
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

1-31-1993

Performance analysis of pyramid mapping algorithms for the Performance analysis of pyramid mapping algorithms for the

hypercube hypercube

Jing-Chiou Liou
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Liou, Jing-Chiou, "Performance analysis of pyramid mapping algorithms for the hypercube" (1993).
Theses. 1781.
https://digitalcommons.njit.edu/theses/1781

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1781&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1781?utm_source=digitalcommons.njit.edu%2Ftheses%2F1781&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Performance Analysis of
Pyramid Mapping Algorithms for the Hypercube

by
Jing-Chiou Liou

Comparative performance analysis of algorithms that map pyramids

and multilevel structures onto the hypercube are presented. The pyramid

structure is appropriate for low-level and intermediate-level computer vision

algorithms. It is not only efficient for the support of both local and global

operations but also capable of supporting the implementation of multilevel

solvers. 	Nevertheless, pyramids lack the 	capability of efficient

implementation of the majority of scientific algorithms and their cost may

become unacceptably high. On a different horizon, hypercube machines have

widely been used in the field of parallel computing due to their small

diameter, high degree of fault tolerance, and rich interconnection that

permits fast communication at a reasonable cost. As a result, hypercube

machines can efficiently emulate pyramids. Therefore, the characteristics

which make hypercube machines useful scientific processors also make them

efficient image processors.

Two algorithms which have been developed for the efficient mapping of

the pyramid onto the hypercube are discussed in this thesis. The algorithm

proposed by Stout [4] requires a hypercube with a number of processing

elements (PEs) which is equal to the number of nodes in the base of the

pyramid. This algorithm can activate only one level of the pyramid at a

time. In contrast, the algorithm proposed by Patel and Ziavras [7] requires

the same number of PEs as Stout's algorithm but allows the concurrent

simulation of multiple levels, as long as the base level is not involved in the

set of pyramid levels that need to be simulated at the same time. This low-

cost algorithm yields higher performance through high utilization of PEs.

However it performs slightly worse than Stout's algorithm when only one

level is active at a time. Patel and Ziavras' algorithm performs much better

than Stout's algorithm when all levels, excluding the leaf level, are active

concurrently. The comparative analysis of these two algorithms is based on

the incorporation of simulation results for some image processing algorithms

which are perimeter counting, image convolution, and segmentation.

PERFORMANCE ANALYSIS OF
PYRAMID MAPPING ALGORITHMS FOR THE HYPERCUBE

by
Jing-Chiou Liou

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science

Department of Electrical and Computer Engineering

January, 1993

APPROVAL PAGE

Performance Analysis of
Pyramid Mapping Algorithms for the Hypercube

Jing-Chiou Liou

Dr. Sotirios G. Ziavras, Thesis Adviser
Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. John D. Carpinelli, Committee Member
Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. Dennis Karvelas 	Committee Member
Assistant Professor 	of Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author: Jing-Chiou Liou

Degree: Master of Science in Electrical and Computer Engineering

Date: January, 1993

Undergraduate and Graduate Education:

• Master of Science in Electrical and Computer Engineering, New
Jersey Institute of Technology, Newark, NJ, 1993

• Bachelor of Science in Electrical Engineering, National Taiwan
Institute of Technology, Taipei, Taiwan, R.O.C., 1983

Major: Electrical and Computer Engineering

iv

This thesis is dedicated to
my dear wife Susan

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his supervisor,

Professor Sotirios G. Ziavras, for his guidance, friendship, and moral support

throughout this research.

Special thanks to Professors John D. Carpinelli and Dennis Karvelas

for serving as members of the committee.

vi

TABLE OF CONTENTS

Chapter 	 Page

1. INTRODUCTION 	

1.1 The Hypercube Network 	1

1.2 Multilevel Systems 	3

1.3 Applications of Multilevel Systems 	6

1.4 Motivations and Objectives 	7

1.5 Thesis Outline 	8

2. EXISTING MAPPING ALGORITHMS 	9

2.1 Performance Measures 	9

2.2 Mapping Algorithm I 	 10

2.3 Mapping Algorithm II 	 12

2.3.1 Mapping the Pyramid 	 12

2.3.2 Mapping Multilevel Structures 	 15

2.3.3 Mapping Overlapped Multilevel Structures 	 16

2.4 Comparison with Existing Algorithms 	 17

3. COMPARATIVE ANALYSIS 	 19

3.1 Image Processing Algorithms 	 19

3.1.1 Perimeter Counting of Objects 	 19

3.1.2 2-D Convolution 	 20

3.1.3 Segmentation of Images 	 21

3.2 Simulation Results 	 24

4. CONCLUSION 	 32

APPENDIX 	 33

BIBLIOGRAPHY 	 68

vii

LIST OF TABLES

Table 	 Page

3.1 Simulation results for perimeter counting on
Hypercubes 	 27

3.2 Simulation of lateral data transfer with total
execution time for 2-D convolution 	 28

3.3 Comparison of lateral data transfer with total
execution time for 2-D convolution 	 29

3.4 Simulation results for segmentation on Hypercubes 	 30

3.5 Simulation results for convolution and perimeter
counting on Multilevel Structures 	 31

viii

LIST OF FIGURES

Figure 	 Page

1.1 Small Hypercubes 	3

1.2 The P2 pyramid with Base Size 42=16 	5

2.1 Mapping The P3 pyramid Onto The H6 hypercube With
Algorithm I 	 12

2.2 Mapping The P3 pyramid Onto The H6 hypercube With
Algorithm II 	 14

2.3 The Mapping of Two P3 pyramid Onto The H6 hypercube
With Algorithm II 	 18

ix

CHAPTER 1

INTRODUCTION

1.1 The Hypercube Network

The hypercube network has widely been used in the field of parallel

computing because it offers a small diameter, high degree of fault tolerance,

and rich interconnection structure that permits fast communication at a

reasonable cost [1,8]. A d-dimensional hypercube Hd is composed of 2d nodes

with d edges per node (i.e., each node in such a hypercube has d neighbors)

[1]. A unique d-bit address is assigned to each node of the hypercube. An

edge connects two nodes if and only if the address of these two nodes differ by

a single bit. An edge is a communication link between two neighboring nodes

which makes the hypercube a distributed memory machine, where

information is passed in the form of messages.

The hypercube topology has several important properties. First, it is

homogeneous. This means that for any dimension d, given any two vertices

p,q in Hd, there is a graph isomorphism of Hd onto itself which maps p onto

q. To see this, let r = label(p) XOR label(q) (all logical operations are

performed bitwise) [4]. The mapping which maps a vertex s to the vertex

labeled r XOR label(s) is one such isomorphism. Homogeneity implies that

all nodes can be treated equally, and in particular it means that in a

computer implementation it is natural to allow input/output to all nodes. It

also means that if an algorithm treats a node specially (for example, if node 0

is used as the root of a tree), then by using XOR the algorithm can be

"translated" so that any other desired node is the special one. Some other

1

structures such as pyramids and meshes are not homogeneous, since the

apex is unique and corners can only be mapped to other corners.

Routing messages between nodes is particularly simple in a hypercube.

A message from one node p to another node q has to travel along at least as

many edges as the number of bits by which the addresses of p and q differ

(i.e., number of l's in the result of the XOR operation between the binary

addresses of p and q). A message from p is sent to a neighboring node r

whose address differs in only the ith bit from the address of p (i.e., where the

ith bit of the result of the XOR operation is 1) and so on until the message

reaches q. This process produces a path of minimum length. Notice that

there are many such paths of minimum length. The diameter of a topology is

defined as the largest distance between pairs of nodes. The diameter of Hd

is d=log 2(number of nodes). For comparison, the diameter of the 2-

dimensional mesh is the square root of the number of nodes, while in a

pyramid it is 2xlog2(number of nodes in the base).

Each node in Hd has degree d, meaning that it has d edges. In a

physical implementation the degree of some nodes must be d+1 to allow

communication to the outside world, so if communication is homogeneously

implemented then all nodes will have degree d+1. The hypercube is a

modular structure. Hence, hypercubes are eminently partitionable into

smaller hypercubes. For example, Hd=1 can be partitioned into two disjoint

hypercubes Hd. One copy consists of all nodes having 0 in a particular bit

position of d+1 bit addresses and the other consists of all nodes having 1 in

that coordinate. For example, as shown in Figure 1.1, a 3-dimensional cube

H3 consists of two distinct copies of H2 with one copy having 0 in the most

significant bit and the other copy having 1.

2

3

Thus, any number of hypercubes of smaller dimensionality d can be

mapped simultaneously into the hypercube with a larger dimensionality D

provided 2D ≥ 2k, where k = the sum of the dimensions of all such small

hypercubes to be mapped into HD. Hence, the hypercube provides an

environment with a great deal of flexibility for dynamic allocation of cubes.

Due to its highly regular and dense structure, the hypercube has also been

proven to be a highly fault-tolerant network.

Figure 1.1 Small Hypercubes

1.2 Multilevel Systems

A multilevel system is a hierarchically-structured array of processors, which

implements most of the variations of pyramidal systems. The basic structure

of the multilevel system is pyramid-like [13]. Hence, these systems are

composed of successive layers of mesh-connected arrays of PEs. Each PE is a

I.

processor along with some local memory. The number of PEs in the arrays

decreases with the increase of the level number, where the lowest level

number corresponds to the leaf level. In addition, the size of the leaf level is

2nx2n and the reductions between pairs of neighboring levels are 2mx2m,

where m are natural numbers, and m may have different values for different

pairs of neighboring levels. Only pairs of neighboring levels can

communicate directly with each other. PEs are connected to each other by

point-to-point bidirectional communication channels and the number of data

transfer registers (DTRs) of any PE is equal to the number of its

communication channels. The characteristics of these system are as follows:

(1) They are composed of identical PEs. (2) They are not necessarily single-

rooted systems. (3) There is a single controller per level (i.e., each system

operates in the MSIMD mode of computation).

The pyramid is a special case of multilevel systems with a single apex

and the reductions between successive arrays are 2x2. In the standard

pyramid configuration, each processor at any level, except for the processors

at the lowest level, is directly connected to four children located at the

immediately lower level, and the size of each array is 1/4 the size of the array

at the immediately lower level. In the rest of the discussion Pn denotes a

standard pyramid with 2nx2n nodes at its leaf level. Such a pyramid has n+1

levels. Figure 1.2 shows the P2 pyramid with base size 42=16.

In general, the nodes on level i, 0 ≤ i ≤ log n (the base nodes are on

level 0) are connected as an n/21 x n/21 mesh-connected network. As shown in

Figure 1.2, on each level, we denote by (r,s) the node in position (r,$) on that

level 0 ≤ r, s ≤ (n/2i)-1. Notice that a pyramid with base size n2 has no more

than 4n 2/3 nodes.

Figure 1.2 The P2 pyramid with base size 42=16

Standard pyramids with very powerful PEs, having 10 or 11 levels and

being used to process images of size 512x512 or 1024x1024, are impossible to

efficiently build with the current technology. Therefore, alternative hardware

solutions need to be investigated [9]. For example, the total number of levels

could be reduced by increasing the reductions between neighboring levels.

Sometimes, a speedup of computation is achieved by using pyramid-like

systems that have small reductions at lower levels to enable the application

of standard multiresolution techniques, while larger reductions at higher

levels allow for the fast collection of information extracted at lower levels.

1.3 Applications of Multilevel Systems

Multilevel systems have been widely used in the low-level and intermediate-

level phase of image processing and computer vision (IP & CV). The main

goal of the low-level and intermediate-level phases of IP & CV is to locate

objects present in images and then produce a description of them; this

description is then used by the high level image understanding tasks to

identify individual objects and their spatial relationships in the given scene.

The low-level and intermediate-level phases of IP & CV are characterized by

both local and global operations, when the two-dimentional array structure of

an image is considered, with the majority of the operations being local.

Multilevel systems support efficiently both local and global operations; they

are also suitable for divide-and-conquer techniques [8]. As a consequence,

various algorithms that utilize such systems have been proposed [9,2].

We use for perception images input into the retina-like base array of

multilevel systems (typically, the pyramid). From that point, a number of

different approaches can be taken.

• The system could first find edges, regions, and other features, using

local array operations. These can then be successively averaged and / or

grouped together by linking them moving up, through, and down the system.

• Intermediate-level and higher-level processors could be used in

parallel algorithms to find contours, regions and intrinsic images, build up 3-

dimensional images, and try to match sub-regions of this abstract image with

models of objects stored in memory.

• A whole hierarchy of abstractions could be built, each level

transforming the results of other levels.

• The system could find features and / or segment the image and

directly process regions of interest.

• Features could be extracted from the image to generate abstract

feature images, and also collected, compounded and converged into higher-

level abstract images.

1.4 Motivations and Objectives

The hypercube network has achieved a marked popularity in the field of

parallel computing. Some systems such as Intel iSPC, NCUBE, and

Connection Machine are commercially available. In contrast, powerful

pyramid machines are not cost-effective, difficult to build with current

technology, and have limited applications. However, the hypercube is a

general purpose topology which is capable of efficiently emulating a wide

variety of networks, such as the mesh [14], the pyramid [4,5,6], and the

hyper-pyramid [15]. Thus, the problem of simulating the pyramid on the

hypercube is very important. Several algorithms like Stout's [4], Lai-White's

[5,6], and Patel-Ziavras'[7] have been developed to embed pyramids into

hypercubes.

Studying these algorithms reveals the fact that Lai-White's algorithms

need a (2n+1)-dimensional hypercube H2n+1 to simulate a Pn pyramid with

2nx2n PEs at its leaf level while Stout's and Patel-Ziavras' algorithms need

an H2n hypercube. This means that Stout's and Patel-Ziavras' algorithms

require only half the number of PEs needed by Lai-White's algorithm to

simulate the same pyramid. However, Lai-White's algorithms allow the

concurrent simulation of all levels of the pyramid while Stout's algorithm

allows only one level of pyramid to be active at a time. On the other hand,

Patel-Ziavras' algorithm also allows the concurrent simulation of all levels

excluding the leaf level of the pyramid.

With the need of the H2n hypercube to simulate a Pn pyramid and the

capability of simulating all levels simultaneously except for the leaf level of

the pyramid, Patel-Ziavras' algorithm is a compromise between Stout's

algorithm and Lai-White's algorithm. Therefore, although Lai-White's

algorithms achieve higher performance than Stout's algorithm when multiple

levels of the pyramid need to concurrently activate, they will not be

considered useful algorithms due to their higher cost and lower utilization (

Notice that some PEs are never used in Lai-White's algorithms).

Thus, the main objective of this research is to explore a comparative

analysis based on analytical techniques involving Stout's algorithm and

Patel-Ziavras' algorithm for the mapping of the pyramid onto hypercube. In

addition, this thesis also shows the mapping of multiple pyramids and

overlapped pyramids onto the hypercubes. Simulation results for some

important image processing algorithms such as finding the perimeter of an

object, 2-D convolution, and Segmentation are also included.

1.5 Thesis Outline

This thesis is organized as follows. Chapter 2 discusses existing algorithms

that map pyramids onto hypercubes. The mapping of overlapping pyramid

structures onto the hypercube is discussed in the last two sections of Chapter

2. Comparative analysis of these existing algorithms is also included.

Various simulation results are presented, and the mapping algorithms are

compared in Chapter 3. Conclusions are presented in Chapter 4.

CHAPTER 2

EXISTING MAPPING ALGORITHMS

2.1 Performance Measures

The analytical technique being used in this research incorporates three

measures of the cost of graph mappings, namely expansion, dilation and

congestion. The function h: G → G' represents the mapping of the source

graph G onto the target graph G'. It is a mapping of the vertices on G into

the vertices of G' in a one to one fashion. The three measures are then

defined as follows [6]:

Expansion: The expansion of h is the ratio of the size of V(G') to the

size of V(G) (i.e., │V(G')│ / │V(G)│ , where V(G) and V(G') are th vertex sets of

G and G' respectively, and │V(G)│ and │V(G')│ are the numbers of elements

in those sets). When │V(G')│≥│V(G)│, the expansion measures how much

of the target graph G' is not assigned nodes from the source graph G. The

closer the value of this measure to one, the smaller the portion of unused

resources in G'.

Dilation: When two neighboring nodes from G are mapped onto two

distinct nodes in G', the dilation of the edge connecting the two nodes in G is

the length of the corresponding path in G'. The maximum dilation is the

maximum length of such a path in G'. The dilation measures the increase of

the communication overhead when compared to one-hop transfers in the

source graph. The smaller the value of the dilation, the lower the

communication overhead associated with the mapping h.

9

Congestion: The congestion is the number of edges in G with the same

image in G'. The maximum number of edges in G with the same images in G'

is the maximum value of the congestion for the chosen mapping h. The

smaller the value of the maximum congestion, the less amount of time that

messages will have to wait in the queues of intermediate target PEs for

communication channels to become available.

2.2 Mapping Algorithm I

The first mapping algorithm was presented by Stout [41. Stout's algorithm

embeds the Pn pyramid into the H2n hypercube. Therefore, the total number

of nodes in the hypercube is equal to the number of nodes in the base of the

pyramid. Since a pyramid with a base of size 2nx2n contains a total of

2 2(n+1)/3 J nodes, the expansion is less than 1.

The n-bit Reflected Gray Code is used to transform the row and

column numbers in the base of the pyramid with a one-to-one mapping.

Hence, each PE in the base of the pyramid is mapped onto a single PE in the

hypercube by obtaining a PE address through interleaving of the bits in the

transformed row and column numbers. This process produces a perfect

mapping for the base of the pyramid. Thus, all PEs of the hypercube are

used to simulate the nodes in the base (i.e., level 0) of the pyramid. To

simulate the next level PEs of the pyramid, 1/4 of the hypercube's PEs are

employed. As a matter of fact, one of the PEs in each sequence of four

children will simulate their parent, and one of the children will have to send

data to its parent over two communication links. The PEs which have the

least significant bits 0 in the transferred row and column numbers are used

to represent the parents in the next higher level. In general, PEs having the

lower K bits of their encoded row and column numbers equal to 0 will

11

simulate nodes from level K of the pyramid. The two main advantages of this

mapping are the small resultant dilation (i.e., the dilation of such a data

transfer is equal to two) and the relatively small number of hypercube

processors required.

Figure 2.1 shows the mapping of the P3 pyramid onto the H6

hypercube; the numbers within the squares represent level numbers. By this

way, the dilation of all lateral edges in the pyramid is equal to one for all of

the levels. However, the maximum dilation of this mapping is equal to two

and corresponds to edges connecting pairs of parents and children as

discussed above. The maximum congestion of this mapping is equal to two.

As mentioned earlier, the total number of PEs in the target hypercube is

smaller than the total number of nodes in the source pyramid.

Since a single hypercube PE may be used to simulate a number of

pyramid nodes from different levels (for example, the PE with row number 0

and column number 0 is used to simulate nodes from all levels of the

pyramid), the hypercube is not capable of simulating multiple levels of the

pyramid at the same time. Thus, if multiple levels of the pyramid need to be

active simultaneously, not only will some hypercube PEs not be capable of

simulating nodes from several levels of the pyramid simultaneously but also

may spend some extra time in switching from one simulation to the next; in

addition, the storage needed to store data for the simulated nodes may

become prohibitively large. Algorithms that keep active all, or a large subset,

of the pyramid's levels most of the time are common; for example, algorithms

that implement pipelining fall into this category [10]. However, this mapping

does not consume a prohibitively long period of time if the pyramid algorithm

proceeds level by level. As discussed earlier, the only delay occurs during the

communication of values between parents and one of their children.

RGC
000 001 011 	I 010 110 133 101 	 100 	

000 0,1,2,3 0 0 0,1 0,1 0 0 0,1,2

001 0 0 0 0 0 0 0 0

011 0 0 0 0 0 0 0 0

010 0,1 0 0 0,1 0,1 0 0 0,1

110 0,1 0 0 0,1 0,1 0 0 0,1

111 0 0 0 0 0 0 0 0

101 	0 0 0 0 0 0 	0 0

100 0,1,2 - 	0 0 0,1 0,1 0 0 0,1,2

Figure 2.1 Mapping the P3 pyramid onto the H6 hypercube with Algorithm I
(RGC: 3-bit Reflected Gray Code)

2.3 Mapping Algorithm II

2.3.1 Mapping the Pyramid

Similar to Algorithm I, the mapping algorithm proposed by Patel and Ziavras

[7], Algorithm II herein, maps the Pn pyramid onto the H2n hypercube.

However , in contrast to Algorithm I, Algorithm II allows multiple levels of

the pyramid to be active simultaneously. More specifically, Algorithm II

allows any subset of levels, excluding the leaf level (i.e., level 0), to be active

at one time. The simulation of the leaf level excludes the simultaneous

simulation of other levels in the pyramid because the total number of leaf

nodes is the same as the number of PEs in the hypercube.

The embedding algorithm proceeds as follows. Similarly to Stout's

algorithm, the n-bit Reflected Gray Code is used to independently encode the

row and column numbers of the leaf level of the Pn pyramid. A perfect

mapping is then produced for this level and the H2n hypercube by either

12

concatenating or interleaving the bits of the encoded row and column

numbers of the nodes in order to find the addresses of the corresponding

target PEs in the hypercube.

The mapping of level 1 nodes is also similar to the mapping produced

by Algorithm I. More specifically, every PE of the next level of the pyramid

has four children at the leaf level, so one PE is chosen from each square of

four PEs to represent the parent PE. The PEs of the hypercube chosen to

simulate these parents are those for which both the transformed column and

row numbers have their least significant bits equal to 0 (as in Stout's

algorithm).

For each set of four PEs which represent sibling nodes at this level of

the pyramid, a PE is again chosen to represent their parent at the next level.

The PE chosen to serve as the parent is the neighbor of one of the PEs

representing the children and all the parent PEs for level 2 form mirror

images in squares outlined by the children. This procedure is repeated until

the apex of the pyramid is reached.

For example, as shown in Figure 2.2, the leaf nodes of the P3 pyramid

are simulated by all 26 PEs of the H6 hypercube (using a one-to-one

assignment). There are sixteen groups (squares) of 2x2 PEs at the leaf level

that have a common parent at level 1. The parent at the next higher level

(i.e., level 1) of the children in such a square is simulated by the PE marked

with 1 in the square. These PEs marked with 1 are again grouped into

groups of four PEs that have a common parent. Parents at the next higher

level are simulated by the PEs marked with 2. Finally, the parent at the

next higher level (i.e.,level 3) of the children marked with 2 is simulated by

the PE marked with 3. Thus, PEs marked with 0,1,2 and 3 simulate nodes

from level 0,1,2 and 3 respectively of the P3 pyramid. Since PEs that

simulate different levels of the pyramid, except for the leaf level, are distinct,

any subset of pyramid levels that does not include the leaf level can be

simulated simultaneously.

We can see that the maximum dilation of the embedding for an edge

connecting a parent at level 1 and one of its children at level 0 is 2 (as for

Algorithm I). However, the maximum dilation for higher levels is equal to

three. The maximum congestion for lower and higher levels is 2. In general,

both the maximum dilation and the maximum congestion associated with

this mapping algorithm are 3 and 2 respectively.

RGC 000 001 011 010 110 111 101 100

000 0,1 0,2 0,3 0,1 0,1 0 0,2 0,1

001 0 0 0 0 0 0 0 0

011 0 0 0 0 0 0 0 0

010 0,1 0 0 0,1 0,1 0 0 0,1

110 0,1 0 0 0,1 0,1 0 0 0,1

111 0 0 0 0 0 0 0 0

101 0 0 0 0 0 0 0 0

100 0,1 0,2 0 0,1 0,1 0 0,2 0,1

Figure 2.2 The Mapping of the P3 pyramid onto the H6 hypercube with
Algorithm II (RGC: 3-bit Reflected Gray Code)

The above algorithm is generalized in the following subsection for the

mapping of multilevel structures onto the hypercube.

14

2.3.2 Mapping Multilevel Structures

The algorithm developed by Patel and Ziavras that maps the pyramid onto

the hypercube can be extended for the mapping of multilevel systems.

Multilevel systems have reductions 2mx2m, where m are natural numbers,

instead of 2x2 as in the pyramid. In addition, the reductions between

different pairs of neighboring levels may differ. In general, the mapping of a

level with total reduction 2tx2t with respect to the base of the multilevel

structure is identical to that of level n-t of the pyramid.

The generalized algorithm to map a multilevel structure onto the

hypercube is presented in mathematical form below.

The introduction of the following variables is pertinent.

• f(i,x,y).(j,k) is a mapping function which maps the PE(i,x,y) of the Pn

pyramid onto the PE of the H2n hypercube with transformed row and

column addresses j and k respectively.

• 1: for a Pl

• m(i,i+1) : 2m(i,i+1)x2m(i,i+1) is the reduction between levels i and

i+1.

• Grayk(m): k-bit Reflected Gray code of m.

• k: auxiliary variable.

The algorithm is as follows.

i=0; k=0; 	f(/,x,y) = (Grayl(x),Grayl(y)).

for i < l then

i=i+1; k=k+m(i-1,i);

f(i,x,y) .(Gray(l-j)(x).(j0s),Gray(l-j)(y).Grayj(k-1));

i-1
where j = Σz=0 	m(z,z+1)

is the total reduction between levels i-1 and i.

As a consequence, the following are true:

• Level 1 of Pl is mapped onto PEs of H2n having row and column

addresses with 0 in their least significant bit.

• Level 2 of P

l

 is mapped onto the PEs of H2n with row and column

addresses equal to Gray(l-1) (0).0 and Graya(l-1) (1).0 respectively and

its mirror images.

The maximum dilation for edges that connect parent and children from

levels i and i-1 respectively is 2m(i-1,i)+1. Stout's algorithm can also be

extended for the mapping of multilevel structures. The resultant maximum

dilation is equal to 2m(i-1,i).

2.3.3 Mapping Overlapped Multilevel Structures

Overlapped multilevel structures are similar to standard multilevel

structures except that each parent is also linked to children from neighboring

groups. For example, the overlapped pyramid structure is the same as the

pyramid structure except that instead of four children each parent has 16

children. It is obtained from the standard pyramid by extending the area

occupied by the children by 50 % in each direction. Hence, each child has

four parents. Such a structure is appropriate for some segmentation

algorithms in image processing [3]. As a consequence, it becomes imperative

to develop algorithms for mapping such structures onto hypercube.

The algorithms of this chapter which map the pyramid or multilevel

structures onto the hypercube are also applicable for the mapping of the

corresponding overlapped structures onto the hypercube. However, the

dilation and congestion will increase as the number of children which

communicate with the same parent increases. For example, for the

1 6

overlapped pyramid the maximum dilation and maximum congestion will be

4 and 8 respectively.

2.4 Comparison with Other Existing Algorithms

There are four existing algorithms that map pyramids onto hypercubes. Two

algorithms, other than Algorithms I and II discussed earlier, were proposed

by Lai and White [5,6]. Both Algorithms I and II need an H2n hypercube to

embed a Pn pyramid. In contrast, the algorithms presented by Lai and White

need a H2n+1 hypercube to map a Pn pyramid. Therefore, the cost

associated with the mapping algorithms of Lai and White is much higher. As

a result, the mapping algorithms proposed by Lai and White will not be

discussed in this thesis.

We should remind that, Algorithm II presented by Patel and Ziavras

for the mapping of the pyramid onto the hypercube has maximum dilation

and maximum congestion 3 and 2 respectively, while Stout's algorithm, i.e.

Algorithm I has 2 and 2 respectively for these metrics. Thus, the Algorithm

II will be inferior Algorithm I with respect to the communication delay as the

dilation is increased by I in Algorithm II. On the other hand, Algorithm II

is superior to Algorithm I with respect to the total execution time when

several levels of the pyramid are considered to be active at the same time.

This is due to the fact that Algorithm I does not allow concurrent simulation

of multiple levels of the pyramid. However, the only type of concurrency not

allowed by Algorithm II is the concurrent simulation of the leaf level along

with other levels.

It can be seen that, four pyramids could be simulated at the same time

with the same dilation and congestion of 2 when Stout's mapping algorithm

is used. These pyramids will have the same base, which will be simulated by

17

all PEs of the hypercube. One of four PEs in each group of the base

simulates a parent at the next level. The remaining three PEs in each group

can be used to concurrently simulate three more pyramids of the same size.

In contrast, Algorithm II can simulate only two such pyramids

concurrently. Since different PEs of the hypercube simulate different levels

of the pyramid, only one more pyramid can be simulated at the same time

with the remaining PEs of the hypercube, for the same maximum dilation

and maximum congestion of 3 and 2 respectively. All levels of both pyramids

(except for their leaf level) will be active simultaneously. PEs marked with

prime numbers in Figure 2.3 simulate the second pyramid.

RGC 000 001 011 010 110 111 101 100

000 0,1 0,2 0,3 0,1 0,1 0 0,2 0,1

001 0,1' 0,2' 0,3' 0,1' 0,1' 0 0,2' 0,1'

011 0,1' 0 0 0,1' 0,1' 0 0 0,1'

010 0,1 0 0 0,1 0,1 0 0 0,1

110 0,1 0 0 0,1 0,1 0 0 0,1

111 0,1' 0 0 0,1' 0,1' 0 0 0,1'

101 0,1' 0,2' 0 0,1' 0,1' 0 0,2' 0,1'

100 0,1 0,2 0 0,1 0,1 0 0,2 0,1

Figure 2.3 The mapping of two P3 pyramids onto the H6 hypercube with
Algorithm II.

18

CHAPTER 3

COMPARATIVE ANALYSIS

3.1 Image Processing Algorithms

This chapter carries out a comparative analysis using of simulation results. It

involves the two mapping algorithms of the previous chapter. In fact,

simulation results are derived for three important image processing

algorithms which are perimeter counting of objects, 2-D convolution, and

segmentation of an image.

3.1.1 Perimeter Counting of Objects

This application algorithm assumes the existence of a single object and the

assignment of a single pixel with a value of 0 or 1 to each node at the leaf

level of the pyramid. PEs containing 1 from the previous assignment

correspond to boundary pixels. Hence, a bottom-up process is applied to

count the total number of boundary pixels. More specifically, nodes at the

leaf level (level 0) of the pyramid that contain a boundary pixel send 1 to

their parent at the next level (level 1), while the others send 0 to their parent.

Each parent at the next level sums the four values it receives from its

children and transmits the result to its parent at the next level (level 2).

This process is repeated until the topmost level (apex PE) is reached. After

the addition of the values received by the apex PE, the perimeter of the object

is obtained.

19

3.1.2 2-D convolution

Two-dimensional convolution is a common operation in the area of image

processing. The 2-D convolution algorithm using the pyramid structure

convolves a kxk window of weighting coefficients with a 2n x 2n image

matrix at the leaf level. In practice, k is much smaller than n. Let X = {xi,j }

and W = {Wi,j} be the image matrix and the window respectively. The 2-D

convolution problem is to compute Y = {yr,s } where

k-1 k-1
Yr,s = ∑ ∑ 	Wi,j * Xr+i,s+j 	(3.1) i=0 i=0

with 0 ≤ r,s ≤ 2n-k

We assume that the 2nx2n image matrix has been loaded into the leaf

level nodes, one pixel per node. Therefore, the 2-D convolution algorithm is

divided into three phases:

1. The smallest integer r is found for which 2r ≥ k. Then the leaf level of

the pyramid is partitioned into square blocks of size 2rx2r . Each such

partition contains the leaves of a subpyramid whose apex is at level r.

2. After partitioning the base nodes into blocks, the weighting coefficients

are loaded into the upper leftmost part of each partition. This can be

implemented on a pyramid machine using a top down process,

assuming that the coefficients are contained in the apex. The rest of

the PEs in each partition receive a zero as the weighting coefficient.

3. The pyramid then computes the 2-D convolution. The results are

stored in the base nodes. The result yr,s is stored in a register of the

base node (r,s).

20

21

It should be noted that phases 1 and 2 are not included in the total

execution time of the presented results. For phase 3, more detail follows.

The PEs at the leaf level multiply the weighting coefficients with the pixel

values they contain, and send the results to their parents at next level (level

1). Parents at level 1 sum the four values they receive from their four

children and send the result to their parent. This process is repeated until

the apexes of the subpyramids at level r are reached. Each apex adds the

values it receives from its children and sends the result, through the

necessary intermediate PEs at lower levels to the leaf PE in the upper

leftmost corner of its partition. Each window at the leaf level that contains

the weighting coefficients is shifted to the right once, multiplications are

performed as above, the results are then shifted to the left once, and the

values are sent to the parents at level 1. Then the bottom-up and top-down

processes described above are applied with the result now stored in the PE

with offset (0,1) in the partition. It is obvious that the 2-D convolution

algorithm involves lateral shifts and multiplications at the leaf level, bottom-

up additions of products, and finally top-down transmissions of final results.

No matter what the window size k is, those steps described earlier are

repeated 22r times which is equal to the total number of PEs in each

partition. For instance, these steps are repeated 16 times for window sizes

3x3 and 4x4 because 22r=16, with 2r ≥ k.

3.1.3 Segmentation of Images

Segmentation is the process which partitions the image into regions with

more or less homogeneous property; but the process which estimates these

properties should be confined within individual regions. Segmentation and

image properties are computed in a cooperative, iterative fashion. The

22

results obtained for each task at one iteration are used to adjust and improve

the performance of the other task at the next iteration. This approach uses

an overlapped pyramid where each node in the pyramid has four parents and

16 children.

A father-son relationship is defined between nodes in adjacent levels

but this relationship is not fixed and may be redefined at each iteration. In

each iteration the node is linked to a single one of these four higher level

candidate father nodes. The father-son links then define windows in the

image and ultimately the image segments. The window for a given node is

just the sum of its son's windows, although the actual size and shape of

windows will vary from node to node at a given level and from iteration to

iteration for a given node.

There are four time dependent variables associated with each node:

• C[i,j,l][t]: the value of the local image property;

• a[i,j,1][t]: the area over which the property was 3computed; • P[i,j,1][t]:

	 a power to the node's lather at the next higher level;

• S[i,j,1][t]: the segment property, the average values for the entire

segment containing the node;

Here time is the iteration number, a positive integer.

For each node [i,j,l] with 1>0 (1 is the level number), there is a 4x4

subarray of candidate son nodes at [i', j', 1-1] where

i' = 2i-1, 2i, 2i+ 1, 2i+2

j' = 2j-1, 2j, 2j+1, 2j+2

On the other hand, each node below the top level has four candidate

father nodes at [i", j", 1+1] where

i"={ (i-1)/2 } or { (i+1)/2 }

j"={ (j-1)/2 } or { (j+1)/2 }

Here {.} indicates the integer part of the fraction enclosed.

In the initial iteration, the value of C for each leaf level node is set

equal to the corresponding image sample value, while the C value for each

higher level node is the average of all 16 of the node's candidate sons. All

iterations following initialization (t>0) are divided into three phases:

1. Father-son links are established for all nodes below the top of the

pyramid. The way used to choose the father-son link is as follows:

The mth parent is chosen, where d[m] is the smallest absolute

difference between the C value of node [i,j,l] and all of its candidate

parents. The decision is made at random if the value of d[n] for two or

more of the candidate fathers are equal.

2. The C and S values are computed bottom up on the basis of the new

son-father links.

For 1=0 a[i,j,1][t]=1

For 0<l<L a[i,j,l][t] is the sum of areas over those sons of node [i,j,l]

assigned in phase 1

If a[i,j,l][t] >0 then C[i,j,1] = ∑(a[i,j,1-1][t]*C[i',j',1-1][t])/a[i,j,1][t]

3. Segment values are assigned top down.

At the top most level the segment value of each node is set equal to its

local property value

S[i,j,l][t] = C[i,j,l][t]

For lower level l<L, each node's value is just that of its father.

At the end of phase 3, the level 0 segment values represent the current

state of the smoothing-segmentation process. Any changes in pointers in a

23

24

given iteration will result in changes in the values of local image properties

associated with pyramid nodes. These changes may alter the nearest father

relationship and necessitate a further adjustment to pointers in the next

iteration. Changes always shift the boundaries of segments in a direction

which makes their contents more homogeneous, so convergence is

guaranteed. The iterative process is repeated until no changes occur from

one iteration to the next.

3.2 Simulation Results

Simulation results for the aforementioned image processing algorithms using

the two mapping algorithms that map the pyramid onto the hypercube will

be discussed in this section. Some definitions used for the calculation of the

execution time are expressed in machine cycles. The scanning delay is 2; it is

the time needed to load the values of pixels into the corresponding PEs at the

leaf level. The communication time for a single value is 2, the set up time to

receive or transmit a single value is 1. The addition time is 1, and both the

multiplication and division times are 2.

Table 3.1 shows simulation results for the algorithm of perimeter

counting, for only one level of the pyramid being active at a time. Stout's

algorithm performs better than Ziavras' Algorithm. This is because of its

smaller dilation (D=2 compared, to D=3 in Ziavras' algorithm) and hence

reduced communication delay between adjacent levels. However, the

pyramid machine is more efficient than the hypercube machine for this

algorithm. Since the communication time between adjacent simulated levels

increase on the hypercube due to increased dilation and congestion of the

mapping, the better performance of the pyramid should be expected.

25

For multiple levels being active simultaneously, only Ziavras' algorithm

can be implemented on the hypercube machine. As expected, a pyramid

machine performs better than Ziavras' algorithm for the hypercube.

For different mapping algorithms, the total numbers of PEs used may

differ. As shown in Table 3.1, the average utilization of hypercube PEs for

the two algorithms are different. It must be emphasized that communication

times are not included in the calculation of utilization because they

correspond to pure overhead.

Results for the two-dimensional convolution algorithm are shown in

Table 3.2. Due to the perimeter implementation, as discussed earlier, only

result for 2x2, 4x4, and 8x8 (i.e., power of 2) should be presented. The results

show again that Ziavras' algorithm has worse performance than Stout's

algorithm due to its larger dilation when only one level is active at a time. As

in the case of the perimeter counting algorithm, the pyramid performs better

than the hypercube. Note that the number of levels in the pyramids is not

shown because only levels 0 through r are involved. For 4x4 convolution,

only the lowest three levels of the pyramid are used, while for 8x8

convolution, the lowest four levels are used.

When multiple levels are active simultaneously, only Ziavras' algorithm

can be applied. The use of pipelining also raises the average utilization of the

PEs.

Table 3.3 shows the comparison of the times needed for lateral data

transfers at the leaf level and for processing the entire image for 2-D

convolution. The results in Table 3.3 indicate that there are no differences

for the times of lateral data transfers. The main reason for the different total

execution times is the increased communication delay between adjacent

levels in Ziavras' algorithm.

26

Simulation results for the segmentation algorithm that utilizes

overlapped pyramids are shown in Table 3.4. Stout's algorithm and Ziavras'

algorithm have the same performance with respect to the total execution time

for one level being active at a time. They yield higher utilization than the

pyramid machine. This is because the total number of hypercube PEs used in

the algorithm is smaller than the number used with the overlapped pyramid

structure. Results are not presented for concurrent multilevel processing

because the algorithm is inherently sequential in nature. Generally, the

performance of the pyramid is better than that of the hypercube.

Results of concurrently simulating two pyramids on the hypercube are

shown in Table 3.5. Algorithms for perimeter counting and two-dimensional

convolution of an image are implemented simultaneously on the same

hypercube. The execution time is basically determined by convolution. Here

the reduction is 22x22 for window size of 4x4. Hence, only the lowest three

levels of the pyramid are used for 4x4 convolution. For window size of 8x8,

the lowest four levels are used. The reductions are either 22x22 or 2x2,

therefore two cases are considered for multilevel structures. For the first

case of 8x8 window, the reduction between levels 0 (leaf level) and 1 is 2x2,

and it is 22x22 between levels 1 and 2. On the contrary, the reduction

between levels 0 and 1 is 22x22, and between levels 1 and 2 is 2x2 for the

second case. But both cases yield the same performance because of the

chosen timings for the simulation. The advantage of Ziavras' algorithms is

that it can simulate multiple levels simultaneously. All three image

processing algorithms that were simulated in this thesis illustrate a major

improvement in performance for this algorithm.

Table 3.1 Simulation results for perimeter counting on Hypercubes
(C: congestion, D: Dilation)

Stout's Algorithm; D=2; C=2; H2n -

One Level Active Multiple Levels Active

of
Levels

# of PEs 	in
Hypercube Ext.Time

Utilization
Avg. 	Max. 1/Throughput

Utilization
Avg. 	Max.

29 15.89 20.69 3 64

38 12.24 15.79
 	4 256

47 9.92 12.77 	5 	1024

56 8.33 10.71

6 4096

65 7.18 9.22

	7 16384

Ziavras' Algorithm; D=3; C=2; H2n

37 12.46 16.22 13 35.46 46.15 3 	 64

50 	 9.30 12.00 12 35.79 46.15 4 	 255

63 	7.40 9.52 12 35.87 46.15 	

5 1024

76 6.14 7.90 13 35.89 46.15 6 4096

89 5.24 6.74 13 35.90 46.15 7 16284

Simulation on Pyramids

17 13.15 17.65 	 5 44.70 60.00 3 85

22 10.20 13.64 	5 44.90 60.00 4 341

27 8.33 11.11 5 44.98 60.00 5 1365

32 7.03 9.38 	5 	45.01 	60.00 6 5461

37 6.08 8.10 	5 	45.03 	60.00 7 21845

27

28

Table 3.2 Simulation results for convolution on Hypercubes

Stout's Algorithm; D=2; C=2; H20

One Level Active Multiple Levels Active

Size of
Window

of PEs in
Hypercube Ext.Time

Utilization
Avg. 	Max. 1/Throughout

Utilization
Avg. 	Max.

88 35.23 48.86
	2x2 4

700 28.71 42.71

4x4 	16

4663 28.34 	47.54 8x8 64

Ziavras' Algorithm; D=3; C=2; H2,

88 35.23 43.86 88 35.23. 48.86 	2x2 	4

764 27.49 	4 615 	34.15 46.18 	4x4 15

5172 26.45 	41 3541 34.71 54.81 1 8x8 	64

Simulation on. Pyramids

56 25.71 31.14 33 43.64 54.55 	 2x2 5

364 15.91 21.43
	

131 	44.20 	59.54 	 4x4 21

1980 11.18 15.61 	510 	43.40 	60.59 	 8x8 	85

Table 3.3 Comparison -of—lateral data transfer with
total execution time for 2-D convolution

Stout's Algorithm; D=2; C=2; H2n

Lateral Total
Window
Size

23 88 2x2

252 700 4x4

2044 4668 8x8

Ziavras' Algorithm; D=3 ; C=2; H2n

Lateral Total
Window
Size

28 88 2x2

252 	764 4x4

2044 	5172 	8x8

2

Table 3.4 Simulation results for segmentation on Hypercubes

Stout's Algorithm; D=2; C=2; H2n

One Level Active Multiple Levels Active

of
Levels

of PEs in
Hypercube Ext.Time

Utilization
Avg. 	Max. 1/Throughput

Utilization
Avg. 	Max.

1048 27.77 32.25 	 3 64

1567 19.38 21.57 	4 256

2086 14.70 16.20 5 	1024

2605 		11.79 12.98 	6 	4096

3124 		9.84 10.82 	7 	16384

Ziavras' Algorithm; D=3; C=2; H2n

1043 27.77 32.25 519 56.08 65.13 3 64

1567 	19.38 21.57 519 58.52 65.13 4 256

2086 14.70 16.20 	519 59.08 	65.13 5 	1024

2605 11.79 12.92 519 59.20 68.13 6 4096

3124 9.84 10.82 519 59.22 63.13 7 16384

Simulation on Pyramids

483 21.76 31.97 189 	 56.25 82.54 3 	 85

727 15.26 21.46 	189 	 58.71 82.54 4 341

966 11.61 16.15 189 	59.32 82.54 	5 	 1365

12C5 9.33 	12.95 189 59.47 82.54 6 5461

1444 7.79 10.80 189 59.50 82.54 7 21845

3 0

Table 3.5 Simulation results for convolution and perimeter counting on
Multilevel Pyramid

Stout's Algorithm; D=2; C=2; H2n

One Level Active Multiple Levels Active

Size of
Window

4 of PEs in Hypercube
Ext.Time

Utilization
Avg. 	Max. 1/Throughput

Utilization
Avg. 	Max.

700 28.71 42.71 I 4x4 15

4658 	28.34 47.54 8x8 64

4668 28.34 47.54 8x8 64

Ziavras' Algorithm; D=3; C=2; H2n

700 28.71 42.71 700 28.71 42.71 4x4 15

4916 27.09 45.40 3187 41.79 70.03 8x8 64

4916 27.09 45.40 3187 41.79 I 	70.03 	8x8 64

Simulation on Pyramids

236 26.32 33.05 129 	 48.15 60.47 	 4x4 17

1468 17.33 21.66 491 	51.82 64.76 	I 8x8 81

1468 20.34 21.66 	 491 	60.83 64.76 	8x8 	 69

31

CHAPTER 4

CONCLUSION

This thesis has investigated the performace of two algorithms that map

multilevel structures onto hypercubes. Such mappings are very important

due to the robustness of the hypercube network with respect to the efficient

emulation of several topologies. Ziavras' algorithm performs better than

Stout's algorithm when multiple levels of the pyramid are considered to be

active simultaneously. This is because only Stout's algorithm does not allow

multiple levels of the pyramid to be active simultaneously. On the other

hand, when only one level of the pyramid must be active at a time, Stout's

algorithm yields better performance than Ziavras' algorithm because of its

lower dilation which results in smaller communication time. However,

Ziavras' algorithm achieves very good performance when only one level is

active at a time. In contrast, Ziavras' algorithm improves the performance

dramatically when multiple levels must be active simultaneously.

The mapping of overlapped multilevel structures onto hypercubes was

also investigated. Three algorithms from the image processing domain were

considered for a comparative analysis.

32

APPENDIX

33

/*************************/

/*** Stout Algorithm ***/
/*** 	One PE /PIXEL 	***/
/*** 	PERIMETER 	***/
/*************************/

#include "stdio.h"
#include "stdlib.h"
#include "math.h"
unsigned long int k,Texe;
float Uavg,Umax,H,H1;
unsigned long int Oep, max;
int i,j,x,y,a[64][64],n,C[128][128];
int Tload,1,d,Omax,inc,Base,Tcomm,Tset,Tadd;
void Dec_Gray_();

main()

FILE *fp,*fg;
Tload=2;
Tcomm=2;
Tset=1;
Tadd=1;
fg=fopen("peri.sto","w");
fprintf(fg,"\n n 	Processors 	Oep 	Texe 	Uavg

Umax 	n\n");
for(n=3;n<=7;n++)

Omax=0;
Oep=0;
Texe=0;
Base=(pow(2,n))-1;
if((fp=fopen("mat.dat","r")) == NULL) exit (1);
for(i=0;i<=Base;i++)

for(j=0;j<=Base;j++)

fscanf(fp,"%d ",&a[i][j]);
printf("%d\t",a[i][j]);
Dec_Gray_();
C [x] [Y] =a [i] [j];

}

printf("\n");
}

Texe=Texe+Tload;
H=(Base+1)*(Base+1);
Oep=Oep+H;
inc=2;
for(x=0;x<=Base;x=x+inc)

for(y=0;y<=Base;y=y+inc)

34

C[x][y]=C[x][y]+C[x][Y+1];
C[x][y+1]=C[x+1][y+1];
C[x][y]=C[x][y]+C[x+1][y];

C[x][y]=C[x][y]+C[x][y+1];

Omax=Omax+2;
Oep=Oep+11*H/4;
Texe=Texe+Tcomm*2*Tset+Tadd;
Omax=Omax+2;
Texe=Texe+Tset+Tadd;
Omax=Omax+2;
Texe=Texe+Tset+Tadd;
for(1=2;1<=n;1++)

inc=pow(2,1);
d=pow(2,1-1);
for(x=0;x<=Base;x=x+inc)
for(y=0;y<=Base;y=v+inc) {

C[x][y]=C[x][y]+0[x][y+d];
C[x][y+d]=C[x+d][y+d];
C[x][Y]=C[x][y]+0[x+d][y];
C[x][y]=c[x][y]+C[x][y+d];

Texe=Texe+Tcomm+2*Tset+Tadd;
Texe=Texe+Tset+Tadd;
Texe=Texe+Tset+Tadd;
H1=H/pow(2,2*1);
Oep=Oep+11*Hi;

Umax=(float)Omax/Texe;
i=2*n;
j=pow(2,i);
k=Texe*j;
Uayg=(float)Oep/k;
fprintf(fg,"%d\t %d\t %lu\t %d\t",n,j,Oep,Texe);
fprintf(fg,"%5.4f\t %5.4f\n",Uavg,Umax);

printf("\n Output CO %d",C[0][0]);
}

void Dec_Gray_()

x=i>>1;
x^=i;

y=j>>1;
y^=i;

***************************/

/*** Ziavras Algorithm ***/
/*** 	One PE /PIXEL 	***/
/*** 	PERIMETER 	***/
/***************************/

#include "stdio.h"
#include "stdlib.h"
#include "math.h"
unsigned long int Texe;
float Uavg,Umax,Upipmax,k,H,H1;
long int Oep;
double Upipavg;
unsigned int Tpipe,max;
int i,j,x,y,a[64][64],n,C[128][128],l,d,Omax,inc,Base;
int Tset,Tadd,T11,Tcomm,Tload,hostx,hosty;
int xl,yl;
void Dec_Gray_ ();
void Host_();

main() {

FILE *fp,*fg;
Tload=2;
Tcomm=2;
Tset=1;
Tadd=1;
fg=fopen("peri.zia","w");
fprintf(fg,"\n n 	Processors Tseq 	Texe 	Uavg");
fprintf(fg," 	Umax Tpipe Upipavg Upipmax\n\n");
for(n=3;n<=7;n++)

Omax=0;
Oep=0;
Texe=0;
Base=(pow(2,n))-1;
if((fp=fopen("mat.dat","r")) == NULL) exit (1);
for(i=0;i<=Base;i++)
{

for(j=0;j<=Base;j++)
{
fscanf(fp, "%d ", &a [i] [j]);
printf("%d\t",a[i][j]);
Dec_Gray_();
0[x] [17] =a 	[ii ;

}

printf("\n");

36

Oep=C=.T-H;
i nc=2;
max=pow(2,2*n-1));
for(x=0;x<=Base;x=x+inc)

for(y=0;y<=Base;y=y+inc)

C[x][y]=C[x][v]+C[x][y+1];
C[x][y+1]=C[x+1] [y+1];
C[x] [y]=C [x] [y]+C[x+1][y] ;
C[x][y]=C[x][y]+C[x][y+1];
}

}
Omax=Omax+2;
Oep=Oep+11*H/4;
Texe=Texe+Tcomm+2*Tset+Tadd;
Omax=Omax+2;
Texe=Texe+TsetTadd;
Omax=Omax+2;
Texe=Texe+Tset+Tadd;
T11=Texe;
x1=0;
y1=0;
for(1=2;1<=n;1++
{
Host_();
inc=pow(2,1);
d=po(2,1-1);
for(x=x1;x-'=Base;x=x+inc

for(y=y1;y<=Base;y=y+inc)

C[x+hostx][y+hosty]=0;
C[x+hcstx][y+hosty]=C[x+hostx][v+hosty]+C[x][y];
C[x+hostx][y+hosty]=C[x+hostx][y+hosty]+C[x][v-d];
C[x][y+d]=C[x+d][y+d];
C[x+hostx][y+hosty]=C[x+hostx][y+hosty]+C[x+d][Y];
C[x+hostx][y+hosty]=C[x+hostx][y+hosty]+C[x][y+d];
}

x1+=hostx;
y1+=hosty;
Texe=Texe+Tcomm+2*Tset+Tadd;
Texe=Texe+Tcomm+Tset+Tadd;
Texe=Texe+Tcomm+Tset+Tadd;
H1=H/pow(2,2*1);
Oep=Oep+11*H1;
if (1==2) Tpipe=Texe-T11;

}
Umax=(float)Omax/Texe;
Upipmax=(float)Omax/Tpipe;
1=2*n;
j=pow(2,1);
k=Texe*j;
Uavg=(float)Oep/k;
k=(float)j*Tpipe;

Upir,a,:G=(flo 	p k;
fprin':f!fq, dt 	 t
fprintf fa, V5.4 t %5. 	 ,Umax);
fprintf(fg, %u\t ",Tpipe);
fprintf(fg," %5.4f\t %5.4f\n 	vg,Upipmax); }

printf("output C[%d][%d] %d" ,x1,y1,C[x1][y1]) ; }

void Dec_Gray_()
{

x=i>>1 ;

x^=1; y^=i; y=j>>1; y^=j; }

void Host_()
{

if (3<=1) {1=0 ; j=1-1 ; }
else if ((1==4)││(1,7)) {i=1;j=0;}

else if (1,5) {i=0;j=-2;}
else if (1==6) {i=0;j=-1;}

else {i=0 j=1; }
hostx=i;
hosty=j;

/***************************************
/*** 	Convolution Stout's Algorithm. ***

/***************************************

#include "stdio.h"
#include "stdlib.h"
#include "math.h"

int i,j,k,l,d,coim,row;
int max,Base,shu,shl,x,y,Texe,Tload,temp[10][10];
int Tset,Tadd,Tmul,Omax,W[10][10],inc;
int Base,Tcomm,wsize,a,dx,dy,m;
float Uavg,Umax;
int next1,next2;
int C[10][10],P[10][10],conv[10][1C];
long int Oep;

void Product_Wc_();
void Sum_();
void Shift_R_();
void Shift_D_();
void Shift_U_();
void Shift__();
void Dec_Gray_();
void Dist_();

main()

Tioad=2;
Tcomm=2;
Tset=1;
Tadd=1;
Tmul=2;

Oep=0;

Omax=0;
Texe=0;
printf("Please input wsize");
scanf("%d",&wsize);
k=pow(2,wsize);
Base=k-1;
printf("Please input window coefficient\n");
for(i=0;i<=Base;i++)
for(j=0;j<=Base;j++) {

scanf("%d",&a);
Dec_Gray_();

W[x][y]=a;
temp[x][y]=W[x][y]; }

printf("Please input image
matrix\n") for(i=0;i<=Base;i++)

for(j=0;j<=Base;j++)

39

{ scanf("%d",&a : ;
Dec_Gray_();
C[x][y]=a;

shu=0;
for(row=0;row<=Base;row++)

shl=0;
for(co1m=0;colm<=Base+1;colm++)

if(colm==Base+1){ Shift_R_();
Texe=Texe-2*Tset-Tcomm;
Oep=Oep-2*pow(k,2);

else{ if((row==0)&&(colm==0)){ Product_Wc_();
for(1=1;1<=wsize;l++)

Sum_();
conv[0][0]=P[0][0];
}

else(if((row!=0)&&(colm==0)){ Shift_D_()
shu=shu+1;

else{ Shift R_();
shl=shl+1;
if((row==Base)&&(colm==Base))
{ Omax=2*pow (k,2)+Omax;}

Product_Wc_();
if((row==Base)&&(colm==Base))
{ Omax=Omax+pow(k,2);}
if(shu!=0)

for(m=1;m<=shu;m++)

Shift_U_();
if((row==Base)&&(colm==Base))
{ Omax=2*pow(k,2)+Omax;}

}
}

if(shl!=0)

for(m=1;m<=shl;m++)

Shift_L_();
if((row==Base)&&(colm==Base))
{ Omax=Omax+2*pow(k,2);}

}
}

for(l=1;1<=wsize;1++)
{ Sum_();
if((row==Base)&&(colm==Base)) Omax=Omax+11*pow

}
i=row;

40

j=colm;
Dec_Gray_(';

cony[x][y]=P[0][0] ;

Dist_();
Texe=Texe+4*(dx+dy);

Oep=Oep+2*(dx+dy);
if((row==Base)&&(colm==Base))

{ Omax=Omax+(dx+dy)*2;} } } } }

}

Uavg=(float)Oep/(Texe*pow(k,2));
Umax=(float)Omax/Texe;

/**printf("\n %d\t %5.4f\t %5.4f\t%d\t%d\t
%ld\n",Texe,Uavg,Umax,k,k,Oep);**/
for (i=0;i<=Base;i++) {

for (j=0;j<=Base;j++) {

Dec_Gray_();
printf("%d ",cony[x
}

printf("\n"); } }

void Product_Wc_()

for(i=0;i<=Base;i++)
for(j=0;j<=Base;j++)
{
Dec_Gray_();
P[x][y]=temp[x][y]*C[x][y];

}
Texe=Texe+Tmul;
Oep=Oep+pow(k,2);

void Sum_() {

max=pow(2,wsize-1);
inc=pow(2,1);
d=pow(2,1-1);
for(x=0;x<=Base;x=x+inc)
for(y=0;y<=Base;y=y+inc)

P[x][Y]=P[x] [y]+P[x][Y+d];
P[x][y+d]=P[x+d][y+d];
P[x][y]=P[x][y]+P[x+d][y];

41

P[x][y]=P[x][v+P[x][v,-d];

Texe=Texe+9;
Oep=Oep+11*max*max;

void Shift_R_()

for(i=0;i<=Base;i++)
for(j=0;j<=Base;j++)

Dec_Gray_();
if(y==0){ nexti=temp[x][0];

temp[x][0]=temp[x][k/2];

else{ next2=temp[x][y];
temp[x][y]=next1;

next1=next2;
}
}
Texe=Texe+2*Tset+Tcomm;
Oep=Oep+2*pow(k,2);

void Shift_D_()

for(j=0;j<=Base;j++)
for(i=0;i,<=Base;i++)

Dec_Gray_();
if(x==0){ next1=temp[0][Y];

temp[0][y]=temp[k/2][y];
}

else{ next2=temp[x][y];
temp[x][y]=nextl;
next1=next2;

}
Texe=Texe+2*Tset+Tcomm;
Oep=Oep+2*pow(k,2);

void Shift_U_()

for(j=Base;j>=0;j--)
for(i=Base;i>=0;i--)

Dec_Gray_();
if(x==k/2) 	{ next1=P[k/2][y];

P[k/2][y]=P[0][y];
}

42

next2=P[x1[y];
P[x]=next1;

nexti=next2;
}

}
Texe=Tex+2*Tset+Tcomm;

Oep=Oep+2*k*k;

void Shift_L_()

for(i=Base;i>=0;i--)
for(j=Base;j>=0;j--)

Dec_Grav_();
if(y==k/2){ nexti=P[x][k/2];

Px][k/2]=P[x][0];

else{ next2=P[x][y]; P[x][y]=next1;

nextl=next2;
f

}
Texe=Texe+2*Tset+Tcomm;
Oep=Oep+2*pow(k,2);

void Dec_Gray_(
{

x=i»1;
x =̂i;
y=j»1;
y^=j;

void Dist_()

int d1,d2;
d1=x;

d2=y;
dx=0;
dy=0;
while (d1>0){ if((d1&1)>0) dx=dx+1;

d1=d1»1;

while(d2>0) { if((d2&1)>0) dy=dy+1;
d2=d2»1;

)

/***/
/*** Convolution Ziavras' Algorithm ***/

/***/

#include "stdio.h"
#include "stdlib.h"
#include "math.h"

int i,j,k,l,d,colm,row;
int max,Base,shu,shl,temp[10][10];
int Tset,Tadd,Tmul,Omax,W[10][10],inc;
int Texe,Tioad,Tcomm,wsize,a,m;
float Uavg,Umax;
int nextl,next2;
int C[10][10],P[10][10],conv[10][10];
lona int Oep;
int hostx,hosty,x,y,dx,dy;
int x1,v1;

void Product_Wc_();
void Sum_();
void Shift_R_();
void Shift_D_();
void Shift_U_();
void Shift_L_ ();
void Dec_Gray_();
void Dist_();
void Host_();

main()

Tload=2;
Tcomm=2;

Tset=1;
Tadd=1;

Tmul=2;
Oep=0;
Omax=0;
Texe=0;
printf("Please input wsize");
scanf(" %d",&wsize);
k=pow(2,wsize);

Base=k-1;
printf("Please input window coefficient\n");
for(1=0;i<=Base;i++)
for(j=0;j<=Base;j++)

scanf("%d",&a);
Dec_Gray_();
W[x][y]=a;

temp[x][y]=W[x][y]; }

44

printf"Please input image
for(i=0;i‹=Base;i++)
for(j=0;j<=Base;j++)

scanf("%d",&a);
Dec_Gray_();
C[x][y]=a;

}
shu=0;
for(row=0;row<=Base;row++) {

shl=0;
for(colm=0;colm<=Base+1;colm++)
{
if(colm==Base+1){ Shift_R_();

Texe=Texe-2*Tset-Tcomm;
Oep=Oep-2*pow(k,2);

}
else{ if((row==0)&&(colm==0)){ Product Wc_();

x1=0;
y1=0;

for(1=1;1<=wsize;l++)
Sum_();
goto point1;
}

else{ if((row!=0)&&(colm==0))(Shift_D_();
shu=shu+1;

}
else{ Shift_R_();

shl=shl+1;
if((row==Base)&&(colm==Base))
{ Omax=2*pow(k,2)+Omax;

}
Product_Wc_();
if((row==Base)&&(colm==Base))
{ Omax=Omax+pow(k,2);
}
if(shu!=0)

for(m=1;m<=shu;m++)
{
Shift_U_();
if((row==Base)&&(colm==Base))
Omax=2*pow(k,2)+Omax; } }

if(shl !=0) { for(m=1;m<=shl;m++) {

Shift_L_();
if((row==Base)&&(colm==Base))
Omax=Omax+2*pow(k,2);

45

x1=0;
y1=0;
for(1=1;1<=wsize;1++)
{ Sum_();
if((row==Base)&&(colm==Base))
{ if (1==1) Omax=Omax+11*pow(max, 1 ;

else Omax=Omax+20*pow(max,2);

point1:
i=row;
j=colm;
Dec_Gray_();
conv[x][y]=P[xl][yl];

Dist_() :

Texe=Texe+4*(dx+dy);
Oep=Oep+2*(dx+dy);

if((row==Ease)&&(colm==Base))
{ Omax=Omax+(dx+dy)*2;}

}
}

Uavg=(float)Oep/(Texe*pow(k,2));
Umax=(float)Omax/Texe;

/** 	printf("\n %d\t %5.4f ,t 	5.4f\t%d\t d\t
%ld\n",Texe,Uavg,Umax,k,k,Oep) **/
for (i=0;i<=Base;i++)

for (j=0;j<=Base;j++)

Dec_Gray_();
printf("%d 	",conv[x][y]);
}
printf("\n");

}

void Product_Wc_()

for(i=0;i<=Base;i++) for(j=0;j<=Base;j++)

Dec_Gray_();
P[x][y]=temp[x][y]*C[x][y];

}
Texe=Texe+Tmul;
Oep=Oep+pow(k,2);

void Sun

Host_();
max=pow(2,wsize-l);
inc=pow(2,1);

d=pow(2,1-1);
for(x=xl;x<=Base;x=x+inc)

for(y=y1;y<=Base;y=y+inc)

if (1<1)

P[x+hostx][y+hosty]=0;
P[x+hostx][y+hosty]=P[x+hostx][y+hosty]+P[x][y];
}
P[x+hostx][y+hosty]=P[x+hostx][y+hostyl+P[x][y+d];
P[x][y+d]=P[x+d][y+d];
P[x+hostx][y+hosty]=P[x+hostx][v+hosty]+P[x+d][y];

R[x+hosux][y+hosty]=P[x+hostx][y+hosty]+P[x][y+d];

x1+=hostx;
yi+=hosty;
if (1==1)

Texe=Texe+9;
Oep=Oep+I1*max*max;

}
else {Tex=Texe+3;

Oep=Oep+20*max*max;
} }

void Shift_R_()
{

for(i=0;i<=Base;i++)
for(j=0;j<=Base;j++)
{
Dec_Gray_();
if(y==0){ nextl=temp[x][0];

temp[x][0]=temp[x][k/2];
}

else{ next2=temp[x][y];
temp[x][y]=next1;

next1=next2;
}

Texe=Texe+2*Tset+Tcomm;
Oep=Oep+2*pow(k,2); }

void Shift_D_()
{

for j=0; j<=Base;J++)
fori=0;i,-=Bse;++)

{

Dec_Gray_();
if(x==0){ nextl=temp[0][y];

temp[0][y]=temp[k/2][y];

else{ next2=temp[x][y];
temp[x][y]=next1;

next1=next2;
}

}
Texe=Texe+2*Tset+Tcomm;
Oep=Oep+2*pow(k,2);

void Shift_U_()
{

for(j=Base;j>=0;j--)
for(i=Base;i>=0;i--)

Dec_Gray_();
if(x==k/2) 	{ next1=P[k/2][y];

P[k/2][y]=P[0][y];

else{ next2=P[x][y];
P[x] [y]=next1;

next1=next2;

}
Texe=Texe+2*Tset+Tcomm;
Oep=Oep+2*k*k;

}

void Shift_L_()

for(i=Base;i>=0;i--)
for(j=Base;j>=0;j--)

Dec_Gray_();
if(y==k/2){ next1=P[x][k/2];

P[x][k/2]=P[x][0];
}

else{ next2=P[x][y];
P[x][y]=nextl;
next1=next2;
}

}
Texe=Texe+2*Tset+Tcomm;
Oep=Oep+2*pow(k,2);

48

void Dec_Gray_()

x^=i ; y=j>>1; }

void Dist_()
{
int d1,d2;
dl=x"hostx;

d2=ŷ hosty;
dx=0;
dy=0;
while (d1>0){ if((d1&1)>0) dx=dx+l;

while(d2>0){ if((d2&1)..(Th dy=dy+1;

void Host_ ()
{

if (1<=3) {i=0;j=l-1 ; }
else if ((1==4)I1(l==7)) {i=1;j=0;}

else if (1==5) 	1=0;j=-2;}
else if (l==6)

else {i=0; j=1;}
hostx=i;
hosty=j;

49

/* *** /***** Simulation of Segmentation Algorithm ******* /**

#include "stdio.h"
#include "math.h"
#include "stdlib.h"

int i,j,k,l,stop,m,row,col,layer;
int maxl,nc,n,m,iter,a[16] [16] [3];
int sx[8][8][3][16],sy[8][8][3][16];
int fx[16][16][3][4],fy[16][16][3][4];
int nchild[8][8][3],p[16][16][3];
float c116][16][3],s[16][16][3];
float sum,psum,min,d[4];
void Cand_Father_();
void Cand_Son_ ();

main()

FILE *fr.;
fp=fopen("matrix.dat","r");

printf("Please input layer");
scanf("%d",&layer);

maxl=layer-1;
k=pow(2,layer);
stop=0;
for(i=0;i<=k-1;i++)
for(j=0;j<=k-1;j++)
a[i] [j] [0]=1;

for(i=0;i<=k-1;i++)
{
for(j=0;j<=k-1;j++)

fscanf(fp,"%f",&c[i][j][0]);
printf("%3.1f\t",c[i][j][0]);

}
printf("\n");

}
Cand_Father_();

Cand_Son_();
/**** 	Initial C Value 	****/

for(1=1;1<=maxl; 1++) {

m=pow(2,layer-l);
for(i=0;i<=m-l;i++)
for(j=0;j<=m-1;j++)

sum=0.0; for=0;n<=15;n++) {

row=sx[i][j][l][n];
col=sy[i][j][l] [n];
sum+=c[row][col][1-1]; }

c[i][j][1]=sum/16.0;
a[i][j][l]=16;

printf("%6.3f",c[i][j][l]); }

printf("\n");
}

/**** Iterations Start 	****/
iter=0;

/**** 	Find Son-Father Relation 	****/
while (stop<4) {

for (1=1;1<=maxl;1++) {

m=pow(2,layer-1);
for (i=0;i<m;i++)

for (j=0;j<m;j++) nchild[i][j][l]=0;

}

iter+=1;
for(1=0;1<=max1-1;1++) {

m=pow(2,layer-1);
for(i=0;i<=m-1;i++)

{
for(j=0;j<=m-1;j++)
{
if (a[i][j][l]>0)

{
min=10.0;
for(n=0;n<=3;n++) {

row=fx[i][j][l][n];
col=fy[i] [j] [l] [n];
if (a[row][col][l+1]>0) {

d[n]=c[i][j][l]-c[row][col][1+1];
if(d[n]<0){d[n]=c[row][col][1+1]-c[i][j][l];} if(d[n]<min){min=d[n];p[i][j][1]=n;}

} }

n=p[i][j][l];
row=fx[i][j][l][n];

col=fy[i][j][l] [n];
nc=nchild[row][col][1+1];

sx[row][col][l+1][nc]=i;
sy[row][col][1+1][nc]=j;
nchild[row][col][l+1]+=1;

51

print("%d = %d ",row,col);

printf("\n");
}

/**** 	Computation of a and c 	****/

for(1=1;1<=maxl;l++)

m=pow(2,layer-1);
for(1=0;i<=m-1;i++)

for(j=0;j<=m-1;j++)
{

sum=0.0;
psum=0.0;
nc=nchild[i] [j] [1];
if (nc>0)

for(n=0;n<=nc-l;n++) {

row=sx]i] [j] [l] [n];
coi=sy[i] [j] [l] [n];

sum+= (float)a [row] [col] [l-1];
psum+= (float) a [row] [col] [1-1] *c [row] [col] [1-1] ;

}
a [i]] [l] = (int) sum;

** 	printf("%d a[i][j][1]",a[i][j][l]);**/
if(sum>0) c[i][j][l]=psum/sum;

else {a[i][j][l]=0;c[i][j][1]=c[2*i][2*j][1-1];}
printf("%6.4f ",c[i][j][l]);

}
printf("\n");
}

}

/****

	

Segmentation Value 	****/
for(i=0;i<=1;i++)
for(j=0;j<=1;j++)

{ {

min=s[i][j][maxl]-c[i][j][maxl];
if (min<0) min=c[i][j][maxl]-s[i][j][maxl];
min=100000.0*min;
if(min>1.0) stop=0;
else stop+=1;
s[i][j][maxl]=c[i][j][maxl];
printf("%6.3f ",c[i][j][maxl]);

}
printf("\n");
for(1=maxl;l>=1;1--) {

m=pow(2,layer-1);
for(i=0;i<=m-1;i++)
for(j=0;j<=m-l;j++)

52

nc=nchild[i] [j] [1] ;
if (nc>0) {for (n=0;n<=nc-1 ;n++) {

row=sx[i] [j] [1] [n] ;
col=sy[i] [j] [1] [n] ;
s [row] [col] [1-1]=s[i][j] [1] ; }

}
}

}
}

printf ("iter %d\n",iter) ;
for(1=0;i<=k-1;i++)
{
for(j=0;j<=k-1;j++)
printf("%5.3f\t",s[i][j][0]); printf("\n"); } }

void Cand_Father_()
{

int ta1,ta2,tb1,tb2;
int maxi , t , max, , j ;
tb2=0;
for (1=0; 1<=max.l-1;l++) {

max f =pow (2 , layer -1) -1;
printf ("layer [%d] \n",1) ;
for (1=0; i<=maxf ;i++)

for (j=0 ; j<=maxf ; j++)

{

tal=(i-1)%2;
if (tal<0) tal= (maxf-1) /2 ;
else tal= (i-1) /2 ;
ta2= (1+1) /2;
if (ta2> (maxf-1) /2) ta2=0;

tb1= (j -1) %2 ;
if (tb1<0) tb1= (maxf-1) /2 ;
else tb1= (j-1) /2 ;
tb2= (j+1) /2;
if (tb2>(maxf-1) /2) tb2=0;
fx[i] [j] [1] [0]=ta1;
fy[i] [j] [1] [0]=tbl;
fx[i] [j] [1] [1]=tal;
fy[i] [j] [1] [1]=tb2;
fx[i] [j] [1] [2] =tat;
fy[i] [j] [1] [2] =tbl;
fx[i] [j] [1] [3]=ta2;
fy[i] [j] [1] [3]=tb2;

53

printf("%d %d %d %d
%d\n”, l, fx[i] [j] [l] [0], fx[i] [j] [l] [2], fy [i] [j] [l] [0], fy [i] [j]] [l] [1]) ;

} } }

void Cand_Son_() {

int tal,ta2,ta3,ta4;
int tb1,tb2,tb3,tb4,max;
int i,j;
for(1=max1;1>=1;1--) {

/** 	printf("layer[%d]\n",1);**/
max=pow(2,layer-1);
for(i=0;i<=max-1;i++)
for(j=0;j<=max-1;j++)

m=pow(2,layer-l+1);
ta1=2*i-l;
if(tal<0) tal=m-1;
ta2=2*i;
ta3=2*i+1;
ta4=2*i+2;
if(ta4>=m) ta4=0;
tb1=2*j-1;

if(tb1<0) tb1=m-1;
tb2=2*j;
tb3=2*j+1;
tb4=2*j+2;
if (tb4>=m) tb4=0;

/** 	printf ("%d %d %d %d 	",ta1,ta2,ta3,ta4);
printf ("%d %d %d %d \n" tb1, tb2, tb3, tb4) ;**/
sx[i] [j] [1] [0] =tal;
sy[i] [j] [1] [0]=tbi;
sx[i] [j] [1] [1]=ta1;
sy[i] [j] [1] [1] = tb2;
sx[i] [j] [1] [2]=ta1;
sy[i][j][1][2]=tb3;
sx[i] [j] [1] [3]=ta1;
sy[i] [j] [1] [3]=tb4;
sx[i] [j] [1] [4]=ta2;
sy[i] [j] [1] [4]=tb1;
sx[i] [j] [1] [5]=ta2;
sy[i] [j] [1] [5]=tb2;
sx[i] [j] [1] [6]=ta2;
sy[i] [j] [1] [6]=tb3;
sx[i] [j] [1] [7]=ta2;
sy[i] [j] [1] [7]=tb4;
sx[i] [j] [1] [8]=ta3;
sy[i] [j] [1] [8],tb1;
sx[i] [j] [1] [9],ta3;

55

sy[i][j][1][9]=tb2; sx[i][j][1][10]=tb3; sy[i][j][1][10]=tb3; sx[i][j][1][11]=tb3; sy[i][j][1][11]=tb4; sx[i][j][1][11]=tb4; sy[i][j][1][11]=tb1; sx[i][j][1][11]=tb4; sy[i][j][1][11]=tb2; sx[i][j][1][11]=tb4; sy[i][j][1]

[11]=tb3;]

sx[i][j][1]

[11]=tb4;]

sy[i][j][1]

[11]=tb4;]

}
}

}

/***/

/*** 	Simulation of Stout's Algorithm ***/
/*** 	 Multilevel Pyramid 	***/
/***/

#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#define n 2 /** # of topmost level **/

int i,j,k,l,d,colm,row;
int max,shu,shl,x,y,Texe,Tload,temp[10][10];
int Tset,Tadd,Tmul,Omax,W[10][10],inc;
int Tcomm,wsize,a,dx,dy,m;
float Uavg,Umax;
int next1,next2;
int C[10][10],P[10][10],conv[10][10];
lona int Oep;
int Base[n];

void Product_Wc_();
void Sum_();
void Shift_R_();
void Shift_D_();
void Shift_U_();
void Shift_L_();
void Dec_Gray_();
void Dist_();

main() {

Tload=2;
Tcomm=2;
Tset=1;
Tadd=1;
Tmul=2;
Oep=0;
Omax=0;
Texe=0;
printf("Please input wsize");
scanf("%d",&wsize);
Base[n]=0;
Base[0]=7;
printf("Please input reduction ");
scanf("%d",&a);
if (a==16) Base[1]=1;
else Base[1]=3;
printf("Please input window coefficient\n");
for(i=0;i<=Base[0];i++)
for(j=0;j<=Base[0];j++) {

scanf("%d",&a);
Dec_Gray_();

56

W[x][y]=a;
temp [x] [y]-=W[x] [y] ;

printf("Please input image matrix\n");
for(1=0;i<=Base[0];)
for(j=0;j=Base[0] ; j++)

scahf("%d",&a);
Dec_Gray_();
C[x][y]=a;

shu=0;
for(row=0;row<=Base[0];row++)

shl=0;
for(colm=0;colm<=Base[0]+1;colm++)

if(colm==Base[0]+1){ Shift_R();
Texe=Texe-2*Tset-Tcomm;
Oep=Oep-2*pow(k,2);

}
else{ if((row==0)&&(colm==0)){ Product_Wc_();

for(l=1;1<=wsize;l++)

conv[0][0]=P[0][0];
}

else{ if((row!=0)&&(colm==0)){
shu=shu+1; }

else{ Shift_F_();
shl=shl+1;

if((row==Base[0])&&(colm==Base[0]))
{ Omax=2*pow(k,2) +Omax; }

}

Product_Wc_();
if((row==Base[0])&&(colm==Base[0]))
{ Omax=Omax+pow(k,2);}
if(shu!=0) {

for(m=1;m<=shu;m++)

{

Shift_U_();
if((row==Base[0])&&(colm==Base[0]))
{ { Omax=2*pow(k,2)+Omax;}

}
if(shl!=0)

for(m=1;m<=shl;m++)

Shift_L_();
if((row==Base[0])&&(colm==Base[0]))
{ Omax=0max+2*pow(k,2);}

1

57

for(l=l;l<=wsize;l++)

Sum_();
if((row==Base[0])&&(colm==Base[0]))

Omax=Omax+11*pow(max,2);

i=row;
j=colm;
Dec_Gray_();
conv[x] [y]=P[0] [0];
Dist_();

Texe=Texe+4*(dx+dy);
Oep=Oep+2*(dx+dy);

if((row==Base[0])&&(colm==Base[0]))
{ Omax=Omax+(dx+dy)*2; }
}

}
}

Uavg=(float)Oep/(Texe*pow(k,2));
Umax= (float)Omax/Texe;

/**printf("\n %d\t %5.4f\t %5.4f\t%d\t%dt
%ld\n",Texe,Uavg,Umax,k,k,Oep);**/
for (i=0;i<=Base[0];i++)

for (j=0;j<=Base[0];j++)

Dec_Gray_();
printf("%d 	",conv[x][y]);
}
printf("\n");
}

void Product_Wc_()

for(i=0;i<=Base[0];i++)
for(j=0;j<=Base[0];j++)

Dec_Gray_();
P[x][y]=temp[x][y]*C[x][y];

}
Texe=Texe+Tmul;
Oep=Oep+pow(k,2);

void Sum_()

int count,k;
max=Base[l];

k=l; if(Base(1-1]-Base[1]›2) count=2;
else count=1;
while (count>0) { inc=pow(2,k) ;

d=pow2,k-1);
for(x=0;x<=Base[0];x=x+inc)

for(y=0;y<=Base[0];y=y+inc) {

P[x][y]=P[x][y]+P[x][y+d];
P[x][y+d]=P[x+d][y+d]; P[x][y]=P[x][y]+P[x+d][y];

P[x][y]=P[x][Y]+P[x] [y+d];

Texe=Texe+9;
Oep=Oep+11*max*max;

}
}

void Shift_R_()
{

fori=0;i<=Base[0];i++)
for(j=0;j<=Base[0];j++) {

Dec_Gray_();
if(y==0){ next1=temp[x][0]; temp[x][0]=temp[x][k/2]; }

else{ next2=temp[x][y];
temp[x][y]=next1;

next1=next2; }
}

Texe=Texe+2*Tset+Tcomm;
Oep=Oep+2*pow(k,2);

}

void Shift_D_() {

for(j=0; j<=Base[0];j++)
for(i=0;i<=Base[0];i++) {

Dec_Gray_();
if(x==0){ nextl=temp[0][y];

temp[0][y]=temp[k/2][y];
}

else{ next2=temp[x][y];
temp [x] [y] =next1;
next1=next2;

}
}

Texe=Texe+2*Tset+Tcomm;
Oep=Oep+2*pow(k,2);

}

void Shift_U_() {

for(j=Base[0];j>=0;j--)
for(i=Base[0];i>=0;i--) {

Dec_Gray_();
if(x==k/2) 	{ next1=P[k/2][y];

P[k/2][y]=P[0][y];

else{ next2=P[x][y];
P [x] [y] =next1;
next1=next2;

}
}
Texe=Texe+2*Tset+Tcomm;
Oep=Oep+2*k*k; }

void Shift_L_()

{ for(i=Base[0];i>=0;i--)
for(j=Base[0];j>=0;j--)

{ Dec_Gray_();
if(y==k/2){next1=P[x][k/2];

P[x][k/2]=P[x][0]; }

else{ next2=P[x][y);
P[x] [y]=next1;
next1=next2;

}
}

Texe=Texe+2*Tset+Tcomm;
Oep=Oep+2*pow(k,2); }

void Dec_Gray_()

{

x=i>>1;
x^=i;
y^=j»1;

Ŷ=j; }

void Dist_()

6 0

int d1,d2;
d1=x;
d2=y;
dx=0;
dy=0;
while (d1>1{ if((d1&1)>0) dx=dx+1;

d1=d1>>1;

while(d2>0){ if((d2&1)>0) dy=dy+1;
d2=d2>>1; } }

 61

/**/

/*** Simulation of Ziavras' Algorithm ***/
/*** 	Multilevel Pyramid 	 ***/
/**/

#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#define n 2 /**# of the topmost level **/
int i,j,k,l,d,colm,row;
int max,shu,shl,temp[10][10];
int Tset,Tadd,Tmul/Omax,W[10][10],inc;
int Texe,Tload,Tcomm,wsize,a,m;
float Uavg,Umax;
int next1,next2;
int C[10][10],P[10][10],conv[10][10];
lona int Oep;
int hostx,hostv,x/v,dx,dy;
int x1,y1,Base[n];

void Product_Wc_();
void Sum_();
void Shift_R_();
void Shift_D_();
void Shift_U_();
void Shift_L_();
void Dec_Gray_();
void Dis_();
void Host_();

main() {

Tload=2;
Tcomm=2;
Tset=1;
Tadd=1;
Tmul=2;
Oep=0;
Omax=0;
Texe=0;
printf("Please input wsize");
scanf(" %d",&wsize);

Base[0]=pow(2,wsize)-1;
k=Base[0];
Base[n]=0;
printf("Please input reduction");
scanf (" %d",&a);
if (a==16) Base[1]=1;
else Base[1]=3;
printf("Please input window coefficient\n");
for(i=0;i<=Base[0];i++)
for(j=0;j<=Base[0];j++)

{ scanf("%d",&a);
Dec_Gray_();

W[x][y]=a;
temp[x][y]=W[x][y];

}
printf("Please input image matrix\n');
for(i=0;i<=Base[0];i++)

for(j=0; j<=Base[0];j++) {

scanf("%d",&a);
Dec_Gray_();
C[x][y]=a;

shu=0;
for(row=0;row<=Base[0] ;row++)

shl=0;
for(colm=0;colm'- =Base[0]+1;colm++)

{ if(colm==Base[0]+1){ Shift_R_();
Texe=Texe-2*Tset-Tcomm;

Oep=Oep-2*pow(k,2);
}

else{ if((row==0)(colm==0)){ Product_Wc_);
x1=0;
y1=0;

for(l=1;l<=wsize;l++)
Sum_();
goto pointl;
}

else{ if((row!=0)&&(colm==0)){ Shift_D_();
shu=shu+1;

}
else{ Shift_R_();

shl=shl+1;
if((row==Base[0])&&(colm==Base[0]))
{ Omax=2*pow(k,2)+Omax;

}
}

Product_Wc_();
if((row==Base[0])&&(co1m==Base[0]))

{Omax=Omax+pow(k,2);
}

if(shu!=0)

{

for(m=1;m<=shu;m++)

{

Shift_U_();
if((row==Base[0])&&(colm==Base[0]))
Omax=2*pow(k,2)+Omax; } }

if(shl!=0)

63

for(m=1;m<=shl;m++)
{

Shift_L_();
if((row==Base[0])&&(cclm==Base[O])
Omax=Omax+2*pow(k,2);

}
}

xl=0;
y1=0;
for(l=1;l<=wsize;1++)
{ Sum_();
if((row==Base[0])&&(colm==Base[0]))
{ if (l==1) Omax=Omax+11*pow(max,2);
else Omax=Omax+20*pow(max,2);

point1: i=row;
j=colm;
Dec_Gray_();
conv[x][y]=P[xl][y1];
Dist_();

Texe=Texe+4*(dx+dy;
Oep=Oep+2*(dx+dy);
if((row==Base[0])&&(coim==Base[0]))
{ Omax=Omax+(dx+dy)*2;)

}
}

Uavg=(float)Oep/(Texe*pow(k,2));
Umax=(float)Omax/Texe;

/** 	printf("\n %d\t %5.4f\t %5.4f\t%d\t%d\t
%ld\n",Texe,Uavg,Umax,k,k,Oep);**/
for (i=0;i<=Base[0];i++) {

for (j=0;j<=Base[0];j++)

{

Dec_Gray_();
printf("%d 	",conv[x][y]); } }

printf("\n"); } }

void Product_Wc_() {

for(i=0;i<=Base[0];i++)
for(j=0;j<=Base[0];j++) {

64

Dec_Gray_();
P[x][y]=temp[x][y]*C[x][y]; }

Texe=Texe+Tmul;
Oep=Oep+pow(k,2);

}

void Sum_() {

int count,k;
Host_();
max=Base[l];
k=1;
if (Base[1-1]-Base[1]>2) count=2;
else count=1;
while (count >0) {

inc=pow(2,k);
d=pow(2,k-1);
for(x=x1;x<=Base[0];x=x+inc)
for(v=y1;y<=Base[0];y=y+inc) {

if (1<l)

{ P[x+hostx][y+hosty]=0;
P[x+hostx][y+hosty]=P[x+hostx][y+hosty]+Px]y; {

P[x+hostx][v+hosty]=P[x+hostx][y+hosty]+P[x][y+d];
P[x][y+d]=P[x+d][y+d];
P[x+hostx][y+hosty]=P[x+hostx][y+hostv]+P[x+d][y];
P[x+hostx][y+hosty]=P[x+hostx][y+hosty]+P[x][y+d];

}
x1+=hostx;
y1+=hosty;
k++;
count--;
if (1==1)

{ Texe=Texe+9;
Oep=Oep+11*max*max;

else {Texe=Texe+13;
Oep=Oep+20*max*max;
}

}
}

void Shift_R_() {

for(i=0;i<=Base[0];i++)
for(j=0;j<=Base[0];j++)

{ Dec_Gray_();

65

if(v==0){ nextl=tem[x][0];
temp[x][0]=temp[x][k/2];

else; next2=temp[x][v];
temp[x][y]=nextl;
nextl=next2;

}
)
Texe=Texe+2*Tset+Tcomm;
Oep=Oep+2*pow(k,2);

void Shift_D_()
{

for(j=0;j<=Base[0];-i++)
for(i=0;i<=Base[0];i++)

Dec_Gray ();
" nextl=temp[0][y];

]=temp[k/2][y];

else; next2=temp[x][v];
temp[x][y]=nextl;
nextl=next2;

}
Texe=Texe+2*Tset+Tcomm;

Oep=Oep+2*pow(k,2);

void Shift_U_()
{

for(j=Base[0];j>=0;j--)
for(i=Base[0];i>=0;i--)
{
Dec_Gray_();
if(x==k/2) 	{ nextl=P[k/2][y];

P[k/2][y]=P[0][Y];
}

else{ next2=P[x][y];
P[x][y]=nextl;
nextl=next2;

}
}
Texe=Texe+2*Tset+Tcomm;
Oep=Oep+2*k*k;

}

void Shift_L_()
{

66

for(i=Base[0];i>=0;i--)
for(j=Base[0];j>=0;j--)

Dec_Gray_();
if(y==k/2){ nex1=P[x][k/2];

P[x][k/2]=P[x][0];
}

else{ next2=P[x][y];
P[x][y]=next1;

nextl=next2;
}

}
Texe=Texe+2*Tset+Tcomm;
Oep=Oep+2*pow(k,2);

void Dec_Gray_()

x=1>>1;
=i;

y=j»1;

1

void Dist_()
{

int di,d2;
d1=x-hostx;

d2=y^hosty;
dx=0;
dy=0;
while (d1>0){ if((d1&1)>0) dx=dx+1;

dl=d1>>1;
}

while(d2>0) { if((d2&1)>0) dy=dy+1;
d2=d2>>1;

}

void Host_()
{

if (1<=3) {i=0;j=1-1;}
else if ((1==4)Il(1==7)) {i=1;j=0;}
else if (1==5) {i=0;j=-2;}

else if (1==6) {i=0;j=-1;}
else {i=0;j=1;}

hostx=i;
hosty=j;

}

57

BIBLIOGRAPHY

[1] Seitz, C.L. "The Cosmic Cube." Comm. ACM, vol. 28, No.1 ,Jan. 1985,
pp. 22-33.

[2] Rosenfeld, A. "Multiresolution Image Proscessing and Analysis."
Spring-Verlag, New York, N.Y. 1984.

[3] Burt, P.J., T.H. Hong, and A. Rosenfeld. "Segmentation and Estimation
of Image Region Properties Through Cooperative Hierarchical
Computation." IEEE Transactions on System, Man, and
Cybernatics, vol. SMC-11, No. 12, Dec. 1981.

[4] Stout, Q.F. "Hypercubes and Pyramids." in Pyramidal Systems for
Computer Vision, Cantoni and S. Levialdi (Eds.), Spring-Verlag,
Berlin, Heidelberg, 1986, pp. 74-89.

[5] Lai, T.-H., and W. White. "Embedding Pyramids in Hypercubes." Tech.
Rep., Dept. of Computer and Information Science, Ohio State
Univ., Nov. 1987.

[6] Lai, T.-H., and W. White. "Mapping Pyramid Algorithms into
Hypercubes." Journal Parallel Distributed Computing, vol. 9
(1990), pp. 42-54.

[7] Patel, S.C., and S.G. Ziavras. "Comparative Analysis of Techniques
That Map Hierarchical Structures into Hypercubes." in Proc.
Parallel Distributed Computing Systems Conf., Washington, D.C.,
Oct. 1991, pp. 295-299.

[8] Ziavras, S.G., "On The Problem of Expanding Hypercube-Based
Systems." Journal Parallel Distributed Computing, vol. 16, Sep.
1992, pp. 41-53.

[9] Ziavras, S.G., "Techniques for Mapping Deterministic Algorithms onto
MultiLevel Systems." Proceedings of International Conference on
Parallel Processing, vol. I, Chicago, I.L., Aug. 1990, pp. 228-233.

[10] Clermont, P., and A. Merigot. " Real Time Synchronization in a Multi-
SIMD Massively Parallel Machine," in Proc. Architectures for
Pattern Analysis Machine Intell. Conf., 1987, pp. 131-136.

[11] Hwang, K., and F.A. Briggs. "Computer Architecture and Parallel
Processing," Mcgraw Hill Publication. 1984.

[12] Chang, J. H., O.H. Ibarra, T.-C. Pong, and S.M. Sohn. "Two-
Dimensional Convolution on a Pyramid Computer." IEEE
Transactions on Pattern Analysis and Machine Intelligence., vol.
10, No. 4, July 1988, pp. 590-593.

68

[13] Ziavras, S.G., "On the Mapping Problem for Multi-Level Systems."
Proceedings of Supercomputing '89 Conference. IEEE Computer
Society and ACM SIGARCH. Reno, Nevada, Nov. 13-17, pp. 399-
408.

[14] Ho, C.T., and S.L. Johnsson. "On the Embedding of Arbitary Meshesin
Boolean Cubes with Expansion Two Dilation Two," in Proc. Intern.
Conf. Parallel Processing Chieago, IL, August 1987, pp. 188-191.

[15] Johnsson, S.L., "Dilation & Embedding of a Hyper-Pyramid into a
Hypercube, "Comm. ACM, 1989, pp. 294-303.

69

	Performance analysis of pyramid mapping algorithms for the hypercube
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Existing Mapping Algorithms
	Chapter 3: Comparative Analysis
	Chapter 4: Conclusion
	Appendix
	Bibliography

	List of Tables
	List of Figures

