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Abstract

Two highly prevalent and growing global diseases impacted by skeletal muscle atrophy are chronic heart failure (HF) and type 2
diabetes mellitus (DM). The presence of either condition increases the likelihood of developing the other, with recent studies
revealing a large and relatively poorly characterized clinical population of patients with coexistent HF and DM (HFDM). HFDM
results in worse symptoms and poorer clinical outcomes compared with DM or HF alone, and cardiovascular-focused disease-
modifying agents have proven less effective in HFDM indicating a key role of the periphery. This review combines current
clinical knowledge and basic biological mechanisms to address the critical emergence of skeletal muscle atrophy in patients
with HFDM as a key driver of symptoms. We discuss how the degree of skeletal muscle wasting in patients with HFDM is likely
underpinned by a variety of mechanisms that include mitochondrial dysfunction, insulin resistance, inflammation, and
lipotoxicity. Given many atrophic triggers (e.g. ubiquitin proteasome/autophagy/calpain activity and supressed IGF1-Akt-
mTORCL1 signalling) are linked to increased production of reactive oxygen species, we speculate that a higher pro-oxidative
state in HFDM could be a unifying mechanism that promotes accelerated fibre atrophy. Overall, our proposal is that patients
with HFDM represent a unique clinical population, prompting a review of treatment strategies including further focus on

elucidating potential mechanisms and therapeutic targets of muscle atrophy in these distinct patients.
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Introduction

Skeletal muscle is one of the largest organs in the human
body, accounting for approximately 40% of total body mass
and acting as a major site for both protein storage and
glucose disposal.> Wasting of skeletal muscle, referred to as
atrophy, is characteristic of several catabolic conditions, in-
cluding aging (i.e. sarcopenia), starvation, and immobilization,
but also occurs as a consequence of chronic disease.”?
Cachexia is closely linked to muscle atrophy and is defined
as a complex multifactorial metabolic syndrome, which
is associated with a significant reduction in body mass
underpinned by skeletal muscle loss (with or without fat mass
loss) and not fully reversible with nutritional aids.* On the
other hand, sarcopenia is the slow and progressive loss of
muscle mass without any underlying disease, associated with
advanced age.* Collectively, a loss of muscle mass leads to a

decline in functional mobility thereby contributing to poor
quality of life and worse survival.®

Two highly prevalent chronic diseases implicated in and im-
pacted by muscle atrophy include chronic heart failure (HF)*
and type 2 diabetes mellitus (DM).® HF is a clinical syndrome
resulting from structural or functional abnormality of the
heart characterized by symptoms of breathlessness, exercise
intolerance, and fatigue. The presence of DM in patients with
HF, which in this review we term HFDM, has a synergistic ad-
verse effect on both symptoms and prognosis.” Exercise intol-
erance in HF has traditionally been understood in terms of a
haemodynamic model, in which poor perfusion of skeletal
muscle due to left ventricular (LV) dysfunction results in the
sensation of breathlessness, while increased LV filling pres-
sures result in reduced pulmonary diffusion due to interstitial
oedema. However, this model fails to explain evidence that
first measures of LV dysfunction correlate poorly with
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symptoms: patients with severely impaired systolic dysfunc-
tion can be asymptomatic, while those with mild impairments
can be very limited.® Second, patients who recover their
LV systolic function either through disease modifying
pharmacotherapy,® implantable cardiac electronic devices,®
or even heart transplantation*® continue to have marked
impairments of exercise capacity compared with healthy indi-
viduals. And finally, although exercise training can result in
dramatic improvements in exercise capacity, these interven-
tions have little or no effect on cardiac function.'? That exer-
cise limitation in HF does not relate to the degree of cardiac
dysfunction suggest that a proportion of symptoms in patients
with HF, and especially HFDM, is driven by peripheral impair-
ments including skeletal muscle myopathy. However, there
remains little in the literature detailing the impact of muscle
atrophy and its relation to symptoms and clinical outcomes
in patients who have both HF and DM.

This review combines current clinical knowledge and basic
biological mechanisms to address the important and emerg-
ing issue of skeletal muscle atrophy in patients with HFDM.
We aim to answer a number of specific questions in relation
to patients with HFDM when compared with those with HF or
DM alone, including (i) Is there a distinct clinical and skeletal
muscle phenotype? (ii) To what degree is muscle atrophy ex-
acerbated? (iii) Are distinct molecular mechanisms mediating
muscle atrophy? and (iv) What knowledge gaps and future di-
rections should be pursued? We will primarily discuss evi-
dence related to humans in order to maintain clinical
translation and highlight areas lacking clarity, while we will fo-
cus on patients with type 2 DM and HF with reduced ejection
fraction because the clinical phenotyping of HF with reduced
ejection fraction is somewhat more established than HF with
preserved ejection fraction.

Does heart failure with diabetes
represent a distinct clinical population?

Both HF and DM are growing global health problems, with a
prevalence of 26 million®® and 374 million,** respectively. Im-
portantly, the presence of either HF or DM increases the like-
lihood of developing the other, with around 30% of patients
with HF developing DM,**™*” while around 15% of patients
with DM developing HF.*¥72° DM is not only a risk factor for
the development of HF but is also associated with increased
risk of progressive HF and cardiovascular deaths in these
patients.’>2! On the other hand, the HF syndrome is associ-
ated with insulin resistance,?? while pharmacological thera-
pies for HF targeting the renin—angiotensin—aldosterone
system?® and LV assist devices®* improve glycaemic control
in patients with HFDM. Recent studies have revealed a large,
novel, and poorly characterized clinical population of patients
with coexistent HF and DM (i.e. HFDM).*®2531 However, our
clinical understanding remains limited due to it being unclear

whether DM is causal or an associative comorbidity in HF.3?

As such, determining whether HF or DM occurs first may be
an important factor shaping clinical outcomes and the sever-
ity of subsequent peripheral maladaptations.

In particular, the development of HF and DM together is
associated with many systemic organ abnormalities that
extend beyond the heart, including activation of the renin—
angiotensin—aldosterone and autonomic nervous systems, an
elevated immune and inflammatory response, macrovascular
and microvascular dysfunction, disturbed whole-body energy
metabolism, pulmonary impairments, and maladaptation of
skeletal muscle and adipose tissue (Figure ). It should come
as no surprise, therefore, that patients with HFDM have both
worse outcomes and symptoms compared with those with
HF or DM.*®33 For example, peak pulmonary oxygen uptake
(VOzpeak), the gold-standard measure of exercise intolerance
and a strong predictor of mortality,?” is lower by around
15-20% in HFDM vs. HF or DM despite a similar degree of
cardiac dysfunction.?”*#3> The most commonly used scoring
system for symptoms, the New York Heart Association func-
tional class, which divides patients into four subjective points
on the basis of functional capacity reveals that patients with
HFDM are on average more symptomatic and also have higher
diuretic requirements compared with patients suffering HF
without DM.3® Collectively, the poor relationship between LV
systolic dysfunction and symptoms in HF with and without
DM suggest an important role of peripheral mechanisms.*’
The latter is reinforced by current data showing that patients
with HFDM have not responded favourably to various
cardiac-orientated pharmacological treatments that have oth-
erwise proven effective in patients with HF or DM,3¥%3
although sodium glucose co-transporter 2 (SGLT2) inhibitors
may be one recent exception in which there is no interaction
with the presence or absence of DM.**** Furthermore, recent
molecular network blood profiling has revealed a distinct phe-
notype between HF with and without DM in terms of inflam-
mation, fibrosis, and neutrophil degranulation.?®3! Taken
together, patients with HFDM display an adverse clinical phe-
notype and this may be underpinned, at least in part, by more
severe peripheral abnormalities originating in the skeletal
muscles. Indeed, decreased muscle strength observed in HF
or DM*® is more pronounced in patients who have both.? As
such, skeletal muscle could represent an important therapeu-
tic target in patients with HFDM that otherwise respond
poorly to current cardiometabolic orientated medications.

Is skeletal muscle wasting exacerbated
in patients with heart failure and
diabetes?

Skeletal muscle atrophy is common in patients with HF and is
independently associated with increased mortality.® There is
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Figure 1 Systemic consequences of heart failure and diabetes, which includes signs and symptoms, central and peripheral mechanisms, alongside un-
derlying biological pathophysiology with a specific focus on potential triggers of exacerbated skeletal muscle atrophy in patients suffering both

conditions.
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considerable overlap between muscle atrophy and cachexia
in HF,* which occurs in 20-40%*"*® and 10-15%"° of pa-
tients, respectively. DM is similarly associated with increased
muscle atrophy compared with controls with a prevalence of
approximately 15%, which is linked to a poorer prognosis.*
Muscle loss can be measured in vivo through various tech-
niques including non-invasive computerized tomography
and dual-energy x-ray absorptiometry, while direct invasive
biopsies provide an opportunity to assess fibre
cross-sectional area (FCSA) and phenotype. In humans, it is
generally agreed that three skeletal muscle fibre isoforms ex-
ist including types |, 1A, and 11X, progressing from small, fa-
tigue resistant with high mitochondrial content and vascular
supply towards the larger and higher force generating but
more fatigable fibres, respectively.>*

Several studies have shown that patients with HF or DM
have reduced FCSA, and in particular that of IIA/X fibre
types.>? There is also a shift from predominantly type | mus-
cle fibre proportion towards more type Il fibres in HF.2>>3
However, in contrast to HF where type IIX proportion is the
greatest, type IIA fibres show a higher proportion over types
I and IIX in DM.*® As predicted, reduced muscle mass is
coupled to loss of muscle strength in patients with HF or
DM,>>*°> which provides the close link between maintaining
muscle mass and functional status. While data for the muscle
phenotype in HFDM remains scarce, initial evidence has
shown muscle atrophy and functional impairments are more
severe compared with HF or DM alone: patients with HFDM

have an increased fibre atrophy in the pectoralis major
(30% and 25% reduction in total FCSA, respectively),?®> which
is paralleled by impaired muscle strength (i.e. ~15% decrease
in knee extensor/flexor measurements alongside a 10% de-
crease in handgrip strength).?° In general, patients with HF
or DM show a type Il fibre-specific atrophy independent of
type 1?° and recent data in patients with HFDM show a similar
trend: type IIA FCSA was reduced by approximately 40% and
type IIX by approximately 50% compared with HF but to a
lesser degree compared with patients with DM.?* This finding
is important, as one may speculate both type | and Il fibres
would be impacted if patients with HFDM suffer a unique my-
opathy. These findings also highlight that the degree of type Il
fibre atrophy in HFDM was substantially higher compared
with that in HF patients but not patients with DM,?® suggest-
ing that DM may be the principle pathology inducing a
greater atrophic phenotype in HFDM, which was recently
indicated.®® Recent data using dual-energy x-ray absorptiom-
etry have also confirmed that appendicular skeletal muscle
mass index was reduced by almost 10% in large cohort of
70 patients with HFDM vs. 115 patients with HF.>® Given that
muscle strength is also influenced by other factors such as
lipid infiltration, patients with HFDM show higher body fat
measures by 10-25% compared with those patients with
HF,>” which may elevate intramyofibre lipid infiltration to fur-
ther limit functional capacity. Overall, current data support
the notion that patients with HFDM have altered body com-
position, with increased body fat and reduced skeletal muscle
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mass alongside impaired functional strength when compared
with HF or DM populations.?>?>*7 Limited evidence is avail-
able to support the existence of a unique myopathy in HFDM;
however, current conclusions are based on only a limited
number of studies, and more data from larger sample sizes
are warranted.

What molecular mechanisms control
muscle mass in heart failure and
diabetes?

Given that current evidence indicates fibre atrophy is higher
in patients with HFDM compared with those with HF or DM
by around approximately 25%, the next question one natu-
rally poses is what mechanisms are mediating this response?
In general, muscle mass is controlled by the complex bal-
ance between rates of protein synthesis and rates of protein
degradation. The molecular signalling pathways that interact
to control protein synthesis/degradation generally include
the insulin-like growth factor 1 (IGF1)/protein kinase B
(Akt)/mammalian target of rapamycin (mTOR)-forkhead box
protein O (FoxO), TGF-B/myostatin/bone morphogenetic
protein (BMP), nuclear factor kappa-light-chain-enhancer of

activated B cells (NF-kB), and glucocorticoid®® (Figure 2),
which are flexible to modulation.? These signalling pathways
regulate the fate of many proteins, which include degrada-
tion by one of the four major proteolytic systems in the cell:
ubiquitin-proteasome, autophagy-lysosome, calpain, and
caspase.”® Typically, in atrophic conditions, evidence exists
to support that proteolysis is elevated while protein synthe-
sis is blunted; however, there is ongoing debate as to
whether elevated proteolysis or supressed protein synthesis
is the primary mechanism responsible for atrophy in catabolic
conditions, which seems to be highly dependent on the clini-
cal condition and experimental model employed.>?*%%° For
example, protein synthesis and degradation are three-fold
and two-fold higher in rodents compared with those in
humans under catabolic conditions, respectively.>® Given
such evidence, here we focus our attention on human data
to provide greater relevance to patients and aid clinical
understanding.

Role of proteolysis
The role of the key proteolytic pathways in skeletal muscle

from patients with HF, DM, and HFDM remains poorly de-
fined, with a limited number of comprehensive studies

Figure 2 Hypothesis of the key molecular pathways involved in exacerbating skeletal muscle atrophy in patients with heart failure and type 2 diabetes
mellitus (HFDM). The first column Insulin Resistance shows simplified mechanisms governing atrophy including regulation of protein degradation and
protein synthesis in relation to suppression of IGF1/Akt/mTORC1 signalling and up-regulation of atrogene transcription. Other major upstream mech-
anisms thought to be involved include Inflammation and Oxidative stress, with the latter closely linked with mitochondrial dysfunction as a control
mechanism in many of the atrophic pathways. Labels in purple indicate evidence available to show significantly altered in patients with HFDM com-
pared with those with DM or HF. See text for full details and defined abbreviations.
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addressing this issue. The ubiquitin proteasome system is
recognized as the most important proteolytic pathway to
mediate muscle atrophy,’ with a major rate-limiting step
in this process being attachment of ubiquitin to target pro-
teins via muscle-specific E3 ubiquitin ligases termed
atrogenes, which include MAFbx and MuRF1 (Figure
2).5%%2 MuRF-1 mRNA and protein expression have been
reported to be elevated in vastus lateralis biopsies of pa-
tients with HF compared with age-matched controls,®
which is also the case for patients with DM.®* In contrast,
MAFbx generally seems to remain unchanged between HF
or DM groups when compared with controls,®*> suggest-
ing that MuRF1 may play a more important role mediating
atrophy in HF and DM. However, there remains a lack of
consistency in the literature, with MuRF-1 and MAFbx
MRNA expression reported to be unchanged in HF com-
pared with controls,®*%> while ubiquitin mRNA expression
has been found to be significantly decreased in DM
patients®® but increased in HF patients.®* In relation to
HFDM, almost no studies have measured levels of MuRF1
or MAFbx. One study reported MAFbx and MuRF1 mRNA
levels were unchanged between controls and patients with
DM, HF, or HFDM groups®*; however, this study was under-
powered with no information on fibre atrophy.

The machinery involved in protein degradation are largely
controlled by a subset of highly regulated transcriptional fac-
tors that can induce proteolytic activity, with the FoxO and
NF-xB transcription factors central®® (Figure 2). FoxO1 and
FoxO3 mRNA expression has been shown to be
up-regulated in patients with HF compared with controls,
but unchanged between DM and HFDM.®* In relation to
NF-kB, it seems likely this would be elevated in patients with
HFDM given increased levels reported in both patients with
HF or DM.®”"%® The other major proteolytic system involved
in wasting, which can also be regulated by FoxO transcription,
is the autophagy-lysosomal pathway (Figure 2). This pathway
targets damaged organelles for removal, such as the mito-
chondria, by forming autophagosomes, which subsequently
fuse and undergo lysosomal degradation.®® In DM, the ex-
pression of autophagy-related genes including ULKZ, microtu-
bule-associated protein 1 light chain 3 (LC3), and p62 have
been observed to be either unchanged® or down-regulated
compared with those in healthy controls.”® In contrast,
autophagy-related expression in muscle biopsies from pa-
tients with HF is limited, with one study showing cathepsin
L (a key protease involved in lysosomal degradation) was
not different in HF compared with controls.®® No data are
currently available for patients with HFDM for the other pro-
teolytic pathways of calpain and caspase-3. Overall, there-
fore, more data are required to clarify the contribution of
key proteolytic pathways and transcription factors and their
link to fibre atrophy in patients with HFDM alongside
additional whole-body measures of protein metabolism for
additional insight.”*

Role of protein synthesis

One of the main pathways controlling protein translation and
muscle growth is the insulin-IGF1/Akt/mTORC1 signalling axis
(Figure 2). Importantly, there is close crosstalk between ana-
bolic and catabolic signalling pathways, for example, Akt can
suppress atrophy via inhibiting FoxO signalling.”? In both HF
and DM, several proteins within the anabolic pathway are
known to be decreased or inhibited. Although not always
consistent,®* IGF-1 mRNA expression has been found to be sig-
nificantly reduced (>50%) in skeletal muscle of HF patients
compared with those in healthy controls, which was verified
by protein levels.”® Also IGF binding protein 5 (IGFBP5) mRNA
expression is significantly increased in both HF®* and DM®® pa-
tients, indicating supressed anabolic signalling as IGFBP5 can
inhibit 1GF-1 signalling and thus mTORC1 activation,”* while
lower levels of serum IGFBP3 alongside evidence of growth
hormone resistance have been reported in HF patients.” Fur-
ther support comes from measures of insulin receptor sub-
strate 1 (IRS1), which links insulin/IGF signalling to PI3K/Akt,
whereby mRNA expression for IRS1 was reported to be de-
creased by almost three-fold in patients with DM compared
with those in healthy controls highlighting the major role insu-
lin resistance may play.®® Despite total Akt and mTORC1 pro-
tein expression remaining unchanged in HF or DM,”%7®77 the
phosphorylated and thus activated form of these kinases was
reduced in both diseases, suggesting that protein synthesis is
likely diminished.”®”®77 However, in regard to HFDM, there
remains limited data to support whether anabolic signalling
is suppressed and more studies are warranted.

What upstream triggers could
exacerbate muscle atrophy in heart
failure and diabetes?

The anabolic and proteolytic systems controlling muscle mass
are tightly governed by upstream factors related to hormonal/
cytokine, metabolic/nutrient, mechanical load, and neural ac-
tivity, which helps to explain why conditions such as starva-
tion, exercise, immobilization, and disease-related conditions
induce rapid fluctuations in muscle mass. There are several
mechanisms that could contribute towards increased skeletal
muscle atrophy, by acting to elevate protein degradation and
blunt protein synthesis, in patients with HFDM compared with
those with HF or DM alone as summarize in Figure 2. These
likely include insulin resistance/hyperglycaemia, inflamma-
tion, oxidative stress, mitochondrial dysfunction, lipotoxicity,
hormonal resistance, disuse, and vascular dysfunction.

Insulin resistance and hyperglycaemia

Insulin is a hormone with multiple effects and plays a major
role in the regulation of muscle metabolism (i.e. glucose
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uptake), but also in controlling muscle mass via the close as-
sociation with IGF1 via PI3K/Akt/mTORC1 signalling.
Contracting skeletal muscle is a major deposition site for glu-
cose, which is facilitated by insulin-stimulated glucose trans-
porter type 4 (GLUT4) uptake. Impairments to the
insulin-GLUT4 pathway predisposes towards hyperglycaemia
and GLUT4 levels are reduced in both patients with DM’®
and HF.” Insulin resistance is considered one major defect
in the pathology of DM in humans.2° Insulin sensitivity is also
known to be lower in HF patients without DM and has been
linked to reductions in both muscle quantity and
function.”®#178% |GF-1 and IRS1 gene expression are signifi-
cantly decreased in DM and HF patients,®®”3 with impaired
phosphorylation of IRS1 in DM reported to contribute to low-
ering insulin sensitivity.”® IRS1 signalling can also be impaired
following targeted degradation by the E3 ligases mitsugumin
53 (MG53) and F-box protein 40 (FBX040).2*° Altered phos-
phorylation and/or ubiquitination of IRS1 could exacerbate
muscle atrophy by reducing Akt activation, which could lead
to increased degradation via FoxO-dependent atrogene tran-
scription while simultaneously reducing protein synthesis via
inhibition of downstream mTORC1 signalling. While no data
are available in patients with HFDM to address this issue,
greater insulin resistance is expected to be a major upstream
mechanism mediating fibre atrophy in these patients (Figure
2). Impaired insulin sensitivity can also lead to
hyperglycaemia, and while direct data from humans are miss-
ing, animal models of DM have shown a causal link to fibre
atrophy via the WWP1/KLF15 pathway®® as well as contractile
dysfunction,®®®” R0OS,®8 and endothelial dysfunction.®® Fur-
ther evidence indicates that a reduction in muscle contrac-
tions per se can also drive the development of insulin
resistance and in combination with a systemic inflammation,
can impair insulin insensitivity to further exacerbate muscle
wasting by reducing protein synthesis and elevating protein
degradation.>®> This  highlights the importance of
implementing exercise training in patients with HFDM as a
treatment for muscle atrophy.?

Inflammation and circulating factors

A pro-inflammatory state is common in both patients with HF
or DM, which is characterized by chronic increases in levels of
cytokines that include TNF-a, interleukin 1 and 6 (IL1,
IL-6).>°° TNF-a can activate the key transcription factor
NF-kB, and this translocates from cytoplasm to nucleus, me-
diating increased protein degradation in a MuRF-1 dependent
manner, while it can also induce insulin resistance via in-
creased serine phosphorylation of IRS1%°? and increase ROS
production (Figure 2). IL-6 activates the Janus kinase/signal
transducer and activator of transcription proteins (JAK/STAT)
pathway, which is also implicated in promoting protein degra-
dation and insulin resistance in patients.® Circulating and

skeletal muscle levels of these key pro-inflammatory cyto-
kines have been reported to be elevated in patients with
HF7%892 and DM,®®°® which strongly correlate with
mortality.>? In relation to HFDM, our knowledge is limited,
but recent network analyses of blood samples in two sepa-
rate studies have identified inflammation as being an
up-regulated pathway in patients with HFDM compared with
those with HF*%3? but muscle atrophy was not measured in
this study. Overall, therefore, it seems that inflammation is
higher in patients with HFDM vs. HF or DM, which could act
as a major upstream mechanism accelerating fibre atrophy.
Myostatin is a member of the transforming growth factor
beta (TGF-B) superfamily and a negative regulator of muscle
mass, which acts via phosphorylated Smad2/3 to inhibit Akt
signalling as well as inhibiting satellite cell function (Figure
2). Circulating myostatin is elevated in patients with HF** or
DM,’®> while mRNA expression in skeletal muscle is reported
to be either elevated or unchanged.®**® In relation to HFDM,
some evidence indicates that myostatin expression is ele-
vated compared with healthy controls in skeletal muscle.?®
However, myostatin expression was not correlated to fibre
atrophy or downstream targets such as SMAD2/3 or Akt, thus
limiting interpretation. Angiotensin Il (Ang Il) is a hormone
that functions to both promote protein degradation and in-
hibit protein synthesis (Figure 2). Ang Il impairs Akt and
mMTORC1 signalling by inhibiting the IGF1 signalling axis while
simultaneously promoting atrogene transcription,®® alongside
inducing ROS production as well as insulin resistance via inhi-
bition of IRS1 via protein kinase C (PKC) activation.®” Circulat-
ing levels of Ang Il are increased in patients with HF%%;
however, a significant decrease has been reported in patients
with DM compared with those in controls.>® While no direct
data are available for HFDM, recent data have shown that
plasma renin activity was higher and negatively correlated
to muscle mass (i.e. appendicular skeletal muscle mass index)
in patients with HFDM but not HF, suggesting a role for the
renin—angiotensin system®® that could act downstream via
ROS-dependent signalling to induce wasting (Figure 2).

Mitochondrial dysfunction

While the mitochondria were traditionally viewed as being
simply energetic organelles, recent evidence now show they
play a key signalling role, which in turn, may control muscle
wasting (Figure 2). It is well established that both patients
with HF or DM develop mitochondrial dysfunction, which in-
clude for example a lower respiratory function and
content.?>1%%192 |5 patients with HFDM, mitochondrial con-
tent has been estimated to be lower by 25%, while mitochon-
drial dysfunction assessed in situ using high-resolution
respirometry showed impairments specific to complex | both
absolute and when normalized to mitochondrial content, as
assessed in the pectoralis major when compared with
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patients with HF or DM.%® This finding is important, as it sug-
gests a complex I-specific impairment related to both quality
and quantity in patients with HFDM but not HF or DM, and
importantly, this was correlated to whole-body measures of
exercise intolerance.?® Further experiments revealed that im-
pairments at the transcriptional level are present, with gene
expression of the main subunit of complex | (NADH ubiqui-
none oxidoreductase core subunit S1; NDUFS1) lower in
HFDM compared with other groups.?® Further support for in-
trinsic mitochondrial myopathy in patients with HFDM comes
from evidence that measures of mitochondrial coupling (i.e.
respiratory control ratio) was similar to controls in both HF
and DM, but significantly lower by almost one third in
HFDM.?® Such evidence provides support that mitochondrial
dysfunction is exacerbated in patients with HFDM compared
with those with HF or DM, which may be a unique manifesta-
tion and key link to the degree of fibre atrophy reported. In-
terestingly, supplementation of 100 mg (—)-epicatechin per
day for 3 months (a type of natural phenol and antioxidant)
has shown beneficial effects on mitochondrial function in pa-
tients with HFDM, including on mitochondrial volume and
size.2® This was attributed to improvements in the expres-
sion of key regulators of oxidative metabolism including
sirtuin 1 (SIRT1), PGC-10, transcription factor A mitochondrial
(TFAM), and neuronal NO synthase (nNOS),*** but also to
epicatechin’s anti-oxidative properties as measures of both
glutathione, catalase, and SOD2 in HFDM were normalized
towards control values.’® While these studies should be
interpreted with caution due to the low sample size and lack
of adequate HF, DM, or healthy age-matched controls
throughout, they offer important insight that HFDM may be
linked to mitochondrial dysfunction.

Oxidative stress

Mitochondrial impairments have been associated with in-
creased ROS production in skeletal muscle of both patients
with HF or DM. ROS have important roles in cell signalling
and homeostasis; however, significant elevations in ROS can
lead to oxidative stress and have serious adverse effects on
myofibre stability.’°> ROS production can also be stimulated
by insulin resistance, hyperglycaemia, lipotoxicity, inflamma-
tion, endothelial dysfunction, and mitochondrial dysfunction,
all promoting potential skeletal muscle atrophy (Figure 2).
The main sources of ROS in skeletal muscle are the mitochon-
dria, nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase, xanthine oxidase, and uncoupled nitric oxide syn-
thase (NOS), %1% and evidence exists to suggest that ROS
are elevated in patients with HFDM. For example, mitochon-
drial ROS production in permeabilized myofibres of the
pectoralis major were shown to be the highest in patients
with HFDM during complex | respiration compared with HF,
DM, or control groups.?® Specifically, H,0, production was

greater in HFDM compared to DM or HF, which was accom-
panied by a significant decrease in gene expression of HFDM
muscle of the mitochondrial-specific antioxidant superoxide
dismutase 2 (SOD2).%° Other studies have found that HFDM
patients show reduced skeletal muscle glutathione levels
and this is accompanied by a significant increase of carbonyl-
ation and nitrotyrosine residues (markers of oxidative
damage) with increased acetylation and lower content of
SOD2.%6 A number of other studies have also revealed signif-
icantly higher levels of plasma oxidative stress markers and
reduced levels of antioxidants in HFDM, in particular
glutathione 197111

Based on previous cell culture and animal experiments, in-
creased ROS production promotes fibre atrophy via numer-
ous signalling pathways (Figure 2). ROS can increase
pro-inflammatory cytokine expression such as TNF-a, thus ac-
tivating NF-«kB signalling and atrogene transcription, while
further evidence have shown that ROS can increase catabolic
signalling via FoxO-proteasome activation alongside
supressing anabolic Akt-mTORC1 signalling.>® ROS also dam-
age proteins involved in the electron transport chain, which
can further increase mitochondrial ROS production,**? in ad-
dition to damaging mitochondrial DNA (mtDNA) that can re-
sult in mitochondrial dysfunction.’®® Increasing evidence
suggests that superoxide produced by complex | is released
into the matrix where its accumulation, together with the de-
crease in SOD2 activity, can result in significant mtDNA
damage.***** ROS can also promote calcium leak from the
sarcoplasmic reticulum (SR), which can accumulate in the mi-
tochondria to activate Bcl-2-associated X protein (Bax) and
subsequent release of cytochrome C via the mitochondrial
transition pore. This process can up-regulate proteolytic
pathways related to caspase/apoptosis and calpain
signalling.**> Finally, ROS can also promote endothelial dys-
function, by reducing levels of nitric oxide (NO) and thus
impairing vascular function and decreasing blood flow.*® De-
spite the limited number of studies, early data suggest that
alterations in redox homeostasis may play a fundamental role
in muscle wasting in patients with HFDM.

Lipotoxicity

Abnormal substrate metabolism in skeletal muscle is a com-
mon manifestation in cardiometabolic disorders and this may
lead to lipotoxicity, which has been closely linked to muscle
atrophy.'” Lipotoxicity results from the accumulation of
intramyocellular lipids (IMCLs) and increased concentration
of associated species termed diacylglycerols (DAGs) and
ceramides, which can be detrimental to skeletal muscle
homeostasis.**® DAGs are especially detrimental as they can
activate PKC, which can impair IRS1 signalling to impinge insu-
lin sensitivity.*® IMCL accumulation has also been linked to in-
creased mitochondrial dysfunction, ROS production,
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pro-inflammatory cytokines, and ER stress, which can all con-
tribute to skeletal muscle atrophy.**®> DAG production is in-
creased in skeletal muscle of patients with DM and is
positively correlated to increases in PKC,**° while similar data
have been reported in patients with HF.*? Increased accumu-
lation of IMCL also predisposes towards mitochondrial lipid ox-
idation, thus overloading the electron transport chain and
thereby increasing ROS generation.**® Currently, little data ex-
ist as to whether IMCL are elevated in patients with HFDM, but
given current data in HF or DM, it remains one likely mecha-
nism that would exacerbate wasting.

Vascular dysfunction

The microvasculature of the skeletal muscle plays an essen-
tial role in transporting blood containing oxygen, amino
acids, and nutrients to the muscle from the vascular sys-
tem. There remains wide variability in findings as to
whether skeletal muscle vascular measures are changed in
patients with either HF or DM, with data showing an in-
crease, decreased, or no change.!'®12%122 | relation to pa-
tients with HFDM, pectoralis major capillary-to-fibre ratio
was unchanged compared with those with HF, DM, or con-
trols, and as such, the capillary density increased in HFDM
because of the fibre atrophy.”® These data would argue
that skeletal muscle capillarization is not contributing to
skeletal muscle atrophy in HFDM. However, this does not
rule out blood flow being reduced in patients with HFDM
to impact muscle function. Endothelial dysfunction is char-
acterized by impaired vasodilation, due to a reduction in
NO and/or an increase in vasoconstricting factors such as
endothelin 1 (ET-1), which can decrease blood flow to sub-
sequently limit oxygen transport and nutrient supply to
skeletal muscle.®®® Impaired oxygen transport can also in-
duce hypoxia that has potential to induce apoptosis and in-
crease ROS production in muscle. At present, glucose
uptake and blood flow have been shown to be significantly
decreased in HF or DM patients compared with controls,
and even further in HFDM, which indicates an additive
impairment.?® It seems, therefore, that patients with HFDM
have functional limitations to skeletal muscle blood flow
rather than structural impairments, which may contribute
towards fibre atrophy.

Clinical translation and future
perspectives

In the past two decades, we have made great strides in im-
proving outcomes for patients living with HF, as well as devel-
oping new agents to treat DM. However, increased longevity
has not been mirrored by improvements in symptoms, and

every year more patients are living with symptoms of HF.
Moving forwards, future studies are required from indepen-
dent groups confirming the degree of skeletal muscle atrophy
and phenotypical alterations in patients with HFDM. To date,
few studies have investigated direct mechanisms contributing
to skeletal muscle atrophy in HF or DM, and this is especially
true for patients with HFDM, where more evidence is re-
quired for cause or consequence. As such, interventional
studies are required to identify mechanisms involved in skel-
etal muscle remodelling and atrophy in patients with HFDM
and whether they are common in DM or/and HF or indeed
representative of a unique clinical phenotype (Figure 2).
While differences between upper and lower limb muscles
have been assessed in regard to strength,? the diaphragm
represents another muscle worthy of investigation in HFDM,
particularly as studies have shown that diaphragm dysfunc-
tion occurs in HF patients and is closely related to
prognosis.*?* Disuse atrophy can also contribute to muscle
wasting in various diseases, and studies have identified that
patients with HFDM compared with those with HF are less
likely to be referred for, and participate in, cardiac
rehabilitation.*?® As such, the role of physical inactivity
should be investigated as one potential factor that may exac-
erbate muscle atrophy in patients with HFDM, while improv-
ing referral and participation should also be encouraged given
its benefits on muscle atrophy.? One major issue to address is
whether patients with HFDM represent a unique clinical phe-
notype or an additive result of DM and HF pathologies, both
at the clinical and muscle tissue and at the molecular level. At
present, there are not enough data to accept or refute these
notions, with more extensive data and interventions required
to answer this question, which is further limited by the lack of
adequate pre-clinical experimental models of HFDM that
closely reflect the patient and skeletal muscle phenotype.

Conclusions

The prevalence of HFDM is increasing globally, and these pa-
tients have worse symptoms and poorer survival compared
to patients with HF or DM alone, while traditional pharmaco-
logical treatments show limited benefits. Despite much re-
search performed within the HF or DM conditions, limited
evidence has been collected regarding the skeletal muscle
phenotype in patients with HFDM. However, initial data indi-
cate greater skeletal muscle dysfunction and atrophy in pa-
tients with HFDM, which may be an important factor
causing worse symptoms and poorer clinical outcomes. Early
evidence indicates that potential mechanisms of atrophy in
HFDM could involve mitochondrial dysfunction, insulin resis-
tance, inflammation, and lipotoxicity (Figure 2). Many of the
atrophic pathways and mechanisms discussed in this review
are linked to increased ROS production (e.g. activation of
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protein degradation, blunted protein synthesis, mitochondrial
dysfunction, inflammation, apoptosis, lipotoxicity, calcium
leak, and endothelial dysfunction). As such, we speculate that
a higher pro-oxidative state in patients with HFDM could be
one unifying mechanism mediating the exacerbated fibre at-
rophy in this clinical population. Future studies are clearly re-
quired to clarify these questions, and it should be seen as an
urgent medical priority given that this patient population is
expanding despite limited therapeutic treatments.
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