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Abstract  21 

Tropical biomes are the most diverse plant communities on Earth, and quantifying this diversity 22 

at large spatial scales is vital for many purposes. As macroecological approaches proliferate, the 23 

taxonomic uncertainties in species occurrence data are easily neglected and can lead to spurious 24 

findings in downstream analyses. Here, we argue that technological approaches offer potential 25 

solutions, but there is no single silver bullet to resolve uncertainty in plant biodiversity 26 

quantification. Instead, we propose the use of AI approaches to build a data-driven framework 27 

that integrates several data sources - including spectroscopy, DNA sequences, image recognition 28 

and morphological data. Such a framework would provide a foundation for improving species 29 

identification in macroecological analyses while simultaneously improving the taxonomic 30 

process of species delimitation.   31 
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The challenge of tropical plant diversity  32 

Much of global biodiversity is concentrated in tropical biomes [1]. Yet, the tropics face the twin 33 

challenges of being among the most data-deficient regions on Earth in terms of occurrence 34 

records [2], while also being among the most threatened by rapid human development and 35 

climate change [3]. As a result, describing, measuring, monitoring, and conserving tropical 36 

biodiversity is now recognized as a priority by relevant intergovernmental panels [3]. Despite 37 

three centuries of biodiversity research, we remain unable to quantify tropical plant diversity, i.e. 38 

to provide the fundamental spatially explicit information required to effectively monitor and 39 

conserve tropical ecosystems; and to answer vital questions such as how many species exist in 40 

tropical forests, which areas are the most species rich, and which areas house the most unique 41 

(endemic) species. 42 

Prominent voices have recently called for a Linnaean renaissance, arguing that an increase in 43 

field biologists cataloguing and describing this diversity is urgently required [4]. Despite this call 44 

to arms, the number of biologists collecting field data in the tropics continues to decline [5]. 45 

Although an increase in field collections is essential, quantifying biodiversity in the highly 46 

diverse tropics is not only an issue of boots on the ground. Each year field biologists continue to 47 

collect large amounts of species occurrence and abundance data, but taxonomic uncertainty 48 

surrounding these data persist. Furthermore, vast quantities of data are increasingly being 49 

combined to develop large synthetic databases [6,7]. While such datasets are an essential tool for 50 

assessing large-scale vegetation responses to global change, the accessibility of such huge 51 

datasets makes it easy to overlook two issues associated with these data: (i) many areas in the 52 

tropics remain unexplored and lack collections of museum specimens and ecological inventories; 53 

and (ii) significant underlying uncertainties in tropical plant taxonomy persist. 54 
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One of the main innovations in biodiversity research over the last decades is the increasing 55 

appreciation for different dimensions of diversity beyond taxonomic species diversity, including 56 

functional and phylogenetic diversity, as well as more abstract proxies such as remotely sensed 57 

spectral diversity and environmental DNA. Although these approaches can provide insights into 58 

broad biodiversity patterns and the ecological mechanisms underlying them at landscape or 59 

community scales, many of the fundamental processes underpinning biodiversity patterns (e.g., 60 

extinction, speciation, competition) occur at the species or population level. While the huge task 61 

of identifying species remains daunting, monitoring species-level changes in tropical forests, 62 

which requires accurate species identifications, will be essential to understanding and mitigating 63 

the impacts of global change. 64 

Limitations with current process of quantifying tropical plant diversity 65 

Currently, almost all studies seeking to quantify tropical plant diversity are underpinned by 66 

morphological botanical approaches to species identification (Box 1). However, attempts to 67 

quantify taxonomic uncertainty in large synthetic datasets have revealed substantial errors [8–68 

10]. We suggest that these uncertainties arise from limitations in both underlying taxonomic 69 

frameworks (point 1) and the process of species identification (points 2-7): 70 

1. The taxonomy of many tropical plant lineages is out of date or incomplete. For example, 71 

up to 40% of the species described in neotropical plant monographs are new to science, 72 

while in other cases re-circumscribed species can 'sink' as synonyms multiple species 73 

(sometimes >10) previously considered distinct [11,12]. 74 



 

5 
 

2. Local herbaria are often relied upon to identify species, but these collections are often 75 

incomplete and specimen identifications may not be reliable [13]. Furthermore, specimen 76 

identifications are rarely standardised among herbaria, but see [14,15].  77 

3. Species level identifications in diverse tropical forests often require samples of fruits or 78 

flowers. Given the often short and unpredictable phenologies of many tropical species 79 

[16], short field research visits can easily miss the reproductive period of species, 80 

meaning species level identifications are made on vegetative samples, thereby decreasing 81 

their accuracy.  82 

4. Voucher samples (see glossary) from ecological inventories, when collected, frequently 83 

lack reproductive structures (flowers and fruit) and are rarely accepted by herbaria. 84 

Therefore, ecological inventories typically contribute little to species delimitation and 85 

developing taxonomies, despite considerable potential to do so [17].  86 

5. In practice, identifying species based on morphological characters is, at least to some 87 

extent, subjective if it cannot be done by the taxonomic specialist for a given group, 88 

which is seldom the case. Identifications by non-specialists vary and depend on previous 89 

experience and resources available (i.e., taxonomic monographs, flora accounts and 90 

specimens identified by taxonomic specialists).  91 

6. In many cases, vouchers are not collected for every individual plant within inventory 92 

plots. Instead, individuals from the same plot that are deemed to be the same species are 93 

grouped together and one or more vouchers are collected to represent that group. This 94 

effectively means that the initial judgment of the field botanist introduces uncertainty 95 

which is difficult to quantify post-hoc.  96 



 

6 
 

7. In ecological inventories, there is a lack of taxonomic standardization amongst plots and 97 

surveys, hampering the use of these data both within and among different tropical 98 

regions. This is true of both named species and especially the unnamed 99 

“morphotypes”(see glossary). Morphotypes are often standardized within a plot or 100 

dataset because identifications are done by the same individual or team; but they are 101 

rarely standardized among datasets (but see [18,19]).  102 

Together these uncertainties lead to many individual tropical plants remaining unidentified or 103 

incorrectly identified, despite being collected or observed in inventory plots. Because much of 104 

this uncertainty remains unquantified, it is propagated through to downstream data products such 105 

as large-scale biodiversity databases. While removing taxonomic synonyms and flagging 106 

erroneous coordinates are crucially important steps in cleaning botanical data [20], this is not the 107 

same as standardizing taxonomy because it still assumes that underlying species identifications 108 

are correct.  109 

Recent initiatives have addressed some of these issues by promoting closer collaboration 110 

between taxonomic specialists and ecologists [17], digitizing and standardizing voucher 111 

specimens among plot networks and herbaria, as well as providing taxonomically verified and 112 

expertly curated regional scale species lists [10,21].   113 
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Technological approaches to quantifying tropical plant diversity 114 

DNA approaches  115 

The best-known technological solution for addressing issues with species delimitation and 116 

species identification is DNA sequencing. DNA sequences are ideal for estimating evolutionary 117 

relationships among individuals, populations and species and therefore now form the basis for 118 

lineage-based species concepts [22]. Furthermore, DNA sequencing can be applied both to 119 

vegetative samples, and now, using next-generation approaches such as target capture, even to 120 

two-century old herbarium collections [23]. Because of these advantages, DNA-based 121 

approaches were predicted to revolutionize biodiversity research in the tropics [24,25]. Although 122 

DNA-based approaches are used in both the delimitation and identification of tropical plants, 123 

neither of these tasks have been transformed by DNA-based techniques, and both are still most 124 

frequently based on traditional morphological methods. 125 

One approach to aid species identification is DNA barcoding [26] (see glossary). Although it 126 

has been highly successful in some taxonomic groups (e.g. moths [27]), DNA barcoding has had 127 

less impact on tropical plant biodiversity surveys [28,29]. This lack of success can be attributed 128 

in part to the incomplete reference library that is required for identification by barcoding, which 129 

requires existing sequences from authoritatively identified specimens. In addition, while standard 130 

barcodes can distinguish a high percentage of species at some local sites (e.g., 97% tree species 131 

on Barro Colorado Island [30]), they are less accurate at other sites [28]; and at a global scale, at 132 

least 30% of tropical plant species cannot be differentiated using these barcodes, because they 133 

are insufficiently variable both in lineages with slow mutation rates relative to speciation rate, 134 

and in groups showing recent and rapid divergence [31]. 135 
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Species discrimination can be improved by adding additional, more variable, DNA loci. The 136 

advent of next-generation sequencing technologies (see glossary) has made the sequencing of 137 

high numbers of such additional loci feasible over the past decade. For example, rather than just 138 

two standard plastid barcodes (rbcL and matk; 1400 bp in total), whole plastome sequences can 139 

provide 150,000 bp of sequence. Hybrid capture techniques work well with degraded DNA from 140 

herbarium specimens and can simultaneously offer sequence from thousands of individual 141 

nuclear genes, some of which may work in combination as barcodes angiosperm-wide [32]. 142 

Genome skimming offers access to loci from plastid, mitochondrial and repeated nuclear regions, 143 

though low copy nuclear genes are more difficult to assemble [31]. The costs of these approaches 144 

are decreasing, but at this time they remain a limiting factor to allow use at massive scales. 145 

In some cases, these large datasets cannot solve fundamental conceptual issues such as the 146 

failure of plastid genomes to track species boundaries because of interspecific gene flow [31], 147 

though this can be mitigated by using multiple, unlinked nuclear loci. In addition, there is a 148 

practical problem that new loci will require the construction of new sequence reference libraries 149 

to allow them to be used as identification tools, and the reference libraries themselves pre-150 

suppose a stable and accurate underlying taxonomy. Yet, these issues may be overcome rapidly 151 

by using next-generation DNA sequence data as a foundation for species delimitation as part of 152 

an integrative taxonomic approach (see glossary [33–35]). Such an approach will 153 

simultaneously improve taxonomy and build a barcode reference library for the loci used. 154 
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Spectroscopy approaches 155 

Other technological approaches that could aid species delimitation and identification include lab-156 

based spectroscopy and remotely sensed imaging spectroscopy (see glossary). Although 157 

spectroscopy is a well-established discipline, it is rarely considered for quantifying biodiversity 158 

in the tropics [36]. Spectroscopy dramatically expands the dimensionality of a vegetative plant 159 

sample, effectively providing several hundred characters that reflect different chemical and 160 

physical properties of an individual’s leaves or wood. As variation in foliar chemistry and 161 

physical properties is greater among species than within species [37], spectroscopy can 162 

differentiate among species in a manner similar to “chemocoding” [38] but with considerably 163 

lower running costs. 164 

The few studies that have tested the accuracy of spectroscopy in determining species 165 

identifications have produced promising results, often surpassing the accuracy typically obtained 166 

by DNA barcoding in tropical plant lineages [39–42]. For example, trees in two families for 167 

which classical DNA barcodes provide less resolution [28], the Burseraceae and Lecythidaceae, 168 

were identified by spectroscopy to species level with an accuracy of 97-98 % [40-41]. In a wide-169 

ranging study, 1449 canopy species in the Andes – Amazon region were classified to species 170 

level with an accuracy of >85% [37]. Other research has demonstrated the utility of using bark 171 

and branch tissue in addition to leaf tissue for spectroscopic identifications [39,41]. One recent 172 

study across a number of Amazonian taxa found that species level identifications made with 173 

branch samples had an accuracy > 90%, which could be increased to 94% if leaf tissue was 174 

included[39]. 175 
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Spectroscopy approaches have also been used effectively in the species delimitation process. For 176 

example, spectroscopy was recently used alongside DNA data to delimit the species complexes 177 

Protium heptaphyllum (Burseraceae) and Pagamea guianensis (Rubiaceae) into two and fourteen 178 

distinct species, respectively [34,35]. 179 

Spectroscopic approaches for species identification share many of the advantages that DNA 180 

barcoding has over traditional approaches; for example, only vegetative material (which can be 181 

older and dried) is required to make identifications which are quantitative and reproducible. 182 

While correct use of spectrometers and the analysis of spectral data also requires time and 183 

dedication, training in these approaches can be undertaken in weeks to months rather than years. 184 

Importantly, spectroscopy holds several key advantages for species identification in addition to 185 

those shared with DNA-based approaches. First, spectra reflect not only the taxonomic identity 186 

but also several functional traits (e.g. foliar nitrogen and water content) [43–45], which can 187 

improve our understanding of the interaction between taxonomic diversity and ecosystem 188 

functioning. Second, imaging spectroscopy provides a method for scaling up biodiversity 189 

estimates to far greater areas than will ever be possible with field work alone (Box 2). Third, 190 

while the initial expense of a precise lab-based spectrometer is not insignificant, many thousands 191 

of samples can be processed with relatively modest maintenance and operation costs and can be 192 

operated in the field or herbarium without the need of a wet lab.  193 

Like DNA-based approaches, spectroscopy will not solve all identification problems. Several 194 

factors including: leaf ontogeny, leaf light environment and leaf sample preparation are known to 195 

increase variation within species; therefore, a standardized protocol will be essential. 196 

Furthermore, though initial results are promising, spectroscopy for botanical identification has 197 
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not been widely tested across lineages and locations, so we do not yet know the limits to these 198 

approaches. Finally, because spectroscopy provides a phenotypic measurement, it does not 199 

represent an alternative for lineage-based species delimitation methods for which DNA 200 

sequences are required [22]. 201 

Artificial intelligence (AI) approaches  202 

Together, traditional morphological botanical approaches alongside genetic and spectroscopic 203 

technologies provide huge potential for identifying plant individuals by expanding the data 204 

dimensionality of vegetative samples. However, like traditional identification approaches, 205 

genetic and spectroscopic techniques are still dependent on comparisons with a reference library, 206 

which is currently lacking for many tropical species. Once we have started to develop a unified 207 

reference library using a combination of DNA and spectroscopic approaches alongside 208 

morphological characteristics, how can we make robust, repeatable and objective comparisons 209 

with this reference library across the tropics? 210 

Artificial intelligence (AI, see glossary) presents a suite of robust and objective computational 211 

methods with huge potential for taxonomic identification. In recent years there has been an 212 

explosion in the use of AI approaches to a range of ecological questions including species 213 

identification [46–48]. This increase is due largely to the accessibility of high-performance 214 

algorithms and the availability of high-performance GPU -accelerated distributed computing 215 

systems. 216 

Recent efforts have used deep learning approaches (see glossary) to successfully identify plant 217 

species from images taken both in the field and in herbaria [46,49]. However, such efforts have 218 

proven more challenging in tropical ecosystems [50], where identifications made by expert 219 
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botanists are more accurate. This may be because in species-rich tropical regions many species 220 

can appear extremely similar, and image-based approaches cannot detect the subtle features such 221 

as texture that expert botanists use to distinguish samples. Alternatively, the poor performance of 222 

image-based classifiers may be due to insufficient or inaccurate image training data across taxa. 223 

Further testing of the limits of image-based classification is required with expanded image 224 

libraries. Nevertheless, while image-based approaches are likely an effective tool to classify 225 

samples to the family or genus level, we suggest that AI approaches will be more successful at 226 

species level classification if they are expanded to include more feature rich data such as foliar 227 

spectra and DNA barcodes. 228 

An important limitation of AI approaches, particularly deep learning, is that they require 229 

extensive training data. Large online image libraries can be rapidly developed; for example, 230 

several hundred thousand images of 10,000 Amazonian plant species [50] have been collected. 231 

However, these libraries are based on online image search engine results that have not been 232 

authoritatively identified and therefore will contain significant error. Libraries of DNA barcodes, 233 

spectra and well identified herbarium specimens are smaller, but better curated. Initial collections 234 

of standard DNA barcodes and foliar spectra have been made for many thousands of tropical 235 

species, providing a solid foundation for future training data [37]. Furthermore, DNA, images 236 

and potentially spectra can be readily extracted from herbarium vouchers, so building large 237 

databases is just a matter of funding and will.  238 
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Developing a framework for progress  239 

The framework we outline here will require an integrative multidisciplinary approach (figure 1), 240 

building upon existing collaborations (e.g. among systematists and ecologists) as well as forging 241 

entirely new ones (e.g. with data scientists). The greatest challenge to our proposed framework is 242 

that it relies on an underlying reference library that must be dynamic to future changes in plant 243 

systematics and available to the many thousands of tropical biodiversity scientists. How can such 244 

a reference library be built for the many thousands of plant species that exist in tropical forests?  245 

A first step is to reduce the scope of the task. Skilled field botanists can often assign individuals 246 

to family or genus with little error. Therefore, following the current paradigm of developing 247 

family or genus-level reference collections, presents the most tractable pathway that builds on 248 

current knowledge and resources. Additionally, concentrating on those lineages that contain 249 

many ‘hyperdominant’ species [51], would reduce the taxonomic uncertainty surrounding those 250 

species that dominate ecosystem functioning [52]. Several lineages containing hyperdominant 251 

species already have well developed molecular phylogenies (e.g. Inga (Fabaceae), Protium 252 

(Burseraceae)). By prioritizing these dominant lineages, we can build a modular reference library 253 

which can be expanded, thereby balancing near term practicality with long term potential. As 254 

complete lineage specific modules are populated with relevant DNA and spectral reference 255 

libraries, deep-learning classification models can be developed and published in publicly 256 

available online repositories [Box 3]. 257 

The next step will be to apply these approaches broadly across existing datasets including 258 

herbarium collections and permanent plot networks. Working with herbaria across the tropics, it 259 

will be possible to transform these vast collections into unified identifications for potentially 260 
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thousands of species. There are significant costs associated with meeting this challenge at scale; 261 

in this respect, spectral approaches are likely the most cost-effective option, and developing 262 

standardized protocols to take uniform spectral measurements represents a priority.  263 

Not all individuals will be identified with a high degree of confidence by deep learning 264 

classification models. Unidentified individuals should be highlighted as either taxonomically 265 

described species missing from the reference collection, or putative novel species that remain 266 

undescribed. Therefore, although the primary focus of the workflow we outline is to improve 267 

species identification, this process will simultaneously accelerate the process of species 268 

discovery. 269 

Concluding remarks 270 

Although the idea of scanning a tropical forest plant specimen with a handheld device and 271 

instantly obtaining a correct species-level identification [53] remains science fiction for now, the 272 

technological approaches we outline have significant potential for revolutionizing our ability to 273 

quantify plant diversity in tropical forests at global scales in coming decades. The limitations we 274 

describe could be overcome by integrating these new technologies to generate a dynamic, data-275 

driven framework for biodiversity research, while simultaneously strengthening the link between 276 

ecological and taxonomic practices.   277 

There have been several previous calls to leverage different forms of technology to revolutionize 278 

species identification [53,54]. We are now at a stage where the technology has come of age and 279 

necessary tools for identification are available, affordable, and tested. It is time to move beyond 280 

demonstrating the capabilities of these tools through small scale comparisons, and instead begin 281 

to develop a unified, objective and scalable framework from which we can quantify tropical 282 
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plant diversity globally and answer some of the most pressing issues in tropical plant ecology 283 

(see Outstanding Questions).  284 
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Box 1 Current approaches for quantifying plant diversity [400 words] 285 

The quantification of plant diversity consists of two distinct elements, hereafter labelled ‘species 286 

delimitation’ and ‘species identification’. Species delimitation is the process of delimiting plant 287 

species based on characters that generally come from macro-morphology, but may also include 288 

micro-morphology and genetic data. Species delimitation is typically carried out by taxonomists, 289 

who are concerned with producing taxonomies for specific lineages and describing new species. 290 

This species delimitation process therefore develops the underlying taxonomy that underpins all 291 

subsequent biodiversity analyses. Recent approaches that integrate data sources and especially 292 

DNA sequence data have proven powerful in delimiting tropical species, for example revealing 293 

cryptic variation in widespread Amazonian species [34,35]. 294 

Species identification is the process of assigning individual specimens to known plant species 295 

using pre-existing taxonomy. In tropical forests this process is often carried out by ecologists 296 

who establish vegetation survey plots where individuals are identified to the finest possible 297 

taxonomic level and often measured for diameter, height and other plant traits. Collections of 298 

survey plots can then be grouped into plot networks, which can be used to ask ecological 299 

questions at local, landscape, regional or even global scales. 300 

Identifying an individual plant sample can take many forms. A skilled botanist may be able to 301 

make a genus or species level identification in the field if the individual belongs to a species that 302 

is particularly easy to identify or is locally or regionally common. More commonly, though, this 303 

process requires a representative voucher sample for each species found in the field subsequently 304 

to be compared with reference collections in local herbaria as well as increasingly available 305 

digital herbaria, published taxonomic treatments and keys. Using a range of morphological 306 
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characters, botanists are then able to assign an individual to a species. Of course, many 307 

individuals in forest inventory plots cannot be identified to species level. In these instances, 308 

unidentified individuals are assigned to ‘morphospecies’. These morphospecies may be abundant 309 

and well-known locally but awaiting scientific description, or existing species that have not been 310 

previously collected in that locality, or errant discriminations that ultimately will be integrated 311 

into existing species.  312 

Vouchers are not always collected for every individual within a forest census plot, but more 313 

often only a representative voucher for every species or morphospecies encountered within the 314 

plot is collected. Implicit in this process is the assumption that the collecting teams are able to 315 

accurately delimit different species at the plot scale even if they are not able to assign an 316 

identification. 317 

  318 
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Box 2 Scaling up biodiversity estimates with imaging spectroscopy [400 words] 319 

A major advantage of spectroscopic approaches is that imaging spectrometers can be mounted on 320 

airborne and satellite platforms, and therefore can be used to scale-up biodiversity estimates 321 

across vast spatial scales (e.g. 106 km2) [57,58]. This is important because most tropical forests 322 

occur in vast inaccessible areas of wilderness, and accumulating field data over such large scales 323 

would be impossible. Furthermore, existing approaches for scaling up ground-based biodiversity 324 

estimates across large areas of tropical forests have had limited success. For example, species 325 

distribution modelling approaches perform poorly in tropical forest regions because climate and 326 

edaphic gradients are either poorly characterized at relevant spatial scales (e.g., soil fertility) or 327 

represent relatively narrow breadth across large areas (e.g., precipitation). Indeed, equivalent 328 

performance to describe species distributions can be obtained through simple spatial 329 

extrapolation [59]. 330 

Imaging spectroscopy has now been used successfully to map different dimensions of tropical 331 

plant biodiversity at a range of scales, including landscape scale spectral alpha and beta diversity 332 

which are shown to be effective proxies of taxonomic alpha and beta diversity [60,61], as well as 333 

landscape and regional scale functional beta diversity [62,63] from foliar traits and species 334 

distributions [64]. 335 

Top-of-canopy reflectance spectra obtained from airborne or spaceborne platforms do not form a 336 

one-to-one relationship with leaf spectra collected in-situ due to variation in leaf orientation, 337 

canopy structure, soil reflectance, illumination conditions and viewing geometry [65]. This 338 

disconnect is increased when leaves are dried, making it difficult to scale directly from 339 
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herbarium specimens to the landscape. Nevertheless, species-specific mapping can be achieved 340 

across the landscape if training data are collected as canopy spectra in the field.  341 

A major limitation to imaging spectroscopy of tropical forests is that only the uppermost sunlit 342 

canopies are detected by sensors, therefore excluding the many thousands of species that never 343 

make it to the forest canopy. While understory species will remain hidden from imaging 344 

spectrometers, patterns of canopy composition correlate strongly with composition and diversity 345 

patterns in lower forest strata [61,66]. Therefore, canopy biodiversity may offer an effective 346 

proxy for understanding broader community level patterns. 347 

  348 
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Box 3 Open data and analytical tools [400 words] 349 

If the technological approaches that we advocate for here are to have widespread impact on 350 

biodiversity quantification in the coming decades, then the data produced need to be open and 351 

accessible to the many researchers working across tropical regions. Equally, the reference 352 

libraries necessary to form the taxonomic foundations on which machine learning models (see 353 

glossary) are based must be carefully curated and validated by expert systematists. Additionally, 354 

the computational approaches needed to build classification models require both significant 355 

computational expertise and resources, neither of which are possessed by most plant ecologists 356 

or systematists working in the tropics. Finally, plant taxonomy and systematics is a dynamic 357 

process, and classification algorithms must be flexible to revision if they are to be ‘future proof’. 358 

Working to reconcile these various requirements presents a major challenge. 359 

Fortunately, existing databasing tools provide several of the key elements required to overcome 360 

these challenges. GenBank ‒ an online publicly available database of DNA data for more than 361 

420,000 species ‒ has transformed genetic analyses since its inception [67]. GenBank is already 362 

used to store thousands of tropical plant DNA barcodes and full plastomes, and well-developed 363 

data pipelines exist for inputting and extracting future collections. In addition, the volume of 364 

online voucher specimens with images is increasing all the time, delivered by individual herbaria 365 

and aggregated internationally (e.g. [7]), with some exemplar national programmes that have 366 

mobilized  many small, local collection (e.g. [14,15]. Forestplots.net is an online resource for 367 

storing and sharing tree biodiversity and biomass data from tropical regions [68]. Crucially, this 368 

online repository now links individual trees to relevant voucher samples and their images, 369 

thereby providing a pathway for standardizing and revising identifications across locations. 370 

Linking vouchers to associated spectral or DNA reference material would provide the 371 
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infrastructure that is required to develop the approach we advocate. The Spectranomics and 372 

BRIDGE databases provide important examples of how to link voucher samples from tropical 373 

trees to coupled spectra and chemical measurements from the same individuals [69–71]. In 374 

summary, much of the core databasing infrastructure required to build reference libraries for 375 

multidimensional datasets have been developed, but these tools have existed in isolation from 376 

one another and are now ripe for integration. Building upon these foundations, and crucially 377 

making any future databases publicly accessible, will be essential.  378 

Computational literacy among biodiversity researchers has grown enormously in recent decades, 379 

particularly within the R environment, but building and training deep-learning classification 380 

models still need to be developed by specialist groups. Applying such models to newly collected 381 

data will be within the capabilities of many biodiversity researchers, particularly if a companion 382 

R package is developed as has been done successfully for the BIEN database [20]. As taxon-383 

specific reference libraries are developed and machine learning models are constructed, they can 384 

be rapidly published online (e.g. through GitHub) and seamlessly integrated into existing 385 

workflows.  386 
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Glossary Box (500 words) 387 

Voucher sample: A dried and pressed plant sample representative of an individual specimen 388 

that is used for species identification. Samples can be vegetative (consisting of leaves and small 389 

branches) or fertile (including flowers and/or fruits). 390 

Morphotype: A voucher sample that cannot be identified to species, and is therefore given an 391 

individual morphospecies code. 392 

Integrative taxonomy: The process of delimiting species by integration of different data types 393 

(e.g., morphological characters, chemical characters, DNA sequences), generally in a lineage-394 

based, phylogenetic framework. 395 

Spectroscopy: The study of the interaction between matter (in this case plant leaves or wood) 396 

and electromagnetic radiation (in this case frequently infrared radiation). By measuring the 397 

radiation that is reflected and absorbed from a sample across a range of wavelengths a spectrum 398 

of radiation is produced. This spectrum reflects the chemical and physical properties of the 399 

substance (leaf or wood sample) being measured. 400 

Imaging spectroscopy:  A branch of remote sensing where, for each pixel of the acquired 401 

image, reflected solar radiation is measured across a range of wavelengths, producing a spectrum 402 

for each pixel. 403 

DNA barcoding: The process of sequencing short sequences of DNA (400 – 800 base pairs), 404 

which can then be used to identify the species of an individual plant. For plants there are four 405 

established standard barcodes rbcL, matK, trnH‐psbA, and ITS2. 406 
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Next-generation sequencing: Also called high-throughput sequencing, encompasses a range of 407 

modern DNA sequencing approaches that allow for rapid sequencing of far greater quantities of 408 

DNA than was possible with traditional Sanger sequencing approaches. 409 

Artificial intelligence (AI): A suite of computational approaches that are able to perform tasks 410 

that require intelligent behaviour such as learning and problem solving. Here we include machine 411 

learning and deep learning approaches as subfields of AI. 412 

Machine learning: A branch of AI that includes a range of computational algorithms that are 413 

able to use training data to make predictions without being programmed explicitly to do so. In 414 

this context, machine learning approaches can be used to learn the differences among plant 415 

species and then use this learning to classify unknown individuals based on specified features. 416 

Deep learning: Deep learning can be considered a subset of machine learning. Unlike machine 417 

learning where relevant features are specified, in deep learning features are not specified, instead 418 

the entire dataset and relevant features are identified and used independently. Convolutional 419 

Neural Networks (CNNs) are a set of deep learning approaches that are increasingly being used 420 

in ecology. 421 

  422 
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Figure 1: Schematic of possible framework for unifying different approaches and data sources to 576 

make high confidence species level identifications using a range of data sources and AI 577 

classifications. The Green shaded box represents the start point of specimen collection. Yellow 578 

boxes represent different input data types that can be used for species identification or species 579 

delimitation. Purple boxes represent different species classification processes, including both 580 

human decision-making (hierarchical family classification) and AI approaches. Blue boxes 581 

represent different forms of reference material or training data required for the classification 582 

approaches. Classification models can be applied to different data types independently, therefore 583 

not all types of data are necessary for species identification, although combining different data 584 

types (e.g. DNA-barcodes and spectroscopy data) will increase accuracy. Red boxes represent 585 

possible incomplete identifications, while red shading indicate the ultimate end point of the 586 

framework. 587 


