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ABSTRACT: Optical biosensors have experienced a rapid growth over the past decade
because of their high sensitivity and the fact that they are label-free. Many optical
biosensors rely on tracking the change in a resonance signal or an interference pattern
caused by the change in refractive index that occurs upon binding to a target biomarker.
The most commonly used method for tracking such a signal is based on fitting the data
with an appropriate mathematical function, such as a harmonic function or a Fano,
Gaussian, or Lorentz function. However, these functions have limited fitting efficiency
because of the deformation of data from noise. Here, we introduce an extended Kalman
filter projection (EKFP) method to address the problem of resonance tracking and
demonstrate that it improves the tolerance to noise, reduces the 3σ noise value, and
lowers the limit of detection (LOD). We utilize the method to process the data of
experiments for detecting the binding of C-reactive protein in a urine matrix with a
chirped guided mode resonance sensor and are able to improve the LOD from 10 to 1
pg/mL. Our method reduces the 3σ noise value of this measurement compared to a simple Fano fit from 1.303 to 0.015 pixels.
These results demonstrate the significant advantage of the EKFP method to resolving noisy data of optical biosensors.

KEYWORDS: optical biosensors, signal processing, signal-to-noise ratio, extended Kalman filter, guided mode resonance,
microring resonator

O ptical refractive index biosensors are widely researched
because of their high sensitivity and their intrinsic

simplicity with no requirement of fluorescent labels. Many
different types of optical biosensors have been reported, based
on the principles of surface plasmon resonances (SPR),1

microring resonances,2 dual mode3 or Mach−Zehnder
interferences,4 porous silicon nanostructures,5 photonic
crystals,6 or guided mode resonances (GMRs).7−9 The
unifying feature of all of these modalities is that the resonance
signal is recorded, fitted to a mathematical function, and
tracked as a function of time, for example, to record a protein−
protein binding curve. The limit of detection (LOD) is then
determined from the noise limit of the measurement. It is not
surprising that the exact mechanism of curve fitting and
tracking has a significant influence on the noise limit that can
be obtained.
Curve fitting is particularly difficult for low Q resonances

such as SPRs and GMRs. Therefore, a number of more
advanced fitting methods have been developed. These include
the centroid and full width at half-maximum method,10 locally
weighted parametric regression,11 polynomial curve fitting,12

and principal component analysis (PCA).13,14 It is difficult to
compare these methods directly from the literature because of
differences in experimental arrangements, but the stated
experimental error is typically around 10−4 RIU.15 The double

projection method16 was introduced more recently and has
been shown to be more accurate in the determination of the
resonance position with an estimated error around 2.2 × 10−5

RIU. This method uses eigenvector analysis to compare the
measurement with simulated results, then solving the unknown
refractive index by projecting the vectors to the basis twice.
Because the eigenvector analysis is based on a singular value
decomposition, the algorithm relies on a large matrix operation
which is computationally expensive and experimentally rather
complex. However, a simpler one-step projection method was
subsequently introduced by Abumazwed et al.17 with a slightly
worse stated LOD of 7.5 × 10−4 RIU. The one-step projection
method is attractive because it eliminates the use of the
eigenvector analysis, directly convoluting the measured
spectrum with the simulated spectrum database, which reduces
the computational complexity by more than 2 orders.
In order to provide a fair comparison of these methods, we

applied them to the same datasets obtained with two different
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sensing modalities, that is, both high- and low-quality factor
systems, represented by microrings (Q ≈ 4800 and 13,000)
and a GMR (Q ≈ 150), respectively. The silicon microring is
read out via a standard spectrometer, while the GMR is made
up of gratings with a gradually changing period, which we refer
to as “chirped” GMR.15 Chirping the period encodes spectral
information into spatial information, which removes the need
for a spectrometer and replaces it with a simple camera; the
resulting readout is a bright bar that moves laterally as a
function of the refractive index change, so the position of the
bar provides the readout of the sensor (Figure 1). In the case
of the microring, the spectrum is fitted with a Lorentzian curve
in order to determine the refractive index change, while in case
of the GMR, we fit a Fano function. The Fano function arises

as a result of interference between the Fabry−Perot resonance
of the thin film waveguide and the resonant Bragg scattering
process of the periodic structure. Both the Lorentzian and
Fano functions are then tracked as the measurement
progresses.
In addition to comparing the published methods, we

explored further improvements, also taking computational
overhead into account in view of the drive towards low-cost
point-of-care sensors. To this end, we investigated the Kalman
filter (KF) paradigm, which was first developed in the context
of the Apollo lunar missions.18,19 The KF is an efficient
algorithm to minimize estimation errors and to reduce the
impact of noise. The algorithm is a predictor-corrector type
estimator, that is, it takes both the system and measurement

Figure 1. Illustration of the chirped GMR biosensing method. (a) GMR sensors surface functionalized with antibodies, integrated into a
microfluidic system with signal and reference channel to enable drift subtraction. The chip is illuminated with a polarized collimated beam. The
middle figures show the scenario before and after the antigen binds to the antibody. (b) Camera image of the GMR sensor before and after binding
takes place. (c) Corresponding resonance curves before and after binding. The curves are fitted and the change in peak position is recorded in
terms of camera pixel shift ΔP. The value of ΔP is translated into a refractive index change and an antigen concentration using appropriate
calibration measurements.

Figure 2. Bulk refractive index measurements of the chirped GMR. (a) Scanning electron microscopic image and (b) hyperspectral image of a
chirped GMR sensor. (c) Charge-coupled device image of the chirped GMR when exposed to deionized (DI) water. (d) Refractive index over time
for NaCl solutions of different concentrations. The corresponding RIs of the NaCl solutions measured using a commercial refractive index meter
are 1.3334, 1.3338, and 1.3340. DI water was used as the reference and its RI is 1.3330. (e) 3σ value extracted from different fitting methods.
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noise into consideration when extracting information from
noisy or uncertain data.20 Its major advantage is the ability to
infer the full probability distribution of the states and the
parameters instead of making a simple point estimate. To date,
much effort has been made to apply the KF to track moving
objects21 and to estimate parameters in biological systems
interactions,22−25 but has not yet been used to track real-time
label-free biosensing data. In order to use the KF in the
biosensing domain, we require prior knowledge of binding and
unbinding events, such as association/dissociation constants
(ka/kd), the concentration of unknown samples and the
maximum response of the sensor. These parameters often vary
considerably because of environmental conditions, for
example, ka and kd may vary by more than an order of
magnitude for the same protein affinity binding event,26−29 so
they cannot be assumed to be fixed values. Instead, they can be
determined from the binding data using dynamic tracking
(DT).30,31 In fact, we realized that all of the unknown
parameters, which also include solution concentration and
maximum response of the sensor, can be determined
iteratively. Therefore, here we present an extended KF
(EKF) strategy based on an adaptive optimization procedure
to determine all of these parameters directly from the data.
Using this EKF projection method (EKFP), we demonstrate

an 80-fold reduction in the 3σ noise value of a low
concentration (1 pg/mL) protein−protein binding assay.

■ RESULTS AND DISCUSSION

Comparison of Fitting Methods for Bulk RI Sensing
on Chirped GMR. In this section, we present the comparison
of described methods for the application to GMR data. A SEM
micrograph of the GMR sensor is depicted in Figure 2a. As
explained before, the resonance wavelength shifts with a
continuous change in period. This effect is demonstrated in
Figure 2b, where the resonance wavelength is depicted as a
function of position in false colour. The wavelength range is
displayed from 850 to 862.5 nm over a length of 500 μm. As
represented in Figure 2d, in order to calibrate the sensitivity S
of the sensor chip, we exposed it to NaCl solutions of different
concentrations. As can be observed from Figure 2c, the
resonance appeared as a bright bar in the captured image.
Together with the standard deviation σ of the noise taken for a
constant refractive index (Figure 2e), we determined the LOD
as 3σ/S and compared the values for four methods, that is,
Fano, PCA, projection, and KF projection (KFP). All
measurements were repeated three times. KFP shows the
lowest LOD (2.77 × 10−5 RIU) with a standard deviation of
6.75 × 10−6 RIU, which represents an almost threefold
improvement over the conventionally used Fano method

(LOD 7.19 × 10−5 RIU) with a standard deviation of 1.09 ×

10−5 RIU.
Initially, we had expected the PCA method to be superior

because it collects more information, yet it showed a very
similar, in fact, a higher, noise level than that of the original
Fano method. We believe that this higher noise level originates
from the imperfection of the Fano shape profile in successive
measurements, which is not sufficiently constant. By using the
lithographically tuned chirped GMR, it is expected that the
different Fano curves would be nominally identical and simply
shifted, but this is clearly not the case. The distortion of the
respective curves due to noise is sufficient to violate the
assumption of a constant shift and the PCA-based approach via
lithographic tuning is therefore not viable, as shown in
Supporting Information Section 6 and Figure S1.

Impact of the Signal-to-Noise Ratio on Fitting
Accuracy. The generally accepted figure of merit for a
resonant refractive index biosensor includes both the sensitivity
S and the Q-factor, but not the signal-to-noise ratio (SNR) of
the resonance curve, even though it appears obvious that a
larger SNR should produce a better measurement. Here, we
investigate the impact of the SNR on the LOD as a function of
the fitting method.
We simulated the spectral responses using rigorous coupled-

wave analysis (RCWA) for 10 different RIs at intervals of 10−5

RIU to verify the estimation error of the different algorithms in
determining the RI as a function of added noise. Figure 3a,b
represents the resonance profile for 15 and 25 dB at a defined
RI. The average value of the absolute differences to the known
RI was plotted against the level of noises in terms of SNR
(Figure 3c).
We note that for all SNR values below 35 dB, the Kalman-

based projection method outperforms the Fano-fit method.
Considering real experimental conditions, the SNR is typically
between 15 and 25 dB, which suggests that KFP outperforms
Fano in all practical cases. We believe that the reason for this
better performance is that KFP is a convolution operation
combined with a parabolic fit. In contrast, the Fano fit relies on
linear regression, which requires five parameters to be
optimized for convergence; it is also recognized that a
parabolic operation typically has a smaller estimation error
than a linear operation.32 Moreover, we have investigated the
impact of various sources of noise on the performance of
resonant refractive index sensors, for example, camera noise
and light source noise, with the result that the noise induced by
the camera is the major limitation, while intensity noise of the
light source is mitigated by the fitting of a resonance curve.33

Comparison of Fitting Methods for Bulk RI Sensing
on the Microring Resonator. The results for the chirped
GMR demonstrate that the KF-based projection method

Figure 3. Impact of SNR on the LOD. (a) Typical measurement taken from the GMR dataset with an SNR of 25 dB. (b) Ideal data (red curve)
with additional white Gaussian noise superimposed (blue curve), reducing the SNR to 15 dB. (c) Comparison of the LOD as a function of SNR for
the Fano fit and KFP. The red dashed curve corresponds to the 25 dB curve of (a) and the blue dashed line corresponds to the 15 dB in (b).
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improves the data analysis for sensors with low Q resonances.
To explore the possibilities for a sensor with high Q values, we
analyzed the data accumulated with two silicon microring
resonators with a Q-factor of 4800 (Figure 4) and 13,000
(Figure S4). As before, we exposed the sensor to NaCl
solutions of different concentrations and analyzed the noise.
Because of the much lower free spectral range of the microring
compared to the GMR, multiple resonances are clearly
apparent in the measurement window (Figure S4a), which
we used for PCA and compared with other algorithms (Section
9, Supporting Information).
As demonstrated in Figure 4c, the KFP method reduces the

3σ from 4.2 to 1.2 pm and enhances the LOD from 5.75 ×

10−5 to 1.64 × 10−5 RIU, compared to the Lorentz fit. Similar
bulk sensitivity measurements were carried out on another
microring with a Q factor of 13,000. Similar results (Figure S4)
were obtained as before. KFP method consistently reduces the
3σ for both low- and high-Q devices (Figure S6).
Measurement of CRP Antibody and Antigen Binding

Event. Finally, we applied the EKFP method to analyze the
data accumulated from protein affinity binding measurements,
in particular the detection of human C-reactive protein (CRP)
in urine. Recall that the “E” in the acronym refers to
“extended”, which refers to the fact that the binding constants

and analyte concentration are determined iteratively. CRP
antibodies were immobilized on the sensor surface and the
sensor exposed to CRP, as described in previous work.34 The
binding curves for 10 and 1 pg/mL CRP are shown in Figure
5a,b. The data were analyzed using the Fano fit and the
projection and EKFP methods.
As shown in Figure 5a, for 10 pg/mL CRP, the 3σ using the

Fano fit method is 1.185 pixels, while the resonance shift is
estimated to be 1.853 pixels. This is just above the noise level
and the measurement is close to the LOD.34 In fact, for the
first 20 min, the signal is buried in the noise. In comparison,
the projection method outputs a much smaller 3σ (0.401
pixels) that is well below the final resonance shift (1.853
pixels) and consequently produces an improved detection
limit. The further advantage of the EKFP over Fano fit is
evident, where the calculated 3σ is 0.016 and 1.185 pixels,
respectively. The low noise of the EKFP method enables the
direct and accurate readout of resonance shift for a real-time
measurement. More importantly, it enables us to fully capture
the time dependence of the binding curve, which provides
additional information in the context of DT.30,31

An interesting aspect to consider is if the EKFP method
would allow us to resolve an even lower concentration of CRP
which was previously undetectable. Therefore, we prepared 1

Figure 4. Bulk sensitivity measurement for the microring resonator with a Q of 4800. (a) SEM and normalized transmitted spectrum of the
microring. (b) Resonance shift with respect to DI water which was estimated by Lorentz fit, projection, and KFP method. (c) 3σ value extracted
from different fitting methods. The corresponding RIs of the NaCl solutions measured using a commercial refractive index meter are 1.3334,
1.3337, 1.3348, 1.3365, and 1.3405. DI water was used as the reference and its RI is 1.3330. (d) Sensitivity curve obtained from the measurement.

Figure 5. CRP antibody−antigen binding in a urine matrix. The blue, red, and black curves represent the response of chirped GMR processed by
the Fano fit and the projection and EKFP method, respectively. The corresponding error bars are in the same colour. The concentrations of CRP
antigen are (a) 10 and (b) 1 pg/mL in urine. The 3σ value for the Fano fit, projection, and EKFP is 1.185, 0.401, and 0.016 pixels for 10 pg/mL
CRP and 1.303, 0.323, and 0.015 pixels for 1 pg/mL CRP. Note that 1 pixel corresponds to 1.82 μm in this case.
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pg/mL CRP antigen solution and tested it in the same setup.
From Figure 5b, it is very clear that the 3σ value of the Fano fit
is much higher than the resonance shift of 1 pg/mL, so the
resonance shift obtained by the Fano fit is buried in the noise
and hence not resolvable; in contrast, the EKFP method
reduces the 3σ value to 0.015 pixels, which is about 86 times
lower than that of the Fano fit (3σ = 1.303 pixels). To be
noted, the reduction of 3σ for the EKFP method is different to
that of the KFP method because different state space functions
are used. For the CRP binding measurement, the EKFP
method used a Langmuir isotherm, while for the bulk RI
measurement, the KFP method employed the constant state
space function.
It is also important to consider the computational cost for

the algorithms. As is well known, KFs are extremely efficient
because of their recursive nature. The computational complex-
ity is dominated by O(CN), where N is the number of
examples and C is the number of parametric variables. The
only computation part of the EKFP method is the projection
part. As has already been pointed out,17 the computational
complexity of the projection method is O(pN), where p is the
number of reference spectra and N is the number of
wavelength samples. In this case, where p = 40, the
computational complexity is O(40N), while for the Fano fit,
the algorithm is based on the least squares regression with N
examples and C parametric variables, the total computational
complexity is O(C2N).19 In this case, the computational
complexity is O(25N). For PCA, the computational complexity
is O(N3) which is one order of magnitude higher than for the
other algorithms. In conclusion, EKFP and the projection
method share a similar computational complexity, they can run
in real time, and could also run real-time on a much less
powerful microprocessor.
Overall, the superiority of the EKFP method over the simple

Fano fit and projection methods is demonstrated, especially for
the case of low-Q resonant biosensors. The remaining
limitations are the restriction of the camera resolution (the
number of pixels), temperature fluctuations, and mechanical
noise during the experiment; for example, a thermal noise of
0.1 °C can easily occur, which may result in a Δn = 1.0 × 10−5

RIU variation.35−37 Although the system has a reference
channel to minimize the impact of such variations, differences
between the signal and reference channel cannot be totally
avoided.

■ CONCLUSIONS

In conclusion, we have introduced a KF method to the
interpretation of biosensor data and have compared it to other
curve-fitting methods. This method combines the error
variance from the measured data with the predicted value
through a kinetic model, and updates the error variance
recursively. We have demonstrated that both in a low-Q system
(a GMR with Q ≈ 150) and in a high-Q system (microring
with Q ≈ 4800 and 13,000), the Kalman projection method
can reduce the 3σ by a factor 2 to 3 compared to the Fano fit
or Lorentz fit. In comparison, the PCA-based method did not
exhibit a good performance either for lithographically tuned
GMR or for microring resonator data, indicating that the
stringent requirements of PCA limit its application in the
context of the sensor modalities examined here. We also
applied an extended KF method termed EKFP, which allows
determining the affinity kinetics iteratively to a urinary CRP
antibody−antigen binding experiment. The EKFP method

significantly improves the SNR and lowers the LOD of the
CRP affinity binding interaction from 10 down to 1 pg/mL,
which highlights the potential of this method for real protein−
protein binding measurements. In addition, it is worth
mentioning that for a nonlinear process, a non-Gaussian
error distribution, or a quickly varying process, the EKF with
linearization via first order Taylor expansion may only provide
a poor estimation. In that case, a Monte Carlo KF or a particle
filter38 method may provide a better estimation. Overall, we
have shown that applying the KF algorithm improves the
fitting of biosensor data both for raw image data and for
spectral data, and the algorithm can easily be adapted to other
sensing modalities, such as angle scanned SPR.

■ METHODS

Kalman Filtering Technique. The KF algorithm is practiced as a
two-step algorithm; as the first step, it generates a time domain update
for the prediction and for the final step, it produces a measurement
update for the correction. We also developed an EKF to account for
the antibody−antigen binding interaction. The EKF we introduce
adds an iterative determination of the association/dissociation
constants (ka/kd) and the concentration of the unknown sample as
an additional step in order to make the method more suitable for
biosensing.

KF for Bulk RI Measurement. The resonance response of the
chirped GMR to a fixed concentration of NaCl solution can be
considered as static because the RI of NaCl solution is constant for a
given concentration and the only variation is provided by factors such
as temperature and mechanical noises. The expected refractive index
of the current state x̂k

− should therefore be the same as that of the
previously estimated state x̂k−1

− , so the state function at time k − 1 and
k is identical

̂ = ̂−
−

−x xk k 1 (1)

The prior predicted error covariance Pk
− at time k is defined as the

summation of the error covariance Pk−1 at time k − 1 and the process
error covariance Q which reflects the noises on the measurement
system, for example, temperature and mechanical vibration. Here, we
assume Q to be Gaussian distributed white noise.

= +−
−P P Qk k 1 (2)

The Kalman gain Gk is then calculated as

=
+

−

−G
P

P R
k

k

k (3)

where R is the estimated measurement error covariance. The state eq
1 is then updated accordingly

̂ = ̂ + − ̂−
+

−x x G z x( )k k k k k 1 (4)

where x̂k is the estimated state at time k and zk is the measurement
value at time k. The error covariance Pk is updated as

= − −P G P(1 )k k k (5)

EKF with a Langmuir Isotherm Model for Antigen−
Antibody Binding Interaction. Antigen−antibody binding inter-
action is a complex dynamic process. When the antigen binds to the
antibody, it forms a binding complex and the rate of binding is
described by the association constant ka. Once bound, the
disassociation process, described by kd, starts to happen, releasing
the antigen again. This dynamic interaction can be simplified by the
Langmuir isotherm model,39,40 which describes how a ligand molecule
interacts with an analyte molecule. The complex formed by the ligand
and the antigen follows pseudo-first-order kinetics and it is assumed
that the binding is equivalent and independent for all binding sites.
The response Yt from the sensor is proportional to the mass of the
bound complex and can be expressed as41
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Y
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where ka is the association constant, kd is the dissociation constant,
[Ag] is the antigen concentration, and Ymax is the maximum value of
the sensor readout which happens at the equilibrium state. Integrating
eq 6, we obtain the response of the sensor as a function of time t
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where KD is the ratio of dissociation constant kd over the association
constant ka. From eq 7, the response of sensor Y is continuous and is
differentiable at time t, so it can be expressed by a first-order Taylor
expansion as

+ Δ = + ΔY t T Y t s t T( ) ( ) ( ) (8)

where ΔT is the time interval and s(t) is the derivative of Y
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s(t) is also called the Jacobian matrix and usually noted as matrix F at
discrete time step k
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The state vector of the state-space dynamic model is x = [Y,s]T. If
the response is measured at every ΔT, then according to eq 8, the true
state vector xk+1 at time step k + 1 can be determined from the value
xk given at step k using a linear stochastic difference model

= ++x Ax wk k k1 (11)

where

=
Δ

ÄÇÅÅÅÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑÑÑÑA
T1

0 1 (12)

and wk represents the process noise. From eq 6, the state function
estimation relies on parameters ka and kd, concentration of the antigen
[Ag], and the sensor maximum response Ymax. There are many
methods42−45 to determine ka and kd beforehand, but the lack of
information about the unknown concentration of antigen [Ag] and
the value of Ymax is the main obstacle for the EKF method to make
precise prediction based on the state-space equation alone. Therefore,
we employ an optimization function O (eq 13) by minimizing the
difference of measured data and the Langmuir model through
nonlinear least square solver.19 The abovementioned parameters
could be extracted from the kinetic model with the highest
confidence.

∑= −O f i y imin ( ) ( ) (13)

where f(i) is the nonlinear function and y(i) is the measured data Yk.

=
[ ]

+ [ ]
− − [ ]+f k k y

y

k k
( , , )

Ag

/ Ag
(1 e )k k k

a d max
max

d a

( Ag )a d

(14)

Because Y is the output (resonance position) of the sensor at time
step k, the observation vector zk of the state-space dynamic model can
be expressed as

= + = +z h x v x v( )k k k k k (15)

where vk represents the measurement noise determined as the
standard deviation of the resonance position. In this case, there is no
unit transformation, so h = 1. Equations 9 and 15 constitute the state
and observation equations, respectively. Note that the variables wk and
vk correspond to the covariance of σw

2 and σv
2, respectively. The

covariance matrices of wk and vk are

σ

σ= = [ ]

Ä
Ç
ÅÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑÑQ R

0 0

0
and

k k
w
2 v

2

(16)

where σw
2 is the process noise, which is hidden in the process. It can

be treated as a tuning parameter to adjust the gain of the KF to
smooth the data. The determination of σw

2 is quite subjective, but it
can be estimated via numerical simulations in different test
environments21 or through adaptive adjustment.46 With the above-
mentioned state-space dynamic model, the EKF time update
equations and measurement update equations are presented in
three group of functions: the state space eqs 17 and 18, the predict
eqs 19−21, and the update eqs 22 and 23

̂ = ̂ ++
−x Ax wk k k1 (17)

= +z x vk k k (18)
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−P G H P(1 )k k k1 1 1 (23)

where x̂k+1 is the a posteriori state estimate, x̂k+1
− is the a priori state

estimate, Pk+1
− and Pk+1 denote the a priori estimate error covariance

and the a posteriori estimate error covariance, respectively, and Gk+1 is
the Kalman gain matrix.

In summary, the EKF process can be described as follows: first, the
parameters are initialized in eq 14 and then the parameters ka, kd,
[Ag], and Ymax are extracted using the data for time steps between 0
and t − 1. Typically 25 iterations are sufficient to reach 95%
confidence intervals. Then the optimized parameters are passed to eq
7 to predict the sensor response at time t. Then, eqs 17 and 19 project
the current state and covariance estimates, respectively. Subsequently,
the output of eq 18 is considered to update eqs 19−23. The algorithm
operates recursively by continuously updating eqs 13 and 14.

Projection Method. The single and double projection methods
were initially described in refs.16,17 In brief, the double projection
method is an eigenvector analysis, which uses singular value
decomposition to create a basis for each simulated spectrum at
different RIs. Then each simulation is projected against the basis to
form a weight matrix. The inverse problem of calculating the refractive
index from the spectrum can be solved as follows: first, convert the
spectrum into a vector and then project the vector to the basis to form
a weight vector. Finally, project the weight vector to each row of the
weight matrix to obtain the solution vector. The abscissa of the
interpolated maxima will correspond to the desired unknown index of
refraction.

The single projection method eliminates the content of the
eigenvector analysis and directly projects the normalized reflectance
spectrum T to the simulated reflectance spectrum at different RIs.
Then the abscissa of the interpolated maxima represents the unknown
index of refraction.

The single projection method can be seen as a convolution
operation; therefore, its computational complexity scales as ∼O(pN)
where p is the number of reflectance images and N is the number of
wavelength samples. In contrast, the computational complexity of the
double projection method scales as ∼O(N3). For a large number of
samples, the value of O(N3) becomes much larger than O(pN), which
is undesirable. Therefore, we compared the two methods on the same
dataset of bulk RI measurements of NaCl solutions to find out
whether the computational overhead of the double projection method
was worth the effort. Surprisingly, we found that the average 3σ for
the double projection and single projection methods for this dataset
was 0.2823 and 0.2919 pixel, respectively, as shown in Figure S3, so
the two methods exhibit a similar estimation error. Because the

ACS Sensors pubs.acs.org/acssensors Article

https://dx.doi.org/10.1021/acssensors.0c01484
ACS Sens. 2020, 5, 3474−3482

3479



double projection method exhibits slightly lower noise, we use it in
the remainder of the paper and simply refer to it as the “projection
method”.
Principal Component Analysis. Owing to the property of

rejecting noise and improving SNR, for example, Raman spectrosco-
py,13 we also include PCA in our comparison. Similar to the
projection method, PCA is also based on singular value decom-
position whereby a covariance matrix is calculated, which is followed
by the calculation of eigenvectors of the same matrix. These
eigenvectors are known as principal components which represent
the presence of maximal variance in the dataset. In order to apply
PCA to the chirped-GMR dataset, one would require a high-precision
tunable light source for sweeping the wavelength13,14 The change in
the spectrum with respect to wavelength would then be represented
by the first principal component with the largest eigenvalue, which
could be discriminated against the noise (Supporting Information
Section 1). For our target application of a low-cost point-of-care
sensor, however, it would be impractical to include a high precision
tunable light source. Hence, we generate the wavelength-swept data
by lithographic tuning, which allows us to capture it in a single
measurement. The PCA algorithm is then applied to the litho-
graphically tuned GMRs (several GMRs with a small resonance
difference of Δλ = 0.1 nm) and the resonance matrix is built from this
data. The procedure is described in the Supporting Information
Section 6 and Figure S1.
For the microring resonator, PCA is applied as follows; first, the

transmission spectrum is cropped into identical width, by keeping the
resonance dip at the center. Each dip profile is then shifted by equal
space with an optimized step size (2 data points) after centralization.
Then high-frequency variations (which are not characteristic of
resonance) in the spectra are removed using a lowpass filter with an
optimized sampling frequency of 4 Hz. The resulting smooth spectra
are then normalized to remove any intensity fluctuations. A
covariance matrix is calculated from these normalized spectra,
followed by the calculation of the corresponding eigenvectors. Finally,
a derivative Lorentz function is applied to fit the first principal
component (PC1). The resonance position is extracted as the zero
crossing point of the derivative function. More details are shown in
the Supporting Information Section 8 and Figure S2.
Simulation of Chirped GMR. The response of the chirped GMR

is simulated in a staircase approximation with a 0.5 nm change in
period. The RCWA47,48 method is used to calculate the spectrum and
the phase profile, and a set of resonant images are created.
Fabrication. The fabrication of GMR and microring structures, as

well as the microfluidic channels, is already described in our previous
work.15,34,49 Briefly, the chirped GMR is created by tuning the GMR
period in 1 nm steps, which is limited by the smallest step size of our
Raith VOYAGER electron-beam lithography tool. We increase the
period from 575 to 585 nm over a 500 μm length with a fill factor of
0.7 to achieve a resonance around 855 nm in the center of the chirped
GMR. The gratings are fabricated on a Si3N4-on-glass wafer (Silson
Ltd), with a Si3N4 layer of 150 nm thickness. The microring structure
consists of a 500 nm-wide and 220 nm-thick waveguide with a ring
diameter of 60 μm and is designed to work around 1570 nm. The
microfluidic channel is fabricated using the polydimethylsiloxane
replica mold method.
Sensor Functionalization. The GMR sensor surface functional-

ization was described in detail in our previous work.34 Briefly, the
sensor surface was first treated with piranha solution and then
salinized with (3-mercaptopropyl)trimethoxysilane (MPTS). After
drying the surface, the sensor is immersed in SM(PEG)6 in DMSO
before the CRP antibody binding.
Bulk RI Measurements by Sensors. The bulk RI measurements

for the chirped GMR and the microring are described in detail in the
Supporting Information. In brief, the bulk RI and protein binding
experiments for the GMR were both carried out on a bespoke
microscope setup with the microfluidic channels bonded to the sensor
surface. The bulk RI measurement for the microring was carried out
on a fire-end system to collect the transmission spectrum.
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G.; Daḧne, L.; Barillaro, G. Layer-by-layer biofunctionalization of
nanostructured porous silicon for high-sensitivity and high-selectivity
label-free affinity biosensing. Nat. Commun. 2018, 9, 5256.
(6) Shamah, S. M.; Cunningham, B. T. Label-free cell-based assays
using photonic crystal optical biosensors. Analyst 2011, 136, 1090−
1102.
(7) Wang, S. S.; Magnusson, R. Theory and applications of guided-
mode resonance filters. Appl. Opt. 1993, 32, 2606−2613.
(8) Tsai, M.-Z.; Hsiung, C.-T.; Chen, Y.; Huang, C.-S.; Hsu, H.-Y.;
Hsieh, P.-Y. Real-time CRP detection from whole blood using
micropost-embedded microfluidic chip incorporated with label-free
biosensor. Analyst 2018, 143, 503−510.
(9) Barth, I.; Conteduca, D.; Reardon, C.; Johnson, S.; Krauss, T. F.
Common-path interferometric label-free protein sensing with
resonant dielectric nanostructures. Light: Sci. Appl. 2020, 9, 96.
(10) Nenninger, G. G.; Piliarik, M.; Homola, J. Data analysis for
optical sensors based on spectroscopy of surface plasmons. Meas. Sci.
Technol. 2002, 13, 2038−2046.
(11) Johnston, K. S.; Booksh, K. S.; Chinowsky, T. M.; Yee, S. S.
Performance comparison between high and low resolution spec-
trophotometers used in a white light surface plasmon resonance
sensor. Sens. Actuators, B 1999, 54, 80−88.
(12) Stenberg, E.; Persson, B.; Roos, H.; Urbaniczky, C. Quantitative
determination of surface concentration of protein with surface
plasmon resonance using radiolabeled proteins. J. Colloid Interface
Sci. 1991, 143, 513−526.
(13) Mazilu, M.; De Luca, A. C.; Riches, A.; Herrington, C. S.;
Dholakia, K. Optimal algorithm for fluorescence suppression of
modulated Raman spectroscopy. Opt. Express 2010, 18, 11382−
11395.
(14) De Luca, A. C.; Mazilu, M.; Riches, A.; Herrington, C. S.;
Dholakia, K. Online Fluorescence Suppression in Modulated Raman
Spectroscopy. Anal. Chem. 2010, 82, 738−745.
(15) Triggs, G. J.; Wang, Y.; Reardon, C. P.; Fischer, M.; Evans, G. J.
O.; Krauss, T. F. Chirped guided-mode resonance biosensor. Optica
2017, 4, 229−234.
(16) Alleyne, C. J.; Kirk, A. G.; Chien, W.-Y.; Charette, P. G.
Numerical method for high accuracy index of refraction estimation for
spectro-angular surface plasmon resonance systems. Opt. Express
2008, 16, 19493−19503.
(17) Abumazwed, A.; Kubo, W.; Shen, C.; Tanaka, T.; Kirk, A. G.
Projection method for improving signal to noise ratio of localized
surface plasmon resonance biosensors. Biomed. Opt. Express 2017, 8,
446−459.
(18) Kalman, R. E. A New Approach to Linear Filtering and
Prediction Problems. J. Basic Eng. 1960, 82, 35−45.
(19) https://uk.mathworks.com/help/optim/nonlinear-least-
squares-curve-fitting.html (accessed Apr 19, 2020).
(20) Wilkinson, D. J. Bayesian methods in bioinformatics and
computational systems biology. Briefings Bioinf. 2007, 8, 109−116.
(21) Tao, L.; Liu, Z.; Zhang, W.; Zhou, Y. Frequency-scanning
interferometry for dynamic absolute distance measurement using
Kalman filter. Opt. Lett. 2014, 39, 6997−7000.
(22) Murtuza Baker, S.; Poskar, C. H.; Schreiber, F.; Junker, B. H.
An improved constraint filtering technique for inferring hidden states
and parameters of a biological model. Bioinformatics 2013, 29, 1052−
1059.

(23) Lillacci, G.; Khammash, M. Parameter Estimation and Model
Selection in Computational Biology. PLoS Comput. Biol. 2010, 6,
No. e1000696.
(24) Sun, X.; Jin, L.; Xiong, M. Extended Kalman Filter for
Estimation of Parameters in Nonlinear State-Space Models of
Biochemical Networks. PLoS One 2008, 3, No. e3758.
(25) Facchinetti, A.; Sparacino, G.; Cobelli, C. Enhanced accuracy of
continuous glucose monitoring by online extended kalman filtering.
Diabetes Technol. Ther. 2010, 12, 353−363.
(26) Yen, Y.-K.; Lai, Y.-C.; Hong, W.-T.; Pheanpanitporn, Y.; Chen,
C.-S.; Huang, L.-S. Electrical Detection of C-Reactive Protein Using a
Single Free-Standing, Thermally Controlled Piezoresistive Micro-
cantilever for Highly Reproducible and Accurate Measurements.
Sensors 2013, 13, 9653−9668.
(27) Fan, Y.-J.; Sheen, H.-J.; Liu, Y.-H.; Tsai, J.-F.; Wu, T.-H.; Wu,
K.-C.; Lin, S. Detection of C-Reactive Protein in Evanescent Wave
Field Using Microparticle-Tracking Velocimetry. Langmuir 2010, 26,
13751−13754.
(28) Bíro,́ A.; Rovo,́ Z.; Papp, D.; Cervenak, L.; Varga, L.; Füst, G.;
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