
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

1-31-1993

Partial VLSI implementation of the architecture for reusable Partial VLSI implementation of the architecture for reusable

components (ARC) components (ARC)

Deepak Kakadasam
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Kakadasam, Deepak, "Partial VLSI implementation of the architecture for reusable components (ARC)"
(1993). Theses. 1780.
https://digitalcommons.njit.edu/theses/1780

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1780&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1780?utm_source=digitalcommons.njit.edu%2Ftheses%2F1780&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Partial VLSI Implementation of the

Architecture for Reusable Components (ARC)

by

Deepak S. Kakadasam

This work describes a novel VLSI implementation of the Architecture

for Reusable Components (ARC) processor, using Hardware Description

Language (HDL). The main goal here is to achieve efficient execution of

reusable software through proper hardware support. This involves the hard

wired implementation of each instruction designed for the ARC processor.

Instructions are broken down into their logical functions, then modeled

and simulated through the hierarchical design methods that HDL offers. The

structural model of the processor has been developed and simulated. The

purpose here has been to begin work on the design and implementation of

the ARC processor.

The instructions were built using HDL modules, and then simulated

using a logic simulator. The effect of internal propagation delays in the

execution of the logic modules have been investigated. Changes in delay

parameters have been applied to obtain correct logic transfer operations. The

redundancy in the logic transfer operations have also been investigated to

see parallelism at the instruction execution level.

PARTIAL VLSI IMPLEMENTATION OF THE

ARCHITECTURE FOR REUSABLE COMPONENTS (ARC)

by

Deepak S. Kakadasam

A Thesis
Submitted to the Faculty of the

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science

Department of Electrical and Computer Engineering
January, 1993

APPROVAL PAGE

Partial VLSI Implementation of the

Architecture for Reuseable Components (ARC)

Deepak S. Kakadasam

Dr. Durga Misra, Thesis Advisor

Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. Lonnie R. Welch, Committee Member

Assistant Professor of Computer and Information Science, NJIT

Dr. Walter F. Kosonocky, Committee Member

NJIT Foundation Chair for Optoelectronics and Solid State Circuits, NJIT

BIOGRAPHICAL SKETCH

Author: 	Deepak S. Kakadasam

Degree: 	Master of Science in Electrical Engineering

Date: 	January, 1993

Education:

• Master of Science in Electrical Engineering,

New Jersey Institute of Technology, Newark, NJ, 1993

• Bachelor of Electrical Engineering,

Bangalore University, Bangalore, India, 1990

iv

This thesis is dedicated to

my parents

v

ACKNOWLEDGMENT

I take this opportunity to express my gratitude to Dr. Durga Misra,

Assistant Professor, Electrical and Computer Engineering Department of

NJIT and to Dr. Lonnie R. Welch, Assistant Professor, Computer and

Information Science Department of NJIT for their encouragement and

valuable guidance throughout the course of this thesis. Their helpful hints,

suggestions and patience were of immense help.

Special thanks are due to Dr. Walter F. Kosonocky for serving as

member of the committee.

I also wish to thank my friends and colleagues Elie I. Mourad,

Subramanyam Ayyagari, Sudesh J. Tekpat, Christine I. Mourad, and

Nathaniel McCaffrey for their patience, advice and the help they extended

to me.

I would like to extend my thanks to the various people on the net, who

responded with invaluable suggestions to my queries and to all those in the

Real Time Operating Systems Lab, NJIT for their help.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1.1 Statement of Design Flow 	 1

1.2 Overview of the Chapters 	 3

2 LITERATURE REVIEW 	 4

2.1 Overview of RISC Architectures 	 4

2.2 VHDL and Digital System Design 	 6

2.2.1 Levels of Abstraction in HDL 	 7

2.2.2 Basic Concepts of HDL 	 9

2.2.3 Designing with HDL... 	.11

3 SYSTEM ARCHITECTURE.. 	.12

3.1 Introduction to Architecture Development.. 	.12

3.2 Architecture of ARC... 	...14

3.2.1 Control Unit of the ARC...14

3.2.2 Datapath Components of the ARC.. 	21

3.2.3 Memory Components of the ARC... 	23

4 SYSTEM MODELING AND SIMULATION.. 	.26

4.1 Fundamentals of Modeling.. 	.26

4.2 Design of Datapath... 	.27

4.2.1 Register Set Design... 	.27

vii

4.2.2 Bussing Systems 	 30

4.2.3 Arithmetic and Logic Unit 	 32

4.3. Design of Control Unit 	 33

4.4. Design of Memory 	 39

4.5. Hierarchy in the Design Environment 	 40

4.5.1 Timing Considerations in a Hierarchical Environment 	42

5 SIMULATION RESULTS AND DISCUSSION 	 45

5.1 Data Handling by Registers 	 45

5.2 Data Transfer to Busses 	 46

5.3 Data Propagation in Busses 	 49

5.4 Operation of the ALU 	 50

5.5 Memory Read/Write Operation 	 52

5.6 Bit Data Access 	 54

5.7 Simulation of Control Unit Components 	 55

5.8 Sequence of Instruction Execution 	 58

5.9 Instruction Execution Time 	 62

6 CONCLUSIONS AND FUTURE RESEARCH 	 67

6.1 Conclusions 	 67

6.2 Future Research 	 71

APPENDIX A PROGRAM LISTING 	 77

APPENDIX B T-STATE OPERATIONS 	 97

APPENDIX C OPTIMIZATION CIRCUITS 	 101

viii

REFERENCES 	 103

LIST OF TABLES
Table 									Page

3-1 Major Stages and Their Functions... 16

3-2 Number of T-states Taken by the Instructions 	 20

LIST OF FIGURES Table 											Page

2-1 Levels of Abstraction 	 8

2-2 Component Description 	 10

3-1 Constructs of the ARC 	 14

3-2 Instruction Set of the ARC 	 15

3-3 T-state Diagram of the ARC. 	 17

3-4 T-state Diagram of Some instructions. 	 18

3-5 Structure of the Basic Control Unit 	 19

3-6 Contents of the Instruction Register. 	 20

3-7 Components of the Datapath 	 22

4-1 Behavioral and Structural models. 	 27

4-2 Register with Parallel Load/Read using D-flip-flop 	 29

4-3 32 Bit Register with Parallel Load/Read 	 29

4-4 Bus Implementation within the Datapath 	 30

4-5 Interface/Multiplexing of Busses in the Datapath 	 32

4-6 Arithmetic and Logic Unit 	 33

xi

4-7 State Table and Diagram for the Main Control Unit 	 34

4-8 Diagram of Main Control Unit 	 35

4-9 Control Subsystem for the ADD/SUB Instruction 	 36

4-10 Control Signals Produced by the Subsystem 	 38

4-11 T-state Internal Operations 	 39

4-12 Architecture of the Memory 	 40

4-13 Design Hierarchy 	 41

4-14 Propagation Delay in a Module 	 43

4-15 Propagation Delay in Series and Parallel Modules 	 43

5-1 Data Handling by Registers 	 46

5-2 Simulated Structure of Data Transfer to Busses 	 47

5-3 Data Transfer to Busses 	 47

5-4 Effect of a Clear Operation 	 48

5-5 Propagation Delay in Bussing Systems 	 49

5-6 Operation of the ALU 	 50

5-7 Simulated Structure of Datapath 	 52

5-8 Simulated Operation of Datapath 	 52

xii

5-9 Reference Circuit for Memory Access 	 53

5-10 Simulated Operation of a Memory Access 	 54

5-11 Control Unit Simulation 	 56

5-12 Corrected Control Unit Simulation 	 56

5-13 Unstable Counter Operation 	 57

5-14 Stable Counter Operation 	 57

5-15 Instruction Flow Sequence of ADD/SUB 	 58

5-16 Data Flow Sequence within a T-state 	 59

5-17 Memory Read Operation 	 61

5-18 Memory Write Operation 	 62

5-19 Main Timing Diagram 	 63

5-20 Data Transfer Operation 	 64

5-21 Incrementation of Program Counter 	 65

6-1 NCU and the ARC in a Multiprocessor Environment 	 68

6-2 Internal Interface of the NCU 	 69

6-3 External Interface of the NCU 	 71

6-4 Design Example for a Project 	 75

xiii

B-1 Internal T-state Operations 	 97

B-1 Internal T-state Operations 	 98

B-2 T-state Sequence of Instructions 	 99

B-2 T-state Sequence of the instructions 	 100

C-1 Control Logic Optimization for BRANCH Instruction 	 101

C-1 Control Logic Optimization for CLRZ/CLRN Instruction 	102

xiv

CHAPTER 1

INTRODUCTION

A Processor called ARC (an acronym for Architecture for Reusable

Components) is being developed to which is a virtual machine designed for

executing programs that use abstract data types (ADTs). The ADT

mechanism is provided by many modern programming languages and is

often employed during system development to promote modularity and

reuse. The major contribution of ARC is that it supports Asynchronous

Remote Procedure Call (ARPC), a model of parallel execution that works

well for programs developed by layering ADTs.

Research indicates that a computer designed in conjunction with a

programming language is more effective than one designed for use by

programs written in diverse languages. The ARC is unique in the sense that

it is being implemented to support RESOLVE [1] (REusable SOftware

Language with Verifiability and Efficiency), a language currently under

the final stages of development at New Jersey Institute of Technology.

RESOLVE provides for the ADT construct. The ARC processor was

designed to address the potential inefficiencies of reusable software.

1.1 Statement of Design Flow

This thesis is part of a design strategy whose objective is to implement the

ARC as an integrated circuit. The ARC may be considered as an Applicati-

on Specific Integrated Circuit (ASIC). Its application being the efficient

1

2

implementation and execution of RESOLVE.

Gate-Level design is practically dead for large systems. In todays world,

hardware complexity has increased beyond schematic comprehension. Inte-

grated circuits (ICs) are getting so complex that schematics show only a web

of connectivity and modern day engineers are therefore moving toward hard-

ware description languages (HDLs). HDL coupled with logic synthesis is the

future for IC design.

The ARC has been broken down to its lowest level, i.e. the instructions

themselves and a part of the processor have been structurally modeled using

HDL. The HDL used here is MHDL 1 . Each individual instruction has been

designed at the logic level, modeled structurally using MHDL and simulated

on a logic simulator (Lsim). The purpose of this thesis has been to start the

design process of the ARC as an IC. It is beyond the scope of this thesis to

construct and implement the entire processor.

ARC is an Instruction Set Architecture and the idea here has been to

implement each instruction as a single entity. This approach gives us an

understanding of instruction execution and provides details of the number of

Clock Cycles per Instruction (CPI). This data can be used to modify the

instruction set such that most instructions take the same number of CPI to

execute.

1 MHDL is a trademark of Mentor Graphics Corporation

3

1.2 Overview of the Chapters

Chapter 2 gives a brief overview of the Reduced Instruction Set Computer

(RISC) Architectures for VLSI implementation with a perspective towards

implementing Instruction Set Architectures. It also briefly talks about Very

high speed integrated circuit Hardware Description Language (VHDL) and

the advantages it offers in the area of digital system design.

Chapter 3 gives an explanation of the breakup involved in the design

and development of the architecture of ARC.

Chapter 4 deals with the system modeling and the hierarchy exhibited in

the structural modeling.

Chapter 5 presents results of the simulation work and also deals with the

architectural implementation and the problems faced by a design engineer. It

also discusses the delays associated with the logical elements and its impact

on the execution time of the instructions.

Chapter 6 discusses conclusions drawn from the simulation. A note on

the direction for future research is also included.

Appendix A contains a listing of the programs developed.

Appendix B contains the internal operations of the T-states.

Appendix C contains some of the control circuits with the optimization

for parallelism exhibited in instruction execution sequence.

CHAPTER 2

LITERATURE REVIEW

2.1 Overview of RISC Architectures

Reduced Instructions Set Computers (RISC) aim for both simplicity in

hardware and synergy between architectures and compilers [17]. Reduced

instruction sets simplify compilers, alleviate software crisis and provide for

improving architecture quality. Increasing the size or complexity of a

digital circuit may either enhance or impair the overall system

performance, depending on how judiciously the added complexity is chosen

[4]. The RISC project was started at U. C. Berkeley in 1980.

Simpler instruction sets help drastically reduce control logic thus

freeing silicon area, which could be used for on-chip registers or memory.

RISC architectures are register oriented. Instructions operate on the

contents of two registers, or one register and the immediate field included

in the instruction. The result of this instruction is either written into a third

register, or is used as effective address for memory access. All instructions

follow about three stages in their execution process. They are Instruction

Fetch, Instruction Decode and Instruction Execute.

RISC architectures use instruction pipelining. Essentially, pipeline

architecture is a way of exploiting inherent parallelism or providing

additional resources to create necessary parallelism. A simple pipeline can

4

5

be built from inherent concurrency between the fetching of one instruction

and the execution of the previously fetched instruction.

In other words, when one instruction is being executed, the next instruc-

tion is being fetched. If the next instruction is already available for execution

at the end of the current instruction, the processor overlaps the fetch cycle

with the execution cycle. This is a typical instruction pipeline. To discuss the

RISC architecture concept in its entirety is beyond the scope of this chapter.

Exhaustive references will be provided thus minimizing the learning cycle

for new workers in this area and providing a solid base for future research.

The ARC can be classified as a RISC processor. The ARC supports

ARPC by performing data synchronization, automatic parameter restoration,

and dynamic load balancing. RISC machines provide primitive instruction

sets, and are designed by examining the way compiled code uses the instruc-

tion sets of computers and then providing instructions that will be used fre-

quently.

The ARC has been developed on these very same principles. The use-

fulness of RISC processors as nodes in parallel computers has been investi-

gated in recent years. The ARC is developed on the idea that it would be

used in a multi processor environment.

6

2.2 VHDL and Digital System Design

In the design of large digital systems, more time is spent on changing for-

mats for using various design aids and simulators. Computer Aided Design

(CAD) tools have significantly contributed in reducing ASIC development

time. Until recently, design engineers have had to rely on schematic capture

tools which used a mouse and special software to draw the schematics on a

CAD screen. With the increasing complexity of ASICs, schematic entry is

becoming impractical. A hierarchical design schematic tool also demands

that a design engineer enter dozens of schematics. The engineer then has to

use schematic capture packages to create a netlist that describes the intercon-

nection of all the inputs and outputs of the logic gates in the ASIC.

This led to the development of Hardware Description Languages (HDL)

to ease the data entry tasks of ASIC designers. HDL is used to describe hard-

ware for the purpose of simulation, modeling, testing, design and documen-

tation of digital systems. VHDL has now become a standard HDL. These

languages provide a convenient and compact format for hierarchical repre-

sentation of functional and wiring details of digital systems. Some HDLs are

a simple set of symbols and notations for replacing schematic diagrams of

digital circuits. Other HDLs are more formally defined and can be used for

representation of hardware in one or more levels of abstraction.

HDLs also need to have a simulator and a hardware compiler program.

A simulator can be used for design verification, while the compiler is used

7

for automatic hardware generation. VHDL specifically has constructs rang-

ing from behavioral level to gate interconnection level. There are many

HDLs and they only differ in the sense that they offer more than just the

standard environment for simulation purposes. The government and the

industry standard is based on VHDL, which is the VHDL-IEEE 1076 lan-

guage. A merger of tools developed by vendors with user friendly front end

programs together with VHDL code, has only created many types of HDLs.

MHDL is one such kind which is merged with GDT 2 (Graphic Design

Tools). GDT offers the merger of HDL together with their interactive simu-

lator (Lsim) to provide for a complete design and simulation environment.

2.2.1 Levels of Abstraction in HDL

HDLs offer various levels of abstraction to describe the hardware. In MHDL

particularly, four levels of abstraction have been defined; Behavioral, Regis-

ter transfer, Logic, and Device levels. Figure 2-1 shows the levels of abstrac-

tion and also includes information about their applicability.

A Behavioral description is the most abstract. It represents the design

only in terms of its top-level chip architecture. Only input and output behav-

ior is specified. The internal structural details are omitted. The Behavioral

level is the most appropriate for fast simulation of complex hardware units,

2 GDT and Lsim are trademarks of Mentor Graphics Coproration

8

verification and functional simulation for design ideas, modeling standard

components, and documentation.

Register transfer level models describe a design in terms of blocks.

Input/Output behavior, including bus oriented data is specified. Timing

delays may also be included. This is sometimes also referred to as structural

modeling.

Figure 2-1. Levels of Abstraction.

Logic level models describe a design in terms of its logical elements,

such as AND and OR gates, latches and registers. Bit oriented data is speci-

fied at this level for control lines. Timing delays may be specified in terms of

9

rise and fall time delays, and parasitics estimated on net output capacitance.

Device level models describe a design in terms of its device level char-

acteristics and possible analog behavior. This level is useful for modeling

op-amps and comparators.

In standard VHDL three levels of abstraction are defined; Behavioral,

Dataflow and Structural. MHDL offers the very same levels of abstraction

with the only addition being the device level.

2.2.2 Basic Concepts of HDL

HDL used in conjunction with logic simulation and synthesis tools make it a

powerful tool. Any hardware component can be described, simulated and

tested. The description of a particular component in HDL consists in creat-

ing a software module where the inputs and the outputs are first stated. The

next step is a build section where instances of components are created and

netted. The last stage is to create test vectors for the above module and simu-

late the design. This format is the same for all levels of abstraction. See Fig-

ure 2-2.

The first line declares the name of the module. The module could also

contain arguments whose value could be passed at simulation time. The

Input/Output declaration defines the input and output terminals of the mod-

ule. A bus type declaration could also be made by defining a particular ter-

minal as an array of n-bits. The Build section of the module is that section

10

that is executed only at circuit build time. All information that includes cir-

cuit connectivity must be included in this section. An initialize section could

also be added to initialize all terminals prior to the simulate section. The ini-

tialize and the simulate section together could be included in separate files

called the initialization file and the testvector file. The module is then com-

piled and it is now ready for the simulation stage.

Figure 2-2. Component Description.

11

2.2.3 Designing with HDL

Expressing designs in HDL can provide several benefits. An HDL descrip-

tion can be used as a specification of the design. There are many HDLs.

Some of the more important ones are Verilog 3, and MHDL. Hardware

description languages allow for easy text processing, whereas binary

schematics usually require a graphics editor. HDL offers the advantage of

simulation which can uncover design errors that would otherwise be

detected only when the hardware is built. It also provides logic synthesis.

There are synthesis tools which can take an HDL description of a design and

generate a gate level implementation with library components.

These tools help optimize the design with respect to speed, circuit size,

or some other cost function. The other advantage is, HDLs are more like the

C programming language. It is very easy to learn. Finally, HDL is the best

way to document a design. A well commented HDL description can give a

better and more concise documentation than a set of schematics that show

gate level details.

3 Verilog is trademark of Cadence Design Systems

CHAPTER 3

SYSTEM ARCHITECTURE

3.1 Introduction to Architecture Development

Integrated circuit technology has made possible the production of chips

with hundreds of thousands of transistors. Systems of such complexity

remain difficult to design. The computer architect faces problems in the

areas of system partitioning with subglobal specification, subsystems

interface specification and verification, and overall system integration.

In the design of any processor architecture, the designers should make

sure of certain facts: its effectiveness in supporting high level languages,

and the base it provides for system level functions. Both the cost and the

performance of implementation should be taken into consideration to scan

the effectiveness of the architecture.

ARC is proposed to be a 32-bit processor. Its implementation in VLSI

would attempt to compromise between performance and functionality. It all

depends on the instruction set designer to carefully consider both the

usefulness of the instruction set for encoding programs and the

performance of implementation of that instruction set.

Most programs are written in high level languages (HLL) and the role

of the architecture as a host for programs depends on its ability to express

the code generated by compilers for the high level languages. A large

12

13

instruction set architecture will require microcode to implement the instruc-

tion set. In VLSI, silicon area limitations often force the use of microcode

for all but the smallest and simplest of instruction sets. An additional level of

translation is required in microcoded processors. This can be avoided in pro-

cessors with simpler instruction sets by implementing the control logic

through hardwired means.

The Architecture and its strength as a compiler target determine much of

the performance at the architectural level. The organization of hardware for

an architecture can dramatically affect quantitative measures of architectural

performance. Since the architecture imposes implementation requirements

on the hardware, performance measurements made on the architecture that

are implementation dependent may not yeild realistic measures of the perfor-

mance of an actual implementation of the architecture.

The architecture affects the performance of the hardware primarily at

the organizational level. Smaller effects occur at the implementation level

where technology becomes relevant. The key goal in implementation is to

provide the fastest hardware possible. In other words this is to minimize the

overall clock speed, to reduce the overhead on instructions as well as orga-

nizing the hardware to minimize the delays in each clock cycle.

14

3.2 Architecture of ARC

The ARC processor has the following principle elements: control unit, data-

path, and memory and an operation processor. The control unit has all the

control logic to manage data transfer between the datapath, memory and the

external interface.

Figure 3-1. Constructs of the ARC.

3.2.1 The Control Unit of the ARC

The design of a controller depends on the datapath requirements of the sys-

tem. The control unit loads instructions from instruction memory (IM) into

the instruction register (IR) and uses a program counter (PC) to hold the

address of the next instruction to fetch from memory. The architecture is

based on the instruction set, The instruction set is listed in Figure 3-2. The

instruction set is basically divided into Data Movement instructions,

15

Arithmetic and Logic instructions, Control Flow instructions, and Miscella-

neous instructions.

Figure 3-2. Instruction Set of the ARC.

ARC supports programming language constructs that facilitate software

reuse. The Control Flow instructions have a need for a separate hardware

unit called a Network Control Unit (NCU), which would facilitate data

transfer to handle ARPC. These instructions have not been included in this

16

preliminary design. The instructions that have been designed are those that

are included in APPENDIX B.

Each instruction follows its own unique steps to complete its execution.

The execution of each instruction is accomplished by the execution of opera-

tions of a combination of T-state. Each T-state has certain operations associ-

ated with it. These T-states generate the required control signals within the

control unit. These control signals are fed to the datapath where they operate

on the elementary units of the datapath. These signals perform the operation

of gating data from a register to a bus, gating data from a bus to a register,

control of the Arithmetic and Logic Unit (ALU) operation, etc.

Table 3-1. Major Stages and Their Functions

Stage Mnemonic Task

Instruction Fetch (T1)

Instruction Fetch (T2)

Instruction Decode & execute (T3)

Send out the PC to the MAR,

Increment PC

Get memory contents of location

Pointed to by the MAR in InsM.

Perform required operations as

demanded by the instruction.

17

The T-state diagram is shown in Figure 3-3. The execution of a particu-

lar instruction is done by a unique combination of T-states. The operations

occuring within the T-states are included in APPENDIX B.

Figure 3-3. T-state Diagram of the ARC.

18

The T-states for some instructions are shown in Figure 3-4.

Figure 3-4. T-state Diagram of Some Instructions.

The Control Unit is designed in such a way that it exhibits hierarchy in

its implementation. The control unit is split into two smaller units: Cu1 and

Cu2. There are some instructions that do not go beyond the T2 state. For

this the entire unit waits until it gets a start signal and jumps from state T1 to

T2 immaterial of what the instruction is. Then if the decoded instruction

needs execution on state T3, the control is transferred to the next unit and

Cu1 waits until Cu2 has generated a finish signal. Then Cu1, jumps back in

control and relieves Cu2 of its duties. See Figure 3-5 for the structure of the

basic control unit.

19

Figure 3-5. Structure of the Basic Control Unit

The Cu2 stage of the control unit is modeled such that each individual

instruction execution can be observed. The instructions that have been

implemented are those that give a vivid idea of the processor. The ones that

have not been implemented are for later development. The control units for

the individual instructions have been modeled. These are basically counter

units with combinational logic inputs.

The instructions have been grouped on the basis of the number of

T-states that they take to execute. This is shown in Table 3-2. The number

of instructions used by the ARC at this time is about 40. To represent these

40 instructions, we need (2n = 40) n = 6 bits. Thus in the Instruction register,

the bits 0 through 5 represent the instruction. The remaining 26 bits are used

as immediate data. Depending upon instruction usage or design, the remain-

ing bits of the instruction register could be used as necessary.

20

Table 3-2. Number of T-states Taken by the Instruction.

Instructions # of T-states

NOP, WAIT, END, BTRUE BFALSE 2

BRANCH arg1, BRTRUE, BFALSE 3

CLRN, CLRZ 5

DTS 6

PUSH arg1, ADD, SUB, PUSHL arg1,

POPL arg1, POPFD arg1, POPI arg1 8

PUSGFD arg1, POPI, PUSHI_O arg1,

PUSHED arg1 9

PUSHI 12

Figure 3-6. Contents of the Instruction Register.

The Cu2 control unit gives a start signal to a particular counter depend-

ing upon the instruction and the counter in turn drives the decoder unit

which generates the necessary T-states. In actuality each T-state pulse is

anded together with a 4 — ϕ clock to generate the actual control signals

21

which are gated to the datapath.

Let us consider an instruction and deal with its implementation in the

control unit. The ADD/SUB would be one such instruction. These instruc-

tions take about eight T-states to execute. The main control unit Cu1 takes

care of the top two T-states and we are left with generating the remaining six

T-states. So once the Control Unit has decoded that the instruction is an

ADD/SUB instruction, control is passed over to the Cu2 stage which enables

the necessary counter by driving that particular counter which further drives

a decoder to produce the necessary T-state signals. More of this is explained

in Chapter 4, where examples of some instructions have been discussed.

3.2.2 Datapath Components of the ARC

Arithmetic operations in the critical path require careful logic and circuit

design. Care should be taken to see that there is minimal loading on the

adder. The ARC has a 32-bit ALU. See Figure 3-7 for a description of the

datapath. Its basic parts, namely latches, functional unit, and busses are the

following:

22

Figure 3-7. Components of the Datapath.

• Register file: Which includes the following registers.

•TOP of LDS pointer to the Local Data Stack

•TOP of PAS pointer to the Parameter Address Stack

•TOP of LDS

•PC Program Counter (Address of the next instruction)

•C_Flag Control Flag (Indicate Zero or Negative)

23

•C_reg Holds Clone number

•FR Facility Register (contains an offset)

•FDR Facility Data Register (contains an address)

•MDR Memory Data Register

•MAR Memory Address Register

•Label (2-bit unique location identifier)

•Offset (address offset for PC incrementation)

•TEMP (Temporary Storage area)

• Arithmetic and Logic Unit (ALU)

The ALU is a 32-bit carry look-ahead adder which is capable of addi-

tion and subtraction. The subtraction is performed by 2's complement addi-

tion. The structure of the ALU is shown in Figure 3-8. When the control sig-

nal is logic 1 (assuming logic 1 = HIGH level), the ALU performs addition.

Two's complement addition (subtraction) is performed when the ALU con-

trol is logic 0. It is to be noted that the ARC does not directly support float-

ing point arithmetic. For intensive applications a numeric co-processor could

be used.

3.2.3 Memory Components of the ARC

There are four kinds of memory in the ARC. They are the Local Data Stack

(LDS), Instruction memory (InsM), Indexed memory (IM), and the Facility

memory (FM). The data memory components are the LDS and the IM. FM

24

contains a table for each facility used in a program. The LDS is intended to

be used for storing activation records for operation invocations. Each entry

is typically the address of a variables representation IM memory. The LDS

has a word stack because the activation records are stacked and are created

and destroyed in a last-in-first-out fashion. The top pointer of the LDS is

incremented (or decremented) when an item is pushed (or popped). The LDS

is not a true stack since entries can also be accessed randomly. Values on the

LDS can be copied, swapped with values in IM, destructively read and writ-

ten.

Indexed memory contains static module data and the representations of

local variables. IM entries are addressed by specifying a base and an offset.

Values can be copied, swapped with values in LDS, destructively read and

written.

Facility memory (FM) holds tables used by CALL instructions. These

tables are called run-time facility records (RFRs). The facility register (FR)

is also used by CALL instructions and points to the RFR of the current facil-

ity.

The ARC also contains the Parameter Address Stack (PAS) to automati-

cally restore parameters. The PAS contains a record of addresses of all items

pushed onto the LDS, since the LDS is used for passing parameters to opera-

tions.

25

ARC is designed to be a word addressed machine, providing several

advantages over byte addressed architecture. Word addressed architecture

simplifies memory interface since insertion and extraction hardware is not

required. This is particularly important since instruction and data fetch and

data store are in the critical path. Word addressing also makes computation

more efficient.

The number of address bits is 32, which gives us about 232 = four giga-

bytes of physical address space. This amount of memory is not intended for

use with the ARC in the immediate future, but later developments and appli-

cations may demand this amount of memory. At this time the ARC memory

is split up with the LDS and the InsM having about 4K address space, the

IM and the FM having about 64K address space.

Modern processors face the problem that the sum of memory access

time and the memory mapping time is too great to allow the processor to run

at its full speed. There are several constraints on implementing memory on

chip and off chip memory leads to the above mentioned delay. The present

ARC can hold all of its memory on chip given that the memory is limited as

mentioned previously. But this is not the case as the ARC is further devel-

oped. There may be a need to implement a cache memory. In some proces-

sors increased bandwidth was achieved by implementing an instruction

cache [14]. All these considerations should be dealt with in the future.

CHAPTER 4

4 SYSTEM MODELLING AND SIMULATION

This chapter provides a description of the actual modelling and the

procedure adopted in the modelling process. It discusses the inherent

problems associated with the modelling process itself.

4.1 Fundamentals of Modelling

The idea was to break up the instruction set and to simulate them

individually. The datapath remains the same for all the instructions. Most

of the control unit also remains the same. There are a few differences as to

producing the right number of T-states for each instruction. We shall start

first with the design of the datapath and then go on to talk about the control

unit followed by a discussion on memory implementation..

Modern day IC designers use just behavioral models of their circuits

to build their designs. These people in the commercial world have software

that can convert their circuit from behavioral descriptions to structural

models and also easily create a netlist. Not many designers start with a

structural model description. Structural modelling has been used here so

that work on the processor can continue at the university level and future

researchers in this area can actually implement certain blocks of the ARC,

due to the fact that the internal details of the components are available in

the structural model. Behavioral models treat the circuit black-box.

26

27

Figure 4-1. Behavioral and Structural models.

4.2 Design of Datapath

4.2.1 Register Set Design

The datapath was previously introduced in Chapter 3 and its diagram is

shown in Figure 3-7. The datapath consists of a register set, ALU and

busses. These resources are interconnected through a pair of source busses

and one destination bus. As in most datapath designs, the convention fol-

lowed here is that, there is only one unique path to traverse through the data-

path. All data originates from a register, is gated to one of the source busses,

onwards into the ALU, then into the destination bus and back into a register.

The source and destination registers are determined by the instruction.

The instruction operations were observed. It was noticed that only three

registers need use of a second source bus, to input data into the ALU. This

bus has been provided so that future design changes in the instruction set can

be accomodated. The S2_bus is local or internal to the datapath. The S1_bus

and the D_bus are global. It is to be noted that at the interface with memory

28

the D_bus and the S1_bus are multiplexed and the datapath has only two

global busses and they are the Address bus and the Data bus. The external

interface to the other Processing Elements (PEs) are provided by the same

global address and data busses.

The registers are implemented using basic D flip-flops. See Figure 4-2

for the implementation of a single register. These are parallel load and paral-

lel read. When the load input is 1 (logic high state), the I inputs are trans-

ferred to the register on the next clock pulse. When the load input is 0 (logic

low state), the load inputs are inhibited and the D flip-flops are reloaded with

their present value, thus maintaining the content of the register. This is nec-

essary because a D flip-flop does not have a "no-change" input condition.

The other signals are the enable and the clear signal. The clear signal

resets the register to zero state. This signal can be tied to a reset pin. The

enable signal is used to drive a tri-state buffer whose outputs are tied to the

source bus. This enables data read from a register. See Figure 4-3.

The lowest level is the logic level. The first task was to construct D flip-

flops and this was done using the primitive logic level constructs. The D flip-

flops were clubbed together with the other logic circuitry to obtain one

32-bit parallel read/load register. This now becomes a higher level. To create

a bunch of registers now, all we have to do is call the register module using a

for loop that creates as many registers as is necessary.

29

Figure 4-2. Register with Parallel Load/Read using D-flipflop.

Figure 4-3. 32 Bit Register with Parallel Load/Read.

30

4.2.2 Bussing Systems

The initial consideration to be given when designing busses is how fast

should data transfer take place. It also depends on how much a designer

wishes to pay for higher speed logic circuitry. The speed of data transfer

within the internal data bus is related directly to the number of bits that are

transferred in parallel. Since full word transfers take place on the ARC, max-

imum tranfer rate is only dependent on the propagation delay of the bus. The

ARC uses a multiple bus structure. It is to be noted that within the datapath

the busses are unidirectional. To create them structurally and implement

them using realistic propagation delays, the busses have been modeled as

shown in Figure 4-4.

Figure 4-4. Bus Implementation within the Datapath.

Observe Figure 4-4, and it can be seen that in case of implementing a

bus, the propagation delay is of utmost importance. In any normal situation

of implementing a bus, the propagation delays would differ from point to

point on the bus. This essentially means that the point at which one register

transfers data onto a bus is different from the point at which another register

31

tansfers data onto the bus. In ICs this difference in the distance between, one

point of transfer to another will constitute different delays.

In the ARC the busses have been modeled with worst case delay. This

ensures that data injected to the bus at any point along the bus takes the max-

imum delay possible. This maximum delay can be changed to any arbitrary

number of unit delays. This helps model the structure with a worst case

delay.

At the external interface of the datapath to the memory components, the

S1_bus and the D_bus are both multiplexed using bi-directional tri-state

buffers whose enable signal signify a read/write operation. See Figure 4-5

for details of the interface circuit. If the control signal is logic low then a

write operation occurs and a read operation occurs if the control signal is

logic high.

The remaining issues to be dealt with are the control signal lines. There

are a lot of control signals and these basically perform the following opera-

tions: Drives data from a register to the source bus. Drives data from ALU

output buffer to the Data bus. Also loads registers with data from the Data

bus. The control lines are single unidirectional buffered busses, which must

be designed for high speed operation. The effect of the propagation delay in

the control line should not affect the overall delay to a very large extent.

32

Figure 4-5. Interface/multiplexing of Busses in the Datapath.

4.2.3 Arithmetic and Logic Unit

A ripple carry adder has been used to implement the ALU of the ARC. The

data stabilizes after about 98 unit delays at the output. This means that the

propagation delay in the adder is 98 unit delays. A faster implementation

would be to use a carry look ahead adder. The carry look ahead adder has a

higher gate count but is faster. See Figure 4-6 for a description of the ALU

of the ARC.

33

Figure 4-6. Arithmetic and Logic Unit.

4.3 Design of Control Unit

The control unit for the ARC, introduced earlier is based on simulating the

instructions individually. Most processors use microcode for their control

units. But in this situation, hardwired logic implementation of the control

has been proposed. The number of T-states taken by the instructions were

discussed earlier in Table 3-2. Some instructions have repeated states

depending on the busy-bit. Some may avoid a particular state depending on

the logic level of a certain bit.

34

The state table and diagram for the main control unit is shown in Table

4-1. The control inputs are the ones specified in the input condition column.

The state diagram shows the transitions from one state to another.

Figure 4-7. State Table and Diagram of the Main Control Unit.

This state table diagram yields the circuit diagram in Figure 4-7. The

circuit produces the T-states, T0, T1 , T2 , T3 . The 'S' control input is the

start signal to the processor. The control unit is in state T0 until the 'S' sig-

nal goes high. When this happens, the unit changes state on the next clock

pulse. It jumps to

T1

 state. It remains in

T1

 state for one clock cycle and

then changes to

T2

 state in the next clock cycle. Now if the instruction

demands that it go into

T3

 state, then the processor goes into

T3

 state and

35

remains in

T3

 state until the unit has received the 'FIN' signal. This 'FIN'

signal is the finish signal.

Figure 4-8. Diagram of the Main Control Unit.

The instructions NOP, END, and WAIT are the only instructions that do

not require the control unit to go into

T3

 state. All other instructions go into

T3

 state. The control is transferred over to the next stage of the control unit.

The instruction is recognized by a decoder in this case and a particular signal

is driven high. This signal starts the individual instruction control units.

These control units are based on the number of T-states that are required

to complete the execution of the instruction. Some instructions just follow a

certain arbitrary number of T-states, while others depend upon certain condi-

tion codes that decides the number of T-states they take to execute. The

36

T-state diagrams of all the instructions that were implemented are included

in APPENDIX B.

We shall have to take a particular instruction to show how the imple-

mentation works. We shall take the ADD/SUB instruction. This instruction

takes about 6 more T-states after it has gained control from the previous

stage. To traverse through these 6 T-states, we use an 8-bit counter that feeds

a 3-8 decoder which generates the necessary T-states with two unused states.

See Figure 4-8 for block diagram description of the control unit. A single

control unit can be used for both the ADD and the SUB instruction due to

the fact that they are almost identical.

Figure 4-9. Control Subsystem for ADD/SUB Instruction.

The control subsystem which includes the counter uses a JK flip-flop for

its counting operation. The JK flip-flops operate in the master-slave mode

37

and are edge-triggered. They are driven by a combinational logic block. The

design of the elements of this combinational logic block was done by using

state flow diagrams and Karnaugh map reduction.

The clock signal is fed only if the 'Ins' signal occurs. When this occurs,

the counter is reset to 0 by the 'CLR' signal which signifies clear. This starts

the counter operation and at the same time the counter output is fed to the

decoder. The decoder gives the necessary T-states. These signals are the ones

that connect to the datapath unit control lines. They determine the flow of

data within the datapath or the processor. See Figure 4-9 for the control sig-

nals produced by the subsystem.

38

Figure 4-10. Control Signals Produced by the Subsystem.

Every state line is logically anded with a 4 — ϕ clock to break up the

T-state pulse into 4 different signal components. Each of these signal compo-

nents have a unique function. See Figure 4-10 for details. The internal opera-

tions for two states has been shown. Most other T-state operations follow in

the same manner.

39

Figure 4-11. T-state Internal Operations.

4.4 Design of Memory

The memory can be modeled in many ways in HDL. It could be incorpo-

rated as a large bank of registers. This is most practical when the models are

implemented structurally in HDL. One of the other ways of implementing

memory is the behavioral level. but it does not serve the purpose of the sim-

ulation here. Any memory implementation also has associated decoding cir-

cuitry. The size of this decoding circuitry depends on the size of the memory

40

implementation. Since in the ARC the data-transfer through busses is being

modeled with a worst case delay, we are assuming that the time for a mem-

ory access is the same immaterial of the distance it has to traverse.

Based on the register implementation of memory, the register module

has to be used to build the memory. The memory module consists of a

databus, an address bus, and a read/write signal. It also consists of decoding

logic which uses the address bus as input to point to a particular location in

memory.

Figure 4-12. Architecture of the Memory.

4.5 Hierarchy in the Design Environment

The basic steps in the design process are to create the lower level modules.

As we all know the any digital architecture is built from a collection of basic

gates. These basically are Inverters, And gates, Or gates, Nand and Nor

41

gates etc. The advantage in VHDL is that these gates do not have to be built

everytime an instance of it is called. The basic gates can be called in as

primitive logic. Once a module is built from these basic gates, then that

module can be called over and over again, while maintaining the same char-

acteristics at the higher level.

Figure 4-13 shows the basic level of hierarchy involved in the design

process. The lower level modules are used to build the next higher level

modules and so on. This helps in faster simulation and higher accuracy.

Figure 4-13. Design Hierarchy.

42

4.5.1 Timing Considerations in a Hierarchial Environment

As the design evolves around building higher level blocks from lower level

modules, it is to be noted that the timing characteristics are passed on to the

higher level by the lower level module. If the lower level modules are

assumed to be of zero-delay (i.e. 0NS for both the rise-time and the fall-time

of the input and output), then the Logic simulators give the modules a unit

delay when used at a higher level. It is also the same when we assume unit

delays for every lower level module.

In a particular example, the positive-edge-triggered D-flip-flop with a

clear pin uses 3 nand gates with 3 inputs and 3 nand gates with 2 inputs.

Each of the lower level modules are instantiated with a unit delay at the

higher level module. The propagation delays are added up when the D-flip-

flop module is simulated. This gives us an understanding of the approximate

delays to expect when this module is used at a higher level. When these

modules are instantiated and used, the delay of the lower modules is

summed up to arrive at the propagation delays for the higher level modules.

If the modules are netted in series then the propagation delays are automati-

cally added up at simulation time. If they are netted such that they are in

parallel, then the propagation delays are not summed up. This can be

observed in Figure 4-14 and Figure 4-15.

43

Figure 4-14. Propagation Delay in a Module.

Figure 4-15. Propagation Delay in Series and Parallel Modules.

This propagation delay through the modules give us an approximation

of when the output stabilizes. Knowing such parameters, the design of con-

trol units to generate control signals becomes much easier. The control sig-

nals are fed to the datapath and other units only after the data has stabilized.

If all lower level modules are simulated and their delay parameters are

known, then the design of the control unit is rendered easier.

44

The concept of unit delay at the lowest level is a big advantage in the

design of digital systems using HDL. Certain parts of a circuit may not

behave as expected due to incorrect data transfer. These faults can be veri-

fied by adding delays in the circuit by including buffers with specific delays.

These buffers act as delay elements and create the necessary delay, which

accounts for output stability.

CHAPTER 5

SIMULATION RESULTS AND DISCUSSION

This chapter provides a step by step discussion of the simulation focusing

on particular instances involving transfer of data. It also discusses the

problems encountered in the architecture of the different elements of the

processor.

The architecture of the ARC has been broken down to be able to

comprehend the simulation results. Every instruction, involves the use of

the elements in the datapath, and memory. The data is transferred from one

point to another. Our concern is to look at the lowest level. The simulation

of any instruction involves transfer of data at the lower level. Some

instances of data transfer are: from registers to busses, from busses to

ALU, from ALU to output buffers, from memory to datapath, and bit-data

transfer from datapath to control. The other kind of data-transfer is that of

the control circuitry. The control circuit produces signals which drive

certain elements within the datapath and memory. All these are discussed

individually.

5.1 Data Handling by Registers

The registers in the datapath are constructed from basic D-flip-flops. This

have been shown in Figure 4-2 and Figure 4-3. The input to a particular

register is applied at the 'I' inputs. The register inputs are driven from the

destination bus through a tri-state buffer unit. The buffer unit passes the

45

46

available at the bus to the register only if it is enabled. This enable signal is

available as a control line. It has to be noted that all the enable signals of the

input buffers are control lines. The output of the register is also fed-back to

the input so as to maintain the internal data by refreshing it every clock cycle

if no input is present. See Figure 5-1 for input and output data of a register.

Figure 5-1. Data Handling by Registers.

5.2 Data Transfer to Busses

The data transfer to busses are either from the register set or from memory.

In case of transfer from the register set, the register outputs are enabled and

the data at the outputs of the registers are gated to the bus. In case of data

transfer from memory, the difference is in the amount of time taken for the

47

data to propagate to the ALU, which is usually the destination, is higher.

Figure 5-2. Simulated Structure for Data Transfer to Busses.

Figure 5-3. Data Transfer to Busses.

48

Figure 5-2 gives on overview of data transfer to busses. The transfer of

data to busses is achieved when a register's output terminals are enabled. All

registers are connected to the bus via a tri-state buffer. When this tri-state

buffer is enabled, the data in the register is transposed onto the databus.

Whatever previous data that existed on the bus is overwritten.

When simulating M-HDL modules on an Lsim simulator, it is necessary

that each module be declared with input and output ports. Therefore for the

purpose of simulation input and output ports have been declared and the

same is shown in Figure 5-3. Arbitrary names have been given to the points

at which the data has been probed.

Figure 5-4. Effect of a Clear Operation.

49

Also observe in Figure 5-4 where the effect of a clear register operation

is reflected on the bus due to the fact that the particular register has been

enabled. In the case of a memory access, the same principle holds except

that the propagation time for data transfer is longer. The effect of a clear

operation loads the bus with zeroes. This operation is used in computations

where the second operand needs to be zero.

5.3 Data Propagation in Busses

The structure of the bus, already introduced in Chapter 4, see Figure 4-4. is

modeled as a delay buffer. In actual VLSI implementation of a bus. the

inherent capacitance and resistance offered by the metal line give rise to

propagation delays. No primitive instances of a bus are available to model a

bus in HDL. The best modeling method would be to simulate the bus as a

series of delay buffers. The bus could also be modeled using a single delay

buffer with a known delay parameter.

Figure 5-5. Propagation Delay in Bussing Systems.

50

5.4 Operation of The ALU

The Arithmetic and Logic Unit in the ARC is a basic ripple carry adder. It

also has a provision for 2's complement addition (subtraction). The ARC

does not support on chip floating point arithmetic. For such computations a

co-processor would have to be used. The ALU shown in Figure 4-6 is mod-

eled for 32 bit capacity. It has an overflow bit which is the carryout from the

last stage.

Figure 5-6. Operation of the ALU.

The ALU is a concatenation of 32 single bit adders. The carry is propa-

gated from the least significant bit to the most significant bit. The ALU in

its present implementation takes about 100 delay units to stabilize at the out-

put. This delay is because of the time taken for the carry to propagate

51

through the 32 stages of the ALU. The carry out from the 32nd stage is the

overflow indicator. This signal has been made available at the outside and

could be used to generate interrupts for future design implementations.

It can be seen in Figure 5-6 that data stabilizes at the output of the ALU

approximately about 100 unit delays after input is applied. The control sig-

nals to drive the ALU output buffer should therefore be delayed by an

amount greater than the propagation delay of the ALU. This is a slow

implementation of the ALU. A much faster implementation of the ALU

could be achieved by using the carry look-ahead principle. But this has a

very large gate count. This principle could be applied in future imlementa-

tions of the ALU.

Figure 5-7 illustrates a part of the datapath unit. This when expanded to

include more registers gives us almost the entire datapath. In this particular

case two registers have been modeled together with the source and destina-

tion busses and the ALU to provide an idea of the working of the datapath

unit. There are control lines which enable tri-state buffers which gate data

onto a bus from the registers or vice-versa.

In this particular example the registers are preloaded with certain data,

and they are then gated to the source bus. This in turn is fed to the ALU

which performs the operation as indicated by its control signal and the

resulting output is stored in an ALU output buffer register. This data is then

fed to the destination bus from where it is gated into one of the registers. In

52

totality this operation involves all of the other operations discussed above.

Figure 5-7. Simulated Structure of the Datapath

Figure 5-8. Simulated Operation of the Datapath

5.5 Memory Read/Write Operation

A memory fetch operation usually involves the transfer of data to the to the

Memory Data Register (MDR) from the memory location pointed to by the

Memory Address Register (MAR). The MAR is gated to the address bus,

53

which in turn feeds the address decoder. This address decoder points to a

location and either enables the memory register output or the input for a read

or write operation respectively. The above procedure involves all of the

above mentioned operations. The MAR is loaded with the contents of the

destination bus which has the address of the location in memory.

Figure 5-9. Reference Circuit for Memory Access

The MAR in addition to being connected to one of the source busses is

also connected to the address bus external to the datapath. This interface

when enabled points to a location in memory. Since the memory in the ARC

is specifically split up into four categories, the first 2-bits could be used to

54

reference the particular memory component. See Figure 5-8 for a load oper-

ation on the MAR. Also refer to Figure 5-7 where one of the registers may

be assumed as the MAR.

The Maddr component in Figure 5-8 is the memory address bus. The

Reg2a component is the MAR. The Menb component is the memory enable

signal.

Figure 5-10. Simulated Operation of a Memory Access

5.6 Bit Data Access

There is a need to access some bits of information from within the datapath.

One of them, the Busy-Bit is the most significant bit (MSB) of data stored in

memory. This bit is accessed only after the data from a memory access has

55

reached the datapath. If this bit signifies the busy state, then the procedure of

memory access is repeated. This goes on until the Busy-Bit is in the not busy

state. The other bit data, which is the control-flag is needed with instructions

like CLRZ and CLRN.

If any of the instructions need to execute with a check on the Busy-bit,

then the following happens. The address of a location is loaded into the

MAR, and the contents of the location pointed to by the MAR are brought to

the MDR. The most significant bit of the MDR can be led to the outside of

the datapath to check its value. This is also the case in the control flag bit.

The other point of discussion is that the ARC does not support bit data

manipulation in the present version of the instruction set.

5.7 Simulation of Control Unit Components

The control unit previously described in Figure 4-8, provides the main

T-state signals. It is designed to work through states T0 to T2 , immaterial of

what the instruction might be. It is during these two T-states that operations

like loading of instruction register from memory, incementing the program

counter take place. When the main control unit was first designed, some

instabilities at the output were noticed. This was due to improper swiching.

Extra delay parameters have been added an ensure smoother transition. See

Figure 5-11.

56

The control sub-units are basically constructed from counter and

decoder circuits. Figure 5-12 here shows the working of the counter circuit.

These counters are built using JK flip-flops. The outputs of these control

units drive the inputs of the decoder units.

Figure 5-11. Control Unit Simulation

Figure 5-12. Corrected Control Unit Simulation

57

The corrected module produced the desired results as can be seen in

Figure 5-12 and Figure 5-14.

Figure 5-13. Unstable Counter Operation

Figure 5-14. Stable Counter Operation

58

5.8 Sequence of Instruction Execution

Every instruction that executes has a certain number of T-states. It is within

these T-states, that certain operations are performed. These operations within

the T-states are a combination of the above mentioned operations. The exe-

cution of any instruction at the logic level involves operations such as: trans-

fer of data to a bus, an alu operation which may be add or subtract, transfer

of data from a bus to a register, gating of data to the memory address bus,

receiving data from the memory data bus into the datapath source bus.

Figure 5-15. Instruction Flow Sequence of ADD/SUB

As we discussed, to understand the execution of a particular instruction

at the logic level it is necessary to traverse through the different elements of

the ARC. Looking back at Figure 3-4 where we have presented the T-state

59

diagrams of some of the instructions, we shall constrict our discussion to a

particular instruction. All T-state internal operations are all included in

APPENDIX B. We shall discuss the instruction with references to simulation

results. The T-state internal operations for the ADD/SUB instruction is

shown in Figure 5-15.

The operations that occur within the T-states of the ADD/SUB instruc-

tion can be seen in Figure 5-15. Figure 5-15a describes the instruction just

by specifying the T-states involved. Figure 5-15b gives a more descriptive

view of the operations involved. Now each operation occuring within the

T-states are a sum of repeated processes discussed above.

60

Figure 5-16 shows the data flow within a particular T-state. It is to be

understood that at the logic level every operation is just a sequential flow of

data. As can be seen in Figure 5-16 the first T-state operation of the

ADD/SUB instruction is the movement of data from a register to another

register. This sequence can be easily comprehended from the figure. It there-

fore follows that most other T-states follow the same internal operations

more or less. The difference may occur if the T-state operation is a memory

access operation.

In case of a memory access operation, the difference is in the propaga-

tion delay. This is explained in Figure 5-17. The propagation time delays are

more in this case and therefore it adds up to the total delay. The T-states T27

and T25 are examples of such operations.

T27

 is a memory read and T25 is a

memory write operation. These are the only two T-states which access mem-

ory. All the other T-states are just a variation of the T-state discussed in Fig-

ure 5-16.

The memory in the ARC has been modeled as a bank of registers. This

is the only way memory can be structurally represented. In a behavioral

model memory can also be modeled as a read only memory (ROM). To

model a ROM in structural representation, it is only necessary to not provide

any input lines to the memory bank and to preload the memory bank individ-

ually at initialization time.

61

Figure 5-17. Memory Read Operation

The propagation delay could be reduced by avoiding the path through

the ALU. For a memory read operation, this path through the ALU could be

avoided by gating the data to the destination bus through a tri-state buffer.

This path would reduce the delay. In case of a memory write operation

which is shown in Figure 5-18, the exact opposite of a memory read opera-

tion takes place. The

T25

 State is a memory write operation.

62

Figure 5-18. Memory Write Operation

5.9 Instruction Execution Time

The time taken for an instruction to execute Ttotal is the sum of the time

taken for all the individual T-states. It is therefore necessary to compute

beforehand the time taken by every individual T-state. When this has been

done, the time taken by every instruction could be stated with the best

approximation. The processor is being modeled with the worst case delay

parameters. So any timing approximation done here is with respect to the

63

worst case delay parameters. An approximation of the time taken by each

T-state has been provided in Appendix B. Using this data, the time for each

instruction can be computed.

In computing the time taken by the individual T-states, we have consid-

ered only the delays associated with data transfer. We have also to consider

delays in the control circuit, because the delays in the control circuit are not

negligible compared to the delays in the datapath and memory components.

Figure 5-19. Main Timing Diagram

Observe Figure 5-19, where the instruction execution time is graphically

represented as to the number of T-state delays involved. The instructions that

operate only in the

T1

 and

T2

, states are the NOP, WAIT, and END. Most

64

other implemented instructions go into the

T3

 state, and the execution time

then depends on the number of sub T-states within

T3

 state for a particular

instruction.

Figure 5-20. Data Transfer Operation

65

The data transfer operations in some of the T-states is shown in Figure

5-20. This is the

T1

 state in the ADD instruction where the top pointer of the

local data stack gets transferred to the MAR. The operations involved are:

data transfer from register (TOPLDS) to source bus, data transfer from

source bus to destination bus and the data transfer from destination bus to

the MAR. It is also during the same T-state that the program counter (PC)

gets incremented. This has been shown in Figure 5-21. Also refer to the

block diagram of the datapath for this discussion.

Figure 5-21. Incrementation of Program Counter

Therefore the execution of an instruction at logic level amounts to data

transfer through the different elements of the processor. It is to be

66

understood that for an instruction to execute, the above mentioned opera-

tions get repeated as many times as the instruction demands. The only differ-

ence would be in the fact that the registers involved at every step of the oper-

ation would be different.

CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

A start has been made on the architecture design of ARC processor. HDL,

a very powerful tool for Integrated Circuit design, has been used to build

and simulate the different elements of the processor. The flow of data

through the different elements of the processor have been observed and the

timing analysis has been done. The delays involved in the propagation of

data have been studied. The stability of the control circuits have been

achieved by adding delay elements.

This work provides a stepping stone for future work towards the

completion of the ARC processor. The circuit modules built so far could be

further extended to include all the instructions. Work could be started on

building the circuit schematics using an interactive graphics editor. This

could also be supplemented by floorplanning of the architecture. Once the

major components within the architecture have been built, an autoroute

package for layout placing and route packing could be employed.

The completion of the ARC would also require a Network Control

Unit (NCU). This NCU would assist in the control of operations,

particularly with respect to the CALL instructions of the ARC. The CALL

instructions are basically remote procedure calls, where multiple ARC

processors would be involved. The NCU would have to be able to keep

67

68

track of other processors in the same environment. It should be more of an

Asynchronous Interface Unit. This NCU of the ARC would have communi-

cate with its counterparts on the other ARCs.

Figure 6-1. NCU and the ARC in a Multiprocessor Environment .

The NCU would be more of an extension of the control unit of the

ARC. It would have active participation only in the execution of the control

instructions. It would not only have an interface with the other processors in

a multiprocessor environment, but also have internal connectivity with the

different elements of the processor. As the NCU would handle requests for

remote procedure calls, it would in a way be a dedicated control unit for the

CALL instructions of the ARC.

Observation of the CALL instructions leads us to understand the differ-

ent elements that the NCU needs to communicate with. For a better under-

standing of the operation of the interface that these instructions need, it is

69

necessary to refer [1-3], which provide details about the architectural support

needed for these instructions, the different elements necessary for the NCU

to communicate with thus providing the internal and the external interface

can be realized. This can be seen in Figure 6-2.

Figure 6-2. Internal Interface of the NCU

It is necessary to talk about the interface in greater detail. The ARC is a

processor that is intended to be used in a multi-processor environment. It

therefore needs to have an excellent handshaking capability with the other

processors in the system. The ARCs operate on a stand-alone basis until

interrupted by a CALL routine from another processor. This CALL is

70

serviced with a higher priority and the processor goes back to its original

state.

Most CALL instructions access data from the Facility Register (FR) and

the Facility Data Register (FDR) and the Facility Data Memory (FDM). The

FR and the FDR are registers that hold addresses and are located in the Data-

path. The Facility Data Memory holds data accessed by these instructions.

This suffices the need for interface between the NCU and the other elements

discussed. The NCU would definitely need to read the entire contents of the

IR since for the CALL operation it is necessary to distinguish between the

many CALL instructions and the immediate arguments included within. The

NCU would also need an interface with the memory because it needs access

to the FDM.

The External Interface of the NCU could be multiplexed together with

the external interface bus. There is an address and data bus interface that

already exists. This external interface could be accomodated to include the

NCU interface. The CALL instructions have immediate arguments in them.

Some have two and others have three immediate arguments. The NCU

should also be able to handle the RETURN (RETURN from CALL) instruc-

tions. The NCU can be designed to accomodate the READ and WRITE

instructions. For this operation the NCU could send some control signals to

the Datapath unit and to the external interface to either read or write data.

The source bus and destination bus interface has been shown in Figure 4-5.

71

The same concept could be applied at the external interface. In this case we

would have only one bus for read and write respectively.

Figure 6-3. External Interface of the NCU .

6.2 Future Research

Future work on the ARC needs to be split up to provide for rapid implemen-

tation. The ARC could be implemented as the summation of the work of var-

ious smaller projects representing modules in the instruction set. The sug-

gested partition for future work is as indicated:

• To break the ARC into smaller modules such as those implemented

• This break-up would enable work on the ARC to progress at a classroom

level, wherein the smaller modules could be implemented as one semester

72

projects.

• Work from the modeling environment would have to proceed to the next

level, where the modules could be implemented using tools such as

schematic editors, and layout tools to realize the modules.

• Work would have to be commenced on the design of the NCU taking into

considerations the interface requirements in case of a multi-processor

environment.

• Parallelism in the instructions at the logic level needs to be investigated.

This would lead to reduction in redundant control logic circuitry. Some

optimization circuits have been included in Appendix B. On the same

lines, the T-state diagrams for the CALL instructions would have to be

studied and instructions with redundant operations can be clubbed

together with optimization circuits.

• When all instructions have been implemented, the state machine imple-

mentation of the control logic for the ARC would have to be designed and

implemented.

The break-up of projects:

• One major project would be to first implement the Datapath unit. Once the

mask layout and extraction characteristics have been obtained, the actual

internal propagation delays would be known. This information would be

needed to design the control logic with necessary delay, allowing for the

73

data to stabilize. The design of the datapath is vital. This is because all

the register transfer delays, the bus delays and other control line delays

within the datapath have to be known in order to build the other control

logic circuits.

• To design and implement a circuit to perform the operations indicated.

The operations would be the ones indicated by the T-state diagrams.

Design control logic circuitry to produce the necessary T-states. Care

should be taken to see that the T-states are active high long enough con-

sidering the delays in the datapath. This means that the control logic cir-

cuitry should wait for data to stabilize in the datapath. Use the datapath is

given in the figure as a model for your design.

• Implement the above design to obtain mask layouts using mask layout

tools. Extract the parameters using extraction techniques and give a feed-

back to the design section to use these extracted parameters in their design

simulations.

• Another design project would be to implement the external interface

cicuitry. The project should be designed on the idea from the Figure 6-3.

The interface should have the control signals to read data into the process-

ing element and to write data out of the processing element to the external

bus.

• Merge the structures so developed for the individual modules. The control

logic designed by using the state machine techniques could replace all the

74

individual modules here. Simulate this using a logic simulator and acco-

modate for delays.

For example the design of the control unit for an instruction requiring a

maximum of 8 T-states with a control bit to specify repeated T-states has the

structure indicated in Figure 6-4. It is necessary to design the combinational

logic to drive the counter. This counter drives the decoder which produces

the T-states. Given data-transfer delays for the datapath unit, design the cir-

cuit such that the control unit produces the necessary signals at required

time.

The logic structure of the control unit has been designed. It is necessary

to implement the mask layout for the structure and obtain extraction parame-

ters. These extraction parameters could be used to run a circuit simulation on

the structure using a circuit simulation package. The delays then observed in

the simulation output files could be used to modify the structure to alter the

delay characteristics of the control logic structure.

75

Figure 6-4. Design Example for a Project.

• List of Implementation projects:

Given Data should include specifications of the datapath, Bus propaga-

tion delays, memory access delays, and register transfer delays.

• Project 1: Given the parameters of the datapath of the ARC, design a con-

trol logic circuitry for the instruction specified using HDL. Use the delay

parameters of the datapath for designing the control logic. Use a

schematic editor to create lower instances of the logic modules. Use these

lower level modules to build the layout cells. Capture the electrical con-

nectivity information. Write out the logic simulator (Lsim) netlist and use

this information to verify the design.

76

• Project 2: Given the parameters of the datapath of the ARC, design a Net-

work Control Unit (NCU). The NCU is based on the CALL instruction. It

receives the opcode information from the Instruction register (IR). Design

the T-states required to perform the specified CALL instruction and

together with the parameters specified for the datapath, arrive at the con-

trol logic that will enable a CALL instruction to execute.

Project 3: The NCU must also be able to handle RETURN instructions.

Design the T-states required to perform the specified RETURN instruction

and together with the parameters specified for the datapath, arrive at the

control logic that will enable a RETURN instruction to execute.

These are all the different ways in which the projects could be split up

to slowly realize the ARC. A freeze on the project would be necessary at

some stage to realize a primitive structure. It is to be noted that to build a

processor of commercial practicality is not a one-man job. It takes a team

and a lot of man-hours to build a processor from scratch. What has been

done so far, has been a part of that design process utilizing new Computer

Aided Design and Engineering tools to begin the realization of the ARC.

APPENDIX A

This chapter contains some of the source files that were developed. It also

includes some of the testvector and initialization files.

• SOURCE FILE FOR THE DATAPATH UNIT:

//The module of the datapath which includes such elements such as the

//register set, the source buses, the destination bus, the various

//control signals which control the operation of these elements, the ALU

//and the interface of the Memory Address register MAR, to the memory.

MODULE datapath()

{

IN Cts1_bus[9], Cts2_bus[3], C_tdbus, C_alu, C_fdbus[12];

IN D IRin[32], CtALUbuf, Clock, Reset[13];

OUT Maddr[32], DMEMout[32];

OUT Ovflow;

//The number of registers in the datapath are 13. They are

//all connected in such a way as to receive data from the

//destination bus 'd_bus' and to place data onto the Source

77

78

//bus 's_bus'. The dataflow around the datapath is unique.

//The data from the registers have only one way of reaching

//their intended destination and that is through the ALU and

//the d_bus. This can be visualized by looking at the block

//diagram of the datapath.

// 	The functions of the control signals follow.

//

//Cts1_bus: The control signal to gate data from the registers to

// 	the source bus 1.

//Cts2_bus: The control signal to gate data from the registers to

// 	the source bus 2.

//Ct_dbus: The control signal to gate data from the ALU output

// 	buffer to the databus

//C_alu: The ALU control signal.

//C_fdbus: The control signal to load registers from databus

//

BUILD{ 	 int i; 	 //The registers that are linked

only to s1_bus//

79

INSTANCE(reg32buf, TopLDS); // Register pointer to LDS//

INSTANCE(reg32buf, TopPAS); // Register pointer to PAS//

INSTANCE(reg32buf, MDR); // Memory Data Register//

INSTANCE(reg32buf, C_Reg); // Clone # register//

INSTANCE(reg32buf, P_cntr); Program Counter/)

INSTANCE(reg32buf, FDR); // Facility Data Register//

INSTANCE(reg32buf, FR); // Facility Register//

INSTANCE(reg32buf, C_flag); // Control Flag//

INSTANCE(reg32buf, MAR); // Memory Address Register//

//The ALU output buffer which holds ALU output data//

INSTANCE(reg32buf, ALUop); // ALU output Buffer//

//The registers that are linked only to s2_bus//

INSTANCE(reg32buf, TEMP); // Temporary register//

INSTANCE(reg32buf, Offset); // For address computation//

INSTANCE(reg32buf, Label); // Label register//

// Create instances of Busses within the datapath//

INSTANCE(Bus, s1_bus); // Create Source bus 1//

INSTANCE(Bus, s2_bus); // Create Source bus 2//

INSTANCE(Bus, d_bus); // Create Destination bus//

// Create instance of an ALU within the datapath//

80

INSTANCE(ad_sb4, alu); 1/ Create Instance of an ALU//

// Create the links between the various elements in the datapath //

for(i=0;i<=31;i++){ 	// Register To Bus Link//

NET(s1_bus.inp[i], TopLDS.A[i]);

NET(s1_bus.inp[i], TopPAS.A[i]);

NET(s1_bus.inp[i], MDR.A[i]);

NET(s1_bus.inp[i], MAR.A[i]);

NET(s1_bus.inp[i], C_Reg.A[i]);

NET(s1_bus.inp[i], P_cntr.A[i]);

NET(s1_bus.inp[i], FDR.A[i]);

NET(s1_bus.inp[i], FR.A[i]);

NET(s1_bus.inp[i], C_flag.A[i]);

NET(s2_bus.inp[i], Offset.A[i]);

NET(s2_bus.inp[i], Label.A[i]);

NET(s2_bus.inp[i], TEMP.A[i]);

NET(alu.A[i], s1_bus.out[i]); // ALU To BUS Link//

NET(alu.B[i], s2_bus.out[i]);

NET(ALUop.I[i], alu.Qo[i]);

NET(ALUop.A[i], d_bus.inp[i]);

81

Bus to Register Link//

NET(TopLDS.I[i], d_bus.out[i]);

NET(TopPAS.I[i], d_bus.out[i]);

NET(MDR.I[i], d_bus.out[i]);

NET(MAR.I[i], d_bus.out[i]);

NET(C_Reg.I[i], d_bus.out[i]);

NET(P_cntr.I[i], d_bus.out[i]);

NET(FDR.I[i], d_bus.out[i]);

NET(FR.I[i], d_bus.out[i]);

NET(C_flag.I[i], d_bus.out[i]);

NET(Label.I[i], d_bus.out[i]);

NET(TEMP.I[i], d_bus.out[i]);

NET(Offset.I[i], d_bus.out[i]);

NET(Maddr[i], MAR.A[i]);

NET(DMEMout[i], d_bus.out[i]);

NET(s2_bus.inp[i], D_IRin[i]);

}

// The link from main reset to individual resets of the registers//

NET(TopLDS.Reset, Reset[0]);

NET(TopPAS.Reset, Reset[1]);

82

NET(MDR.Reset, Reset[2]);

NET(MAR.Reset, Reset[3]);

NET(C_Reg.Reset, Reset[4]);

NET(P_cntr.Reset, Reset[5]);

NET(FDR.Reset, Reset[6]);

NET(FR.Reset, Reset[7]);

NET(C_flag.Reset, Reset[8]);

NET(Label.Reset, Reset[9]);

NET(TEMP.Reset, Reset[10]);

NET(Offset.Reset, Reset[11]);

NET(ALUop.Reset, Reset[12]);

// The link from main Clock to individual Clocks of the registers//

NET(TopLDS.CP, Clock);

NET(TopPAS.CP, Clock);

NET(MDR.CP, Clock);

NET(MAR.CP, Clock);

NET(C_Reg.CP, Clock);

NET(P_cntr.CP, Clock);

NET(FDR.CP, Clock);

NET(FR.CP, Clock);

83

NET(C_flag.CP, Clock);

NET(ALUop.CP, Clock);

NET(TEMP.CP, Clock);

NET(Label.CP, Clock);

NET(Offset.CP, Clock);

// The link from main Enable to individual Enable signals of the registers//

NET(TopLDS.En0, Cts1_bus[0]);

NET(TopLDS.En1, Cts1_bus [0]);

NET(TopPAS.En0, Cts1_bus[1]);

NET(TopPAS.En1, Cts1_bus [1]);

NET(MDR.En0, Cts1_bus[2]);

NET(MDR.Enl, Cts1_bus[2]);

NET(MAR.En0, Cts1_bus[3]);

NET(MAR.En1, Cts1_bus[3]);

NET(C_Reg.En0, Cts1_bus[4]);

NET(C_Reg.En1, Cts1_bus[4]);

NET(P_cntr.En0, Cts1_bus[5]);

NET(P_cntr.En1, Cts1_bus[5]);

NET(FDR.En0, Cts1_bus[6]);

NET(FDR.En1, Cts1_bus[6]);

NET(FR.En0, Cts1_bus[7]);

84

NET(FR.En1, Cts1_bus[7]);

NET(C_flag.En0, Cts1_bus[8]);

NET(C_flag.En1, Cts1_bus[8]);

NET(Label.En0, Cts2_bus[0]);

NET(Label.Enl, Cts2_bus[0]);

NET(TEMP.En0, Cts2_bus[1]);

NET(TEMP.En1, Cts2_bus[1]);

NET(Offset.En0, Cts2_bus[2]);

NET(Offset.En1, Cts2_bus[2]);

// The link from main Load to individual Load signals of the registers//

NET(TopLDS.Ld, C_fdbus[0]);

NET(TopPAS.Ld, C_fdbus[1]);

NET(MDR.Ld, C_fdbus[2]);

NET(MAR.Ld, C_fdbus[3]);

NET(C_Reg.Ld, C_fdbus[4]);

NET(P_cntr.Ld, C_fdbus[5]);

NET(FDR.Ld, C_fdbus[6]);

NET(FR.Ld, C_fdbus[7]);

NET(C_flag.Ld, C_fdbus[8]);

NET(Label.Ld, C_fdbus[9]);

85

NET(TEMP.Ld, C_fdbus[10]);

NET(Offset.Ld, C_fdbus[11]);

// The control signals relative to the ALU output buffer //

NET(ALUop.Ld, CtALUbuf);

NET(ALUop.En0, C_tdbus);

NET(ALUop.En1, C_tdbus);

NET(alu.Sc, C_alu);

NET(Ovflow, alu.Qo[32]); }

}

86

• INITIALIZATION AND SIMULATION FILE FOR THE DATAPATH

initialization file

bus -w1 S1_bus[31:0] x //Create a bus of width 31 bits and radix hex.

bus -w1 S2_bus[31:0] x

bus -w1 D_bus [31:0] x

bus -w1 reset[12:0] x

Rename S1_bus[31:0] S1_bus // Rename the busses with specific names

and

Rename S2_bus[31:0] S2_bus // also to view all the 32 bits in a single

Rename D_bus[31:0] D_bus // bus waveform.

Rename reset[12:0] reset

low Reset S1_bus S2_bus D_bus

1pulse -w1 Clock Low High 0 0 0 6 10

LPULSE: S1=SL31 S2=SH31 Td=0 Tr=0 Tf=0 Pw=5 Per=10

simulate 4

33221100 Sl_bus[31:0] // Give certain test inputs to the bus.

33220000 S2_bus[31:0]

high C_alu CtALUbuf C_tdbus // Operate the control signals

probe D_bus S2_bus S 1_bus // To probe a particular bus or signal

simulate 10 II Simulate for a 10 unit time.

87

• SOURCE FILE FOR THE ALU: (Refer Figure 4-6)

//Module of a 32 bit ALU which can perform addition/subtraction

//operations. The lower level module is the 1-bit adder. //

MODULE ad_sb4() {

IN A[32],B[32],Sc;

OUT Qo[33];

BUILD{

int i;

for (i=0;i<=31;i++){

INSTANCE(add_sub, ads[i]);

NET(ads[i].A,A[i]);

NET(ads[i].B,B[i]);

NET(ads[i].Sb,Sc);

NET(ads[i].SUM,Qo[i]);

}

for (i=1;i<=31;i++){

NET(ads[i].C,ads[i-1].CARRY);

}

88

NET(ads[31].CARRY,Qo[32]);

NET(ads[0].C,Sc); }

}

• SOURCE FILE FOR THE 32 BIT PARALLEL READ/LOAD REGIS-

TER: (Refer Figure 4-3)

//module of a 32 bit parallel load/read register using the 1-bit

//register module. This register can be loaded in parallel & can

//be read in parallel.

MODULE reg32buf() {

IN Ld, I[32], CP, Reset, En0, En1;

OUT A[32];

BUILD{

int i;

89

for(i=0;i<=31;i++){

INSTANCE(reg1b, reg[i]);

INSTANCE(prim_tribuf, tribuf[i], 1.0, 1.0, 2, 2, 0);

NET(tribuf[i].enable0, En0);

NET(tribuf[i].enable1, En1);

NET(reg[i].L1, Ld);

NET(reg[i].CP, CP);

NET(reg[i].R, Reset);

NET(reg[i].I, I[i]);

NET(tribuf[i].in, reg[i].Q);

NET(A[i], tribuf[i].out); } 		}

}

• SOURCE FILES FOR SOME BASIC FLIP-FLOPS

D Flip-Flop

MODULE dff() // module of a dfip_flop

90

{

IN CP,D,R; // declaration of the inputs

OUT Q; // declaration of the output terminals.

BUILD{

//INSTANCE(type, name, inputs, rt, ft, foot);

INSTANCE(prim_nand, nand0, 2, 1.0, 1.0, 2, 2, 0);//using

INSTANCE(prim_nand, nand1, 3, 1.0, 1.0, 2, 2, 0);//instances

INSTANCE(prim_nand, nand2, 2, 1.0, 1.0, 2, 2, 0);//of

INSTANCE(prim_nand, nand3, 2, 1.0, 1.0, 2, 2, 0);//primitive

INSTANCE(prim_inv, inv0, 1, 1.0, 2, 2, 0); 	//logic

NET(nand0.in[0],nand2.out);

NET(nand0.in[1],nand1.out);

NET(nand1.in[0],nand3.out);

NET(nand1.in[1],nand0.out);

NET(nand1.in[2],R);

NET(nand2.in[0],CP);

NET(nand2.in[1],D);

91

NET(nand3.in[0],inv0.out);

NET(nand3.in[1],CP);

NET(inv0.in,D);

NET(Q,nand0.out);

}

}

JK Master Slave Flip-Flop

MODULE jkff()

{

IN J,K,CP,Clr;

OUT Q;

BUH,D{

int i;

for (i=0;i<=3;i++){

INSTANCE(prim_nand, nand3[i], 3 ,1.0 ,1.0 , 2, 2, 0); }

for (i=0;i<=3;i++){

INSTANCE(prim_nand, nand2[i], 2, 1.0 ,1.0 , 2, 2, 0);

92

} INSTANCE(prim_inv, inv, 1.0,1.0, 2, 2, 0);

NET(nand3[0].in[0],nand2[3].out);

NET(nand3[0].in[1],J);

NET(nand3[0].in[2],CP);

NET(nand3[1].in[0],nand3[3].out);

NET(nand3[1].in[1],K);

NET(nand3[1].in[2],CP);

NET(nand3[2].in[0],nand3[0].out);

NET(nand3[2].in[1],nand2[0].out);

NET(nand3[2].in[2],Clr);

NET(nand3[3].in[0],nand2[1].out);

NET(nand3[3].in[1],nand2[3].out);

NET(nand3[3].in[2],Clr);

NET(nand2[0].in[0],nand3[2].out);

NET(nand2[0].in[1],nand3[1].out);

NET(nand2[1].in[0],nand3[2].out);

93

NET(nand2[1].in[1],inv.out);

NET(nand2[2].in[0],inv.out);

NET(nand2[2].in[1],nand2[0]. out);

NET(nand2[3].in[0],nand3[3].out);

NET(nand2[3].in[1],nand2[2].out);

NET(Q,nand3[3].out);

NET(inv.in,CP); } }

94

• SOURCE FILE FOR THE MAIN CONTROL UNIT (figure 4-8):

MODULE Ctrlmain1()

{

IN O, I, X, Z, Y, S, Clk, Clr;

OUT Ts[4];

BUILD

int i;

INSTANCE(prim_and, and, 2, 1.0, 1.0, 2, 2, 0);

INSTANCE(prim_buf, buffer, 1.0, 1.0, 2, 2, 0);

INSTANCE(Dec2_4, dec);

for(i=0;i<=1;i++){

INSTANCE(MUX4_1, Mux[i]);

INSTANCE(deff, deff[i]);

INSTANCE(prim_or, or[i], 2, 1.0, 1.0, 2, 2, 0);

INSTANCE(prim_inv, inv[i], 1.0, 1.0, 2, 2, 0);
}

}

95

NET(inv[0].in, X);

NET(inv[1].in, Z);

NET(and.in[0], inv[0].out);

NET(and.in[1], Y);

NET(or[0].in[0], and.out);

NET(or[0].in[1], X);

NET(or[1].in[0], Z);

NET(or[1].in[1], inv[1].out);

NET(Mux[0].I[0], O);

NET(Mux[0].I[1], I);

NET(Mux[0].I[2], X);

NET(Mux[0].I[3], inv[1].out);

NET(Mux[1].I[0], S);

NET(Mux[1].I[1], O);

NET(Mux[1].I[2], or[0].out);

NET(Mux[1].I[3], or[1].out);

NET(deff[0].D, Mux[0].out);

NET(deff[1].D, Mux[1].out);

96

NET(deff[0].Clr, Clr);

NET(deff[1].Clr, Clr);

NET(deff[0].Clk, Clk);

NET(deff[1].Clk, Clk);

NET(deff[0].Q, buffer.in);

NET(dec.A, buffer.out);

NET(deff[1].Q, dec.B);

NET(Mux[0].S[0], deff[1].Q);

NET(Mux[1].S[0], deff[1].Q);

NET(Mux[0].S[1], buffer.out);

NET(Mux[1].S[1], buffer.out);

for(i=0;i<=3;i++){

NET(Ts[i], dec.T[i]); } } }

APPENDIX B

T-STATE OPERATIONS

Figure B-1 Internal T-state Operations.

97

98

Figure B-1 Internal T-state Operations.

99

Figure B-2 T-state Sequence of Instructions.

100

Figure B-2 T-state Sequence of Instructions.

APPENDIX C

OPTIMIZATION CIRCUITS

Some instructions are very similar at the logic transfer level. These have

been identified and some of them are presented here with logic optimization

for their control circuitry. The extra logic has been avoided by clubbing the

instructions together with simple extra logic to supplement for the execution

of both instructions with just one control circuit. See Figure C-1.

Figure C-1.Control Logic Optimization for Branch instruction.

Observe the figure where the table shows the parallelism exhibited by

the BRANCH instruction. A simple 2-input XOR gate would suffice for the

operation of both the instructions with one control logic. After the instruc-

tion signal is obtained from the respective instructions, they are used to drive

the INS signal at one of the XOR inputs. This implementation is one case of

optimization.

101

102

In the ADD or SUB instruction the same T-states are followed except

for one state. This can be observed in the T-state diagrams in Appendix B.

This case could be exploited as another case of parallelism and optimization

of the control logic could be performed.

In case of the CLRN and CLRZ parallelism is again observed. The

T-state flow of these instructions are almost similar except for the order. This

can be seen in Appendix B. The logic optimization in this case is shown in

Figure C-2.

Figure C-2.Control Logic Optimization for CLRN/CLRZ instruction.

REFERENCES

1. Welch, L.R. "Architectural Support for, and Parallel Execution of,

Programs Constructed from Reusable Software Components", PhD

dissertation, The Ohio State University, December 1990.

2. Welch L.R. "Generic Modules: Efficient Compilation ans Execution",

Research report: CIS-91-22, NJIT, Newark, NJ, 07102.

3. Welch L.R. "A Parallel Virtual Machine for Programs Composed of

Abstract Data Types", Paper submitted to the IEEE transactions

on Computers.

4. Manolis G.H. Katevenis Reduced Instruction Set Computer Architectures

for VLSI, The MIT Press, (1984)

5. Sternhiem E., R. Singh and Y. Trivedi. Digital Design with Verilog

HDL, Automata Publishing Co, (1990)

6. Geiger L.R., P.E. Allen and N.R. Strader. VLSI Design Techniques

for Analog and Digital Circuits, McGraw-Hill Publishing Co,

(1990)

7. Mano M.M., Digital Design, Prentice Hall Inc (1984)

8. Weste N., K. Eshraghian, Principles of CMOS VLSI Design, Addison

Wesley (1985)

103

104

9. Hennessey, J.L. and D.A. Patterson. "Computer Architecture - A

Quantitative Approach, Morgan Kaufman Publishers, CA, (1990)

10. Hamacher, C.V., Z.G. Vranesic and S.G. Zaky. Computer Organization,

Mc-Graw Hill Publishing Co, (1984)

11. Navabi Z. VHDL: Analysis and Modeling of Digital Systems

McGraw-Hill College Division, (1992)

12. M-language users guide, Mentor Graphics.

13. Explorer Lsim users guide, Mentor Graphics

14. Prezbylski S.A. et al. "Organization and VLSI implementation of

MIPS", Journal of VLSI and Computer systems, Vol 1, number 2

15. Ditzel, D.R., H.R. Mclellan and A.D. Berenbaum. "The Hardware

Architecture of the CRISP microprocessor", transactions of the ACM,

1987

16. Patterson. D. A. and C.H. Sequin. "RISC-I: A Reduced Instruction

Set VLSI Computer," Proc. of the Eighth Annual Symposium on

Computer Architecture, Minneapolis, Minn., May 1981

17. Triebel, W.A. and A. Singh. The 68000 Microprocessor, Architecture,

Software, and Interfacing Techniques Prentice Hall, (1986)

18. Harman, T.L. The Motorola MC68020 and 68030 Microprocessor,

Assembly Language, Interfacing and Design." Prentice Hall,

(1989)

105

19. Wakerly, J.F. Microcomputer Architecture and Programming, The

68000 Family John Wiley and Sons Inc, (1989)

	Partial VLSI implementation of the architecture for reusable components (ARC)
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Literature Review
	Chapter 3: System Architecture
	Chapter 4: 4 System Modelling and Simulation
	Chapter 5: Simulation Results and Discussion
	Chapter 6: Conclusions and Future Research
	Appendix A: Source Files
	Appendix B: T-State Operations
	Appendix C: Optimization Circuits
	References

	List of Tables
	List of Figures (1 of 4)
	List of Figures (2 of 4)
	List of Figures (3 of 4)
	List of Figures (4 of 4)

