should be a trapezoid or possibly a triangle. The velocity
profile will be a triangle if the motor does not accelerate
to the maximum velocity before the HP HCTL-1000 starts
decelerating the motor.

The motor is equipped with an optic encoder. The HP
HCTL-1000 counts the number of position signals from the
optic encoder. The optic encoder sends 2640 position sig
nals per revolution to the HP HCTL-1000. The actual posi
tion of the motor depends on the number of encoder positions
counted from the starting position. For example, an actual
position of 264,000 (2640 * 1000) means the motor has gone
through 1000 complete revolutions from a starting position.
The direction of the motor revolutions determines whether
the position signals add or subtract from the actual posi
tion.

The HP HCTL-1000's trapezoidal velocity profile gener
ator determines a command position according to a 2 MHz
clock frequency. This is the position the motor should be
at as opposed to the actual position of the motor which may
not be the same value. The difference between the command
position and the actual position of the motor is used to
determine the compensation needed to correct the actual
position. The motor compensation is performed by varying
the sign and magnitude of the motor's voltage.

22

With the use of constant clock periods, the velocity of
the motor is easily computed by the HP HCTL-1000 from the
number of position signals per clock period. This is the
unit of velocity expected by the HP HCTL-1000. The accel
eration is also easily determined from the rate of change of
the velocity.

Moving the motor from one position to another involves
sending a final position value to the HP HCTL-1000 and
instructing the HP HCTL-1000 to start the move. The other
parameters of the HP HCTL-1000 that affect a motor move
should be set during program initialization and their values
should be changed only if different values are required.
The position of the motor can be read by the monorail com
puter from the HP HCTL-1000 during a move. The position
information should be returned to the plant computer over
the communication link. This information can be used to
graph the progress of the move.

The two computer systems communicate over an infrared
communication link. This link actually replaces a RS-232
cable. The RS-232 port of each computer is connected to its
own infrared transmitter and receiver circuit. Batteries on
the carrier along with the infrared communication link allow
the carrier to be a self contained unit; computer cables and
power lines are not connected to the carrier.

B. MONORAIL PROGRAMS REQUIREMENTS.
Given the configuration of the two computer systems and

their purpose, several requirements are placed on the

23

software for the monorail system. The plant operator should
not interact with the monorail computer directly. The
monorail computer should receive commands and data from the
plant computer and should send information back over the
communication link. When the monorail computer is turned
on, it should automatically be ready to receive commands
from the plant computer. The monorail computer should
remain idle until a command is received.

Programs written for the monorail computer require the
use of special Turbo Pascal keywords that many programmers
do not normally use. These extended capabilities allow
access to the hardware ports needed to control the con
nection of a shell to the WOMBAT and perform the basic means
of communication with the plant computer. Subprograms that
perform the required hardware manipulation are presented in
this section. They allow programs that will control the
monorail carrier to be written without understanding the
details of the computer hardware. These subprograms will be
known as extended keywords (ExKey). The subprograms for the
monorail computer are written in Turbo Pascal and the sub
programs for the plant computer are written in MacBASIC.

Any program written in Turbo Pascal on the monorail
computer for the monorail system will be referred to as a
slave program. Any program written in MacBASIC on the plant
computer for the monorail system will be referred to as a
master program. A slave ExKey is a version for the monorail
computer and a master ExKey is a version for the plant

24

computer. This convention helps clarify which program or
version of an ExKey is being discussed.

Two types of ExKeys are presented: communication and
motor control. Many of the motor control ExKeys requirte
some data to be sent between the two computers. The ExKeys
are presented in pairs; a slave version for the monorail
computer, and the counterpart, master version for the plant
computer.

The programs for both computers must be coordinated so
that either one of the programs will not wait for an event
that will never occur. This is known as deadlock. When
both computers execute their respective version of an ExKey
in a coordinated manner, the deadlock possibilities are
greatly reduced.

To use the slave ExKeys, their code must be included in
programs on the monorail computer. The code is stored on a
disk file. The code can be added to a program with Turbo
Pascal's include-file compiler directory, or the file may be
read into a program with the read-from-file editor command.
There are other subprograms in this file that are called by
the ExKeys.

The slave ExKeys are user written procedures. They are
executed in a program like other user written procedures.
The programmer only needs to know the types of parameters
that might be involved. Parameters that are passed by ref
erence will be referred to as variable parameters.

25

The master ExKeys are also contained on a disk file.
The line number structure of MacBASIC makes the task of
including their code in programs on the plant computer
difficult. To use the master ExKeys, renumber the main
program allow space in the line numbering sequence for
the ExKeys7 code. This program is then saved on disk and
the memory cleared. The code for the ExKeys is loaded into
memory and renumbered so they will fit into the space left
in the main program. The main code is entered back into
memory. This will not overwrite any code if everything is
numbered correctly.

The master ExKeys are not easily implemented because of
the line numbering nature of MacBASIC. The ExKeys are
implemented with subroutine calls to a line number. In this
section, because the line numbers for the ExKeys are not
known, the name, instead of the line number, will be used in
a GOSUB command. The starting line numbers for the subrou
tines will have to be referred to from a listing of the
renumber ExKey code for use in any GOSUB statements calling
an ExKey. To actually implement an example of code, the
line number must be determined and then substituted in place
of the name in the GOSUB statement.

Subroutines in MacBASIC can also use parameters. The
subroutine code must start with a DECLARE statement followed
by the parameter list. The GOSUB statement must refer to
the line number of the DECLARE statement. All parameters
used in MacBASIC are pass-by-reference.

26

C. COMMUNICATION EXTENDED KEYWORDS

1. SetUpComl. The SetUpComl ExKey is used to set up the
hardware involved with communication. It should only be
executed once and before any other communication ExKeys are
executed. Parameters are not used by either version of this
ExKey.

2. ReadComl. The ReadComl ExKey is used to read a byte of
data sent from the other computer. Both versions return the
read byte in a variable integer parameter. This ExKey will
not return from execution until a byte is received.

3. SendComl. The SendComl ExKey is used to send a byte
value to the other computer which should be waiting with a
ReadComl. This ExKey will not return from execution until
the byte is read by the receiving computer. Both versions
use an integer parameter which must be in the range of zero
to 255.

ReadComl is the counterpart ExKey for SendComl. The
receiving computer should execute ReadComl while the sending
computer executes its SendComl. There is one byte of buff
ering on both computers which allows some relaxation on the
timing of the execution of both ExKeys. The buffering
allows a SendComl to be performed before a ReadComl is
performed. Both ExKeys will remain executing until the
communication has completed.

A communication scheme or protocol is used by these two
ExKeys to insure that a transfer completes correctly or an

27

error message will appear. The protocol removes the details
of possible communication errors that can occur.

The SendComl and ReadComl ExKeys present a basic means
of communication between the two computers. They send and
read only one byte at a time. By developing other proce
dures and functions that use these two ExKeys, more advanced
operations can be easily accomplished such as transferring
strings of characters or large integer numbers.

D. MOTOR CONTROL EXTENDED KEYWORDS
The motor control ExKeys are presented in this section.

The monorail computer should control the motor as instructed
by commands it receives from the plant computer. Unless
noted otherwise, both versions of an ExKey must be executed
because data is transmitted between the two computers. All
of these ExKeys do not use parameters. Sample programs will
be presented later that should clarify their use. 1

1. Init Lab40. The Init_Lab40 ExKey is used to initialize
the LAB 40 system and the HP HCTL-1000. The slave version
has to be performed ber any motor control ExKeys are
executed and should be executed only once. The master ver
sion is used to set variables that may be used by a master
program. Its use is optional. The meaning of these varia
bles will be explained later. The variables set are: PperR,
TIME', VEL, ACCEL, GAIN', POLE', ZEROO'. The variable PperR
represents the pulses per revolutionofptic encoder,
TIME' represents the sampling time periods, VEL represents

28

the maximum velocity and ACCEL represents the acceleration
rate. The variables GAIN', POLE' and ZEROO* represent dig
ital filter parameters.

2. Soft Reset. The Soft_Reset ExKey is used to reset all
the position registers in the HP HCTL-1000. The position
registers include the Command, Actual and Final positions.
The master version will display a message describing the
functions performed by this ExKey. The use of the master
version is optional.

3. Set Filter Vars. The Set_Filter_Vars ExKey is used to
set the HP HCTL-1000's digital filter registers. These
values determine the performance and behavior of the motor.
The master version prompts the operator for the gain, pole
and zero values. Default values can be entered by pressing
only the return key for each prompt. The default values
were set by Init_Lab40; therefore this ExKey does not
require execution. The default values should always be used
unless instructed to use other values by someone familiar
with the control theory used by the HP HCTL-1000. The var
iables GAIN1 r POLE' and ZEROO' are set to the new values on
the master version. These variables are discussed in the
Motor Control Hardware section.

4. Enter Final Position. The Enter_Final_Position ExKey
is used to enter the next position for a motor move. It
must be performed before a motor move is executed. The
values for position must be in the range of -8,388,608 to

29

8,388,607. This is the range of a 24 bit signed integer.
The units for this position is in position signals from the
motor's optic encoder.

The master version prompts for a position and sends it
to the monorail computer if it is in the correct range.
When a position is entered that is not in range, the oper
ator will be prompted for a new value. The code for master
version can easily be changed, with the use of conversion
factors, to allow inputs of inches or revolutions to be con
verted to the position signal counts.

5. Set Accel. The acceleration rate used in a trapezoidal
profile motor move is changed with the Set_Accel ExKey. The
HP HCTL-1000 was initialized by Init_Lab40 to accelerate at
the slowest possible value that is measurable. The master
version prompts the operator for the acceleration in revolu
tions per microsecond squared. The possible range of values
is displayed at the prompt. The variable ACCEL is set to
the new value by the master version.

6. Set Vel. The value for maximum velocity is changed
with the Set_Vel ExKey. The HP HCTL-1000 was initialized by
Init_Lab40 to allow a motor move to accelerate until the
largest measurable value of velocity is reached. The motor
remains at that velocity until the HP HCTL-1000 starts
decelerating the motor to its final position. The master
version prompts the operator for the velocity in revolutions
per second. The possible range of values are displayed at

30

the prompt. The variable VEL is set to the new value by the
master version.

7. ___Set Time. The value for sampling time periods of the
HP HCTL-1000 can be changed with the Set_Time ExKey. The HP
HCTL-1000 was initialized by Init_Lab40 with the longest
allowable time periods. The time periods determine the
allowable ranges of acceleration and velocity. This value
should only be changed by someone familiar with the control
theory of the HP HCTL-1000. The master version prompts for
a value between 15 and 255 with 255 the default value repre
senting the largest possible time period. When a valid
value is entered, the master version will display the number
of microseconds that the value represents. The variable
TIME' is set to the new value by the master version.

8. Display Position. The Display_position ExKey is used
to read the actual position of the motor from the HP HCTL-
1000 and send it to a master program which displays the
number. If a monitor is connected to the monorail computer,
the slave version will also display the command position of
the motor on that screen. The command position is not sent
to the plant computer.

9. Execute Move. The Execute_move ExKey is used to start
a motor move. The actual position of the motor is repeat
edly sent to the master version while the move is being per
formed. Display_position is used by this ExKey to display
the actual position on the plant computer. a message

31

stating that the move has completed will be displayed on the
plant computer when the motor move has completed and the
final position is sent.

10. Quit. The Quit ExKey is used when the monorail system
programs are to terminate execution. It deselects the Lab
40 system on the monorail computer. There is not a master
version because there is not any hardware that has to be
deselected on the plant computer. The only requirement of a
master program is that it must be developed so that it
instructs the corresponding slave program to execute the
Quit ExKey.

E. SAMPLE PROGRAMS.
The ExKeys present a means of controlling the electric

motor of the monorail carrier as instructed from the plant
computer without understanding the hardware involved. Two
sample program pairs are presented in this section that show
the use of the ExKeys. The first pair of programs inputs a
final position on the plant computer. The move then auto
matically executes. The second pair of programs is more
flexible than the first pair. It uses a menu which allows
any of the motor control ExKeys to be executed. The program
listings for the first slave program, Slavel, and the first
master program, Masterl, are presented in Figure 5.

Both programs execute in parallel; Slavel on the mono-
rail computer and Masterl on the plant computer. The Slavel
program will first initialize the communication hardware of

32

the monorail computer and set up the LAB 40 system. It will
then execute Enter_Final_Position. This ExKey will wait
until a position is received from Masterl. When the posi
tion is received, Execute_Move will be executed. Execute-
_Move s move and repeatedly sends the actual posi
tion to Masterl until the move has completed.

program slavel; 5 3 MASTER1 PROGRAM
C$1 keyword.pas> 10 GOSUB SetUpCOMI

begin 20 GOSUB Enter_Final_Position
SetUpCOMI; 30 GOSUB Execute_Move
Ini t_LAB40; AO GOTO 20
while true do begin 503 the KEYWORD.BAS file
Enter_Final_Posi tion; 603 should follow
Execute_Move;
end;

end.

Figure 5. Slavel and Masterl Programs.

Meanwhile, Masterl first initialized the plant
computer's communication hardware. The Init_LAB40 ExKey
does not need to be executed with this simple pair of
programs because the variables it sets are not used.
Enter_Final_Position prompts the operator for a final
position which will be sent to Slavel. When the position is
entered, Execute_Move will execute. Execute_Move receives
actual position data sent by Slavel and displays the
position values on the screen. A message stating that the
move has been completed appears after the last position is
received. Figure 6 contains an example of what would be
displayed on the plant computers display for a motor move to
position 9999.

33

ENTER FINAL POSITION <-8388608,83886076» 79999

0
68
962
2568
4926
7270
8842
9728
9911
9999

--- MOVE HAS BEEN COMPLETED ---

ENTER FINAL POSITION <-8388608,83886076> ?

Figure 6. Sample Masterl Execution.

This pair of programs allows only the default values
for the digital filter, sampling time period, acceleration
and velocity to be used. The position registers cannot be
cleared because the Soft_Reset ExKey cannot be executed.

The second pair of programs allows all of the capabil
ities of the ExKeys to be executed. These programs are
called Slave2 and Master2. Figure 7 contains the code for
the Slave2 and Master2 programs. Master2 presents a menu
for the operator to select any of the motor control func
tions. The motor does not automatically start a move after
a final position is entered. The operator must instruct the
start of the motor move.

Portions of the ExKeys' code can be modified without
understanding the hardware that is involved. For example,
many of the subroutines on the plant computer input values
from the keyboard but a programmer familiar with MacBASIC
can change the input statements to read values from a disk

34

file. This could allow a sequence of moves to be stored on
disk and the sequence could be repeated without reentering
the values. The rest of this section presents a description
of the hardware involved with the monorail system computers.

program slave2;
var x: char; y: integer;

1 0 aaa master2 aaa
20 GOSUB SetUpCOMI GOSUB Init_LAB40

LSI keyword.pas> 30 aaa d i s p l a y m e n u aaa
begin 40 1 ii p-enter final P)osition"
SetUpCOMI; 50 ! 11 E-E)xecute Move"
Ini t_LAB40; 60 1 " D-D)isplay Position"
while true do begin 70 1 " V-set V)elocity"
ReadCOMI(y); x := chr(y); 80 1 " A-set Acceleration"
case x of 90 1 " F-set FJilter variables"

'P' : Enter_Final_Position; 100 ! " T-set T)ime"
'E' : Execute_Move; 110 I » S-S)oft reset"
'D' : Display_position; 120 ! » Q-Q)uit"
'V' : Set_Velocity; 1303 ENTER/SEND COMMAND TO Slave2
'A' : Set_Acceleration; 140 IMP A'
'F' : Set_Filter_variables; 150 GOSUB SendCOMI (A')
'T' ; Set_Time; 160 A$ = CHRS(A')
'S' : Soft_Reset; 170 IF AS = »P" THEN
'Q' ; Quit; GOSUB Enter_Final_Position

else begin end; (INVALID LETTERS IGNORED} GOTO 30 a DISPLAY MENU
end; (CASE > 180 IF AS = "E» THEN

end; C WHILE } GOSUB Execute_Move
end. GOTO 30 a DISPLAY MENU

190 IF AS = "D" THEN
GOSUB Display_Position
GOTO 30 3 DISPLAY MENU

200 IF AS = "V" THEN
GOSUB SetJ/elocity
GOTO 30 a DISPLAY MENU

210 IF AS = "A" THEN
GOSUB Set_Acceleration
GOTO 30 3 DISPLAY MENU

220 IF AS = "F" THEN
GOSUB Set_Filter_Variables
GOTO 30 a DISPLAY MENU

230 IF AS = "T" THEN
GOSUB Set_T ime
GOTO 30 a DISPLAY MENU

240 IF AS = "S» THEN
GOSUB Soft_Reset
GOTO 30 3 DISPLAY MENU

250 IF A* = »Q" THEN END
3 INVALID CHAR

260 PNT BELL' GOTO 30 a DISPLAY MENU

Figure 7. Slave2 and Master2 Programs.

35

F. MONORAIL SYSTEM COMMUNICATION
The development of the subprograms used to communicate

between the two computers used on the monorail system is
presented in this section. The RS-232 Serial Communication
ports of both computers are connected to an infrared commun
ication system. The monorail computer's transmitter oper
ates at the same frequency as the plant computer's receiver.
The monorail computer's receiver and the plant computer's
transmitter communicate at a different frequency which
allows full duplex communication. Full duplex communication
means that data can be sent and received by both computers
at the same time.

Data is transmitted in byte segments bythe RS-2 3 2
ports. This is the lowest level of communication that can
take place over the communication link. communication
capabilities of the ExKeys are performed in several layers
of subprogram executions. For example, some motor control
ExKeys transfer large integer values that are in a three
byte range. They will execute lower level subprograms that
accept the large integer values and break them into three
bytes. The three bytes are sent to the other computer with
three executions of SendCOMl and ReadCOMl. A communication
protocol is used by SendCOMl and ReadCOMl in which the
lowest level communication statements are called several
times for each byte sent. The protocol will be described
later. Figure 8 illustrates the communication levels
concept.

36

MONORAIL COMPUTER________________ PLANT COMPUTER
SEND POSITION -- > LOGICAL ---> READ POSITION

large int

SEND 3BYTE INT
large int

READ 3BYTE INT
3 bytes 3 bytes

SendCOMl ReadCOMl
\ /

byte >— byte oriented protocal — < byte
/ \Send_Coml Driver ==>PHYSICAL==> Read_Coml Driver

Figure 8. Communication Levels.

Only the data transmit and the data receive output
l i n e s 17'24»25) from the RS-232 ports are connected to
the infrared communication system. The modem control lines
normally associated with serial communication(15 *17•24'25)
are not connected to the infrared circuits. This creates
some difficulties on the monorail computer.

The Turbo Pascal communication statements expect the
modem control lines to indicate the communication link is
operational prior to performing their task. They also do
not handle communication errors gracefully so these communi
cation statements are not used. Instead, the slave's com
munication ExKeys use custom communication drivers that
overcome the shortcomings of the built-in capabilities.
These custom communication drivers are subprograms that are
included in the slave ExKey file. The Turbo Pascal language
has statements that allow access to the hardware of the
monorail computer which allow the communication drivers to
be written in this language.

37

The built-in communication statements of MacBASIC do
not use the modem control lines under the mode of communi
cation used on the monorail system. Therefore these state
ments can be used and custom communication drivers could not
have been written in this language. This is fortunate
because this language does not have the capabilities to
access the hardware ports which would allow custom drivers
to be written.

1. Monorail Computer Communication. A RS-232 Add-on
card^25) placed in a slot of the monorail computer's back
plane performs the communication used on the monorail sys
tem. It is considered the primary asynchronous communi
cation port by DOS and is referred to as COM1. This com
puter card is based on the National Semiconductor INS8250
Asynchronous Communication Element (INS8250)(24). It
appears as eight consecutive address locations in the
computer's memory space. Ten internal registers can be
accessed through: various combinations of addresses, the
read/write line from the computer, and the Divisor Latch
Access Bit (DLAB). The access of the INS8250's internal
registers and the DLAB will be discussed later.

a. Hardware Port Access. Turbo Pascal has a predefined
array that is used to access a data port in the Input Output
(I/O) address space. It is named Port and the array type
is byte. Its index is the location of the port. When this
array is on the left side of an assignment statement, a

38

value can be sent to a port. When used on the right side of
an assignment statement, a port can be read. For example,
the value of the Line Status register at hexidecimal (Hex)
location 3FD can be read into the byte type variable x with
the statement:

x := Port[$3FD]?.
The byte type variable x can be sent to the Transmitter
Holding register at Hex location 3F8 with the statement:

Port[$3F8] := x;.
This array is used throughout the slave's subprograms so
predefined constants are used to associate a readable name
with each INS8250 register location. These names appear in
the slave ExKey listing in Appendix A.

b. SetUpComl Procedure. Before any communication can
occur over the RS-232 ports, the ports must be initialized.
This is performed with SetUpComl. COM1 is initialized by
software. This involves three of the INS8250's registers.
The SetUpComl ExKey automatically sets these registers to

• (3 19 13 —the correct values. It uses a software interrupt' ' ' '
16,17) to can the Basic Input/Output System (BIOS)(12,16,-
17) to perform the required register initializations. The
explanation of the BIOS and the software interrupts is
beyond the scope of this thesis.

The SetUpComl procedure can be changed easily to allow
COM1 to be initialized differently, even if the user does
not understand software interrupts. Variables that repre
sent the values for the initialization attributes can be set

39

to different values. These attributes are the baud rate,
the type of parity, the number of stop bits and the number
of data bits(12'15'16'17). The variable BAUD is set to the
value for the baud rate. The variable PARITY represents the
type of parity with the possiblity of no parity. The vari
ables STOP and DATA are set to the values for the number of
stop bits and the number of data bits respectively. The
meaning of the initialization attributes is not covered in
this thesis. The following is the portion of the SetUpComl
procedure that allows these variables to be changed:

C*** CHANGE THESE TO SET UP DIFFERENTLY>
BAUD := 1200 AAAC/)<DOOJZo 300,1200,4800,9600 >
PARITY := 0; Cchoi ces»> 0:none, 1:odd, 2:even}
STOP := 2; Cchoi ces»> 1 or 2 }
DATA := 8; Cchoi ces>>> 7 or 8 } .

The SetUpComl procedure performs three additional func
tions. It clears a bit which controls which register is
addressed at $3F8. This bit was mentioned earlier when the
locations of the INS8250's registers were discussed. It is
the Divisor Access Latch Bit (DLAB) and is the most signifi
cant bit in the Line Control register. It must be reset so
that the address $3F8 and $3F9 will access the correct reg
isters .

The DLAB bit of the Line Control register is reset by
reading that register and logically "AND"ing it with the
hexidecimal value $7F. This is done so that the rest of the
bit values are not changed. The result is stored back into
the Line Control register.

40

The SetUpComl procedure also disables the interrupt
system of COM1. This is accomplished by sending all zeros
to the Interrupt Enable register. The final function of
this procedure is to initialize four constants that are used
by the protocol of SendCOMl and ReadCOMl.

c. Read Line Status Reg Procedure. A general purpose
procedure used to check the status of the bit positions of
the Line Status register is available in the slave ExKey
file. This procedure is named Read_Line-_Status_Reg It has
seven variable boolean parameters. Each parameter repre
sents a bit value for each position of the Line Status reg
ister. An example that uses this procedure is presented
later in this section. Figure 9 contains the code for this
procedure.

procedure Read_l.ine_Status_Reg
(VAR R_full, overrun, parity, framing,

break, empty_TB, empty_TR: boolean);
var x: byte;
begin

x := portlLine_Status_Reg);
R_full := false;

if (x AND $01) = $01 then R_full := true;
overrun := false;

if (x AND $02) = $02 then overrun := true;
parity := false;

if (x AND $04) = $04 then parity := true;
framing := false;

if (x AND $08) = $08 then framing := true;
break := false;

if (x AND $10) = $10 then break := true;
empty_TB := false;

if (x AND $20) = $20 then empty_TB := true;
empty_TR := false;

if (x AND $40) = $40 then empty_TR := true;
end;

Figure 9. Read_Line_Status Procedure.

41

d. Send Driver Procedure. The communication driver that
transmits a byte on COM1 is the procedure Send_Driver. It
uses an integer parameter instead of a byte because integer
types are more convenient to work with than byte types.
Figure 10 contains the code for this procedure.

procedure Send_Driver (x: integer);
var B1,B2,B3,B4,B5, Empty_TB, B7: boolean;

begin
Empty_TB := false;
while (NOT Empty_TB) do
Read_Line_Status_Reg(Bl,

B2.B3.B4,B5,EmptyTB,B7);
portlTx_buffer] := Lo(x);
end; (proc Send_Driver >

Figure 10. Send_Driver Procedure.

Two INS8250's registers are involved when a byte is
transmitted over C0M1. These are the Line Status register
and the Transmitter Holding register. The Transmitter
Holding register accepts a byte from the computer and sends
it over C0M1. The Line Status register uses seven of its
eight bit positions to indicate the status of data communi
cation and the status of INS82 50. When it is set (1) , the
sixth bit indicates that the Transmitter Holding register is
empty. The Line Status register should be read and this bit
tested until it is set before a byte is written to the
Transmitter Holding register.

Seven boolean variables are defined in this procedure.
They are used as parameters with the Read_Line_Status_Reg
procedure to represent the seven bits of the Line Status
Register. Only one of these variables is used in this

42

procedure but all must be defined. The sixth parameter
indicates if the Transmitter Holding register is empty. It
is named Empty_TB for empty Transmitter Buffer. It will
remain unset (0) until the Transmitter Buffer register is
cleared. This automatically occurs when the previous old
contents in the register are sent.

The first three lines of this procedure cycle until the
Transmitter Holding register is empty. Then the low order
byte of the integer value is written into the Transmitter
Holding register where it will be sent over the transmit
line of COM1. The monorail computer can write bytes to this
register faster than the INS8250 can transmit them over
C0M1. This is the reason the code has to loop until this
register is cleared. The constant Tx_buffer is the address
of the Transmitter Holding register.

e. Read Driver Procedure. The communication driver that
receives a byte over COM1 is the procedure Read_Driver. It
has two parameters. The first is a variable integer. It
returns the value of the byte received over COM1. The
second parameter is a boolean variable that is set if a
communication error occurs. The communication errors will
be discussed later in this section. Figure 11 contains the
code for this procedure.

The Read_Line_Status_Reg procedure is also used by this
communication driver. All but two of the seven bit posi
tions are used by the Read_Driver communication driver. The
first boolean parameter represents the bit of the Line

43

Status Register that is set when a byte has been received
into the Receiver Buffer register. The name R_full, for
receiver full, is used for this parameter.

procedure Read_Driver (VAR i: integer;
VAR Read_errors: boolean);

var x : byte;
R_full, E1,E2,E3,E4, B1,B2, dataRDY: boolean;

begin
Read_errors := false; dataRDY := false;

while NOT(Read_problems) AMD NOT(dataRDY) do begin
read_Line_Status_Reg (R_full, E1,E2,E3,E4, B1,B2);
if E1 OR E2 OR E3 OR E4 then

Read_errors := true
else

if R_full then
dataRDY := true;

end; {while)

x := port(Rx_buffer];
if (Not read_errors) then

i := ord(x);

end; { proc Read_Driver >

Figure 11. Read_Driver Procedure.

The next four parameters of the Read__Line_Status_Reg
procedure represent four error conditions that may occur
when a byte is received over COM1. The individual meaning
of these four bits is not presented in this thesis. A logi
cal "OR" combination of these four bits checks for any one
of these errors.

When a byte is expected to be received over C0M1, the
Read_Driver procedure should be executed. This procedure
monitors the R_full bit and the four error bits. If any of
the four error bits are set, an error has occurred and any
data in the Receiver Buffer register will be invalid. This

44

procedure sets the second boolean parameter to true so that
it indicates that an error occurred. The value returned in
the first parameter is not changed. The Receiver Buffer
register still needs to be read because doing so will reset
the R_full bit. All four error bits are cleared when the
Line Status register is read.

If the R_full bit is set and none of the error bits are
set, the Receiver Buffer register contains a valid value.
It can be read with the Port array and the value is changed
to an integer. The integer value is returned in the first
parameter. The second boolean parameter is initialized to
indicate that no errors have occurred and will not change
values unless an error occurs.

2. Plant Computer Communication. The plant computer has
two RS-232 ports in the Macsym 150 but only one is used for
the communication between the two PBX pilot plant computers.
Each port operates independently. They are contained on a
single card that fits into one of the Macsym 150's slots.
The built-in statements of MacBASIC can be used to perform
all of the communication functions required by the monorail
system.

a. SetUpComl Subroutine. An open statement must be per
formed before using one of the communication ports. The
OPENR statement(4•5•6) is used to open a logical channel for
input and another logical channel for output. It is used to
assign an integer number to the input channel. it

45

automatically assigns the next greater integer to the output
channel. It requires two parameters. The first parameter
is the input channel number. The channel numbers are used
by MacBASIC I/O statements to route data to the RS-232 port.
The two variables, RS2320UT' and RS232IN', are assigned two
consecutive values and used with I/O statements in the
example programs presented later.

The second parameter of the OPENR statement is a
symbolic name for the actual port. This value must be a
character string (enclosed in quotes). The system name for
the first RS-232 port is "$QTI:0". The first port is
labeled "A" on the RS_232 connector. The second port uses
the symbolic name "$QTI:1" and is labeled "B" on the con
nector.

The attributes of the plant computer's RS-232 ports are
not initialized like the RS-232 port of the monorail com
puter. The monorail computer's communication attributes
are set by software while the plant computer's communication
attributes are set when the plant computer is turned on.
Dual Inline Package (DIP) switches on the RS-232 card are
used to set the different communication attributes).

The attributes of the RS-232 ports of both computers
have to be identical. This is the reason why the slave's
SetUpCOMI ExKey does not prompt the operator for the values
of the attributes. These attribute values are program
constants that match the attributes of the plant computer.
If the DIP switches on the plant computer's RS-232 card are

46

changed, the code for the slave's SetUPCOMl ExKey will have
to be changed.

b. Communication Statements. The MacBASIC I/O statements
that correspond to the Read_Driver and Send_Driver ExKeys of
the monorail computer are PNT:RS2320UT' and INP:RS232IN'
respectively. Both statements require a parameter that
represents the value to be sent or the value to be read.

Figure 12 contains a pair of programs that demonstrate
the use of the MacBASIC communication statements and custom
communication drivers on the monorail computer. These
programs send random characters to each other and also print
them on their own screens. The plant computer first gener
ates a capital letter, sends the letter to the monorail com
puter, and prints the letter on its own screen. It waits
until a letter is received from the monorail computer.

10 RS232IN' = 5 Var char1,char2: byte;
15 RS2320UT' = 6 t$l keyword.pas)
20 OPENR-.RS2321N' "SOT 1:0“ begin
30 CHAR1' = 65 ♦ RND*26 SetUpCOMI;
40 PNT:RS2320UT’ CHAR1' while true do begin
50 PNT CHAR1' Read_Driver (charl);
60 INP:RS232IN' CHAR2' write(charl);
70 PUT CHAR2' char2 := lo(32 +
80 GOTO 30 random(27))

Send_Driver (char2);
wri te(char2);
end;

end.

Figure 12. Lower Level Communication Example.

Meanwhile the monorail computer has been waiting for a
letter from the plant computer. When it receives one, the
letter is printed on its screen. A new random capital

47

letter is generated which is sent to the plant computer.
The letter is printed on the screen. The monorail computer
then waits for a letter to be sent from the plant computer.

The sequence of one computer sending a letter to a
receiving computer, then waiting for a new letter from the
other computer before repeating the process, is a type of
communication protocol. It involves handshaking which
prevents one computer from overrunning the other computer
with letters. It does this by switching the role of which
computer is sending and which computer is receiving.

3. Bvte Oriented Communication Protocol. The difference
between the communication ExKeys presented earlier and the
communication drivers just presented involves the level at
which communication is performed. The ExKeys implement a
protocol that uses the communication drivers. There are
several reasons for the use of a protocol to develop a
higher level of communication above the level of the commun
ication drivers. The burden of handling errors that can
occur when a byte is received at a communication port is
removed from a programmer who is using the communication
ExKeys. It is also important to trust that the communi
cation is taking place and that it is occurring correctly.
These are the main requirements of the protocol for the
communication between the two computer systems used on the
monorail system.

The amount and frequency of data transferred is another
factor affecting the protocol. On the Monorail system, the

48

communication is limited to occasional transmissions of
single bytes and packets of three bytes. This is a small
amount of data compared to the typical use of communication
links. Most communication protocols(26-29) handle much
larger packages of data.

The characteristics of the infrared communication link
also affect the protocol. The infrared link cannot be
considered extremely accurate and dependable because of the
nature of infrared signals. In general, it will be assumed
that a byte transmitted over the link will not be lost but
it might not be received correctly. Sometimes an error can
occur during transmission that may not be detected by the
hardware of the communication port. This problem has to be
corrected by the protocol.

This section attacks the characteristics and require
ments conflict of the Monorail communication system. The
protocol, which is named the Byte Oriented Communication
Protocol (BOCP), is presented in two stages. The basic
scheme of the protocol is presented first. The basic scheme
does not handle errors occurring at the driver level. The
basic scheme will be expanded upon to consider those errors
in the second stage. After the presentation of the proto
col, a discussion about the problem of lost data will
follow.

The basic protocol scheme assumes that a transmission
error will not occur and that the transmission will not be
lost. It insures that a byte is transmitted correctly. it

49

does this by returning the byte read by the receiving com
puter, back to the sending computer. At this point, the
sending computer knows whether the byte was received by the
other computer. The sending computer can compare the
returned byte to the byte that was sent to check for cor
rectness. The sending computer is satisfied that the com
munication has occurred correctly if the two bytes are equal
but the receiving computer does not know the result of the
test. Another handshaking process is used so that the
sending computer can notify the receiving computer if the
communication occurred correctly. Figure 13 contains a
diagram of the basic protocol scheme.

If the sending computer receives the same byte that it
sent, it will send an acknowledge (ACK) byte back to the
receiving computer. The receiving computer returns the byte
received and then checks it to determine if it is an ACK.
This is done because the computers need an even number of
transmissions to perform correct handshaking.

If the sending computer does not receive the same byte
it sent during the first handshaking sequence, then the
sending computer will send a not-acknowledge (NAK) byte to
the receiving computer. The NAK signals that the sending
computer has determined that the transmission did not occur
correctly. The transmission process is repeated until the
byte is sent accurately.

50

SENDING COMPUTER RECEIVING COMPUTER

SendCOH U A) lG9lc‘‘ ~ ReadCOM
a c tu a l

Figure 13. Basic BOCP Scheme.

51

The second stage of the presentation of the BOCP
handles the hardware errors that are detected by the read
drivers. Figure 14 shows the additions to the basic scheme
that handle returned errors from the read drivers. In
general, if an error is detected, a NAK is returned.
MacBASIC has an ON ERROR statement that allows a segment of
code to be executed when an error occurs. The use of this
statement and the error numbers corresponding to the type of
errors is beyond the scope of this thesis.

A serious problem occurs if the last transmission of
the protocol is received with an error. The sending com
puter does not know if the receiving computer returned a ACK
and left the protocol scheme or if it sent a NAK and is
repeating the protocol. It is obvious that the protocol is
not foolproof but in most cases it will recover from errors.

The infrared communication circuits might later be
developed to include a signal line that would indicate if
the communication link is not reliable at a particular point
in time. This status line should be read just before
sending a byte over the link. If the status does not indi
cate a possible problem, the byte should be sent. Otherwise
the transmission should wait until the line changes to a
safe status indicated. This may cause problems if the line
does not change quickly from a bad indication to a good one.

A time out scheme could also be added to the protocol
at a later time if the current protocol becomes less
reliable. A time out scheme interrupts the wait at a read

SENDING COMPUTER RECEIVING COMPUTER
SendCOM 1(A) — lnOim1 ■- ReadCOM 1 (X)

actual

Figure 14. BOCP Scheme with Error Handling.

53

driver after a period of time elapses. This would occur if
the transmission was lost. The first read driver for the
receiving computer should not time out because of the unpre-
dictablity of the time it will receive a byte. The other
reads are more predictable once the protocol scheme starts.

A synchronization problem occurs with timeouts because
neither side of the protocol knows what occurred at the
other side after a timeout. For example, if the first read
statement on the sending side timed out, the sending side
does not know if the byte it sent was lost or if the byte
was received by the other side and the return transmission
was lost.

The quest for the perfect protocol for the monorail
system would require a large effort. The answer to the
perfect protocol is beyond the scope of this thesis. The
reason for the presentation of the protocol used in this
thesis is to allow the expansion of the protocol by future
programmers who are given the task of updating the current
protocol to handle new characteristics or requirements.

G. MOTOR CONTROL HARDWARE.
The hardware involved with the control of the monorail

carrier's electric motor is the LAB 40 extended bus system.
It connects the LAB 40-HP function module containing a HP
HCTL-1000 motor control processor to the monorail computer.
The driver card for the LAB 40 system(18) is referred to as
LAB 40-PC in this thesis. It fits into a slot in the mono-
rail computer's backplane. The HP HCTL-1000 is on an

54

external board which is known as the LAB 40-6(20) but it is
referred to as LAB 40-HP in this thesis. A ribbon cable is
used to connect the LAB 40-PC to the LAB 4 0-HP. A second
external board is also connected to the LAB 40-PC with the
ribbon cable. This board is an A/D input system that is
known as LAB 4 0 - 2 but it is referred to as LAB 40-AD in
this thesis. This section presents the theory of the hard
ware involved with the implementation of the motor control
ExKey. Appendix A contains the listing for the slave ExKeys
and Appendix B contains the listing for the master ExKeys.

1.____LAB 40 Extended Bus System. The extended bus driver
card is based on the Intel 8255A Programmable Peripheral
Interface Device (8255)(30). The 8255 is configured so that
the bus contains two eight bit ports, a board select port
and a set of power and control lines for the function
modules(18). The 8255 is composed of four registers.

The first two 8255 registers, known as PortA and PortB,
translate into eight bit ports on the extended bus. When
accessing one of these registers, the respective bus port is
accessed. The third port is used to select a function
module. This port is called PortC. The forth register is a
control register. It determines the mode of operation for
the other three 8255 registers.

The computer's address lines, A3 and A2, are used to
select one of the four 8255 registers. The lowest two
address lines, A1 and AO, are not used for decoding. There
fore, four consecutive memory locations address a single

55

register. The value used to access a port usually has an
effect on the function module selected. The address lines,
A1 and AO, are available on the extended bus for use by
different function boards.

The control register is located at memory locations 748
through 751. The value 192 is used to initialize the 8255
for the configuration required by the monorail system. This
value causes PortA to be initialized as a bidirectional port
and PortB to be initialized as a latched output port. PortC
is initialized to be used as the board select port.

With bidirectional PortA, bytes of data can be read and
written between the computer and a function module. PortA
can be addressed at 736 through 739. This port remains in
tristate mode except during an I/O operation. A write oper
ation involves writing a byte to this register. The value
of the byte will appear on PortA and a OUT* control line on
the bus will strobe low. (The notation ' *' after a line
name is used to indicate active low.) A read operation
involves first reading this register which causes the 8255
to perform its own read operation on PortA. The register
must be reread, after a short pause, to obtain the data read
at PortA by the 8255. During the 8255's read operation, an
IN* line on the bus is strobed low.

With PortB initialized as a latched output port, the
value written to it remains on the bus until replaced with a
new value. PortB is addressed at locations 740 through 743.
The use of PortB depends on the function module addressed.

56

Both function modules used with the PBX pilot plant use this
port to aid with I/O operations.

Porte is used to select different function modules.
Porte is addressed at locations 744 through 747. Eight
function modules can be addressed by one of the eight select
lines on the bus. Only one of these lines should be set at
a time. The lowest three bits of the output from this port
are connected to a three to eight decoder. Only the values
zero through seven should be sent to this register.

There are several features of the LAB 40 system that
are not used on the monorail system. Those features of the
LAB 4 0 system are not presented in this thesis. The
presentation of the LAB 40 system is oriented for the
monorail system.

2. Hewlett Packard HCTL-1000 Function Module. The
function module uses a HP HCTL-1000 motor control processor
to control the electric motor. There are two HP HCTL-lOOOs
on this board and each one can select one of four different
motors but this presentation treats the board as if it has
only one HP HCTL-1000 connected to one motor.

a. Register Access. The HP HCTL-1000 has 32 user access-
able registers. The I/O operations with the HP HCTL-1000
registers involve the use of PortA and PortB after LAB 40-HP
is selected. The HP HCTL-1000 has a bidirectional address-
/data port that is connected to LAB 40's PortA. It allows
bytes of data to be written and read between the HP

57

HCTL-1000 and the monorail computer. The individual bits of
PortB have different functions.

The first bit of PortB (Bit 0) is connected to the
read/write* line of the HP HCTL-1000. Bit 0 is set for a
read operation and cleared for a write operation. The forth
bit of PortB (Bit 3) is connected to a reset line on the HP
HCTL-1000. The reset is activated when Bit 3 is cleared.
For normal operations this bit should always be set.

The other bits on PortB are used for functions that are
not used on the monorail system. These bits should always
be cleared. Therefore only four values should be written to
PortB. Those values are 1, 2, 8 and 9. The values 1 and 2
cause the HP HCTL-1000 to reset because the bit 3 is
cleared. The values 8 and 9 mean that Bit 3 is set as
required for normal operations. The value 8 prepares the HP
HCTL-1000 for a read operation while the value 9 prepares it
for a write operation.

Most of the motor control ExKeys have to access several
of the HP HCTL-100 registers. Two subprograms are used by
the motor control ExKey to perform read and write operations
with a HP HCTL-1000 register. These subprograms are HPread
and HPwrite respectively. The function HPread is used to
read a byte of data from a register. The procedure HPwrite
is used to write a byte of data into a register. The code
for both subprograms is presented in Figure 15.

58

procedure HPwrite(addr,data: integer); begin
port[B] := 8; (lowers Rd bit, +8 for no reset}
port[A] := addr; (send addr of reg}
portlA+1] := data; (send data to reg}
end;

function HPreadladdr: integer): integer; begin
portCB) := 9; (sets Rd bit, +8 for no reset}
portlA} := addr; (send addr of reg}
porttA+1) := 0; (strobe CS low}
HPread := port[A+11; (start read}
delay(110); (pause for read operation}
HPread := port[A+1); (Read data from PortA}
end;

Figure 15. HP HCTL-1000 Register Access Subprograms.

Two constants, A and B, were previously set to the
first locations that address PortA and PortB respectively.
By adding a value between 1 and 3 to one of these constants,
the address lines AO and A1 are used to aid I/O operations
with HP HCTL-1000 registers. These two address lines are
connected to the two input pins, A and B, of a 74HC155 Dual
2-to-4 Line Decoder/Demultiplexers^20'31).

Two bus control lines are also connected to the
74HC155. These two lines are the IN* and OUT* lines from
the 8255. Their function is similar to the read and write
lines of a microprocessor. Figure 16 contains a simplified
block diagram of the 74HC155 with its connection between the
monorail computer and the HP HCTL-1000.

The four outputs from the 74HC155 are inverted; all
output signals are set except the one selected which will be
low. When the 74HC155 is enabled with the board select
line, the IN* and OUT* lines are connected such that a write
operation will clear the 74HC155/s output pin labeled Xn.

59

Figure 16. Simplified Block Diagram of LAB 40-HP Connection

?4H
C 1

55

60

The value of n will be 0 to 3 according to the binary repre
sentation of AO and Al. A read operation will clear the
output pin labeled Yn where n is the binary representation
of AO and Al.

The HP HCTL-1000 has three pins that are used for its
I/O operations. These pins are Output Enable* (OE*),
Address Latch Enable* (ALE*) and Chip Select* (CS*). The
74HC1557s Y1 pin is connected to the HP HCTL-1000's OE* pin,
the 74HC155/s X0 pin is connected to the HP HCTL-1000's ALE*
pin and the 74HC155/s XI pin is connected to the HP HCTL-
1000's CS* pin.

An I/O operation with the HP HCTL-1000^20,22 ̂ starts by
setting the read/write* line on PortB to the appropriate
value, it then sends the address of the register to be
accessed to the HP HCTL-1000. The ALE* pin should be
strobed low to latch the data on PortA into an internal
address register. The statement

port[A] := addr;
performs this function. The OUT* from the 8255 is strobed
low during a write operation with PortA and the address
lines AO and Al are both zero so the ALE* will strobe low
with the value, addr, on PortA.

A write operation involves sending the data byte to the
HP HCTL-1000 after the address has been latched into the HP
NGTL-1000 internal address register. The CS* pin has to be
strobed low with the data on portA. This stores the data in
an internal data latch in the HP HCTL-1000. The HP

61

HCTL-1000 then stores that data into the addressed register.
The statement

port[A+l] := data;
performs this function. The OUT* from the 8255 is again
strobed low and the address lines AO and Al equal 1 so the
CS* will strobe low with the value, data, on PortA.

A read operation also has to strobe the CS* pin, after
the internal address latch has the register number, but the
data it stores in the internal data latch is not used.
Given the address of the register and the read/write* pin
set, the HP HCTL-1000 will store the addressed register's
contents in an internal output latch. The final step
involves three statements because of the method of reading
PortA required by the 8255. The first

HPread := port[A+l];
statement strobes the OE* pin low which will cause the data
in the output latch to be placed on the HP HCTL-1000's
address/data port. A short delay, 110 microseconds, is
needed for timing purposes before a second

HPread ;= port[A+l];
statement reads the byte from the 8255.

The HPread and HPwrite subprograms simplify the access
to the HP HCTL-1000's registers. Figure 17 presents a sim
plified register block diagram which shows the relationship
of the registers used during trapezoidal motor moves. The
diagram is a modified version of the diagram presented in
the Technical Data literature for the HP HCTL-1000. only

62

<Oi

Figure 17. Simplified HP HCTL-1000 Registers Block Diagram.

part of the HP HCTL-1000#s capabilities are presented in
this thesis.

63

Some of the data used by the HP HCTL-1000 requires more
than one eight bit register to hold the value. The Final,
Command and Actual positions require three registers to hold
their values. The acceleration rate uses two registers.
The format of these registers will be presented later. The
HPread and HPwrite subprograms are used several times when
working with these values.

b. Trapezoidal Profile Generator. When instructed to
start a motor move, the Position Profile Generator will
determine a command position as defined by the trapezoidal
profile. The Acceleration rate, Maximum Velocity and Final
position values determine this profile. The Actual position
is subtracted from the Command position. The difference is
used by the digital filter to compute the motor compen
sation. The compensation is converted into Pulse Width
Modulated (PWM) format and placed in the PWM Motor Command
Port register. The value in that register is sent to an
amplifier circuit which controls the sign and magnitude of
voltage sent to the monorail carrier's motor.

The sample timer triggers each process of computing the
motor compensation. At each clock cycle, a new Command
position is computed, the Actual position is read, the com
pensation is computed, and the PWM Motor Command Port is
adjusted. The sample time period affects the possible
values for the acceleration rate and the maximum velocity.

64

The formulas that compute the possible range for these
values will be presented later.

c. Initialization Process. The Init_LAB40 ExKey must be
performed before any other motor control ExKey is performed.
This ExKey first initializes the 8255 of the LAB 40-PC.
Next, the reset line of the HP HCTL-1000 is strobed low by a
procedure called Hard_Reset. This reset must be performed
before the HP HCTL-1000 is used.

The Hard_Reset procedure was not presented as a ExKey
because it normally does not have to be performed more than
once. A corresponding Hard_Reset subroutine is included on
the Master ExKey' file, if a hard reset option in a monorail
program is desired.

The reset performed by the Soft_Reset ExKey is a
different type of reset than the Hard_Reset. A soft reset
performs register initialization while the hard reset
initializes the HP HCTL-1000's internal circuits. The HP
HCTL-1000 can be instructed to perform a soft reset. The
Soft_Reset ExKey instructs the HP HCTL-1000 to execute a
soft reset and then it performs extra functions which will
be explained later. To distinguish between the soft resets,
the HP HCTL-1000's soft reset will be called HP soft reset
while the Extended keyword will still be called Soft_Reset
ExKey. An HP soft reset is automatically performed after a
hard reset has been executed.

The HP soft reset sets the filter parameters, the timer
value and the position registers to default values set

65

inside the HP HCTL-1000. After the Soft_Reset ExKey exe
cutes the HP soft reset, it restores those registers to
their old values. Program variables, which hold the values
stored in these registers, are used to restore the reg
isters. The Init_LAB40 ExKey initializes these variables
and they are updated when any of these registers are
changed. The procedure Restore_HPregisters is used to set
the register values to the variable values.

d. Filter Parameters. The Set_Filter_Variables ExKey
performs three functions. For convenience, this Exkey sets
all three filter parameters when any one of them is changed.
Both versions of this ExKey could easily be broken into
three separate ExKeys that would allow a master program to
change only one of these registers. All three of these
registers have a scalar byte format. Therefore, the range
of values is zero to 255. The master version of this ExKey
performs range checking.

The LAB 40-HP manual recommends that the pole be set to
64 or less and the zero be set to 255. It also states that
the gain must be determined experimentally. The gain value
is the most sensitive. It could cause the motor to oscil
late if it is set too high. If it is set too low, the accu
racy of the actual position at the end of a motor move will
not be as precise.

Through experimentation, it was determined that values
starting around 90 and below 255 will cause oscillation with
the motor used on the monorail carrier. The ExKey uses 45

66

as the default value. Different motors can react differ
ently to the gain value.

A motor move usually does not end exactly at the final
position. A deviation of approximately 100 encoder counts
can be expected. After a motor move has completed, the gain
value can be set to a high value of around 100, then immedi
ately set back to a non-oscillating value. This helps move
the actual position closer to the intended final position
and reduces the deviation to around 50.

e. Position Profile Parameters. The Sample Time register
must be set to a value between fifteen and 2 55 for trape
zoidal profiles. The variable Timer_Reg contains the
address for this register in the slave ExKey file. The
formula that converts the register value into the time
period in microseconds is:

t = 16*(TIME' + 1) / freguency.
The variable TIME' contains the value stored in the time
register. The frequency is 2MHz so the resulting range of
periods is 128 to 2048 microseconds.

The acceleration rate used in the position generator is
stored in two registers. One of the registers holds the
integer portion of the acceleration rate and the other holds
the fractional portion. The register holding the integer
portion is called the most significant byte (MSB). The
variable Accel_Reg_MSB contains the address for this reg
ister in the slave ExKey file. The range of values this
register can hold is zero to 127 (Hex 7F).

67

The fractional portion of the acceleration rate is
internally divided by 256. The register holding the
fractional portion is called the least significant byte
(LSB). The variable Accel_Reg_LSB contains the address for
this register in the slave ExKey file. This register can
hold values in the range of zero to 255. Given the range of
the two acceleration registers, the combined values for
acceleration rate range from 0 (0 + 0/256) to approximately
127.996 (127 + 255/256).

The units of acceleration are in encoder position
counts per simple time period squared (EC/SP2). If an
acceleration rate is held in a real variable, the integer
portion can be stored in the MSB acceleration register if it
is less than 128. The fraction part has to be multiplied by
256 then the integer portion of the result can be stored in
the LSB register.

Since the units for the acceleration rate are based on
the sample time period, the length of the time period
affects the actual acceleration range. For short time
periods, the acceleration range increases because the posi
tion generator updates the next command position quicker.
If the time period is long, the acceleration rate range
decreases. For example, given a constant acceleration rate,
a short time period means that the motor will accelerate
twice as fast compared to a period twice as long.

68

A formula which changes the acceleration rate from
units of EC/SP2 to an acceleration rate in units of Revo
lutions per microsecond squared (R/mS2) is

Accel * (2E6/(16.0*(TIME7+1)))*2 / PperR.
The acceleration value in these registers is multiplied by
the square of the sample time period per second. At this
point, the units of acceleration are in encoder positions
per microsecond squared. It is converted to R/mS2 by
dividing it by the encoder positions per revolution which is
stored in the variable PperR.

Because an acceleration rate of zero is possible but
invalid, the value of 1/256 EC/SP2 is considered the minimum
acceleration rate. With this value, the MSB register
contains zero and the LSB register contains one. It is used
to compute the minimum acceleration in RPM given the sample
time period. The formula for the minimum acceleration rate
in RPMs (assuming not zero) is

1.0/256.0 * (2E6/(16.0*(TIME'+l)))A2 / PperR.
The largest acceleration rate in ECperSP is the value 127 +
255 / 256. This value causes the MSB register to contain
its largest possible value of 127 and the LSB register
contains its largest possible value of 255. The formula

(127+255.0/256.0) * (2E6/(16.0*(TIME'+l)))^2 / PperR
is used for the maximum acceleration rate in RPMs.

It is desirable to have the monorail carrier accelerate
at the slowest possible rate so the time period is set to
255. The default acceleration rate in ECperSP is 1/256.

69

This creates the smallest possible acceleration since the
time period is at its greatest possible value.

The velocity rate used by the position generator is
held in one register. The variable Max_Vel_Reg contains the
address for this register in the slave ExKey file. The
range of values for this register is zero to 127 (Hex 7F) .
The units of velocity are encoder position counts per sample
time period (EC/SP). The length of the sample time affects
the range of the actual velocity. A conversion process is
used to convert the register value, which is in EC/SP, to
revolutions per microseconds (R/mS). The formula for this
conversion is

Max__Vel_Reg * (2E6/(16.0* (TIME'+l))) / PperR
This conversion formula is similar to the acceleration rate
conversion. The units of EC/SP are multiplied by sample
time periods (SP) per microsecond (mS) then divided by the
variable containing the number of positions per revolution
(EC/R).

The velocity register can hold the value zero but the
value of one will be considered the minimal velocity rate.
The largest value this register can hold is 127. The
conversion formula can be used to determine the possible
ranges of velocity for a sample time period.

f. Position Registers. The Final position is used by the
position generator to determine when a motor move should
start decelerating so that the motor will stop at this
position. It is held in three registers which hold a 24 bit

70

2's complement value. A position value has to be converted
into three values in the range of zero to 255. These values
can be stored into the position registers. The first value
is the least significant byte portion of the position value.
The variable Fin_Pos_LSB holds the address of this register
in the slave ExKey file. The second and third values are
the middle and the most significant byte values. The vari
ables Fin_Pos_MB and Fin_Pos_MSB hold the addresses of these
registers respectively. The listing for the master Enter-
_Final_Position ExKey in Appendix B contains code which
converts a position to three byte values.

The HP HCTL-1000 uses two more position values other
than the Final position. These are the Actual position and
the Command position. These two positions have the same
format as the Final position. The registers which hold the
Actual position are Act_Pos_LSB, Act_Pos_MB and Act_Pos_MSB
and the registers which hold the Command position are C_Pos-
_LSB, C_Pos_MB and C_Pos_MSB. The positions are computed by
the HP HCTL-1000. These registers can be read through the
LAB 40 system and their values converted into the position
value. The MSB byte should be multiplied by 6553 6 (Hex
10000), the middle register byte should be multiplied by 256
(Hex 100) and those two results are then added to the LSB.

The Display_Position ExKey reads the actual position
registers and displays the values on the plant computer.
This ExKey uses a pair of routines that send three register
values from the monorail computer to the plant computer.

71

Both ExKey files also have a pair of routines that send
three byte values from the plant computer to the monorail
computer. These routines are similar to the communication
Exkeys. Both ExKey files contain their own versions of a
Send_3_Byte_Integer subprogram and a Read_3_Byte_Integer
subprogram.

g. Move Execution. Once a new final position has been
placed into the HP HCTL-1000, a motor move can be executed.
Two HP HCTL-1000 registers are involved with the execution
of a motor move. These are the Program Counter register and
the Flag register. The variables Program_Reg and Flag_Reg
contain the addresses of these registers in the slave ExKey
file. A procedure inside the Execute_Move ExKey is used to
store the correct values into these registers. This proce
dure is Start_Trapezoidal_Move. It stores the correct
values into the Flag register and the Program counter.

The Flag register is used to set one of the five flags
inside the HP HCTL-1000. The flag involved with trapezoidal
motor moves is Flag 0 (FO) . This flag needs to be set to
indicate that the HP HCTL-1000 is to perform a trapezoidal
motor move. The first three bits of this register are used
to address a flag. The fourth bit is used to set or clear
the addressed flag. The value 8 is written to this register
to set FO.

Once the trapezoidal flag, FO, is set, the motor can
start. The Program Counter register is set to the value 3
to start the motor move. This is the register that is used

72

to perform an HP soft reset. A HP soft reset is performed
by writing the value 0 into this register. When the HP
HCTL-100 is not performing a motor move or a soft reset, the
HP HCTL-1000 is in a mode called initialization/idle mode.
This mode is achieved by writing the value 1 to the Program
Counter register.

A third register is used during a motor move to detect
the finish of the move. This register is the Status reg
ister. The variable Status_Reg contains the address of this
register in the slave ExKey file. The fifth bit of this
register is set during a trapezoidal motor move. When the
move has completed, this bit will clear. Once the motor
move has started, the Execute_Move ExKey will check this bit
while in a loop which is also executing Display_Position. A
boolean function inside the code for Execute_Move is used to
check this bit of the Status register. The function, In-
_Trapezoidal_Move, reads the contents of the Status register
and checks the fifth bit. If this bit is set, then this
function returns as true. When the move has completed and
this bit is no longer set, this function will return as
false. Execute_Move will send the actual position of the
motor to the plant computer until this function returns as
false. The slave Execute_Move then sends a byte to the
master Execute-_Move to indicate that the move has completed
and the actual positions will stop being sent.

When a slave program that controls the motor is to be
halted, the Quit ExKey should be performed. This procedure

73

performs a HardReset which resets the signal to the motor's
amplifier. It then deselects the LAB 40-HP function module
and clears the control register.

74

IV. TABLE SYSTEM CONTROL.
The Table system connects a shell to the WOMBAT once a

shell has been delivered to the washout area by the monorail
system. It is a hydraulic table controlled by the plant
computer. It is equipped with a grasping mechanism that can
hold a shell. The front and back of the table move
separately. The front of the table is the side nearest to
the WOMBAT and the back is the side furthest from the
WOMBAT. The top of the table will be at an angle defined by
the positions of the front and back edges of the Table. It
moves linearly towards and away from the WOMBAT.

A. TABLE SYSTEM ALGORITHM.
Given the possible movement of the Table and its

purpose, an algorithm of the connection process has been
determined. Shells are suspended by straps on the monorail
carrier. The straps are flexible so they will remain
connected to a shell while the shell is connected to the
WOMBAT. The connecting process starts by simultaneously
raising the front and back of the table until the grasping
mechanism has a firm hold on the shell. After the operator
uses the video system to visually verify that the shell has
been correctly grasped, the table will raise to the height
needed to align the shell to the WOMBAT. It will then move
the top of the table towards the WOMBAT until the shell is
pressed firmly against the WOMBAT faceplate.

When the shell has been completely washed out, the
table system will back the shell away from the WOMBAT. The

75

front of the table will then lower to drain any remaining
material from the shell. When the operator believes the
shell is drained, the back of the table will lower until the
table is level. It will continue to simultaneously lower
the front and back of the table until the shell is released
to the monorail carrier.

B. HYDRAULIC SYSTEM CONTROL.
The hydraulic systems of the Table and of the WOMBAT

are controlled in a similar manner. The hydraulic system of
the Table has circuits which control the hydraulic rams with
voltage signals that represent positions. The MacBASIC AOT
statement is used to send command positions to the circuits.
The circuits receive actual positions values from LVDTs.
These values can be read with the MacBASIC AIN statement.

All of the four channels of the previously mentioned
D/A card are used to control the WOMBAT so another D/A card
has been added to the Macsym 200. In the example programs
presented later, the number for the slot of the second D/A
card is stored in an integer variable named Table'. The
integer variables Yfront', Yrear' and Ztop' hold the values
for the channels controlling the front, rear and top of the
table respectively.

The plant computer's A/D card has sixteen input
channels. The WOMBAT system uses the first five channels of
this card. The input functions of the A/D card are in the
same order as the output functions of the D/A card on the
WOMBAT system. This allowed the same variables to be used

76

for both the input and output channels. It is not possible
to use the same constants for the the input and output
channels on the Table system because the output channels are
on a new D/A card. The input channels used on the Table
system are connected after the WOMBAT channels. The output
channels on the new D/A card are numbered zero thru three,
the output channels are numbered five thru seven. An offset
variable, FBoffset', is added to the output channel con
stants in the example programs. The value of FBoffset' is
five because the first input channel used by the Table
system is channel five. A different integer variable which
contains the slot number for the A/D card is used to add
readability in the example programs presented later. This
variable, TabFB', contains the same value as the WOMBAT's
variable W_IN'.

Figure 18 contains a program to demonstrate the control
of the Table system. It allows the three dimensions of the
table to be moved separately or the front and back of the
table can be moved simultaneously if they are level. It
uses conversion factors to change inches to reference volt
age. The conversion factors are stored in an array which
allows the same sequence of code to control any of the move
ments of the table.

C. STRAIN GAUGE EXTENDED KEYWORD.
The LAB 40 system on the monorail computer contains an

A/D board that aids the Table system by measuring the load
on the monorail carrier. Its primary use is to detect the

77

change in load that occurs when the Table system has risen
to the point where it begins to come in contact with a shell
or when the shell is released.

10 Yfront' = 0 Yrear' = 1 Ztop' = 2
20 Table' = 3 TabFB' = 0 FBoffset' = 5
30 DIM C0NV(3) C0NV(Yfront'+1) = 1.027
40 C0NV(Yrear'+1) = 1.027 C0NV(Ztop'+1) = 2.35
50 els l I 3 MENU
60 ! "F)ront R)ear T)op U)p - front/rear Q)uit"
70 INPUT KEYS
80 IF KEYS = "Q“ THEN END
90 IF KEYS <> "F" THEN GOTO 100 3 REAR
95 CHNL' = Yfront' STS=*'FR0NT“ GOTO 140 3 TABLE MOVE
100 IF KEYS <> "R» THEN GOTO 110 3 TOP
105 CHNL' = Yrear' ST$="REAR" GOTO 140 3 TABLE MOVE
110 IF KEYS <> "T" THEN GOTO 120 3 UP
115 CHNL' = Ytop' ST$="T0P" GOTO 140 3 TABLE MOVE
120 IF KEYS <> »U» THEN GOTO 130
125 CHNL' = Yfront' CHNL2' = Yrear'
126 ST$="BOTH UP" GOTO 140 3 TABLE MOVE
130 GOTO 50 3 MENU
1403 TABLE MOVE
150 Fbakl = AIN (TabFB'.CHNL'+FBoffset',0,0)
160 ! STS;" at »;Fbak1'/C0NV(CHNL'+1):" inches "
170 IF KEYS <> "U" THEN GOTO 220 3 INPUT
180 Fbak2 = AIN (TabFB',CHNL2'+FBoffset',0,0)
190 IF Fbakl = Fbak2 THEN GOTO 220 3 INPUT
200 I "LEVEL Front and Back before Up"
210 GOTO 50 3 MENU
2203 INPUT
230 INPUT "NEW POSITION " X
240 X = X*CONV(CHNL'+1)
250 INPUT "NUMBER OF SUBSTEPS » n
260 TabSTEP = (X - Fbakl) / n
2703
280 FOR I = Fbakl TO X step TabSTEP
290 AOT (Table',CHNL') = I
300 IF KEYS = "U" THEN AOT (Table',CHNL2') = I
320 NEXT I
330 GOTO 50 3 MENU

Figure 18. Sample Table Control Program

Figures 19 and 20 contain a pair of subprograms that
are used to read the LAB 40-AD and send the result to the
plant computer. The procedure Read_Strain_Gauge is included

78

in the file containing the slave ExKeys. The subroutine in
Figure 19 is included in the file containing the master
ExKeys. These two subprograms use other subprograms in the
ExKey files for communication between the two computers.

a Read_Strain_Gauge SUBROUTINE
DECLARE (VOLT)
DIM GA!N<4), RANGE(4)
GAIN [2] = 1; GAIN [3] = 1; GAIN[4] = 1;

3*** change these variables for diff. setup ***
gain[1] = 1;

a range: -1 -> +-5v, 0 -> 0-10v, 1 -> 0-5v
RANGE[1) = 1;
RANGE [2] = 1;
RANGE£3] = 1;
RANGE [4] = 1;

IbPERvolt = 50

INPUT "ENTER CHANNEL OF LAB 40-A/0 (1-4) » CHNL'
GOSUB SendCOMUCHNL')

GOSUB ReadCOMK loByte')
GOSUB ReadCOH K h i Byte')

VALUE = hiByte' * 256 + toByte'
VOLT = VALUE/4096
IF RANGE(CHNL') = -1 THEN VOLT = VOLT * 10 - 5
IF RANGE(CHNL') = 0 THEN VOLT = VOLT * 10
IF RANGE(CHNL') = 1 THEN VOLT = VOLT * 5

VOLT = V0LT/GA1N(CHNL')
RETURN

Figure 19. Read Strain Gauge Subroutine.

When these two subprograms are executed on their com
puter, the master version prompts the user for the channel
to be read. The LAB 40-AD has four channels. The first
channel has an amplifier that is hardware adjustable. It
can be set to amplify the signal at channel l before it is
read. The amount of amplification is known as the gain.

79

The value read at this channel should be divided by the gain
to convert the value to the actual value at the channel.

procedure Read_Strain_Gauge;
VAR
chnl.value: integer;
loByte.HiByte: byte;

begin
ReadCOMK loByte);
chnl:= ord(lobyte)

PortCBoardSel] := ADboard;
PorttA+chnl] := 1; {starts A/D process on chnl}
PortCB] := 0; {sets low byte select}
loByte := Port [A]; {inits 8255 input reg}
loByte := Port[A]; {read low byte}
PortCB] := 1; {sets hi byte select}
hiByte := PortCAl; {read high byte}

SendCOMI(lobyte);
SendCOMKhibyte);

value := hiByte*256 + loByte;
writelnC'value read = '.value);
PortCBoardSel] := HPboard;

end.

Figure 20. Read Strain Gauge Procedure.

The slave Read_Strain_Gauge does not convert the value
read on channel one. It reads any one of the channels and
sends that value to the plant computer. The master version
converts the values it receives the value to their correct
values. Program constants in the master Read_Strain_Gauge
are used for the gain settings for all four channels. The
gain value for the first channel has been set to one in the
listing. The other three channels are not amplified so
their gain constant should always be one. This leaves their
values unchanged.

80

If the LAB 40-AD hardware is changed so that channel
one has a different gain value, then the gain constant in
the master Read_Strain_Gauge needs to be set to the new
value. This convention allows the hardware to be changed
without changing the slave Read_Strain_Gauge's code.

Only one program should ever be executed on the mono-
rail computer because of its dedicated purpose. This pro
gram has to control the electric motor of the monorail
carrier and communicate with the plant computer. It should
also allow the monorail carrier's strain gauges to be read
and the values sent to the plant computer.

Figure 21 contains an example program for the plant
computer which shows the use of the Read_Strain_Gauge
subprograms while controlling the Table. It raises the
table until it detects the grasping of a shell. When the
table has risen to the point where it touches the shell,
the values from Read_Strain_Gauge will start to change. A
tolerence level on the possible deviations of readings from
the strain gauges avoids false indications that might end
this example program too soon.

This program assumes that the monorail computer is
running a program which constantly executes the Read_Strain-
_Gauge procedure. Before a Monorail program delivers a
shell to the washout area, it should lower the table so the
shell can be moved over the table. The program in Figure 21
also performs this function.

81

10 Yfront' = 0 Yrear' = 1 Ztop' = 2
20 Table' = 3 TabFB' = 0 FBoffset' = 5
30 DIM CONV(3) C0NV(Yfront'+1> = 1.027
40 C0NV(Yrear'+1) = 1.027 C0NV(Ztop'+1) = 2.35
50 UPSTEP = .05 TOLERENCE = .01
60 ALIGNMENT = 2.345
70 aaa SETS THE table to the lowest, level position
80 AOT (Table'.Yfront') = -10
90 AOT (Table',Yrear') = -10
100 aaa monorail program should do this
110 GOSUB READ_STRAIN_GAGE(REF_WEIGHT)

120a MOVE TABLE UNTIL STRAIN DECREASES
130 GOSUB READ_STRAIN_GAGE(WEIGHT)
140 IF ABS(REF_WIEGHT - WIEGHT) > TOLERANCE THEN

GOTO 200
150 Fbakl = AIN (TabFB'.Yfront'+FBoffset',0,0)
160 NEXT_STEP = Fbakl + UP_STEP
170 AOT (Table',Yfront') = NEXTSTEP
180 AOT (Table',Yrear') = NEXT_STEP

190 GOTO 120

200 END

Figure 21. Table Control Program with Strain Detection.

The Read_Strain_Gauge subroutine should be modified
when used by this program. The A/D channel read during this
program will always be the same. The subroutine currently
prompts for the channel number. This statement should be
replaced to an assignment statement which sets the varible
CHNL' to the channel number used.

This sample program illustrates the use of the Read-
_Strain_Gauge subprograms. The table rises slightly then
these subprograms are used to compare the new value to a
reference value that was read before the table started to
rise. This program performs only a beginning portion of the
algorithm required to connect a shell to the WOMBAT.

82

V. CONCLUSION.
This thesis presents the methods of computer control

used on the pilot PBX Washout Plant. Two of the components
of the plant, the WOMBAT and the Table system, are
hydraulically powered systems. The third component, the
Monorail system, involves the control of an electric motor
and communication between two computer systems.

Only the basic control algorithms were presented for
two reasons. The first reason is the delivery system's
stage of completion at the time of this thesis. The second
reason is the frequent updates to the PBX Washout Plant
components and their programs. The algorithms presented
should remain valid and useful as long as the plant is under
development or in operation. Most future changes to the
physical design of any one of the components should only
involve parameter changes in its control program.

At the time of this thesis, the delivery system was
under development. Most of the installation of the
components had been performed, but some work still remains.
The development of the infrared communication system was
hindered by hardware breakdowns. The electric motor's gear
reduction system also had breakdowns which held up the
construction of the pilot plant. These problems also
restricted the development of the control programs because
the testing of the programs required the completion of the
installations.

83

Each control program for the different components can
be developed separately because the algorithm of the plant
only controls one component at a time. The status of the
other components has to be considered during the development
and execution of a program. For example, the WOMBAT program
must execute in a manner that will not cause the delivery
system to move the shell during a washout. The delivery
programs should be developed such that once they have
delivered and connected a shell to the WOMBAT, their
execution can halt and the program for the next component
can execute without affecting the previously performed
actions. The integration of the separate control programs
is important for the smooth operation of the pilot plant.

The plant operators' experience and knowledge is a
factor of the control programs. Only highly qualified
personnel who are familiar with explosives and with the
operations of the plant's programs will ever operate the
plant. The programs should still be user-friendly and
convenient to use but the required parameters of the
programs are complicated and can be confusing. The pilot
plant is a research project; therefore several consid
erations of program development of production software are
not performed to the same degree.

It is important to consider that pilot plant research
should eventually lead to the development of a specialized
plant that will be used to dispose a large stockpile of
munition shells. The plant computer system lacks the

84

sophistication that will be required on a production plant.
This computer was considered to be the best solution to
controlling the WOMBAT system when it was first developed
but now there are many computer systems available that would
perform better. There is a factor of money and time
required to install a new plant computer at the pilot plant
so this system will likely have to be tolerated during the
rest of the research and developments.

85

BIBLIOGRAPHY
1. Summers, Dr. David A., Hammerand, Ed, LaDiere, Ray. "A

Phase One Report on Contract N00164-86C-0181." Rolla,
MO: Rock Mechanics and Explosive Research Center,
University of Missouri-Rolla.

2. Tyler, John. Personal Conversations. Rolla, MO: Rock
Mechanics and Explosive Research Center, University of
Missouri-Rolla, 1986-88.

3. Borland International, Inc. "Turbo Pascal Reference
Manual" Version 3.0. Scotts Valley, CA: Borland
International, Inc., 1985.

4. Analog Devices, Inc. "MACBASIC 3 Concepts." Norwood,
MA: Analog Devices, Inc., 1983.

5. Analog Devices, Inc. "MACBASIC 3 Programming."
Norwood, MA: Analog Devices, Inc., 1983.

6. Analog Devices, Inc. "MACBASIC 3 Command Reference."
Norwood, MA: Analog Devices, Inc., 1983.

7. Analog Devices, Inc. "MACSYM 150 Operation." Norwood,
MA: Analog Devices, Inc., 1983.

8. Analog Devices, Inc. "MACSYM 200 Operation." Norwood,
MA: Analog Devices, Inc., 1983.

9. Analog Devices, Inc. "DS1100/101 Dual Serial Interface
Card." Norwood, MA: Analog Devices, Inc., 1984.

10. Analog Devices, Inc. "MACSYM ADIO LIBRAY Operation
Manual," AOC01/02 ANALOG OUTPUT CARDS, Rev 2. Norwood,
MA: Analog Devices, Inc., 1980.

11. Analog Devices, Inc. "MACSYM ADIO LIBRAY Operation
Manual," AIM03 ANALOG INPUT CARD. Norwood, MA: Analog
Devices, Inc., 1980.

12. Norton, Peter. Inside the IBM PC. New York: Prentise
Hall Press, 1986

13. Intel. "iAPX 86/88,186/188 User's Manual." Santa
Clara, CA: Intel Corporation, 1985.

14. Eccles, William J. Microprocessor Systems A 16-Bit
Approach. Reading, MA: Addison-Wesley Publishing Company, 1985.

15. Stone,Harold S. Microcomputer Interfacing. Reading,
MA: Addison-Wesley Publishing Company, 1983.

86

16. Farady. "OEM PC BUS and AT BUS Product Catalog." Sunnyvale, CA: Faraday, 1986.
17. International Business Machines Corporation.

"Technical Reference" Personal Computer XT and Portable
Personal Computer. Boca Raton, FL: International
Business Machines Corporation, 1984.

18. Computer Continuum. "LAB 40 Development System." Daly
City, CA: Computer Continuum.

19. Computer Continuum. "LAB 40-2 12 Bit A/D Module."
Daly City, CA: Computer Continuum.

20. Computer Continuum. "LAB 40-6 Smart Two Axis Motor
Controller Module." Daly City, CA: Computer Continuum.

21. International Business Machines Corporation. "Disk
Operating System" Version 2.10. Boca Raton, FL:
International Business Machines Corporation, 1983.

22. Hewlett Packard. "General Purpose Motion Control IC"
Technical Data. Pala Alto, CA: Hewlett Packard, 1985.

23. Jen Sriwattanathamma. "WOMBAT Control Software."
Rolla, MO: Rock Mechanics and Explosive Research
Center, University of Missouri-Rolla. Updates: John
Tyler, Mark Hallett, Scott Sharp.

24. National Semiconductor Corporation. "Series 32000
Databook." Santa Clara, CA: National Semiconductor
Corporation, 1986

25. Jameco Electronics. "RS-232 Card Manual." Belmont,
CA: Jameco Electronics, 1987.

26. da Cruz, Frank. "Kermit Protocol Manual" Sixth
Edition. New York: Columbia University Center for
Computing Activities, 1986.

27. da Cruz, Frank. KERMIT A File Transfer Protocol.
Bedford, MA: Digital Press, 1987.

28. Jennings, Fred. Practical Data Communications: Modems.
Networks and Protocols. Osney Mead, Oxford: Blackwell
Scientific Publications, 1986.

29. Stallings, William. Handbook of Computer-
Communications Standards. New York: Macmillian
Publishing Comany, 1987.

30. Intel. "Microsystem Components Handbook" Volume II.
Santa Clara, CA: Intel Corporation, 1986.

87

31. National Semiconductor Corporation. "Logic Databook"
Volume 1. Santa Clara, CA: National Semiconductor
Corporation, 1984

88

VITA
Scott Cameron Sharp was born on September 14, 1962 in

Rapid City, South Dakota. He received his primary and
secondary education in Blue Eye, Missouri. In August 1981,
he entered the University of Missouri-Rolla and received a
Bachelor of Science in Computer Science in December 1985.
During this time, he was a member of Upsilon Pi Epsilon,
Kappa Mu Epsilon and other various campus organizations.

After receiving his B.S. degree, he entered the
graduate school at the University of Missouri-Rolla in
pursuit of the Master of Science Degree in Computer Science.

89

APPENDIX A
SLAVE EXTENDED KEYWORDS

const{**}
{*** ****}
{*** R S 2 3 2 R E G I S T E R P O R T S ****}{*** ****}
(*****************************

RS232_base = $3F8;
Tx_Buffer = $3F8;
Rx_buffer = $3F8;
Intr_enable_reg = $3F9;
Intr_ID_Reg = $3FA;
1ine_Control_reg = $3FB;
Modem_Control_Reg = $3FC;
Line_Status_Reg = $3FD;
Modem_Status_Reg = $3FE;

**************************}
{RS232_base + 0}
{RS232_base + 0}
{RS232_base + 1}
{RS232_base + 2}
{RS232_base + 3}
{RS232_base + 4}
{RS232_base + 5}
{RS232__base + 6}

{**}
{*** ****}
{*** H P - 1 0 0 0 R E G I S T E R P O R T S ****}{*** ****}(**}

A = 736; {connects to addr/data lines of HP HCTL-1000)
B = 740; {Bits- 0 r/w*, 1-2 intEn, 3 RESET*,

4-5 motor bus 1 selects, 6-7 M.B. 2 select)
Board_Select = 744; {3 to 8 decode for board select)
control = 748; {control port of 8255)
Flag_Reg = $00;
Program_Reg = $05;
Status_Reg = $07;
C_Pos_MSB = $0C;
c_Pos_MB = $0D;
C_Pos_LSB = $0E;
Timer_Reg = $0F;
Act_Pos_MSB = $12;
Act_Pos_MB = $13;
Act_Pos_LSB = $14;
Zero_Reg = $20;
Pole_Reg = $21;
Gain_Reg = $22;
Accel__Reg_LSB = $26;
Accel_Reg_MSB = $27;
Max_Vel_Reg = $28;
Fin_Pos_MSB = $29;
Fin_Pos_MB = $2A;
Fin_Pos_LSB = $2B;
pulses_per_Rev = 2640;

90

var
Act_pos,Fpos:
time,gain,pole,zero:
speed,Accel:
position_packet:
Move_End_Flag,ACK,NAK:

integer;
integer;
integer;
integer;
integer;

{** j
{A***}
{*** ***}
{*** RS 232 C O M M U N I C A T I O N SECTION ***}{*** ***}
{*** HARDWARE LEVEL PROCEDURES ***}{*** ***}
{A***}
{** }

{******************************}
{** Read_Line_Status_Reg **}{******************************}

procedure Read_Line_Status_Reg
(VAR R_full, overrun, parity, framing,

break, empty_TB, empty_TR: boolean);
var x: byte;
begin

x := port[Line_Status_Reg];
R_full := false;

if (x AND $01) = $01 then R_full := true;
overrun := false;

if (x AND $02) = $02 then overrun := true;
parity := false;

if (x AND $04) = $04 then parity := true;
framing := false;

if (x AND $08) = $08 then framing := true;
break := false;

if (x AND $10) = $10
empty_TB := false;

if (x AND $20) = $20
empty_TR := false;

if (X AND $40) = $40
end;

then break := true;
then empty_TB := true
then empty_TR := true

{*********************}
{** Read_Driver **}(*********************j

procedure Read_Driver (VAR i: integer;
VAR Read_errors: boolean);

var x : byte;
R_full, E1,E2,E3,E4, B1,B2, dataRDY: boolean;

begin
Read_errors := false; dataRDY := false;
while (NOT Read_problems) AND (NOT dataRDY) do begin

(* allows break key to work *}
if keypressed then read(x);

read_Line_Status_Reg (Rfull, E1,E2,E3,E4, B1,B2);
if El OR E2 OR E3 OR E4 then

Read_errors := true
else

if R_full then
dataRDY := true;

end; (while)
x := port[Rx_buffer];
if (Not read_errors) then

i := ord(x);
if read_problems then begin

writeln('ERROR in read
if ovr then writeln('
if par then writeln('
if frm then writeln('
if brk then writeln(•
end;

end; { proc Read_Driver

from C0M1');
overrun error occured')
parity error occured');
framing error occured')
break error occured');

}

 ̂*********************j
{** Send_Driver **)j*********************}

procedure Send_Driver (x: integer);
var Bl, B2, B3, B4, B5, Empty_TB, B7: boolean;begin
Empty_TB := false;
while (NOT Empty_TB) do

Read_Line_Status_Reg(Bl,B2,B3,B4,B5,Empty_TB,B7);
port[Tx_buffer] := Lo(x);
end; { proc Send_Driver }

92

{**********************************}
{** SetUpCOMI K E Y W O R D **}l**********************************j

procedure SetUpComl;
type
registers = record
AX,BX,CX,DX,BP,SI,DI,DS,ES,FLAGS: INTEGER; end;

var reg : registers;
x: byte;
baud, parity, stop, data: integer;

begin
{*** CHANGE THESE TO SET UP DIFFERENTLY}
baud := 1200; { choices»> 300,1200,4800,9600 }
parity := 0; { choices»> 0:none, l:odd, 2: even
stop := 2; { choices>>> 1 or 2 }
data := 8; { choices>» 7 or 8 }

}

reg.AX := $0003;
if data = 7 then reg.AX := $0002;
if stop = 2 then reg.AX := reg.AX + 4;
if parity = 1 then reg.AX := reg.AX + 8;
if parity = 2 then reg.AX := reg.AX + 24;
CASE baud of
9600: reg.AX
4800: reg.AX
1200: reg.AX
else reg.AX

end;

:= reg.AX + 224;
: = reg.AX + 192;
:= reg.AX + 128;
:= reg.AX + 64;

{*** setup coml to communicate with macsym ***}
reg.DX := $00; {coml}
Intr($14,regs);

{ clear 7th bit of line control }
x := port[Line_control_Reg];
x:= x AND $7F;
port[Line_control_Reg] := x;

{ Disable COM1 Interrupts }
x:= $00; port[Intr_enable_Reg] := x; end;

{ initialize COM Variables }
ACK := 6; NAK : = 7;
position_packet := 2;
Move_End_Flag := 3;

end; {SetUpComl}

93

(*********************************}
{** ReadCOMl K E Y W O R D **}{*********************************}

procedure ReadCOMl(VAR data: integer);
var

dl,d2: integer; El,E2,looping: boolean;
begin

looping := true;
while looping do begin

Read_Driver(dl,El); {data field)
if El then

dl := NAK
else
data := dl;

Send_Driver(dl)
Read_Driver(d2,E2);
if (d2 <> ACK) or E2 then d2 := NAK;
Send_Driver(dl)
if d2 = ACK then looping := false;
end; {while}

end;
{*********************************}
{** SendCOMl K E Y W O R D **}{*********************************}

procedure SendCOMl(data: integer);
var

dl,d2,d3: integer;
El,E2,looping: boolean;

begin
looping := true;
while looping do begin

Send_Driver(data);
Read_Driver(dl,El);
d2 := NAK;
if (data = dl) and Not El then d2 := ACK;
Send_Driver(d2);
Read_Driver(d3,E2) ;
if El then

writeln(Chr(7),'*** ERROR - RESEND LAST BYTE')
else
if d3 = ACK then looping := false;

end; (while) end;

94

{**}
I**}
{*** ***}
{*** ADVANCE COMMUNICATION KEYWORDS ***}{*** ***}
{**j
{**}

procedure Get_3Byte_Integer_from_COMl
(VAR h,m,l: integer;
VAR t: real);

begin
ReadCOMl(1);
ReadCOMl(m);
ReadCOMl(h);
t := h*6553 6.0 + m*256.0 + 1;

{convert negative numbers to real}
if t > 8388607.0 then

t := t - 16777216.0;
gotoXY(1,4);
end;

procedure Send_3Byte_Integer__over_C0Ml
(h,m,l: integer);

begin
SendCOMl(1);
SendCOMl(m);
SendCOMl(h);
end;

95

{**}
|**|
{*** ***}
{*** M O T O R C O N T R O L S E C T I O N ***}{*** ***}
{*** HARDWARE LEVEL PROCEDURES ***}{*** ***}
{** j {**}

procedure HPwrite(addr,data: integer); begin
port[B] := 8; {lowers Rd bit and +8 for no reset)
port[A] := addr; {send addr of reg)
port[A+l] := data; {send data to reg)
end;

function HPread(addr: integer): integer; beginport[B] := 9;
port[A] := addr; port[A+l] := 0;
HPread := port[A+i]
delay(llO);
HPread := port[A+l]
end;

{sets Rd bit and +8 for no reset)
{send addr of reg)
{strobe CS low)
{start read)
{pause for 8255's read)
{Read data form PortA)

procedure hard_reset; begin
port[B] := 0; {bit 3 goes low)
delay(500);
port[B] := 8; {bit 3 goes high)

{ HP Soft reset automatically occurs)
{ NOT the included procedure soft reset }
{ automatically goes into init/idle mode)

end;

96

procedure Restore_HPregisters; begin
HPwrite(Timer_Reg,time);
HPwrite(Gain_Reg,gain);
HPwrite(ZeroReg,zero);
HPwrite(Pole_Reg,pole);
HPwrite(Accel_Reg_MSB,Hi(Accel));
HPwrite(Accel_Reg_LSB,Lo(Accel));
HPwrite(Max_Vel_Reg,speed);
HPwrite(Act_pos_MB/0); (clears actual position)

(clears command position)
HPwrite(C_Pos_MS B, 0) ; HPwrite(C_Pos_MB,0);
HPwrite(C_Pos_LSB,0);

(clears final position)
HPwrite(Fin_Pos_MSB,0)? HPwrite(Fin_Pos_MB,0);
HPwrite(Fin_Pos_LSB,0);
end;

(**}
(** j
{*** ***}
{*** M O T O R C O N T R O L K E Y W O R D S ***}(*** ***}
{**}
(**)

(* j
{** Init_LAB40 K E Y W O R D **}|***********************************J

procedure init_lab40; begin
(sets 8255 up as chA in/out, chB latched output)

port[control] := 192;
port[Board_Select] := 2; (select board 2)
hard_reset;

(*** Set HP-1000 registers vars ***}
time := 255; (represents 2048 microSec, (time*2E6/16)-l)
gain := 30;
pole := 64; (* internally divided by 256 *)
zero := 244; (* internally divided by 256 *}
speed ;= 128; (revs/sec }
Accel := trunc(0.01*256); (pulses/sqr(sec)*256 }
Restore_HPregisters;
end;

97

{***********************************}
{** Soft_Reset K E Y W O R D **}{***********************************}

procedure Soft_reset; begin
HPwrite(Program_Reg,0); {executes soft reset}

{ Changes filter parameters }
{ Changes sample timer reg }
{ Clears status reg. }
{ Clears position regs. }
{ goes to init./idle mode }

Restore_HPregisters;
{restores time, filters and vel/accel to last values }

end;

{***}
{** Set_Filter_Variables K E Y W O R D **}{***j

procedure Set_Filter_Variables; begin
{ORDER — > gain, pole zero}

ReadCOMl(gain);
HPwrite(Gain_Reg,gain);

writeln(’gain = ’,gain);
ReadCOMl(pole);
HPwrite(Pole_Reg,pole);

writeln('pole = ’,pole);
ReadCOMl(zero);
HPwrite(Zero_Reg,zero);

writeln('zero = ’,zero); end;

{*********************************}
{** Set_Time K E Y W O R D **}{*********************************}

procedure SetTime; begin
ReadCOMl(time);
HPwrite(Timer_Reg,time); writeln('time = ',time);
end;

98

{*** j
{** SetAcceleration K E Y W O R D **}{***}

procedure Set_Acceleration;
VAR x,y: integer;

begin
ReadCOMl(x);
ReadCOMl(y);

{Hi byte is int portion and Lo byte is tract * 256}
HPwrite(Accel_Reg_MSB,x);
HPwrite(Accel_Reg_LSB,y);
writeln('Accel = ',x*1.0 + (y*l.0)/256.0:15:9);
end;

{*************************************}
{** Set_Velocity K E Y W O R D **}{************************************* j

procedure Set_Velocity; begin
ReadCOMl(speed);

{revs/sec * pulses/rev * sec/sample = pulses/sairtple} if speed > $7f then begin
writeln(1 speed too large ==>',speed);
speed := $7F;
end;

HPwrite(Max_Vel_Regfspeed);
writeln('velocity = speed);

end;

{*** j
{** Enter_Final_Position K E Y W O R D **}(*** j

procedure Enter_Final_Position;
var hiB,midB,loB: integer; Fpos: real;

begin
clrscr;
gotoxy(1,16); writeln('Ready for position',' ':20);
Get_3Byte_Integer_from_C0Ml(hiB,midB,loB, Fpos);
gotoxy(1,16);

write('Final position = ',Fpos;16:1,* ':20);
HPwrite(Fin_Pos_LSB,hiB);HPwrite(Fin_Pos_MB,midB);
HPwrite(Fin_Pos_MSB,loB); end;

99

{***}
{** Display_Position K E Y W O R D **}{***}

procedure display_position;var lsb,mb,msb, Act_lsb :integer;
Act_pos; real;

begin
{latches other two bytes}

Act_lsb ;= HPread(Act_Pos_LSB);
{latches other two bytes}

lsb := HPread(C_Pos_LSB);
mb := HPread(C_Pos_MB);
msb := HPread(C_Pos_MSB);
Act_pos := lsb + mb*256.0 + msb*65536.0;

{convert negative numbers to real}
if Act_pos > 8388607.0 then

Act_pos := Act_pos - 16777216.0;
write('Command pos=':5,Act_Pos:16:1,' 1:7);

lsb ;= Act_lsb;
mb := HPread(Act_Pos_MB);
msb := HPread(Act_Pos_MSB);
sendCOMl(position_packet);
Send_3 Byte_Integer_over_COMl(msb,mb,lsb);
Act_pos := lsb + mb*256.0 + msb*65536.0;

{convert negative numbers to real}
if Act_pos > 8388607.0 then
Act_pos := Act_pos - 16777216.0;

writeln(' Act pos = 1,Act__Pos:16;1);
end;

100

{*************************************}
{** Execute_Move K E Y W O R D **}{*************************************}

procedure execute__move ;
procedure Start_Trapezoidal_Move; begin

{set trap, flag and starts movement} HPwrite(Flag_Reg,$08);
{set porgram conter to control mode}

HPwrite(Program_Reg,3);
end;

function In_Trapezoidal_profile: boolean;
var

i: byte;
status: integer;

beginIn_Trapezoidal_Profile := false?
status := HPread($07);
if (status and $10) = $10 then

{status reg 5th bit set when finished}
In_Trapezoidal_Profile := true;

end;
begin

clrscr;
Start_Trapezoidal_Move;
repeat display_position;

until not In_Trapezoidal_Profile;
display_position;
sendCOMl(Move_End_Flag);writeln(1*** MOVE COMPLETED ****»:10,’ ’:20);
end;

{*****************************}
{** Quit K E Y W O R D **}{*****************************}

procedure quit; begin
hard_reset;
port[Board_Select] := 0; {select Board 0}
port[control] := 0; {turn off Lab 40}
clrscr;
halt;
end;

101

{***************************}
{** Read_Strain_Gauge **}{***************************}

procedure Read_Strain_Gauge;
VAR

chnl,value: integer;
loByte,HiByte: byte; begin
ReadCOMl(loByte);
chnl:= ord(lobyte)
Port[BoardSel] := ADboard;
Port[A+chnl] := 1; {starts A/D process on chnl)
Port[B] := 0; {sets low byte select)
loByte := Port[A]; {inits 8255 input reg}
loByte := Port[A]; {read low byte}
Port[B] := 1; {sets hi byte select}
hiByte := Port[A]; {read high byte)
SendCOMl(lobyte);
SendCOMl(hibyte);
value := hiByte*256 + loByte;
writeln('value read = ',value);
Port[BoardSel] := HPboard; end.

102

APPENDIX B
MASTER EXTENDED KEYWORDS

319 000000000000000000000000000000
320 0 I N I T___L A B 4 0 (ONLY SETS VARIABLES)
321 000000000000000000000000000000
325 PperR = 660*4
330 TIME' = 255
335 VEL = 127
340 ACCEL = 0.5/256.0 * (2E6/(16.0*(TIME'+1)))*2 / PperR345 GAIN' = 45
350 POLE' = 64
355 ZEROO' = 244
360 RETURN

399 00
400 @ E N T E R F I N A L P O S I T I O N
410 000
420 ON ERROR ERRNO',450
430 INPUT "ENTER FINAL POSITION <-8388608,8388607> "

FINAL
440 OFF ERROR GOTO 470
450 0 0 0 INPUT ERROR
460 PNT BELL' GOTO 430
470 GOSUB 2310 (FINAL) 0Send 3 Byte Integer
590 RETURN

600
6100 E X E C U T E C O M M A N D 62000000000000000000000000000000000000000
630 0 0 0 POSITION FEEDBACK 0 0 0
640 GOSUB 1840 (A') 0 READ A' FROM C0M1
650 IF A' = MOVE_END' THEN

PNT 7 ! " -- MOVE HAS BEEN COMPLETED --
RETURN

660 GOSUB 2220
670 ! ACT_POS
680 GOTO 630

103

700 0 D I S P L A Y P O S I T I O N
710 000000000000000000000000000000000000720 GOSUB 1840 (A') 0 READ A' FROM COM1
730 GOSUB 2220
740 ! "ENCODER COUNTS ==> ";ACT_POS !
750 RETURN

690

760 00000000000000000000000000000000
770 0 S E T V E L O C I T Y 0
780 00000000000000000000000000000000
790 MINV = 0.5*2E6 / (PperR*16*(TIME'+1))
800 MAXV = 127*2E6 / (PperR*16*(TIME'+1))
810 ! "Enter Revs/Sec of the MOTOR <"MINV; MAXV;

"> RETURN: MAX "?
820 INPUT VEL
830 IF VEL = 0 THEN VEL = MAXV A' =127 GOTO 870
840 IF (VEL > MAXV) THEN PNT BELL’ GOTO 810
850 A* = INT(VEL *PperR*16*(TIME'+1)/2000000 +0.5)
860 0 PULSES/SAMPLE = REVS/SEC*PULSES/REV*SEC/SAMPLE
870 ! " ";VEL;" REVS/SEC CONVERTED TO ";A';

" PULSES/SAMPLE"
880 GOSUB 1570 (A') 0 SEND THE PULSES/SAMPLE
890 RETURN

900 000000000000000000000000000000000000000
910 0 S E T A C C E L E R A T I O N 0
20 000000000000000000000000000000000000000
930 MINA = 1.0/256.0 * (2E6/(16.0*(TIME'+l)))"2 / PperR
940 MAXA = 127.999 * (2E6/(16.0*(TIME'+1)))"2 / PperR
950 ! ! "Enter <"MINA;",";MAXA;

"> for Revs/Sec~2 of the MOTOR ";
960 INPUT ACCEL
970 IF ACCEL = 0 THEN ACCEL = MINA GOTO 990
980 IF (ACCEL < MINA) OR (ACCEL > MAXA) THEN

PNT BELL' GOTO 950
990 texnpA = ACCEL * PperR* (16.0* (TIME '+1) /2 00 0000.0) "2
1000 0PULSES/SAMPLE *2=REVS/SEC*PULSES/REV*SEC/SAMPLE“21010 HI' = INT(tempA)
1015 LO' = INT((tempA-INT(tempA))*256.0 +0.5)
1020 ! " ";ACCEL;" REVS/SEC~2 = HI' + L0'/256.0;
1030 ! " PULSES/SAMPLE: HI=";HI';", LO=";LO'
1040 GOSUB 1570 (HI') 0 SEND INTEGER PORTION OF ACCEL
1050 GOSUB 1570 (LO') 0 SEND FRACT PORTION OF ACCEL
1060 RETURN

1070
1080
1090
1100

1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220

1230
1240
1250
1260
1270
1280
1290
1300
1310

1320
1330
1340
1350
1360
13701380
1390
1400
1410
1420
1430

104

@ S E T F I L T E R V A R s §
§§@@@@@§@§@@@@@@@@@§§§@§@@§§@§§§@@@@§@INPUT "Enter GAIN <0,255> (TYPICALLY 30-60) ",

GAIN'
IF GAIN' = 0 THEN GAIN' = 45 GOTO 1130
IF (GAIN' < 0) OR (GAIN* > 255) THEN
PNT BELL' GOTO 1100

GOSUB 1570 (GAIN') § SEND GAIN
INPUT "Enter POLE <0,255> (TYPICALLY 64) ",POLE'
IF POLE' = 0 THEN POLE' = 64 GOTO 1170
IF (POLE' < 0) OR (POLE' > 255) THEN

PNT BELL' GOTO 1140
GOSUB 1570 (POLE') @ SEND POLE
INPUT "Enter ZERO <0,255> (TYPICALLY 244) ",ZEROO'
IF ZEROO' = 0 THEN ZEROO' = 244 GOTO 1210
IF (ZEROO' < 0) OR (ZEROO' > 255) THEN

PNT BELL' GOTO 1180
GOSUB 1570 (ZEROO') @ SEND POLE

RETURN

0000000 00 00 00 00 00 00 00 00 00 00 00 00 0
@ S E T T I M E R E G @
00000000000000000000000000000000

INPUT "Enter TIME <15,255> (RETURN: 255=2048 uSEC)", TIME'
IF TIME' = 0 THEN TIME' = 255
IF (TIME' < 15) OR (TIME' > 255) THEN

PNT BELL' GOTO 1260
GOSUB 1570 (TIME') @ SEND TIME
i TIME';" = ";8.0*(TIME' + 1) uSECS" !

RETURN

00000000000000000000000000000000
§ S O F T R E S E T @
00000000000000000000000000000000

CLS ! ! ! !
! "SOFT RESET EXECUTED"
! " * Status reg cleared"
! " * Command, Actual and Final Positions RESET"
1 •• * Filter, Timer, Accel and Vel reg UNchanged"
! " * Placed in init./i<*le mode"! ! ! !" ---- PRESS A KEY TO CONTINUE"
INP JUNK' CLS
RETURN

1440
1450
1460
1470
1480
1490
1500
1510
1511
1512
1513

00§0000000§0§00§§00000§000000§00 0 H A R D R E S E T 0
00000000000000000000000000000000CLS ! ! ! !

! "HARD RESET EXECUTED"! " Internal soft reset occurs automatically
j •• *** Filter, Timer, position regs are default
1 •• *** soft reset COMMAND restores their valuesi ! i i" ---- PRESS A KEY TO CONTINUE"
INP JUNK' CLS
RETURN

1520 0000000000000000000000000
1521 0 S E T U P C O M I 0
1522 00§00§§§§§00§0§0§00000000
1530 RS232IN* = 5: RS2320UT' = 6 ACK'=6 NAK'=7
1550 MOVE_END1 = 113 POS_PAC' = 112 BELL' = 7
1555 OPENR:RS232IN' "$QTI:0"
1560 RETURN
1569 00000000000000000000000000000000000@00@@0000
1570 DECLARE (A*) 0 SEND COM1 01580 00
15900
1600 ON ERROR ERRNO',1730,LINE'
1610 PNT:RS232OUT 1 A'
1620 INP:RS232IN1 C'
1630 IF C' = A' THEN GOTO 1690
1640 0 ELSE WRONG CHAR RECEIVED
1650 PNT:RS232OUT 1 NAK'
1660 INP:RS232IN1 B'
1670 IF B' <> NAK' THEN

! " *** RETURNING NAK NOT RECEIVED,
B';" WAS RECEIVED INSTEAD"

1680 GOTO 1610
1690 PNT:RS2320UT' ACK'
1700 INP:RS232IN1 B*
1710 IF B' <> ACK' THEN

! •• *** RETURNING ACK NOT RECEIVED,
B';" WAS RECEIVED INSTEAD"

1720 OFF ERROR RETURN
17300 * * * * * COMMUNICATION ERROR HANDLING * * * *
1740 IF ERRNO' = 22 THEN GOTO 1790 §§§ PARITY §§§
1750 IF ERRNO' = 23 THEN GOTO 1800 §§§ TIMEOUT §§§
1760 ! "ERROR # ";ERRNO';" OCCURED AT LINE ";LINE'1770 END
1780 §0@ PARITY ERROR §§§
1790 ! "PARITY ERROR" GOTO 1640 § SEND NAK
1800 §0§ TIME OUT ERROR
1810 ! "TIMEOUT" END18200

1 8 3 0 @0@@@@e@@@@@@@@@@@§@@0@@@00@§0@§@0@e§@e@
1840 DECLARE (A') 0 READCOM1 0
1850 00 18600
1870 ON ERROR ERRNO',1950,LINE'
1880 INP:RS232IN' A'
1890 PNT:RS232OUT' A'
1900 ON ERROR ERRNO',1950,LINE'
1910 INP:RS232IN' B'
1920 IF B' <> ACK' THEN PNT:RS2320UT' NAK' GOTO 1880
1930 PNT:RS2320UT' ACK'
1940 OFF ERROR RETURN
19500 * * * * * FIRST INP ERROR HANDLING * * * * *
1960 IF ERRNO' = 22 THEN GOTO 2010 000 PARITY 000
1970 IF ERRNO' = 23 THEN GOTO 2030 000 TIMEOUT 000
1980 IF ERRNO' = 166 THEN GOTO 2050 000 FRAMING 000
1990 ! "ERROR # ";ERRNO';" OCCURED AT LINE ";LINE'
2000 END
2010 000 PARITY ERROR 000
2020 ! "PARITY ERROR" END
2030 000 TIME OUT ERROR
2040 ! "TIMEOUT" END
2050 000 FRAMING ERROR ©00
2060 ! "FRAMING ERROR OCCURED AT LINE ";LINE'
2070 A' = NAK' GOTO 1890 000 FIRST INP
20800 * * * * * SECOND INP ERROR HANDLING * * * *
2090 IF ERRNO' = 22 THEN GOTO 2140 000 PARITY 000
2100 IF ERRNO' = 23 THEN GOTO 2160 000 TIMEOUT 000
2110 IF ERRNO' = 166 THEN GOTO 2180 000 FRAMING 000
2120 ! "ERROR # ERRNO';" OCCURED AT LINE ";LINE'2130 END
2140 000 PARITY ERROR 000
2150 ! "PARITY ERROR" END
2160 000 TIME OUT ERROR
2170 ! "TIMEOUT" END
2180 000 FRAMING ERROR 000
2190 ! "FRAMING ERROR OCCURED AT LINE ";LINE'
2200 B' = NAK' GOTO 1920 000 SECOND INP
2210 0000000000000000000000000000000
2220 000 READ 3 BYTE INTEGER 000
2230 0000000000000000000000000000000
2240 IF A' <> POS_PAC' THEN

! "POSITION PAC INDICATOR NOT RECEIVED' END
2250 INP:RS232IN• LSB'
2260 INP:RS232IN' MB'
2270 INP:RS232IN' MSB'
2280 ACT_POS - LSB' + MB'*256.0 + MSB'*65536.0
2290 IF ACT_POS > 8388607 THEN

ACT_POS - ACT_POS - 16777216
2300 RETURN

107

230900000000000000000000000000000000000000
2310 DECLARE (BIGI) 0 SEND_3_BYTE_INTEGER
231100000000000000000000000000000000000000 2315 IF (BIGI < - 8388608) OR (BIGI > 8388607) THEN

GOTO 450
2320 IF BIGI < 0 THEN

BIGI = 16777216.0-ABS(BIGI) ! "NEG # ==> ";BIGI
2325 MSB' = 02330 IF BIGI >= 65536.0 THEN

MSB* = INT(BIGI/65536.0)BIGI = BIGI - (MSB'*65536)
2335 MB' = 0
2340 IF BIGI >= 256 THEN MB' = INT(BIGI/256.0)

LSB' = BIGI - (MB'*256) GOTO 540
2345 LSB' = BIGI
2350 0 THE THREE BYTES HAVE BEEN DETERMINED
2355 0 "MSB/MB/LSB = ";MSB',MB',LSB'
2360 GOSUB 1570 (LSB')
2365 GOSUB 1570 (MB')
2370 GOSUB 1570 (MSB')
2380 return
2400
24010 Read_Strain_Gauge SUBROUTINE
240200000000000000000000000000000000000000
2410 DECLARE (VOLT)
2420 DIM GAIN(4) , RANGE(4)
2430 GAIN[2] = 1; GAIN[3] = 1? GAIN[4] = 1;
2440 ©*** change these variables for diff. setup ***
2450 gainfl] = 1;
2460 0 range: -1 -> +-5v, 0 -> 0-10v, 1 -> 0-5v
2470 RANGE(1] = 1?
2480 RANGE[2] = 1;
2490 RANGE[3] = 1;
2500 RANGE[4] = 1;
2505 lbPERvolt = 50
2510 INPUT "ENTER CHANNEL OF LAB 40-A/D (1-4) " CHNL'
2520 GOSUB SendCOMl(CHNL•)
2530 GOSUB ReadCOMl(loByte')
2540 GOSUB ReadCOMl(hiByte')
2550 VALUE = MByte' * 256 + loByte'
2560 VOLT = VALUE/4096
2570 IF RANGE(CHNL') = -1 THEN VOLT = VOLT * 10 - 5
2580 IF RANGE(CHNL') = 0 THEN VOLT = VOLT * 10
2590 IF RANGE(CHNL') = 1 THEN VOLT = VOLT * 5
2600 VOLT = VOLT/GAIN(CHNL')
2610 RETURN

	Computer control of a PBX washout plant
	Recommended Citation

	tmp.1632248666.pdf.EXH8Q

