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ABSTRACT 

Performance Analysis of 
Pyramid Mapping Algorithms for the Hypercube 

by 
Jing-Chiou Liou 

Comparative performance analysis of algorithms that map pyramids 

and multilevel structures onto the hypercube are presented. The pyramid 

structure is appropriate for low-level and intermediate-level computer vision 

algorithms. It is not only efficient for the support of both local and global 

operations but also capable of supporting the implementation of multilevel 

solvers. 	Nevertheless, pyramids lack the 	capability of efficient 

implementation of the majority of scientific algorithms and their cost may 

become unacceptably high. On a different horizon, hypercube machines have 

widely been used in the field of parallel computing due to their small 

diameter, high degree of fault tolerance, and rich interconnection that 

permits fast communication at a reasonable cost. As a result, hypercube 

machines can efficiently emulate pyramids. Therefore, the characteristics 

which make hypercube machines useful scientific processors also make them 

efficient image processors. 

Two algorithms which have been developed for the efficient mapping of 

the pyramid onto the hypercube are discussed in this thesis. The algorithm 

proposed by Stout [4] requires a hypercube with a number of processing 

elements (PEs) which is equal to the number of nodes in the base of the 

pyramid. This algorithm can activate only one level of the pyramid at a 

time. In contrast, the algorithm proposed by Patel and Ziavras [7] requires 

the same number of PEs as Stout's algorithm but allows the concurrent 



simulation of multiple levels, as long as the base level is not involved in the 

set of pyramid levels that need to be simulated at the same time. This low-

cost algorithm yields higher performance through high utilization of PEs. 

However it performs slightly worse than Stout's algorithm when only one 

level is active at a time. Patel and Ziavras' algorithm performs much better 

than Stout's algorithm when all levels, excluding the leaf level, are active 

concurrently. The comparative analysis of these two algorithms is based on 

the incorporation of simulation results for some image processing algorithms 

which are perimeter counting, image convolution, and segmentation. 
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CHAPTER 1 

INTRODUCTION 

1.1 The Hypercube Network  

The hypercube network has widely been used in the field of parallel 

computing because it offers a small diameter, high degree of fault tolerance, 

and rich interconnection structure that permits fast communication at a 

reasonable cost [1,8]. A d-dimensional hypercube Hd  is composed of 2d  nodes 

with d edges per node (i.e., each node in such a hypercube has d neighbors) 

[1]. A unique d-bit address is assigned to each node of the hypercube. An 

edge connects two nodes if and only if the address of these two nodes differ by 

a single bit. An edge is a communication link between two neighboring nodes 

which makes the hypercube a distributed memory machine, where 

information is passed in the form of messages. 

The hypercube topology has several important properties. First, it is 

homogeneous. This means that for any dimension d, given any two vertices 

p,q in Hd, there is a graph isomorphism of Hd  onto itself which maps p onto 

q. To see this, let r = label(p) XOR label(q) ( all logical operations are 

performed bitwise) [4]. The mapping which maps a vertex s to the vertex 

labeled r XOR label(s) is one such isomorphism. Homogeneity implies that 

all nodes can be treated equally, and in particular it means that in a 

computer implementation it is natural to allow input/output to all nodes. It 

also means that if an algorithm treats a node specially (for example, if node 0 

is used as the root of a tree), then by using XOR the algorithm can be 

"translated" so that any other desired node is the special one. Some other 

1 



structures such as pyramids and meshes are not homogeneous, since the 

apex is unique and corners can only be mapped to other corners. 

Routing messages between nodes is particularly simple in a hypercube.  

A message from one node p to another node q has to travel along at least as 

many edges as the number of bits by which the addresses of p and q differ 

(i.e., number of l's in the result of the XOR operation between the binary 

addresses of p and q). A message from p is sent to a neighboring node r 

whose address differs in only the ith bit from the address of p (i.e., where the 

ith bit of the result of the XOR operation is 1) and so on until the message 

reaches q. This process produces a path of minimum length. Notice that 

there are many such paths of minimum length. The diameter of a topology is 

defined as the largest distance between pairs of nodes. The diameter of Hd 

is d=log 2(number of nodes). For comparison, the diameter of the 2-

dimensional mesh is the square root of the number of nodes, while in a 

pyramid it is 2xlog2(number of nodes in the base). 

Each node in Hd  has degree d, meaning that it has d edges. In a 

physical implementation the degree of some nodes must be d+1 to allow 

communication to the outside world, so if communication is homogeneously 

implemented then all nodes will have degree d+1. The hypercube is a 

modular structure. Hence, hypercubes are eminently partitionable into 

smaller hypercubes. For example, Hd=1  can be partitioned into two disjoint 

hypercubes Hd. One copy consists of all nodes having 0 in a particular bit 

position of d+1 bit addresses and the other consists of all nodes having 1 in 

that coordinate. For example, as shown in Figure 1.1, a 3-dimensional cube 

H3  consists of two distinct copies of H2  with one copy having 0 in the most 

significant bit and the other copy having 1. 

2 
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Thus, any number of hypercubes of smaller dimensionality d can be 

mapped simultaneously into the hypercube with a larger dimensionality D 

provided 2D  ≥ 2k, where k = the sum of the dimensions of all such small 

hypercubes to be mapped into HD. Hence, the hypercube provides an 

environment with a great deal of flexibility for dynamic allocation of cubes. 

Due to its highly regular and dense structure, the hypercube has also been 

proven to be a highly fault-tolerant network. 

Figure 1.1  Small Hypercubes 

1.2 Multilevel Systems  

A multilevel system is a hierarchically-structured array of processors, which 

implements most of the variations of pyramidal systems. The basic structure 

of the multilevel system is pyramid-like [13]. Hence, these systems are 

composed of successive layers of mesh-connected arrays of PEs. Each PE is a 
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processor along with some local memory. The number of PEs in the arrays 

decreases with the increase of the level number, where the lowest level 

number corresponds to the leaf level. In addition, the size of the leaf level is 

2nx2n and the reductions between pairs of neighboring levels are 2mx2m, 

where m are natural numbers, and m may have different values for different 

pairs of neighboring levels. Only pairs of neighboring levels can 

communicate directly with each other. PEs are connected to each other by 

point-to-point bidirectional communication channels and the number of data 

transfer registers (DTRs) of any PE is equal to the number of its 

communication channels. The characteristics of these system are as follows: 

(1) They are composed of identical PEs. (2) They are not necessarily single-

rooted systems. (3) There is a single controller per level (i.e., each system 

operates in the MSIMD mode of computation). 

The pyramid is a special case of multilevel systems with a single apex 

and the reductions between successive arrays are 2x2. In the standard 

pyramid configuration, each processor at any level, except for the processors 

at the lowest level, is directly connected to four children located at the 

immediately lower level, and the size of each array is 1/4 the size of the array 

at the immediately lower level. In the rest of the discussion Pn  denotes a 

standard pyramid with 2nx2n  nodes at its leaf level. Such a pyramid has n+1 

levels. Figure 1.2 shows the P2  pyramid with base size 42=16. 

In general, the nodes on level i, 0 ≤ i ≤ log n (the base nodes are on 

level 0) are connected as an n/21  x n/21  mesh-connected network. As shown in 

Figure 1.2, on each level, we denote by (r,s) the node in position (r,$) on that 

level 0 ≤ r, s ≤ (n/2i )-1. Notice that a pyramid with base size n2  has no more 

than 4n 2/3 nodes. 



Figure 1.2 The P2  pyramid with base size 42=16 

Standard pyramids with very powerful PEs, having 10 or 11 levels and 

being used to process images of size 512x512 or 1024x1024, are impossible to 

efficiently build with the current technology. Therefore, alternative hardware 

solutions need to be investigated [9]. For example, the total number of levels 

could be reduced by increasing the reductions between neighboring levels. 

Sometimes, a speedup of computation is achieved by using pyramid-like 

systems that have small reductions at lower levels to enable the application 

of standard multiresolution techniques, while larger reductions at higher 

levels allow for the fast collection of information extracted at lower levels. 



1.3 Applications of Multilevel Systems 

Multilevel systems have been widely used in the low-level and intermediate-

level phase of image processing and computer vision (IP & CV). The main 

goal of the low-level and intermediate-level phases of IP & CV is to locate 

objects present in images and then produce a description of them; this 

description is then used by the high level image understanding tasks to 

identify individual objects and their spatial relationships in the given scene. 

The low-level and intermediate-level phases of IP & CV are characterized by 

both local and global operations, when the two-dimentional array structure of 

an image is considered, with the majority of the operations being local. 

Multilevel systems support efficiently both local and global operations; they 

are also suitable for divide-and-conquer techniques [8]. As a consequence, 

various algorithms that utilize such systems have been proposed [9,2]. 

We use for perception images input into the retina-like base array of 

multilevel systems (typically, the pyramid). From that point, a number of 

different approaches can be taken. 

• The system could first find edges, regions, and other features, using 

local array operations. These can then be successively averaged and / or 

grouped together by linking them moving up, through, and down the system. 

• Intermediate-level and higher-level processors could be used in 

parallel algorithms to find contours, regions and intrinsic images, build up 3-

dimensional images, and try to match sub-regions of this abstract image with 

models of objects stored in memory. 

• A whole hierarchy of abstractions could be built, each level 

transforming the results of other levels. 

• The system could find features and / or segment the image and 

directly process regions of interest. 



• Features could be extracted from the image to generate abstract 

feature images, and also collected, compounded and converged into higher-

level abstract images. 

1.4 Motivations and Objectives 

The hypercube network has achieved a marked popularity in the field of 

parallel computing. Some systems such as Intel iSPC, NCUBE, and 

Connection Machine are commercially available. In contrast, powerful 

pyramid machines are not cost-effective, difficult to build with current 

technology, and have limited applications. However, the hypercube is a 

general purpose topology which is capable of efficiently emulating a wide 

variety of networks, such as the mesh [14], the pyramid [4,5,6], and the 

hyper-pyramid [15]. Thus, the problem of simulating the pyramid on the 

hypercube is very important. Several algorithms like Stout's [4], Lai-White's 

[5,6], and Patel-Ziavras'[7] have been developed to embed pyramids into 

hypercubes. 

Studying these algorithms reveals the fact that Lai-White's algorithms 

need a (2n+1)-dimensional hypercube H2n+1  to simulate a Pn  pyramid with 

2nx2n  PEs at its leaf level while Stout's and Patel-Ziavras' algorithms need 

an H2n  hypercube. This means that Stout's and Patel-Ziavras' algorithms 

require only half the number of PEs needed by Lai-White's algorithm to 

simulate the same pyramid. However, Lai-White's algorithms allow the 

concurrent simulation of all levels of the pyramid while Stout's algorithm 

allows only one level of pyramid to be active at a time. On the other hand, 

Patel-Ziavras' algorithm also allows the concurrent simulation of all levels 

excluding the leaf level of the pyramid. 



With the need of the H2n  hypercube to simulate a Pn  pyramid and the 

capability of simulating all levels simultaneously except for the leaf level of 

the pyramid, Patel-Ziavras' algorithm is a compromise between Stout's 

algorithm and Lai-White's algorithm. Therefore, although Lai-White's 

algorithms achieve higher performance than Stout's algorithm when multiple 

levels of the pyramid need to concurrently activate, they will not be 

considered useful algorithms due to their higher cost and lower utilization ( 

Notice that some PEs are never used in Lai-White's algorithms). 

Thus, the main objective of this research is to explore a comparative 

analysis based on analytical techniques involving Stout's algorithm and 

Patel-Ziavras' algorithm for the mapping of the pyramid onto hypercube. In 

addition, this thesis also shows the mapping of multiple pyramids and  

overlapped pyramids onto the hypercubes. Simulation results for some 

important image processing algorithms such as finding the perimeter of an 

object, 2-D convolution, and Segmentation are also included. 

1.5 Thesis Outline 

This thesis is organized as follows. Chapter 2 discusses existing algorithms 

that map pyramids onto hypercubes. The mapping of overlapping pyramid 

structures onto the hypercube is discussed in the last two sections of Chapter 

2. Comparative analysis of these existing algorithms is also included. 

Various simulation results are presented, and the mapping algorithms are 

compared in Chapter 3. Conclusions are presented in Chapter 4. 



CHAPTER 2 

EXISTING MAPPING ALGORITHMS 

2.1 Performance Measures 

The analytical technique being used in this research incorporates three 

measures of the cost of graph mappings, namely expansion, dilation and 

congestion. The function h: G →  G' represents the mapping of the source 

graph G onto the target graph G'. It is a mapping of the vertices on G into 

the vertices of G' in a one to one fashion. The three measures are then 

defined as follows [6]: 

Expansion: The expansion of h is the ratio of the size of V(G') to the 

size of V(G) (i.e., │V(G')│  / │V(G)│ , where V(G) and V(G') are th vertex sets of 

G and G' respectively, and │V(G)│  and │V(G')│  are the numbers of elements 

in those sets). When │V(G')│≥│V(G)│, the expansion measures how much 

of the target graph G' is not assigned nodes from the source graph G. The 

closer the value of this measure to one, the smaller the portion of unused 

resources in G'. 

Dilation: When two neighboring nodes from G are mapped onto two 

distinct nodes in G', the dilation of the edge connecting the two nodes in G is 

the length of the corresponding path in G'. The maximum dilation is the 

maximum length of such a path in G'. The dilation measures the increase of 

the communication overhead when compared to one-hop transfers in the 

source graph. The smaller the value of the dilation, the lower the 

communication overhead associated with the mapping h. 

9 



Congestion: The congestion is the number of edges in G with the same 

image in G'. The maximum number of edges in G with the same images in G' 

is the maximum value of the congestion for the chosen mapping h. The 

smaller the value of the maximum congestion, the less amount of time that 

messages will have to wait in the queues of intermediate target PEs for 

communication channels to become available. 

2.2 Mapping Algorithm I 

The first mapping algorithm was presented by Stout [41. Stout's algorithm 

embeds the Pn  pyramid into the H2n  hypercube. Therefore, the total number 

of nodes in the hypercube is equal to the number of nodes in the base of the 

pyramid. Since a pyramid with a base of size 2nx2n  contains a total of 

2 2(n+1)/3 J nodes, the expansion is less than 1. 

The n-bit Reflected Gray Code is used to transform the row and 

column numbers in the base of the pyramid with a one-to-one mapping. 

Hence, each PE in the base of the pyramid is mapped onto a single PE in the 

hypercube by obtaining a PE address through interleaving of the bits in the 

transformed row and column numbers. This process produces a perfect 

mapping for the base of the pyramid. Thus, all PEs of the hypercube are 

used to simulate the nodes in the base (i.e., level 0) of the pyramid. To 

simulate the next level PEs of the pyramid, 1/4 of the hypercube's PEs are 

employed. As a matter of fact, one of the PEs in each sequence of four 

children will simulate their parent, and one of the children will have to send 

data to its parent over two communication links. The PEs which have the 

least significant bits 0 in the transferred row and column numbers are used 

to represent the parents in the next higher level. In general, PEs having the 

lower K bits of their encoded row and column numbers equal to 0 will 
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simulate nodes from level K of the pyramid. The two main advantages of this 

mapping are the small resultant dilation (i.e., the dilation of such a data 

transfer is equal to two) and the relatively small number of hypercube 

processors required. 

Figure 2.1 shows the mapping of the P3  pyramid onto the H6  

hypercube; the numbers within the squares represent level numbers. By this 

way, the dilation of all lateral edges in the pyramid is equal to one for all of 

the levels. However, the maximum dilation of this mapping is equal to two 

and corresponds to edges connecting pairs of parents and children as 

discussed above. The maximum congestion of this mapping is equal to two. 

As mentioned earlier, the total number of PEs in the target hypercube is 

smaller than the total number of nodes in the source pyramid. 

Since a single hypercube PE may be used to simulate a number of 

pyramid nodes from different levels (for example, the PE with row number 0 

and column number 0 is used to simulate nodes from all levels of the 

pyramid), the hypercube is not capable of simulating multiple levels of the 

pyramid at the same time. Thus, if multiple levels of the pyramid need to be 

active simultaneously, not only will some hypercube PEs not be capable of 

simulating nodes from several levels of the pyramid simultaneously but also 

may spend some extra time in switching from one simulation to the next; in 

addition, the storage needed to store data for the simulated nodes may 

become prohibitively large. Algorithms that keep active all, or a large subset, 

of the pyramid's levels most of the time are common; for example, algorithms 

that implement pipelining fall into this category [10]. However, this mapping 

does not consume a prohibitively long period of time if the pyramid algorithm 

proceeds level by level. As discussed earlier, the only delay occurs during the 

communication of values between parents and one of their children. 



RGC 
000 001 011 	I 010 110 133    101 	 100 	 

000 0,1,2,3 0 0 0,1 0,1 0 0 0,1,2 

001 0 0 0 0 0 0 0 0 

011 0 0 0 0 0 0 0 0 

010 0,1 0 0 0,1 0,1 0 0 0,1 

110 0,1 0 0 0,1 0,1 0 0 0,1 

111 0 0 0 0 0 0 0 0 

101 	0 0 0 0 0 0 	0 0 

100 0,1,2 - 	0 0 0,1 0,1 0 0 0,1,2 

Figure 2.1 Mapping the P3  pyramid onto the H6  hypercube with Algorithm I 
(RGC: 3-bit Reflected Gray Code) 

2.3 Mapping Algorithm II 

2.3.1 Mapping the Pyramid 

Similar to Algorithm I, the mapping algorithm proposed by Patel and Ziavras 

[7], Algorithm II herein, maps the Pn  pyramid onto the H2n  hypercube. 

However , in contrast to Algorithm I,  Algorithm II  allows multiple levels of 

the pyramid to be active simultaneously. More specifically, Algorithm II 

allows any subset of levels, excluding the leaf level (i.e., level 0), to be active 

at one time. The simulation of the leaf level excludes the simultaneous 

simulation of other levels in the pyramid because the total number of leaf 

nodes is the same as the number of PEs in the hypercube. 

The embedding algorithm proceeds as follows. Similarly to Stout's 

algorithm, the n-bit Reflected Gray Code is used to independently encode the 

row and column numbers of the leaf level of the Pn  pyramid. A perfect 

mapping is then produced for this level and the H2n  hypercube by either 

12 



concatenating or interleaving the bits of the encoded row and column 

numbers of the nodes in order to find the addresses of the corresponding 

target PEs in the hypercube. 

The mapping of level 1 nodes is also similar to the mapping produced 

by Algorithm I. More specifically, every PE of the next level of the pyramid 

has four children at the leaf level, so one PE is chosen from each square of 

four PEs to represent the parent PE. The PEs of the hypercube chosen to 

simulate these parents are those for which both the transformed column and 

row numbers have their least significant bits equal to 0 (as in Stout's 

algorithm). 

For each set of four PEs which represent sibling nodes at this level of 

the pyramid, a PE is again chosen to represent their parent at the next level. 

The PE chosen to serve as the parent is the neighbor of one of the PEs 

representing the children and all the parent PEs for level 2 form mirror 

images in squares outlined by the children. This procedure is repeated until 

the apex of the pyramid is reached. 

For example, as shown in Figure 2.2, the leaf nodes of the P3  pyramid 

are simulated by all 26  PEs of the H6  hypercube (using a one-to-one 

assignment). There are sixteen groups (squares) of 2x2 PEs at the leaf level 

that have a common parent at level 1. The parent at the next higher level 

(i.e., level 1) of the children in such a square is simulated by the PE marked 

with 1 in the square. These PEs marked with 1 are again grouped into 

groups of four PEs that have a common parent. Parents at the next higher 

level are simulated by the PEs marked with 2. Finally, the parent at the 

next higher level (i.e.,level 3) of the children marked with 2 is simulated by 

the PE marked with 3. Thus, PEs marked with 0,1,2 and 3 simulate nodes 

from level 0,1,2 and 3 respectively of the P3  pyramid. Since PEs that 



simulate different levels of the pyramid, except for the leaf level, are distinct, 

any subset of pyramid levels that does not include the leaf level can be 

simulated simultaneously. 

We can see that the maximum dilation of the embedding for an edge 

connecting a parent at level 1  and one of its children at level 0 is 2 (as for 

Algorithm I). However, the maximum dilation for higher levels is equal to 

three. The maximum congestion for lower and higher levels is 2. In general, 

both the maximum dilation and the maximum congestion associated with 

this mapping algorithm are 3 and 2 respectively. 

RGC 000 001 011 010 110 111 101 100 

000 0,1 0,2 0,3 0,1 0,1 0 0,2 0,1 

001 0 0 0 0 0 0 0 0 

011 0 0 0 0 0 0 0 0 

010 0,1 0 0 0,1 0,1 0 0 0,1 

110 0,1 0 0 0,1 0,1 0 0 0,1 

111 0 0 0 0 0 0 0 0 

101 0 0 0 0 0 0 0  0 

100 0,1 0,2 0 0,1 0,1 0 0,2 0,1 

Figure 2.2 The Mapping of the P3 pyramid onto the H6  hypercube with 
Algorithm II (RGC: 3-bit Reflected Gray Code) 

The above algorithm is generalized in the following subsection for the 

mapping of multilevel structures onto the hypercube. 
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2.3.2 Mapping Multilevel Structures 

The algorithm developed by Patel and Ziavras that maps the pyramid onto 

the hypercube can be extended for the mapping of multilevel systems. 

Multilevel systems have reductions 2mx2m, where m are natural numbers, 

instead of 2x2 as in the pyramid. In addition, the reductions between 

different pairs of neighboring levels may differ. In general, the mapping of a 

level with total reduction 2tx2t with respect to the base of the multilevel 

structure is identical to that of level n-t of the pyramid. 

The generalized algorithm to map a multilevel structure onto the 

hypercube is presented in mathematical form below. 

The introduction of the following variables is pertinent. 

• f(i,x,y).(j,k) is a mapping function which maps the PE(i,x,y) of the Pn  

pyramid onto the PE of the H2n  hypercube with transformed row and 

column addresses j and k respectively. 

• 1: for a Pl  

• m(i,i+1) : 2m(i,i+1)x2m(i,i+1)  is the reduction between levels i and 

i+1. 

• Grayk(m): k-bit Reflected Gray code of m. 

• k: auxiliary variable. 

The algorithm is as follows. 

i=0; k=0; 	f(/,x,y) = (Grayl(x),Grayl(y)). 

for i < l then 

i=i+1; k=k+m(i-1,i); 

f(i,x,y) .(Gray(l-j)(x).(j0s),Gray(l-j)(y).Grayj(k-1)); 

i-1 
where j = Σz=0 	m(z,z+1)                                                                                                              

is the total reduction between levels i-1 and i. 



As a consequence, the following are true: 

• Level 1 of Pl  is mapped onto PEs of H2n  having row and column 

addresses with 0 in their least significant bit. 

• Level 2 of P

l  

 is mapped onto the PEs of H2n  with row and column 

addresses equal to Gray(l-1) (0).0 and Graya(l-1) (1).0 respectively and 

its mirror images. 

The maximum dilation for edges that connect parent and children from 

levels i and i-1 respectively is 2m(i-1,i)+1. Stout's algorithm can also be 

extended for the mapping of multilevel structures. The resultant maximum 

dilation is equal to 2m(i-1,i). 

2.3.3 Mapping Overlapped Multilevel Structures 

Overlapped multilevel structures are similar to standard multilevel 

structures except that each parent is also linked to children from neighboring 

groups. For example, the overlapped pyramid structure is the same as the 

pyramid structure except that instead of four children each parent has 16 

children. It is obtained from the standard pyramid by extending the area 

occupied by the children by 50 % in each direction. Hence, each child has 

four parents. Such a structure is appropriate for some segmentation 

algorithms in image processing [3]. As a consequence, it becomes imperative 

to develop algorithms for mapping such structures onto hypercube. 

The algorithms of this chapter which map the pyramid or multilevel 

structures onto the hypercube are also applicable for the mapping of the 

corresponding overlapped structures onto the hypercube. However, the 

dilation and congestion will increase as the number of children which 

communicate with the same parent increases. For example, for the 
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overlapped pyramid the maximum dilation and maximum congestion will be 

4 and 8 respectively. 

2.4 Comparison with Other Existing Algorithms 

There are four existing algorithms that map pyramids onto hypercubes. Two 

algorithms, other than Algorithms I and II discussed earlier, were proposed 

by Lai and White [5,6]. Both Algorithms I and II need an H2n  hypercube to 

embed a Pn  pyramid. In contrast, the algorithms presented by Lai and White 

need a H2n+1  hypercube to map a Pn  pyramid. Therefore, the cost 

associated with the mapping algorithms of Lai and White is much higher. As 

a result, the mapping algorithms proposed by Lai and White will not be 

discussed in this thesis. 

We should remind that, Algorithm II presented by Patel and Ziavras 

for the mapping of the pyramid onto the hypercube has maximum dilation 

and maximum congestion 3 and 2 respectively, while Stout's algorithm, i.e. 

Algorithm I has 2 and 2 respectively for these metrics. Thus, the Algorithm 

II will be inferior Algorithm I with respect to the communication delay as the 

dilation is increased by I in Algorithm II. On the other hand, Algorithm II 

is superior to Algorithm I with respect to the total execution time when 

several levels of the pyramid are considered to be active at the same time. 

This is due to the fact that Algorithm I does not allow concurrent simulation 

of multiple levels of the pyramid. However, the only type of concurrency not 

allowed by Algorithm II is the concurrent simulation of the leaf level along 

with other levels. 

It can be seen that, four pyramids could be simulated at the same time 

with the same dilation and congestion of 2 when Stout's mapping algorithm 

is used. These pyramids will have the same base, which will be simulated by 
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all PEs of the hypercube. One of four PEs in each group of the base 

simulates a parent at the next level. The remaining three PEs in each group 

can be used to concurrently simulate three more pyramids of the same size. 

In contrast, Algorithm II can simulate only two such pyramids 

concurrently. Since different PEs of the hypercube simulate different levels 

of the pyramid, only one more pyramid can be simulated at the same time 

with the remaining PEs of the hypercube, for the same maximum dilation 

and maximum congestion of 3 and 2 respectively. All levels of both pyramids 

(except for their leaf level) will be active simultaneously. PEs marked with 

prime numbers in Figure 2.3 simulate the second pyramid. 

RGC 000 001 011 010 110 111 101 100 

000 0,1 0,2 0,3 0,1 0,1 0 0,2 0,1 

001 0,1' 0,2' 0,3' 0,1' 0,1' 0 0,2' 0,1' 

011 0,1' 0 0 0,1' 0,1' 0 0 0,1' 

010 0,1 0 0 0,1 0,1 0 0 0,1 

110 0,1 0 0 0,1 0,1 0 0 0,1 

111 0,1' 0 0 0,1' 0,1' 0 0 0,1' 

101 0,1' 0,2' 0 0,1' 0,1' 0 0,2' 0,1' 

100 0,1 0,2 0 0,1 0,1 0 0,2 0,1 

Figure 2.3 The mapping of two P3  pyramids onto the H6  hypercube with 
Algorithm II. 
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CHAPTER 3 

COMPARATIVE ANALYSIS 

3.1 Image Processing Algorithms 

This chapter carries out a comparative analysis using of simulation results. It 

involves the two mapping algorithms of the previous chapter. In fact, 

simulation results are derived for three important image processing 

algorithms which are perimeter counting of objects, 2-D convolution, and 

segmentation of an image. 

3.1.1 Perimeter Counting of Objects 

This application algorithm assumes the existence of a single object and the 

assignment of a single pixel with a value of 0 or 1 to each node at the leaf 

level of the pyramid. PEs containing 1 from the previous assignment 

correspond to boundary pixels. Hence, a bottom-up process is applied to 

count the total number of boundary pixels. More specifically, nodes at the 

leaf level (level 0) of the pyramid that contain a boundary pixel send 1 to 

their parent at the next level (level 1), while the others send 0 to their parent. 

Each parent at the next level sums the four values it receives from its 

children and transmits the result to its parent at the next level (level 2). 

This process is repeated until the topmost level (apex PE) is reached. After 

the addition of the values received by the apex PE, the perimeter of the object 

is obtained. 
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3.1.2 2-D convolution 

Two-dimensional convolution is a common operation in the area of image 

processing. The 2-D convolution algorithm using the pyramid structure 

convolves a kxk window of weighting coefficients with a 2n  x 2n  image 

matrix at the leaf level. In practice, k is much smaller than n. Let X = {xi,j } 

and W = {Wi,j} be the image matrix and the window respectively. The 2-D 

convolution problem is to compute Y = {yr,s } where 

k-1  k-1 
Yr,s =  ∑ ∑ 	Wi,j * Xr+i,s+j 	(3.1) i=0 i=0 

with 0 ≤ r,s ≤ 2n-k 

We assume that the 2nx2n  image matrix has been loaded into the leaf 

level nodes, one pixel per node. Therefore, the 2-D convolution algorithm is 

divided into three phases: 

1. The smallest integer r is found for which 2r ≥ k. Then the leaf level of 

the pyramid is partitioned into square blocks of size 2rx2r . Each such 

partition contains the leaves of a subpyramid whose apex is at level r. 

2. After partitioning the base nodes into blocks, the weighting coefficients 

are loaded into the upper leftmost part of each partition. This can be 

implemented on a pyramid machine using a top down process, 

assuming that the coefficients are contained in the apex. The rest of 

the PEs in each partition receive a zero as the weighting coefficient. 

3. The pyramid then computes the 2-D convolution. The results are 

stored in the base nodes. The result yr,s  is stored in a register of the 

base node (r,s). 
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It should be noted that phases 1 and 2 are not included in the total 

execution time of the presented results. For phase 3, more detail follows. 

The PEs at the leaf level multiply the weighting coefficients with the pixel 

values they contain, and send the results to their parents at next level (level 

1). Parents at level 1 sum the four values they receive from their four 

children and send the result to their parent. This process is repeated until 

the apexes of the subpyramids at level r are reached. Each apex adds the 

values it receives from its children and sends the result, through the 

necessary intermediate PEs at lower levels to the leaf PE in the upper 

leftmost corner of its partition. Each window at the leaf level that contains 

the weighting coefficients is shifted to the right once, multiplications are 

performed as above, the results are then shifted to the left once, and the 

values are sent to the parents at level 1. Then the bottom-up and top-down 

processes described above are applied with the result now stored in the PE 

with offset (0,1) in the partition. It is obvious that the 2-D convolution 

algorithm involves lateral shifts and multiplications at the leaf level, bottom-

up additions of products, and finally top-down transmissions of final results. 

No matter what the window size k is, those steps described earlier are 

repeated 22r times which is equal to the total number of PEs in each 

partition. For instance, these steps are repeated 16 times for window sizes 

3x3 and 4x4 because 22r=16, with 2r ≥  k. 

3.1.3 Segmentation of Images 

Segmentation is the process which partitions the image into regions with 

more or less homogeneous property; but the process which estimates these 

properties should be confined within individual regions. Segmentation and 

image properties are computed in a cooperative, iterative fashion. The 
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results obtained for each task at one iteration are used to adjust and improve 

the performance of the other task at the next iteration. This approach uses 

an overlapped pyramid where each node in the pyramid has four parents and 

16 children. 

A father-son relationship is defined between nodes in adjacent levels 

but this relationship is not fixed and may be redefined at each iteration. In 

each iteration the node is linked to a single one of these four higher level 

candidate father nodes. The father-son links then define windows in the 

image and ultimately the image segments. The window for a given node is 

just the sum of its son's windows, although the actual size and shape of 

windows will vary from node to node at a given level and from iteration to 

iteration for a given node. 

There are four time dependent variables associated with each node: 

• C[i,j,l][t]: the value of the local image property; 

• a[i,j,1][t]: the area over which the property was 3computed; • P[i,j,1][t]: 

	 a power to the node's lather at the next higher level; 

• S[i,j,1][t]: the segment property, the average values for the entire 

segment containing the node; 

Here time is the iteration number, a positive integer. 

For each node [i,j,l] with 1>0 (1 is the level number), there is a 4x4 

subarray of candidate son nodes at [i', j', 1-1] where 

i' = 2i-1, 2i, 2i+ 1, 2i+2 

j' = 2j-1, 2j, 2j+1, 2j+2 

On the other hand, each node below the top level has four candidate 

father nodes at [i", j", 1+1] where 

i"={ (i-1)/2 } or { (i+1)/2 }  

j"={ (j-1)/2 } or { (j+1)/2 } 



Here {.} indicates the integer part of the fraction enclosed. 

In the initial iteration, the value of C for each leaf level node is set 

equal to the corresponding image sample value, while the C value for each 

higher level node is the average of all 16 of the node's candidate sons. All 

iterations following initialization ( t>0 ) are divided into three phases: 

1. Father-son links are established for all nodes below the top of the 

pyramid. The way used to choose the father-son link is as follows: 

The mth  parent is chosen, where d[m] is the smallest absolute 

difference between the C value of node [i,j,l] and all of its candidate 

parents. The decision is made at random if the value of d[n] for two or 

more of the candidate fathers are equal. 

2. The C and S values are computed bottom up on the basis of the new 

son-father links. 

For 1=0 a[i,j,1][t]=1 

For 0<l<L a[i,j,l][t] is the sum of areas over those sons of node [i,j,l] 

assigned in phase 1 

If a[i,j,l][t] >0 then C[i,j,1] = ∑(a[i,j,1-1][t]*C[i',j',1-1][t])/a[i,j,1][t] 

3. Segment values are assigned top down. 

At the top most level the segment value of each node is set equal to its 

local property value 

S[i,j,l][t] = C[i,j,l][t] 

For lower level l<L, each node's value is just that of its father. 

At the end of phase 3, the level 0 segment values represent the current 

state of the smoothing-segmentation process. Any changes in pointers in a 
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given iteration will result in changes in the values of local image properties 

associated with pyramid nodes. These changes may alter the nearest father 

relationship and necessitate a further adjustment to pointers in the next 

iteration. Changes always shift the boundaries of segments in a direction 

which makes their contents more homogeneous, so convergence is 

guaranteed. The iterative process is repeated until no changes occur from 

one iteration to the next. 

3.2 Simulation Results 

Simulation results for the aforementioned image processing algorithms using 

the two mapping algorithms that map the pyramid onto the hypercube will 

be discussed in this section. Some definitions used for the calculation of the 

execution time are expressed in machine cycles. The scanning delay is 2; it is 

the time needed to load the values of pixels into the corresponding PEs at the 

leaf level. The communication time for a single value is 2, the set up time to 

receive or transmit a single value is 1. The addition time is 1, and both the 

multiplication and division times are 2. 

Table 3.1 shows simulation results for the algorithm of perimeter 

counting, for only one level of the pyramid being active at a time. Stout's 

algorithm performs better than Ziavras' Algorithm. This is because of its 

smaller dilation ( D=2 compared, to D=3 in Ziavras' algorithm ) and hence 

reduced communication delay between adjacent levels. However, the 

pyramid machine is more efficient than the hypercube machine for this 

algorithm. Since the communication time between adjacent simulated levels 

increase on the hypercube due to increased dilation and congestion of the 

mapping, the better performance of the pyramid should be expected.  
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For multiple levels being active simultaneously, only Ziavras' algorithm 

can be implemented on the hypercube machine. As expected, a pyramid 

machine performs better than Ziavras' algorithm for the hypercube. 

For different mapping algorithms, the total numbers of PEs used may 

differ. As shown in Table 3.1, the average utilization of hypercube PEs for 

the two algorithms are different. It must be emphasized that communication 

times are not included in the calculation of utilization because they 

correspond to pure overhead. 

Results for the two-dimensional convolution algorithm are shown in 

Table 3.2. Due to the perimeter implementation, as discussed earlier, only 

result for 2x2, 4x4, and 8x8 (i.e., power of 2) should be presented. The results 

show again that Ziavras' algorithm has worse performance than Stout's 

algorithm due to its larger dilation when only one level is active at a time. As 

in the case of the perimeter counting algorithm, the pyramid performs better 

than the hypercube. Note that the number of levels in the pyramids is not 

shown because only levels 0 through r are involved. For 4x4 convolution, 

only the lowest three levels of the pyramid are used, while for 8x8 

convolution, the lowest four levels are used. 

When multiple levels are active simultaneously, only Ziavras' algorithm 

can be applied. The use of pipelining also raises the average utilization of the 

PEs. 

Table 3.3 shows the comparison of the times needed for lateral data 

transfers at the leaf level and for processing the entire image for 2-D 

convolution. The results in Table 3.3 indicate that there are no differences 

for the times of lateral data transfers. The main reason for the different total 

execution times is the increased communication delay between adjacent 

levels in Ziavras' algorithm.  



26 

Simulation results for the segmentation algorithm that utilizes 

overlapped pyramids are shown in Table 3.4. Stout's algorithm and Ziavras' 

algorithm have the same performance with respect to the total execution time 

for one level being active at a time. They yield higher utilization than the 

pyramid machine. This is because the total number of hypercube PEs used in 

the algorithm is smaller than the number used with the overlapped pyramid 

structure. Results are not presented for concurrent multilevel processing 

because the algorithm is inherently sequential in nature. Generally, the 

performance of the pyramid is better than that of the hypercube. 

Results of concurrently simulating two pyramids on the hypercube are 

shown in Table 3.5. Algorithms for perimeter counting and two-dimensional 

convolution of an image are implemented simultaneously on the same 

hypercube. The execution time is basically determined by convolution. Here 

the reduction is 22x22  for window size of 4x4. Hence, only the lowest three 

levels of the pyramid are used for 4x4  convolution. For window size of 8x8, 

the lowest four levels are used. The reductions are either 22x22  or 2x2, 

therefore two cases are considered for multilevel structures. For the first 

case of 8x8 window, the reduction between levels 0 (leaf level) and 1 is 2x2, 

and it is 22x22  between levels 1 and 2. On the contrary, the reduction 

between levels 0 and 1 is 22x22, and between levels 1 and 2 is 2x2 for the 

second case. But both cases yield the same performance because of the 

chosen timings for the simulation. The advantage of Ziavras' algorithms is 

that it can simulate multiple levels simultaneously. All three image 

processing algorithms that were simulated in this thesis illustrate a major 

improvement in performance for this algorithm.  



Table 3.1 Simulation results for perimeter counting on Hypercubes 
(C: congestion, D: Dilation) 

Stout's Algorithm; D=2; C=2; H2n  -  

One Level Active Multiple Levels Active 

# of 
Levels 

# of PEs 	in 
Hypercube Ext.Time 

Utilization 
Avg. 	Max. 1/Throughput 

Utilization 
Avg. 	Max. 

29 15.89 20.69 3 64 

38 12.24 15.79 
 	4 256 

47 9.92 12.77 	5 	1024 

56 8.33 10.71 
 

6 4096 

65 7.18 9.22 
 
	7  16384 

Ziavras' Algorithm; D=3; C=2; H2n  

37 12.46 16.22 13 35.46 46.15 3 	 64 

50 	 9.30 12.00 12 35.79 46.15 4 	 255 

63 	7.40 9.52 12 35.87 46.15 	
 

5 1024 

76 6.14 7.90 13 35.89 46.15 6 4096 

89 5.24 6.74 13 35.90 46.15 7 16284 

Simulation on Pyramids 

17 13.15 17.65 	 5 44.70 60.00 3 85 

22 10.20 13.64 	5 44.90 60.00 4 341 

27 8.33 11.11 5 44.98 60.00 5 1365 

32 7.03 9.38 	5 	45.01 	60.00 6 5461 

37 6.08 8.10 	5 	45.03 	60.00 7 21845 
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Table 3.2  Simulation results for convolution on Hypercubes 

Stout's Algorithm; D=2; C=2; H20  

One Level Active Multiple Levels Active 

Size of 
Window 

# of PEs in 
Hypercube Ext.Time 

Utilization 
Avg. 	Max. 1/Throughout 

Utilization 
Avg. 	Max. 

88 35.23 48.86  
	2x2 4 

700 28.71 42.71 
 

4x4 	16 

4663 28.34 	47.54 8x8 64 

Ziavras' Algorithm; D=3; C=2; H2, 

88 35.23 43.86 88 35.23. 48.86 	2x2 	4 

764 27.49 	4 615 	34.15 46.18 	4x4 15 

5172 26.45 	41 3541 34.71 54.81 1  8x8 	64 

Simulation on. Pyramids 

56 25.71 31.14 33 43.64 54.55 	 2x2 5 

364 15.91 21.43 
	

131 	44.20 	59.54 	 4x4 21 

1980 11.18 15.61 	510 	43.40 	60.59 	 8x8 	85 



Table 3.3   Comparison -of—lateral data transfer with 
total execution time for 2-D convolution 

Stout's Algorithm; D=2; C=2; H2n  

Lateral Total 
Window 
Size 

23 88 2x2 

252 700 4x4 

2044 4668 8x8 

Ziavras' Algorithm; D=3 ; C=2; H2n  

Lateral Total 
Window 
Size 

28 88 2x2 

252 	764 4x4 

2044 	5172 	8x8 
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Table 3.4   Simulation results for segmentation on Hypercubes 

Stout's Algorithm; D=2; C=2; H2n  

One Level Active Multiple Levels Active 

# of 
Levels 

# of PEs in 
Hypercube Ext.Time 

Utilization 
Avg. 	Max. 1/Throughput 

Utilization 
Avg. 	Max. 

1048 27.77 32.25 	 3 64 

1567 19.38 21.57  	4 256 

2086 14.70 16.20 5 	1024 

2605 		11.79 12.98   	6 	4096 

3124 		9.84 10.82 	7 	16384 

Ziavras' Algorithm; D=3; C=2; H2n  

1043 27.77 32.25 519 56.08 65.13 3 64 

1567 	19.38 21.57 519 58.52 65.13 4 256 

2086 14.70 16.20 	519 59.08 	65.13 5 	1024 

2605 11.79 12.92 519 59.20 68.13 6 4096 

3124 9.84 10.82 519 59.22 63.13 7 16384 

Simulation on Pyramids 

483 21.76 31.97 189 	 56.25 82.54 3 	 85 

727 15.26 21.46 	189 	 58.71 82.54 4 341 

966 11.61 16.15  189 	59.32  82.54 	5 	 1365 

12C5 9.33 	12.95 189 59.47 82.54 6 5461 

1444 7.79 10.80 189 59.50 82.54 7 21845 
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Table 3.5     Simulation results for convolution and perimeter counting on 
Multilevel Pyramid 

Stout's Algorithm; D=2; C=2; H2n  

One Level Active Multiple Levels Active 

Size of 
Window 

4 of PEs in Hypercube 
Ext.Time 

Utilization 
Avg. 	Max. 1/Throughput 

Utilization 
Avg. 	Max. 

700 28.71 42.71 I 4x4 15 

4658 	28.34 47.54 8x8 64 

4668 28.34 47.54 8x8 64 

Ziavras' Algorithm; D=3; C=2; H2n  

700 28.71 42.71 700 28.71  42.71 4x4 15 

4916 27.09 45.40 3187 41.79 70.03 8x8 64 

4916 27.09 45.40 3187 41.79 I 	70.03 	8x8 64 

Simulation on Pyramids 

236 26.32 33.05 129 	 48.15 60.47 	 4x4 17 

1468 17.33 21.66 491 	51.82 64.76 	I 8x8 81 

1468 20.34 21.66 	 491 	60.83 64.76 	8x8 	 69 
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CHAPTER 4 

CONCLUSION 

This thesis has investigated the performace of two algorithms that map 

multilevel structures onto hypercubes. Such mappings are very important 

due to the robustness of the hypercube network with respect to the efficient 

emulation of several topologies. Ziavras' algorithm performs better than 

Stout's algorithm when multiple levels of the pyramid are considered to be 

active simultaneously. This is because only Stout's algorithm does not allow 

multiple levels of the pyramid to be active simultaneously. On the other 

hand, when only one level of the pyramid must be active at a time, Stout's 

algorithm yields better performance than Ziavras' algorithm because of its 

lower dilation which results in smaller communication time. However, 

Ziavras' algorithm achieves very good performance when only one level is 

active at a time. In contrast, Ziavras' algorithm improves the performance 

dramatically when multiple levels must be active simultaneously. 

The mapping of overlapped multilevel structures onto hypercubes was 

also investigated. Three algorithms from the image processing domain were 

considered for a comparative analysis. 
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/*************************/ 

/*** Stout Algorithm ***/ 
/*** 	One PE /PIXEL 	***/ 
/*** 	PERIMETER 	***/ 
/*************************/ 

#include "stdio.h" 
#include "stdlib.h" 
#include "math.h" 
unsigned long int k,Texe; 
float Uavg,Umax,H,H1; 
unsigned long int Oep, max; 
int i,j,x,y,a[64][64],n,C[128][128]; 
int Tload,1,d,Omax,inc,Base,Tcomm,Tset,Tadd; 
void Dec_Gray_(); 

main() 

FILE *fp,*fg; 
Tload=2; 
Tcomm=2; 
Tset=1; 
Tadd=1; 
fg=fopen("peri.sto","w"); 
fprintf(fg,"\n n 	Processors 	Oep 	Texe 	Uavg 

Umax 	n\n"); 
for(n=3;n<=7;n++) 

Omax=0; 
Oep=0; 
Texe=0; 
Base=(pow(2,n))-1; 
if((fp=fopen("mat.dat","r")) == NULL) exit (1); 
for(i=0;i<=Base;i++) 

for(j=0;j<=Base;j++) 

fscanf(fp,"%d ",&a[i][j]); 
printf("%d\t",a[i][j]); 
Dec_Gray_(); 
C [x] [Y] =a [i] [j]; 

} 

printf("\n"); 
} 

Texe=Texe+Tload; 
H=(Base+1)*(Base+1); 
Oep=Oep+H; 
inc=2; 
for(x=0;x<=Base;x=x+inc) 

for(y=0;y<=Base;y=y+inc) 
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C[x][y]=C[x][y]+C[x][Y+1]; 
C[x][y+1]=C[x+1][y+1]; 
C[x][y]=C[x][y]+C[x+1][y]; 

C[x][y]=C[x][y]+C[x][y+1]; 

Omax=Omax+2; 
Oep=Oep+11*H/4; 
Texe=Texe+Tcomm*2*Tset+Tadd; 
Omax=Omax+2; 
Texe=Texe+Tset+Tadd; 
Omax=Omax+2; 
Texe=Texe+Tset+Tadd; 
for(1=2;1<=n;1++) 

inc=pow(2,1); 
d=pow(2,1-1); 
for(x=0;x<=Base;x=x+inc) 
for(y=0;y<=Base;y=v+inc) { 

C[x][y]=C[x][y]+0[x][y+d]; 
C[x][y+d]=C[x+d][y+d]; 
C[x][Y]=C[x][y]+0[x+d][y]; 
C[x][y]=c[x][y]+C[x][y+d]; 

Texe=Texe+Tcomm+2*Tset+Tadd; 
Texe=Texe+Tset+Tadd; 
Texe=Texe+Tset+Tadd; 
H1=H/pow(2,2*1); 
Oep=Oep+11*Hi; 

Umax=(float)Omax/Texe; 
i=2*n; 
j=pow(2,i); 
k=Texe*j; 
Uayg=(float)Oep/k; 
fprintf(fg,"%d\t %d\t %lu\t %d\t",n,j,Oep,Texe); 
fprintf(fg,"%5.4f\t %5.4f\n",Uavg,Umax); 

printf("\n Output CO %d",C[0][0]); 
} 

void Dec_Gray_() 

x=i>>1; 
x^=i; 

y=j>>1; 
y^=i; 



***************************/ 

/*** Ziavras Algorithm ***/ 
/*** 	One PE /PIXEL 	***/ 
/*** 	PERIMETER 	***/ 
/***************************/ 

#include "stdio.h" 
#include "stdlib.h" 
#include "math.h" 
unsigned long int Texe; 
float Uavg,Umax,Upipmax,k,H,H1; 
long int Oep; 
double Upipavg; 
unsigned int Tpipe,max; 
int i,j,x,y,a[64][64],n,C[128][128],l,d,Omax,inc,Base; 
int Tset,Tadd,T11,Tcomm,Tload,hostx,hosty; 
int xl,yl; 
void Dec_Gray_ (); 
void Host_(); 

main()                                                                     { 

FILE *fp,*fg; 
Tload=2; 
Tcomm=2; 
Tset=1; 
Tadd=1; 
fg=fopen("peri.zia","w"); 
fprintf(fg,"\n n 	Processors Tseq 	Texe 	Uavg"); 
fprintf(fg," 	Umax Tpipe Upipavg Upipmax\n\n"); 
for(n=3;n<=7;n++) 

Omax=0; 
Oep=0; 
Texe=0; 
Base=(pow(2,n))-1; 
if((fp=fopen("mat.dat","r")) == NULL) exit (1); 
for(i=0;i<=Base;i++) 
{ 

for(j=0;j<=Base;j++) 
{ 
fscanf(fp, "%d ", &a [i] [j] ); 
printf("%d\t",a[i][j]); 
Dec_Gray_(); 
0[x] [17] =a 	[ii ; 

} 

printf("\n"); 
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Oep=C=.T-H; 
i nc=2; 
max=pow(2,2*n-1)); 
for(x=0;x<=Base;x=x+inc) 

for(y=0;y<=Base;y=y+inc) 

C[x][y]=C[x][v]+C[x][y+1]; 
C[x][y+1]=C[x+1] [y+1]; 
C[x] [y]=C [x] [y]+C[x+1][y] ; 
C[x][y]=C[x][y]+C[x][y+1]; 
} 

} 
Omax=Omax+2; 
Oep=Oep+11*H/4; 
Texe=Texe+Tcomm+2*Tset+Tadd; 
Omax=Omax+2; 
Texe=Texe+TsetTadd; 
Omax=Omax+2; 
Texe=Texe+Tset+Tadd; 
T11=Texe; 
x1=0; 
y1=0; 
for(1=2;1<=n;1++ 
{ 
Host_(); 
inc=pow(2,1); 
d=po(2,1-1); 
for(x=x1;x-'=Base;x=x+inc 

for(y=y1;y<=Base;y=y+inc) 

C[x+hostx][y+hosty]=0; 
C[x+hcstx][y+hosty]=C[x+hostx][v+hosty]+C[x][y]; 
C[x+hostx][y+hosty]=C[x+hostx][y+hosty]+C[x][v-d]; 
C[x][y+d]=C[x+d][y+d]; 
C[x+hostx][y+hosty]=C[x+hostx][y+hosty]+C[x+d][Y]; 
C[x+hostx][y+hosty]=C[x+hostx][y+hosty]+C[x][y+d]; 
} 

x1+=hostx; 
y1+=hosty; 
Texe=Texe+Tcomm+2*Tset+Tadd; 
Texe=Texe+Tcomm+Tset+Tadd; 
Texe=Texe+Tcomm+Tset+Tadd; 
H1=H/pow(2,2*1); 
Oep=Oep+11*H1; 
if (1==2) Tpipe=Texe-T11; 

} 
Umax=(float)Omax/Texe; 
Upipmax=(float)Omax/Tpipe; 
1=2*n; 
j=pow(2,1); 
k=Texe*j; 
Uavg=(float)Oep/k; 
k=(float)j*Tpipe; 



Upir,a,:G=(flo 	p k; 
fprin':f!fq, dt 	 t 
fprintf fa, V5.4 t %5. 	 ,Umax); 
fprintf(fg, %u\t ",Tpipe); 
fprintf(fg," %5.4f\t %5.4f\n 	vg,Upipmax); } 

printf("output C[%d][%d] %d" ,x1,y1,C[x1][y1]) ;               } 

void Dec_Gray_() 
{ 

x=i>>1 ;  

x^=1;                                                         y^=i;                                                          y=j>>1;                                                       y^=j; } 

void Host_()  
{  

if (3<=1) {1=0 ; j=1-1 ; } 
else if ((1==4)││(1,7)) {i=1;j=0;} 

else if (1,5) {i=0;j=-2;} 
else if (1==6) {i=0;j=-1;} 

else {i=0 j=1; } 
hostx=i; 
hosty=j; 

 



/*************************************** 
/*** 	Convolution Stout's Algorithm. *** 

/*************************************** 

#include "stdio.h" 
#include "stdlib.h" 
#include "math.h" 

int i,j,k,l,d,coim,row; 
int max,Base,shu,shl,x,y,Texe,Tload,temp[10][10]; 
int Tset,Tadd,Tmul,Omax,W[10][10],inc; 
int Base,Tcomm,wsize,a,dx,dy,m; 
float Uavg,Umax; 
int next1,next2; 
int C[10][10],P[10][10],conv[10][1C]; 
long int Oep; 

void Product_Wc_(); 
void Sum_(); 
void Shift_R_(); 
void Shift_D_(); 
void Shift_U_(); 
void Shift__(); 
void Dec_Gray_(); 
void Dist_(); 

main() 

Tioad=2; 
Tcomm=2; 
Tset=1; 
Tadd=1; 
Tmul=2; 

Oep=0; 

Omax=0; 
Texe=0; 
printf("Please input wsize"); 
scanf("%d",&wsize); 
k=pow(2,wsize); 
Base=k-1; 
printf("Please input window coefficient\n"); 
for(i=0;i<=Base;i++) 
for(j=0;j<=Base;j++) { 

scanf("%d",&a); 
Dec_Gray_(); 

W[x][y]=a; 
temp[x][y]=W[x][y]; } 

printf("Please input image 
matrix\n") for(i=0;i<=Base;i++) 

for(j=0;j<=Base;j++) 
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{                                                   scanf("%d",&a : ; 
Dec_Gray_(); 
C[x][y]=a; 

shu=0; 
for(row=0;row<=Base;row++) 

shl=0; 
for(co1m=0;colm<=Base+1;colm++) 

if(colm==Base+1){ Shift_R_(); 
Texe=Texe-2*Tset-Tcomm; 
Oep=Oep-2*pow(k,2); 

else{ if((row==0)&&(colm==0)){ Product_Wc_(); 
for(1=1;1<=wsize;l++) 

Sum_(); 
conv[0][0]=P[0][0]; 
} 

else( if((row!=0)&&(colm==0)){ Shift_D_() 
shu=shu+1; 

else{ Shift R_(); 
shl=shl+1; 
if((row==Base)&&(colm==Base)) 
{ Omax=2*pow (k,2)+Omax;} 

Product_Wc_(); 
if((row==Base)&&(colm==Base)) 
{ Omax=Omax+pow(k,2);} 
if(shu!=0) 

for(m=1;m<=shu;m++) 

Shift_U_(); 
if((row==Base)&&(colm==Base)) 
{ Omax=2*pow(k,2)+Omax;} 

} 
} 

if(shl!=0) 

for(m=1;m<=shl;m++) 

Shift_L_(); 
if((row==Base)&&(colm==Base)) 
{ Omax=Omax+2*pow(k,2);} 

} 
} 

for(l=1;1<=wsize;1++) 
{ Sum_(); 
if((row==Base)&&(colm==Base)) Omax=Omax+11*pow 

} 
i=row; 
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j=colm; 
Dec_Gray_('; 

cony[x][y]=P[0][0] ; 

Dist_(); 
Texe=Texe+4*(dx+dy); 

Oep=Oep+2*(dx+dy); 
if((row==Base)&&(colm==Base)) 

{ Omax=Omax+(dx+dy)*2;} }                         } }   }           

} 

Uavg=(float)Oep/(Texe*pow(k,2)); 
Umax=(float)Omax/Texe; 

/**printf("\n %d\t %5.4f\t %5.4f\t%d\t%d\t 
%ld\n",Texe,Uavg,Umax,k,k,Oep);**/ 
for (i=0;i<=Base;i++) { 

for (j=0;j<=Base;j++) { 

Dec_Gray_(); 
printf("%d ",cony[x 
} 

printf("\n"); } } 

void Product_Wc_() 

for(i=0;i<=Base;i++) 
for(j=0;j<=Base;j++) 
{ 
Dec_Gray_(); 
P[x][y]=temp[x][y]*C[x][y]; 

} 
Texe=Texe+Tmul; 
Oep=Oep+pow(k,2); 

void Sum_()                                          { 

max=pow(2,wsize-1); 
inc=pow(2,1); 
d=pow(2,1-1); 
for(x=0;x<=Base;x=x+inc) 
for(y=0;y<=Base;y=y+inc) 

P[x][Y]=P[x] [y]+P[x][Y+d]; 
P[x][y+d]=P[x+d][y+d]; 
P[x][y]=P[x][y]+P[x+d][y]; 
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P[x][y]=P[x][v+P[x][v,-d]; 

Texe=Texe+9; 
Oep=Oep+11*max*max; 

void Shift_R_() 

for(i=0;i<=Base;i++) 
for(j=0;j<=Base;j++) 

Dec_Gray_(); 
if(y==0){ nexti=temp[x][0]; 

temp[x][0]=temp[x][k/2]; 

else{ next2=temp[x][y]; 
temp[x][y]=next1; 

next1=next2; 
} 
} 
Texe=Texe+2*Tset+Tcomm; 
Oep=Oep+2*pow(k,2); 

void Shift_D_() 

for(j=0;j<=Base;j++) 
for(i=0;i,<=Base;i++) 

Dec_Gray_(); 
if(x==0){ next1=temp[0][Y]; 

temp[0][y]=temp[k/2][y]; 
} 

else{ next2=temp[x][y]; 
temp[x][y]=nextl; 
next1=next2; 

} 
Texe=Texe+2*Tset+Tcomm; 
Oep=Oep+2*pow(k,2); 

void Shift_U_() 

for(j=Base;j>=0;j--) 
for(i=Base;i>=0;i--) 

Dec_Gray_(); 
if(x==k/2) 	{ next1=P[k/2][y]; 

P[k/2][y]=P[0][y]; 
} 
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next2=P[x1[y]; 
P[x]=next1; 

nexti=next2; 
} 

} 
Texe=Tex+2*Tset+Tcomm; 

Oep=Oep+2*k*k; 

void Shift_L_() 

for(i=Base;i>=0;i--) 
for(j=Base;j>=0;j--) 

Dec_Grav_(); 
if(y==k/2){ nexti=P[x][k/2]; 

Px][k/2]=P[x][0]; 

else{ next2=P[x][y]; P[x][y]=next1; 

nextl=next2; 
f 

} 
Texe=Texe+2*Tset+Tcomm; 
Oep=Oep+2*pow(k,2); 

void Dec_Gray_(
{ 

 

x=i»1; 
x =̂i; 
y=j»1;  
y^=j; 

void Dist_() 

int d1,d2; 
d1=x; 

d2=y; 
dx=0; 
dy=0; 
while (d1>0){ if((d1&1)>0) dx=dx+1; 

d1=d1»1; 

while(d2>0) { if((d2&1)>0) dy=dy+1; 
d2=d2»1; 

) 



/*****************************************/ 
/***  Convolution Ziavras' Algorithm      ***/ 

/*****************************************/ 

#include "stdio.h" 
#include "stdlib.h" 
#include "math.h" 

int i,j,k,l,d,colm,row; 
int max,Base,shu,shl,temp[10][10]; 
int Tset,Tadd,Tmul,Omax,W[10][10],inc; 
int Texe,Tioad,Tcomm,wsize,a,m; 
float Uavg,Umax; 
int nextl,next2; 
int C[10][10],P[10][10],conv[10][10]; 
lona int Oep; 
int hostx,hosty,x,y,dx,dy; 
int x1,v1; 

void Product_Wc_(); 
void Sum_( ); 
void Shift_R_(); 
void Shift_D_(); 
void Shift_U_(); 
void Shift_L_ (); 
void Dec_Gray_(); 
void Dist_(); 
void Host_(); 

main() 

Tload=2; 
Tcomm=2; 

Tset=1; 
Tadd=1; 

Tmul=2; 
Oep=0; 
Omax=0; 
Texe=0; 
printf("Please input wsize"); 
scanf(" %d",&wsize); 
k=pow(2,wsize); 

Base=k-1; 
printf("Please input window coefficient\n"); 
for(1=0;i<=Base;i++) 
for(j=0;j<=Base;j++) 

scanf("%d",&a); 
Dec_Gray_(); 
W[x][y]=a; 

temp[x][y]=W[x][y]; } 
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printf"Please input image 
for(i=0;i‹=Base;i++) 
for(j=0;j<=Base;j++) 

scanf("%d",&a); 
Dec_Gray_(); 
C[x][y]=a; 

} 
shu=0; 
for(row=0;row<=Base;row++)                                 { 

shl=0; 
for(colm=0;colm<=Base+1;colm++) 
{ 
if(colm==Base+1){ Shift_R_(); 

Texe=Texe-2*Tset-Tcomm; 
Oep=Oep-2*pow(k,2); 

} 
else{ if((row==0)&&(colm==0)){ Product Wc_(); 

x1=0; 
y1=0; 

for(1=1;1<=wsize;l++) 
Sum_(); 
goto point1; 
} 

else{ if((row!=0)&&(colm==0))( Shift_D_(); 
shu=shu+1; 

} 
else{ Shift_R_(); 

shl=shl+1; 
if((row==Base)&&(colm==Base)) 
{ Omax=2*pow(k,2)+Omax; 

} 
Product_Wc_(); 
if((row==Base)&&(colm==Base)) 
{ Omax=Omax+pow(k,2); 
} 
if(shu!=0) 

for(m=1;m<=shu;m++) 
{ 
Shift_U_(); 
if((row==Base)&&(colm==Base)) 
Omax=2*pow(k,2)+Omax;                              } } 

if(shl !=0) {                                     for(m=1;m<=shl;m++)                             { 

Shift_L_(); 
if((row==Base)&&(colm==Base)) 
Omax=Omax+2*pow(k,2); 
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x1=0; 
y1=0; 
for(1=1;1<=wsize;1++) 
{ Sum_(); 
if((row==Base)&&(colm==Base)) 
{ if (1==1) Omax=Omax+11*pow(max, 1 ; 

else Omax=Omax+20*pow(max,2); 

point1: 
i=row; 
j=colm; 
Dec_Gray_(); 
conv[x][y]=P[xl][yl]; 

Dist_() : 

Texe=Texe+4*(dx+dy); 
Oep=Oep+2*(dx+dy); 

if((row==Ease)&&(colm==Base)) 
{ Omax=Omax+(dx+dy)*2;} 

} 
} 

Uavg=(float)Oep/(Texe*pow(k,2)); 
Umax=(float)Omax/Texe; 

/** 	printf("\n %d\t %5.4f ,t 	5.4f\t%d\t d\t 
%ld\n",Texe,Uavg,Umax,k,k,Oep) **/ 
for (i=0;i<=Base;i++) 

for (j=0;j<=Base;j++) 

Dec_Gray_(); 
printf("%d 	",conv[x][y]); 
} 
printf("\n"); 

} 

void Product_Wc_() 

for(i=0;i<=Base;i++) for(j=0;j<=Base;j++) 

Dec_Gray_(); 
P[x][y]=temp[x][y]*C[x][y]; 

} 
Texe=Texe+Tmul; 
Oep=Oep+pow(k,2); 



void Sun 

Host_(); 
max=pow(2,wsize-l); 
inc=pow(2,1); 

d=pow(2,1-1); 
for(x=xl;x<=Base;x=x+inc) 

for(y=y1;y<=Base;y=y+inc) 

if (1<1) 

P[x+hostx][y+hosty]=0; 
P[x+hostx][y+hosty]=P[x+hostx][y+hosty]+P[x][y]; 
} 
P[x+hostx][y+hosty]=P[x+hostx][y+hostyl+P[x][y+d]; 
P[x][y+d]=P[x+d][y+d]; 
P[x+hostx][y+hosty]=P[x+hostx][v+hosty]+P[x+d][y]; 

R[x+hosux][y+hosty]=P[x+hostx][y+hosty]+P[x][y+d]; 

x1+=hostx; 
yi+=hosty; 
if (1==1) 

Texe=Texe+9; 
Oep=Oep+I1*max*max; 

} 
else {Tex=Texe+3; 

Oep=Oep+20*max*max; 
} } 

void Shift_R_() 
{ 

for(i=0;i<=Base;i++) 
for(j=0;j<=Base;j++) 
{ 
Dec_Gray_(); 
if(y==0){ nextl=temp[x][0]; 

temp[x][0]=temp[x][k/2]; 
} 

else{ next2=temp[x][y]; 
temp[x][y]=next1; 

next1=next2; 
} 

 
Texe=Texe+2*Tset+Tcomm; 
Oep=Oep+2*pow(k,2);                                         } 

void Shift_D_() 
{ 



for j=0; j<=Base;J++) 
fori=0;i,-=Bse;++) 

{ 

Dec_Gray_(); 
if(x==0){ nextl=temp[0][y]; 

temp[0][y]=temp[k/2][y]; 

else{ next2=temp[x][y]; 
temp[x][y]=next1; 

next1=next2; 
} 

} 
Texe=Texe+2*Tset+Tcomm; 
Oep=Oep+2*pow(k,2); 

void Shift_U_() 
{ 

for(j=Base;j>=0;j--) 
for(i=Base;i>=0;i--) 

Dec_Gray_(); 
if(x==k/2) 	{ next1=P[k/2][y]; 

P[k/2][y]=P[0][y]; 

else{ next2=P[x][y]; 
P[x] [y]=next1; 

next1=next2; 

} 
Texe=Texe+2*Tset+Tcomm; 
Oep=Oep+2*k*k; 

} 

void Shift_L_() 

for(i=Base;i>=0;i--) 
for(j=Base;j>=0;j--) 

Dec_Gray_(); 
if(y==k/2){ next1=P[x][k/2]; 

P[x][k/2]=P[x][0]; 
} 

else{ next2=P[x][y]; 
P[x][y]=nextl; 
next1=next2; 
} 

} 
Texe=Texe+2*Tset+Tcomm; 
Oep=Oep+2*pow(k,2); 
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void Dec_Gray_() 

x^=i ; y=j>>1;                                                     } 

void Dist_() 
{ 
int d1,d2; 
dl=x"hostx; 

d2=ŷ hosty; 
dx=0; 
dy=0; 
while (d1>0){ if((d1&1)>0) dx=dx+l; 

while(d2>0){ if((d2&1)..(Th dy=dy+1; 

void Host_ () 
{ 

if (1<=3) {i=0;j=l-1 ; }  
else if ((1==4)I1(l==7)) {i=1;j=0;} 

else if (1==5) 	1=0;j=-2;} 
else if (l==6) 

else {i=0; j=1;} 
hostx=i; 
hosty=j; 
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/* ************************************************* /***** Simulation of Segmentation Algorithm ******* /************************************************** 

#include "stdio.h" 
#include "math.h" 
#include "stdlib.h" 

int i,j,k,l,stop,m,row,col,layer; 
int maxl,nc,n,m,iter,a[16] [16] [3]; 
int sx[8][8][3][16],sy[8][8][3][16]; 
int fx[16][16][3][4],fy[16][16][3][4]; 
int nchild[8][8][3],p[16][16][3]; 
float c116][16][3],s[16][16][3]; 
float sum,psum,min,d[4]; 
void Cand_Father_(); 
void Cand_Son_ (); 

main() 

FILE *fr.; 
fp=fopen("matrix.dat","r"); 

printf("Please input layer"); 
scanf("%d",&layer); 

maxl=layer-1; 
k=pow(2,layer); 
stop=0; 
for(i=0;i<=k-1;i++) 
for(j=0;j<=k-1;j++) 
a[i] [j] [0]=1; 

for(i=0;i<=k-1;i++) 
{ 
for(j=0;j<=k-1;j++) 

fscanf(fp,"%f",&c[i][j][0]); 
printf("%3.1f\t",c[i][j][0]); 

} 
printf("\n"); 

} 
Cand_Father_(); 

Cand_Son_(); 
/**** 	Initial C Value 	****/ 

for(1=1;1<=maxl; 1++) { 

m=pow(2,layer-l); 
for(i=0;i<=m-l;i++) 
for(j=0;j<=m-1;j++) 



sum=0.0; for=0;n<=15;n++)                                    { 

row=sx[i][j][l][n]; 
col=sy[i][j][l] [n]; 
sum+=c[row][col][1-1];                               } 

c[i][j][1]=sum/16.0; 
a[i][j][l]=16; 

printf("%6.3f",c[i][j][l]); } 

printf("\n"); 
} 

/****    Iterations Start 	****/ 
iter=0; 

/**** 	Find Son-Father Relation 	****/ 
while (stop<4) { 

for (1=1;1<=maxl;1++) { 

m=pow(2,layer-1); 
for (i=0;i<m;i++) 

for (j=0;j<m;j++) nchild[i][j][l]=0; 

} 

iter+=1; 
for(1=0;1<=max1-1;1++) { 

m=pow(2,layer-1); 
for(i=0;i<=m-1;i++) 

{ 
for(j=0;j<=m-1;j++) 
{ 
if (a[i][j][l]>0) 

{ 
min=10.0; 
for(n=0;n<=3;n++) { 

row=fx[i][j][l][n]; 
col=fy[i] [j] [l] [n]; 
if (a[row][col][l+1]>0)                            { 

d[n]=c[i][j][l]-c[row][col][1+1]; 
if(d[n]<0){d[n]=c[row][col][1+1]-c[i][j][l];} if(d[n]<min){min=d[n];p[i][j][1]=n;} 

} } 

n=p[i][j][l]; 
row=fx[i][j][l][n]; 

col=fy[i][j][l] [n]; 
nc=nchild[row][col][1+1]; 

sx[row][col][l+1][nc]=i; 
sy[row][col][1+1][nc]=j; 
nchild[row][col][l+1]+=1; 
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print("%d = %d ",row,col); 

printf("\n"); 
} 

/**** 	Computation of a and c 	****/ 

for(1=1;1<=maxl;l++) 

m=pow(2,layer-1); 
for(1=0;i<=m-1;i++) 

for(j=0;j<=m-1;j++) 
{ 

sum=0.0; 
psum=0.0; 
nc=nchild[i] [j] [1]; 
if (nc>0) 

for(n=0;n<=nc-l;n++)                                  { 

row=sx]i] [j] [l] [n]; 
coi=sy[i] [j] [l] [n]; 

sum+= ( float )a [row] [col] [l-1]; 
psum+= ( float ) a [row] [col] [1-1] *c [row] [col] [1-1] ; 

} 
a [i] 	] [l] = (int) sum; 

** 	printf("%d a[i][j][1]",a[i][j][l]);**/ 
if(sum>0) c[i][j][l]=psum/sum; 

else {a[i][j][l]=0;c[i][j][1]=c[2*i][2*j][1-1];} 
printf("%6.4f ",c[i][j][l]); 

} 
printf("\n"); 
} 

} 

/**** 

	

Segmentation Value 	****/ 
for(i=0;i<=1;i++) 
for(j=0;j<=1;j++) 

{ { 

min=s[i][j][maxl]-c[i][j][maxl]; 
if (min<0) min=c[i][j][maxl]-s[i][j][maxl]; 
min=100000.0*min; 
if(min>1.0) stop=0; 
else stop+=1; 
s[i][j][maxl]=c[i][j][maxl]; 
printf("%6.3f ",c[i][j][maxl]); 

} 
printf("\n"); 
for(1=maxl;l>=1;1--) { 

m=pow(2,layer-1); 
for(i=0;i<=m-1;i++) 
for(j=0;j<=m-l;j++) 
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nc=nchild[i] [j] [1] ; 
if (nc>0) {for (n=0;n<=nc-1 ;n++) { 

row=sx[i] [j] [1] [n] ; 
col=sy[i] [j] [1] [n] ; 
s [row] [col] [1-1]=s[i][j] [1]  ;                 } 

} 
} 

} 
} 

printf ("iter %d\n",iter) ; 
for(1=0;i<=k-1;i++) 
{ 
for(j=0;j<=k-1;j++) 
printf("%5.3f\t",s[i][j][0]); printf("\n");                                 }                                             } 

void Cand_Father_() 
{ 

int ta1,ta2,tb1,tb2; 
int maxi , t , max, , j ; 
tb2=0; 
for (1=0; 1<=max.l-1;l++) { 

max f =pow ( 2 , layer -1 ) -1; 
printf ( "layer [%d] \n",1) ; 
for (1=0; i<=maxf ;i++) 

for (j=0 ; j<=maxf ; j++) 

{           

tal=(i-1)%2; 
if (tal<0) tal= (maxf-1) /2 ; 
else tal= (i-1) /2 ; 
ta2= (1+1) /2; 
if (ta2> (maxf-1) /2) ta2=0; 

tb1= (j -1) %2 ; 
if (tb1<0) tb1= (maxf-1) /2 ; 
else tb1= (j-1) /2 ; 
tb2= (j+1) /2; 
if (tb2>(maxf-1) /2) tb2=0; 
fx[i] [j] [1] [0]=ta1; 
fy[i] [j] [1] [0]=tbl; 
fx[i] [j] [1] [1]=tal; 
fy[i] [j] [1] [1]=tb2; 
fx[i] [j] [1] [2] =tat; 
fy[i] [j] [1] [2] =tbl; 
fx[i] [j] [1] [3]=ta2; 
fy[i] [j] [1] [3]=tb2; 
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printf("%d %d %d %d 
%d\n”, l, fx[i] [j] [l] [0], fx[i] [j] [l] [2], fy [i] [j] [l] [0], fy [i] [j] 	  ] [l] [1]) ;  

}  }  }                                                                                                                   

 

void Cand_Son_()                                                            { 

int tal,ta2,ta3,ta4; 
int tb1,tb2,tb3,tb4,max; 
int i,j; 
for(1=max1;1>=1;1--) { 

/** 	printf("layer[%d]\n",1);**/ 
max=pow(2,layer-1); 
for(i=0;i<=max-1;i++) 
for(j=0;j<=max-1;j++) 

m=pow(2,layer-l+1); 
ta1=2*i-l; 
if(tal<0) tal=m-1; 
ta2=2*i; 
ta3=2*i+1; 
ta4=2*i+2; 
if(ta4>=m) ta4=0; 
tb1=2*j-1; 

if(tb1<0) tb1=m-1; 
tb2=2*j; 
tb3=2*j+1; 
tb4=2*j+2; 
if (tb4>=m) tb4=0; 

/** 	printf ("%d %d %d %d 	",ta1,ta2,ta3,ta4); 
printf ( "%d %d %d %d \n" tb1, tb2, tb3, tb4) ;**/ 
sx[i] [j] [1] [0] =tal; 
sy[i] [j] [1] [0]=tbi; 
sx[i] [j] [1] [1]=ta1; 
sy[i] [j] [1] [1] = tb2; 
sx[i] [j] [1] [2]=ta1; 
sy[i][j][1][2]=tb3; 
sx[i] [j] [1] [3]=ta1; 
sy[i] [j] [1] [3]=tb4; 
sx[i] [j] [1] [4]=ta2; 
sy[i] [j] [1] [4]=tb1; 
sx[i] [j] [1] [5]=ta2; 
sy[i] [j] [1] [5]=tb2; 
sx[i] [j] [1] [6]=ta2; 
sy[i] [j] [1] [6]=tb3; 
sx[i] [j] [1] [7]=ta2; 
sy[i] [j] [1] [7]=tb4; 
sx[i] [j] [1] [8]=ta3; 
sy[i] [j] [1] [8],tb1; 
sx[i] [j] [1] [9],ta3; 
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sy[i][j][1][9]=tb2;               sx[i][j][1][10]=tb3;     sy[i][j][1][10]=tb3;     sx[i][j][1][11]=tb3;     sy[i][j][1][11]=tb4;  sx[i][j][1][11]=tb4;  sy[i][j][1][11]=tb1;  sx[i][j][1][11]=tb4;  sy[i][j][1][11]=tb2; sx[i][j][1][11]=tb4; sy[i][j][1]

[11]=tb3;] 

sx[i][j][1]

[11]=tb4;] 

sy[i][j][1]

[11]=tb4;] 

} 
} 

} 



/*****************************************/ 

/*** 	Simulation of Stout's Algorithm ***/ 
/*** 	 Multilevel Pyramid 	***/ 
/*****************************************/ 

#include "stdio.h" 
#include "stdlib.h" 
#include "math.h" 
#define n 2 /** # of topmost level **/ 

int i,j,k,l,d,colm,row; 
int max,shu,shl,x,y,Texe,Tload,temp[10][10]; 
int Tset,Tadd,Tmul,Omax,W[10][10],inc; 
int Tcomm,wsize,a,dx,dy,m; 
float Uavg,Umax; 
int next1,next2; 
int C[10][10],P[10][10],conv[10][10]; 
lona int Oep; 
int Base[n]; 

void Product_Wc_(); 
void Sum_(); 
void Shift_R_(); 
void Shift_D_(); 
void Shift_U_(); 
void Shift_L_(); 
void Dec_Gray_(); 
void Dist_(); 

main() { 

Tload=2; 
Tcomm=2; 
Tset=1; 
Tadd=1; 
Tmul=2; 
Oep=0; 
Omax=0; 
Texe=0; 
printf("Please input wsize"); 
scanf("%d",&wsize); 
Base[n]=0; 
Base[0]=7; 
printf("Please input reduction "); 
scanf("%d",&a); 
if (a==16) Base[1]=1; 
else Base[1]=3; 
printf("Please input window coefficient\n"); 
for(i=0;i<=Base[0];i++) 
for(j=0;j<=Base[0];j++) { 

scanf("%d",&a); 
Dec_Gray_(); 
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W[x][y]=a; 
temp [x] [y]-=W[x]  [y] ; 

printf("Please input image matrix\n"); 
for(1=0;i<=Base[0];) 
for(j=0;j=Base[0] ; j++) 

scahf("%d",&a); 
Dec_Gray_(); 
C[x][y]=a; 

shu=0; 
for(row=0;row<=Base[0];row++) 

shl=0; 
for(colm=0;colm<=Base[0]+1;colm++) 

if(colm==Base[0]+1){ Shift_R(); 
Texe=Texe-2*Tset-Tcomm; 
Oep=Oep-2*pow(k,2); 

} 
else{ if((row==0)&&(colm==0)){ Product_Wc_(); 

for(l=1;1<=wsize;l++) 

conv[0][0]=P[0][0]; 
} 

else{ if((row!=0)&&(colm==0)){ 
shu=shu+1; } 

else{ Shift_F_(); 
shl=shl+1; 

if((row==Base[0])&&(colm==Base[0])) 
{ Omax=2*pow(k,2) +Omax; } 

} 

 

Product_Wc_(); 
if((row==Base[0])&&(colm==Base[0])) 
{ Omax=Omax+pow(k,2);} 
if(shu!=0) { 

for(m=1;m<=shu;m++) 

{ 

Shift_U_(); 
if((row==Base[0])&&(colm==Base[0])) 
{ {  Omax=2*pow(k,2)+Omax;} 

} 
if(shl!=0) 

for(m=1;m<=shl;m++) 

Shift_L_(); 
if((row==Base[0])&&(colm==Base[0])) 
{ Omax=0max+2*pow(k,2);} 

1 
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for(l=l;l<=wsize;l++) 

Sum_(); 
if((row==Base[0])&&(colm==Base[0])) 

Omax=Omax+11*pow(max,2); 

i=row; 
j=colm; 
Dec_Gray_(); 
conv[x] [y]=P[0] [0]; 
Dist_(); 

Texe=Texe+4*(dx+dy); 
Oep=Oep+2*(dx+dy); 

if((row==Base[0])&&(colm==Base[0])) 
{ Omax=Omax+(dx+dy)*2; } 
} 

} 
} 

Uavg=(float)Oep/(Texe*pow(k,2)); 
Umax= (float)Omax/Texe; 

/**printf("\n %d\t %5.4f\t %5.4f\t%d\t%dt 
%ld\n",Texe,Uavg,Umax,k,k,Oep);**/ 
for (i=0;i<=Base[0];i++) 

for (j=0;j<=Base[0];j++) 

Dec_Gray_(); 
printf("%d 	",conv[x][y]); 
} 
printf("\n"); 
} 

void Product_Wc_() 

for(i=0;i<=Base[0];i++) 
for(j=0;j<=Base[0];j++) 

Dec_Gray_(); 
P[x][y]=temp[x][y]*C[x][y]; 

} 
Texe=Texe+Tmul; 
Oep=Oep+pow(k,2); 

void Sum_() 

int count,k; 
max=Base[l]; 



k=l;                                         if(Base(1-1]-Base[1]›2) count=2; 
else count=1; 
while (count>0) { inc=pow(2,k) ; 

d=pow2,k-1); 
for(x=0;x<=Base[0];x=x+inc) 

for(y=0;y<=Base[0];y=y+inc) { 

P[x][y]=P[x][y]+P[x][y+d]; 
P[x][y+d]=P[x+d][y+d];     P[x][y]=P[x][y]+P[x+d][y]; 

P[x][y]=P[x][Y]+P[x] [y+d]; 

Texe=Texe+9; 
Oep=Oep+11*max*max; 

} 
} 

void Shift_R_() 
{ 

fori=0;i<=Base[0];i++) 
for(j=0;j<=Base[0];j++) { 

Dec_Gray_(); 
if(y==0){ next1=temp[x][0]; temp[x][0]=temp[x][k/2]; } 

else{ next2=temp[x][y]; 
temp[x][y]=next1; 

next1=next2; } 
} 

Texe=Texe+2*Tset+Tcomm; 
Oep=Oep+2*pow(k,2); 

} 

void Shift_D_()                          { 

for(j=0; j<=Base[0];j++) 
for(i=0;i<=Base[0];i++) {                                    

Dec_Gray_(); 
if(x==0){ nextl=temp[0][y]; 

temp[0][y]=temp[k/2][y]; 
} 

else{ next2=temp[x][y]; 
temp [x] [y] =next1; 
next1=next2; 

} 
} 



Texe=Texe+2*Tset+Tcomm; 
Oep=Oep+2*pow(k,2); 

} 

void Shift_U_()                           { 

for(j=Base[0];j>=0;j--) 
for(i=Base[0];i>=0;i--) { 

Dec_Gray_(); 
if(x==k/2) 	{ next1=P[k/2][y]; 

P[k/2][y]=P[0][y]; 

else{ next2=P[x][y]; 
P [x] [y] =next1; 
next1=next2; 

} 
} 
Texe=Texe+2*Tset+Tcomm; 
Oep=Oep+2*k*k; } 

void Shift_L_() 

{                                  for(i=Base[0];i>=0;i--) 
for(j=Base[0];j>=0;j--) 

{                                      Dec_Gray_(); 
if(y==k/2){next1=P[x][k/2]; 

P[x][k/2]=P[x][0];                                               } 

else{ next2=P[x][y); 
P[x] [y]=next1; 
next1=next2; 

} 
} 

Texe=Texe+2*Tset+Tcomm; 
Oep=Oep+2*pow(k,2); } 

void Dec_Gray_() 

{ 

x=i>>1; 
x^=i; 
y^=j»1; 

Ŷ=j; } 

void Dist_() 

6 0 



int d1,d2; 
d1=x; 
d2=y; 
dx=0; 
dy=0; 
while (d1>1{ if((d1&1)>0) dx=dx+1; 

d1=d1>>1; 

while(d2>0){ if((d2&1)>0) dy=dy+1; 
d2=d2>>1;                                }                                        } 
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/******************************************/ 

/***  Simulation of Ziavras' Algorithm   ***/ 
/*** 	Multilevel Pyramid 	 ***/ 
/******************************************/ 

#include "stdio.h" 
#include "stdlib.h" 
#include "math.h" 
#define n 2 /**# of the topmost level **/ 
int i,j,k,l,d,colm,row; 
int max,shu,shl,temp[10][10]; 
int Tset,Tadd,Tmul/Omax,W[10][10],inc; 
int Texe,Tload,Tcomm,wsize,a,m; 
float Uavg,Umax; 
int next1,next2; 
int C[10][10],P[10][10],conv[10][10]; 
lona int Oep; 
int hostx,hostv,x/v,dx,dy; 
int x1,y1,Base[n]; 

void Product_Wc_(); 
void Sum_(); 
void Shift_R_(); 
void Shift_D_(); 
void Shift_U_(); 
void Shift_L_(); 
void Dec_Gray_(); 
void Dis_(); 
void Host_(); 

main() { 

Tload=2; 
Tcomm=2; 
Tset=1; 
Tadd=1; 
Tmul=2; 
Oep=0; 
Omax=0; 
Texe=0; 
printf("Please input wsize"); 
scanf(" %d",&wsize); 

Base[0]=pow(2,wsize)-1; 
k=Base[0]; 
Base[n]=0; 
printf("Please input reduction"); 
scanf (" %d",&a); 
if (a==16) Base[1]=1; 
else Base[1]=3; 
printf("Please input window coefficient\n"); 
for(i=0;i<=Base[0];i++) 
for(j=0;j<=Base[0];j++) 



{                                                 scanf("%d",&a); 
Dec_Gray_(); 

W[x][y]=a; 
temp[x][y]=W[x][y]; 

} 
printf("Please input image matrix\n'); 
for(i=0;i<=Base[0];i++) 

for(j=0; j<=Base[0];j++) {          

scanf("%d",&a); 
Dec_Gray_(); 
C[x][y]=a; 

shu=0; 
for(row=0;row<=Base[0] ;row++) 

shl=0; 
for(colm=0;colm'- =Base[0]+1;colm++) 

{                                     if(colm==Base[0]+1){ Shift_R_(); 
Texe=Texe-2*Tset-Tcomm; 

Oep=Oep-2*pow(k,2); 
} 

else{ if((row==0)(colm==0)){ Product_Wc_); 
x1=0; 
y1=0; 

for(l=1;l<=wsize;l++) 
Sum_(); 
goto pointl; 
} 

else{ if((row!=0)&&(colm==0)){ Shift_D_(); 
shu=shu+1; 

} 
else{ Shift_R_(); 

shl=shl+1; 
if((row==Base[0])&&(colm==Base[0])) 
{ Omax=2*pow(k,2)+Omax; 

} 
} 

Product_Wc_(); 
if((row==Base[0])&&(co1m==Base[0])) 

{Omax=Omax+pow(k,2); 
} 

if(shu!=0) 

{ 

for(m=1;m<=shu;m++) 

{ 

Shift_U_(); 
if((row==Base[0])&&(colm==Base[0])) 
Omax=2*pow(k,2)+Omax; } } 

if(shl!=0) 
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for(m=1;m<=shl;m++) 
{ 

Shift_L_(); 
if((row==Base[0])&&(cclm==Base[O]) 
Omax=Omax+2*pow(k,2); 

} 
} 

xl=0; 
y1=0; 
for(l=1;l<=wsize;1++) 
{ Sum_(); 
if((row==Base[0])&&(colm==Base[0])) 
{ if (l==1) Omax=Omax+11*pow(max,2); 
else Omax=Omax+20*pow(max,2); 

point1: i=row; 
j=colm; 
Dec_Gray_(); 
conv[x][y]=P[xl][y1]; 
Dist_(); 

Texe=Texe+4*(dx+dy; 
Oep=Oep+2*(dx+dy); 
if((row==Base[0])&&(coim==Base[0])) 
{ Omax=Omax+(dx+dy)*2;) 

} 
} 

 
Uavg=(float)Oep/(Texe*pow(k,2)); 
Umax=(float)Omax/Texe; 

/** 	printf("\n %d\t %5.4f\t %5.4f\t%d\t%d\t 
%ld\n",Texe,Uavg,Umax,k,k,Oep);**/ 
for (i=0;i<=Base[0];i++) { 

for (j=0;j<=Base[0];j++) 

{ 

Dec_Gray_(); 
printf("%d 	",conv[x][y]); } } 

printf("\n"); }                                                          } 

void Product_Wc_() {                                                            

for(i=0;i<=Base[0];i++) 
for(j=0;j<=Base[0];j++)                                             { 
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Dec_Gray_(); 
P[x][y]=temp[x][y]*C[x][y];                          } 

Texe=Texe+Tmul; 
Oep=Oep+pow(k,2); 

} 

void Sum_()                                              { 

int count,k; 
Host_(); 
max=Base[l]; 
k=1; 
if (Base[1-1]-Base[1]>2) count=2; 
else count=1; 
while (count >0) {  

inc=pow(2,k); 
d=pow(2,k-1); 
for(x=x1;x<=Base[0];x=x+inc) 
for(v=y1;y<=Base[0];y=y+inc) { 

if (1<l) 

{                                            P[x+hostx][y+hosty]=0; 
P[x+hostx][y+hosty]=P[x+hostx][y+hosty]+Px]y;  { 

P[x+hostx][v+hosty]=P[x+hostx][y+hosty]+P[x][y+d]; 
P[x][y+d]=P[x+d][y+d]; 
P[x+hostx][y+hosty]=P[x+hostx][y+hostv]+P[x+d][y]; 
P[x+hostx][y+hosty]=P[x+hostx][y+hosty]+P[x][y+d]; 

} 
x1+=hostx; 
y1+=hosty; 
k++; 
count--; 
if (1==1) 

{ Texe=Texe+9; 
Oep=Oep+11*max*max; 

else {Texe=Texe+13; 
Oep=Oep+20*max*max; 
} 

} 
} 

void Shift_R_() {                                                    

for(i=0;i<=Base[0];i++) 
for(j=0;j<=Base[0];j++) 

{                                                                       Dec_Gray_(); 
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if(v==0){ nextl=tem[x][0]; 
temp[x][0]=temp[x][k/2]; 

else; next2=temp[x][v]; 
temp[x][y]=nextl; 
nextl=next2; 

} 
) 
Texe=Texe+2*Tset+Tcomm; 
Oep=Oep+2*pow(k,2); 

void Shift_D_() 
{ 

for(j=0;j<=Base[0];-i++) 
for(i=0;i<=Base[0];i++) 

Dec_Gray (); 
" nextl=temp[0][y]; 

]=temp[k/2][y]; 

else; next2=temp[x][v]; 
temp[x][y]=nextl; 
nextl=next2; 

} 
Texe=Texe+2*Tset+Tcomm; 

Oep=Oep+2*pow(k,2); 

void Shift_U_() 
{ 

for(j=Base[0];j>=0;j--) 
for(i=Base[0];i>=0;i--) 
{ 
Dec_Gray_(); 
if(x==k/2) 	{ nextl=P[k/2][y]; 

P[k/2][y]=P[0][Y]; 
} 

else{ next2=P[x][y]; 
P[x][y]=nextl; 
nextl=next2; 

} 
} 
Texe=Texe+2*Tset+Tcomm; 
Oep=Oep+2*k*k; 

} 

void Shift_L_() 
{ 
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for(i=Base[0];i>=0;i--) 
for(j=Base[0];j>=0;j--) 

Dec_Gray_(); 
if(y==k/2){ nex1=P[x][k/2]; 

P[x][k/2]=P[x][0]; 
} 

else{ next2=P[x][y]; 
P[x][y]=next1; 

nextl=next2; 
} 

} 
Texe=Texe+2*Tset+Tcomm; 
Oep=Oep+2*pow(k,2); 

void Dec_Gray_() 

x=1>>1; 
=i; 

y=j»1; 

1 

void Dist_() 
{ 

int di,d2; 
d1=x-hostx; 

d2=y^hosty; 
dx=0; 
dy=0; 
while (d1>0){ if((d1&1)>0) dx=dx+1; 

dl=d1>>1; 
} 

while(d2>0) { if((d2&1)>0) dy=dy+1; 
d2=d2>>1; 

} 

void Host_() 
{ 

if (1<=3) {i=0;j=1-1;} 
else if ((1==4)Il(1==7)) {i=1;j=0;} 
else if (1==5) {i=0;j=-2;} 

else if (1==6) {i=0;j=-1;} 
else {i=0;j=1;} 

hostx=i; 
hosty=j; 

} 
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