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ABSTRACT 

Partial VLSI Implementation of the 

Architecture for Reusable Components (ARC) 

by 

Deepak S. Kakadasam  

This work describes a novel VLSI implementation of the Architecture 

for Reusable Components (ARC) processor, using Hardware Description 

Language (HDL). The main goal here is to achieve efficient execution of 

reusable software through proper hardware support. This involves the hard 

wired implementation of each instruction designed for the ARC processor. 

Instructions are broken down into their logical functions, then modeled 

and simulated through the hierarchical design methods that HDL offers. The 

structural model of the processor has been developed and simulated. The 

purpose here has been to begin work on the design and implementation of 

the ARC processor. 

The instructions were built using HDL modules, and then simulated 

using a logic simulator. The effect of internal propagation delays in the 

execution of the logic modules have been investigated. Changes in delay 

parameters have been applied to obtain correct logic transfer operations. The 

redundancy in the logic transfer operations have also been investigated to 

see parallelism at the instruction execution level. 
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CHAPTER 1 

INTRODUCTION  

A Processor called ARC (an acronym for Architecture for Reusable 

Components) is being developed to which is a virtual machine designed for 

executing programs that use abstract data types (ADTs). The ADT 

mechanism is provided by many modern programming languages and is 

often employed during system development to promote modularity and 

reuse. The major contribution of ARC is that it supports Asynchronous 

Remote Procedure Call (ARPC), a model of parallel execution that works 

well for programs developed by layering ADTs. 

Research indicates that a computer designed in conjunction with a 

programming language is more effective than one designed for use by 

programs written in diverse languages. The ARC is unique in the sense that 

it is being implemented to support RESOLVE [1] (REusable SOftware 

Language with Verifiability and Efficiency), a language currently under 

the final stages of development at New Jersey Institute of Technology. 

RESOLVE provides for the ADT construct. The ARC processor was 

designed to address the potential inefficiencies of reusable software. 

1.1 Statement of Design Flow  

This thesis is part of a design strategy whose objective is to implement the 

ARC as an integrated circuit. The ARC may be considered as an Applicati- 

on Specific Integrated Circuit (ASIC). Its application being the efficient 

1  
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implementation and execution of RESOLVE. 

Gate-Level design is practically dead for large systems. In todays world, 

hardware complexity has increased beyond schematic comprehension. Inte-

grated circuits (ICs) are getting so complex that schematics show only a web 

of connectivity and modern day engineers are therefore moving toward hard-

ware description languages (HDLs). HDL coupled with logic synthesis is the 

future for IC design. 

The ARC has been broken down to its lowest level, i.e. the instructions 

themselves and a part of the processor have been structurally modeled using 

HDL. The HDL used here is MHDL 1 . Each individual instruction has been 

designed at the logic level, modeled structurally using MHDL and simulated 

on a logic simulator (Lsim). The purpose of this thesis has been to start the 

design process of the ARC as an IC. It is beyond the scope of this thesis to 

construct and implement the entire processor. 

ARC is an Instruction Set Architecture and the idea here has been to 

implement each instruction as a single entity. This approach gives us an 

understanding of instruction execution and provides details of the number of 

Clock Cycles per Instruction (CPI). This data can be used to modify the 

instruction set such that most instructions take the same number of CPI to 

execute. 

1  MHDL is a trademark of Mentor Graphics Corporation 
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1.2 Overview of the Chapters  

Chapter 2 gives a brief overview of the Reduced Instruction Set Computer 

(RISC) Architectures for VLSI implementation with a perspective towards 

implementing Instruction Set Architectures. It also briefly talks about Very 

high speed integrated circuit Hardware Description Language (VHDL) and 

the advantages it offers in the area of digital system design. 

Chapter 3 gives an explanation of the breakup involved in the design 

and development of the architecture of ARC. 

Chapter 4 deals with the system modeling and the hierarchy exhibited in 

the structural modeling. 

Chapter 5 presents results of the simulation work and also deals with the 

architectural implementation and the problems faced by a design engineer. It 

also discusses the delays associated with the logical elements and its impact 

on the execution time of the instructions. 

Chapter 6 discusses conclusions drawn from the simulation. A note on 

the direction for future research is also included. 

Appendix A contains a listing of the programs developed. 

Appendix B contains the internal operations of the T-states. 

Appendix C contains some of the control circuits with the optimization 

for parallelism exhibited in instruction execution sequence. 



CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview of RISC Architectures  

Reduced Instructions Set Computers (RISC) aim for both simplicity in 

hardware and synergy between architectures and compilers [17]. Reduced 

instruction sets simplify compilers, alleviate software crisis and provide for 

improving architecture quality. Increasing the size or complexity of a 

digital circuit may either enhance or impair the overall system 

performance, depending on how judiciously the added complexity is chosen 

[4]. The RISC project was started at U. C. Berkeley in 1980. 

Simpler instruction sets help drastically reduce control logic thus 

freeing silicon area, which could be used for on-chip registers or memory. 

RISC architectures are register oriented. Instructions operate on the 

contents of two registers, or one register and the immediate field included 

in the instruction. The result of this instruction is either written into a third 

register, or is used as effective address for memory access. All instructions 

follow about three stages in their execution process. They are Instruction 

Fetch, Instruction Decode and Instruction Execute. 

RISC architectures use instruction pipelining. Essentially, pipeline 

architecture is a way of exploiting inherent parallelism or providing 

additional resources to create necessary parallelism. A simple pipeline can 

4  
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be built from inherent concurrency between the fetching of one instruction 

and the execution of the previously fetched instruction. 

In other words, when one instruction is being executed, the next instruc-

tion is being fetched. If the next instruction is already available for execution 

at the end of the current instruction, the processor overlaps the fetch cycle 

with the execution cycle. This is a typical instruction pipeline. To discuss the 

RISC architecture concept in its entirety is beyond the scope of this chapter. 

Exhaustive references will be provided thus minimizing the learning cycle 

for new workers in this area and providing a solid base for future research. 

The ARC can be classified as a RISC processor. The ARC supports 

ARPC by performing data synchronization, automatic parameter restoration, 

and dynamic load balancing. RISC machines provide primitive instruction 

sets, and are designed by examining the way compiled code uses the instruc-

tion sets of computers and then providing instructions that will be used fre-

quently. 

The ARC has been developed on these very same principles. The use-

fulness of RISC processors as nodes in parallel computers has been investi-

gated in recent years. The ARC is developed on the idea that it would be 

used in a multi processor environment. 
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2.2 VHDL and Digital System Design 

In the design of large digital systems, more time is spent on changing for-

mats for using various design aids and simulators. Computer Aided Design 

(CAD) tools have significantly contributed in reducing ASIC development 

time. Until recently, design engineers have had to rely on schematic capture 

tools which used a mouse and special software to draw the schematics on a 

CAD screen. With the increasing complexity of ASICs, schematic entry is 

becoming impractical. A hierarchical design schematic tool also demands 

that a design engineer enter dozens of schematics. The engineer then has to 

use schematic capture packages to create a netlist that describes the intercon-

nection of all the inputs and outputs of the logic gates in the ASIC. 

This led to the development of Hardware Description Languages (HDL) 

to ease the data entry tasks of ASIC designers. HDL is used to describe hard-

ware for the purpose of simulation, modeling, testing, design and documen-

tation of digital systems. VHDL has now become a standard HDL. These 

languages provide a convenient and compact format for hierarchical repre-

sentation of functional and wiring details of digital systems. Some HDLs are 

a simple set of symbols and notations for replacing schematic diagrams of 

digital circuits. Other HDLs are more formally defined and can be used for 

representation of hardware in one or more levels of abstraction. 

HDLs also need to have a simulator and a hardware compiler program. 

A simulator can be used for design verification, while the compiler is used 
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for automatic hardware generation. VHDL specifically has constructs rang-

ing from behavioral level to gate interconnection level. There are many 

HDLs and they only differ in the sense that they offer more than just the 

standard environment for simulation purposes. The government and the 

industry standard is based on VHDL, which is the VHDL-IEEE 1076 lan-

guage. A merger of tools developed by vendors with user friendly front end 

programs together with VHDL code, has only created many types of HDLs. 

MHDL is one such kind which is merged with GDT 2  (Graphic Design 

Tools). GDT offers the merger of HDL together with their interactive simu-

lator (Lsim) to provide for a complete design and simulation environment. 

2.2.1 Levels of Abstraction in HDL  

HDLs offer various levels of abstraction to describe the hardware. In MHDL 

particularly, four levels of abstraction have been defined; Behavioral, Regis-

ter transfer, Logic, and Device levels. Figure 2-1 shows the levels of abstrac-

tion and also includes information about their applicability. 

A Behavioral description is the most abstract. It represents the design 

only in terms of its top-level chip architecture. Only input and output behav-

ior is specified. The internal structural details are omitted. The Behavioral 

level is the most appropriate for fast simulation of complex hardware units, 

2  GDT and Lsim are trademarks of Mentor Graphics Coproration 
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verification and functional simulation for design ideas, modeling standard 

components, and documentation. 

Register transfer level models describe a design in terms of blocks. 

Input/Output behavior, including bus oriented data is specified. Timing 

delays may also be included. This is sometimes also referred to as structural 

modeling. 

Figure 2-1.  Levels of Abstraction. 

Logic level models describe a design in terms of its logical elements, 

such as AND and OR gates, latches and registers. Bit oriented data is speci-

fied at this level for control lines. Timing delays may be specified in terms of 
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rise and fall time delays, and parasitics estimated on net output capacitance. 

Device level models describe a design in terms of its device level char-

acteristics and possible analog behavior. This level is useful for modeling 

op-amps and comparators. 

In standard VHDL three levels of abstraction are defined; Behavioral, 

Dataflow and Structural. MHDL offers the very same levels of abstraction 

with the only addition being the device level. 

2.2.2 Basic Concepts of HDL  

HDL used in conjunction with logic simulation and synthesis tools make it a 

powerful tool. Any hardware component can be described, simulated and 

tested. The description of a particular component in HDL consists in creat-

ing a software module where the inputs and the outputs are first stated. The 

next step is a build section where instances of components are created and 

netted. The last stage is to create test vectors for the above module and simu-

late the design. This format is the same for all levels of abstraction. See Fig-

ure 2-2. 

The first line declares the name of the module. The module could also 

contain arguments whose value could be passed at simulation time. The 

Input/Output declaration defines the input and output terminals of the mod-

ule. A bus type declaration could also be made by defining a particular ter-

minal as an array of n-bits. The Build section of the module is that section 
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that is executed only at circuit build time. All information that includes cir-

cuit connectivity must be included in this section. An initialize section could 

also be added to initialize all terminals prior to the simulate section. The ini-

tialize and the simulate section together could be included in separate files 

called the initialization file and the testvector file. The module is then com-

piled and it is now ready for the simulation stage. 

Figure 2-2.  Component Description. 
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2.2.3 Designing with HDL  

Expressing designs in HDL can provide several benefits. An HDL descrip-

tion can be used as a specification of the design. There are many HDLs. 

Some of the more important ones are Verilog 3, and MHDL. Hardware 

description languages allow for easy text processing, whereas binary 

schematics usually require a graphics editor. HDL offers the advantage of 

simulation which can uncover design errors that would otherwise be 

detected only when the hardware is built. It also provides logic synthesis. 

There are synthesis tools which can take an HDL description of a design and 

generate a gate level implementation with library components. 

These tools help optimize the design with respect to speed, circuit size, 

or some other cost function. The other advantage is, HDLs are more like the 

C programming language. It is very easy to learn. Finally, HDL is the best 

way to document a design. A well commented HDL description can give a 

better and more concise documentation than a set of schematics that show 

gate level details. 

3  Verilog is trademark of Cadence Design Systems  



CHAPTER 3 

SYSTEM ARCHITECTURE 

3.1 Introduction to Architecture Development  

Integrated circuit technology has made possible the production of chips 

with hundreds of thousands of transistors. Systems of such complexity 

remain difficult to design. The computer architect faces problems in the 

areas of system partitioning with subglobal specification, subsystems 

interface specification and verification, and overall system integration. 

In the design of any processor architecture, the designers should make 

sure of certain facts: its effectiveness in supporting high level languages, 

and the base it provides for system level functions. Both the cost and the 

performance of implementation should be taken into consideration to scan 

the effectiveness of the architecture. 

ARC is proposed to be a 32-bit processor. Its implementation in VLSI 

would attempt to compromise between performance and functionality. It all 

depends on the instruction set designer to carefully consider both the 

usefulness of the instruction set for encoding programs and the 

performance of implementation of that instruction set. 

Most programs are written in high level languages (HLL) and the role 

of the architecture as a host for programs depends on its ability to express 

the code generated by compilers for the high level languages. A large 

12  
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instruction set architecture will require microcode to implement the instruc-

tion set. In VLSI, silicon area limitations often force the use of microcode 

for all but the smallest and simplest of instruction sets. An additional level of 

translation is required in microcoded processors. This can be avoided in pro-

cessors with simpler instruction sets by implementing the control logic 

through hardwired means. 

The Architecture and its strength as a compiler target determine much of 

the performance at the architectural level. The organization of hardware for 

an architecture can dramatically affect quantitative measures of architectural 

performance. Since the architecture imposes implementation requirements 

on the hardware, performance measurements made on the architecture that 

are implementation dependent may not yeild realistic measures of the perfor-

mance of an actual implementation of the architecture. 

The architecture affects the performance of the hardware primarily at 

the organizational level. Smaller effects occur at the implementation level 

where technology becomes relevant. The key goal in implementation is to 

provide the fastest hardware possible. In other words this is to minimize the 

overall clock speed, to reduce the overhead on instructions as well as orga-

nizing the hardware to minimize the delays in each clock cycle. 
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3.2 Architecture of ARC  

The ARC processor has the following principle elements: control unit, data-

path, and memory and an operation processor. The control unit has all the 

control logic to manage data transfer between the datapath, memory and the 

external interface. 

Figure 3-1.  Constructs of the ARC. 

3.2.1 The Control Unit of the ARC  

The design of a controller depends on the datapath requirements of the sys-

tem. The control unit loads instructions from instruction memory (IM) into 

the instruction register (IR) and uses a program counter (PC) to hold the 

address of the next instruction to fetch from memory. The architecture is 

based on the instruction set, The instruction set is listed in Figure 3-2. The 

instruction set is basically divided into Data Movement instructions, 
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Arithmetic and Logic instructions, Control Flow instructions, and Miscella-

neous instructions. 

Figure 3-2.  Instruction Set of the ARC. 

ARC supports programming language constructs that facilitate software 

reuse. The Control Flow instructions have a need for a separate hardware 

unit called a Network Control Unit (NCU), which would facilitate data 

transfer to handle ARPC. These instructions have not been included in this 
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preliminary design. The instructions that have been designed are those that 

are included in APPENDIX B. 

Each instruction follows its own unique steps to complete its execution. 

The execution of each instruction is accomplished by the execution of opera-

tions of a combination of T-state. Each T-state has certain operations associ-

ated with it. These T-states generate the required control signals within the 

control unit. These control signals are fed to the datapath where they operate 

on the elementary units of the datapath. These signals perform the operation 

of gating data from a register to a bus, gating data from a bus to a register, 

control of the Arithmetic and Logic Unit (ALU) operation, etc. 

Table 3-1.  Major Stages and Their Functions 

Stage Mnemonic Task 

Instruction Fetch (T1) 

Instruction Fetch (T2) 

Instruction Decode & execute (T3) 

Send out the PC to the MAR, 

Increment PC 

Get memory contents of location 

Pointed to by the MAR in InsM. 

Perform required operations as 

demanded by the instruction. 
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The T-state diagram is shown in Figure 3-3. The execution of a particu-

lar instruction is done by a unique combination of T-states. The operations 

occuring within the T-states are included in APPENDIX B.  

Figure 3-3.  T-state Diagram of the ARC.  
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The T-states for some instructions are shown in Figure 3-4. 

Figure 3-4.  T-state Diagram of Some Instructions. 

The Control Unit is designed in such a way that it exhibits hierarchy in 

its implementation. The control unit is split into two smaller units: Cu1 and 

Cu2. There are some instructions that do not go beyond the T2 state. For 

this the entire unit waits until it gets a start signal and jumps from state T1 to 

T2 immaterial of what the instruction is. Then if the decoded instruction 

needs execution on state T3, the control is transferred to the next unit and 

Cu1 waits until Cu2 has generated a finish signal. Then Cu1, jumps back in 

control and relieves Cu2 of its duties. See Figure 3-5 for the structure of the 

basic control unit. 
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Figure 3-5.  Structure of the Basic Control Unit 

The Cu2 stage of the control unit is modeled such that each individual 

instruction execution can be observed. The instructions that have been 

implemented are those that give a vivid idea of the processor. The ones that 

have not been implemented are for later development. The control units for 

the individual instructions have been modeled. These are basically counter 

units with combinational logic inputs. 

The instructions have been grouped on the basis of the number of 

T-states that they take to execute. This is shown in Table 3-2. The number 

of instructions used by the ARC at this time is about 40. To represent these 

40 instructions, we need (2n  = 40) n = 6 bits. Thus in the Instruction register, 

the bits 0 through 5 represent the instruction. The remaining 26 bits are used 

as immediate data. Depending upon instruction usage or design, the remain-

ing bits of the instruction register could be used as necessary. 
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Table 3-2.  Number of T-states Taken by the Instruction. 

Instructions # of T-states 

NOP, WAIT, END, BTRUE BFALSE 2 

BRANCH arg1, BRTRUE, BFALSE 3 

CLRN, CLRZ 5 

DTS 6 

PUSH arg1, ADD, SUB, PUSHL arg1, 

POPL arg1, POPFD arg1, POPI arg1 8 

PUSGFD arg1, POPI, PUSHI_O arg1, 

PUSHED arg1 9 

PUSHI 12 

Figure 3-6. Contents of the Instruction Register. 

The Cu2 control unit gives a start signal to a particular counter depend-

ing upon the instruction and the counter in turn drives the decoder unit 

which generates the necessary T-states. In actuality each T-state pulse is 

anded together with a 4 — ϕ clock to generate the actual control signals 
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which are gated to the datapath. 

Let us consider an instruction and deal with its implementation in the 

control unit. The ADD/SUB would be one such instruction. These instruc-

tions take about eight T-states to execute. The main control unit Cu1 takes 

care of the top two T-states and we are left with generating the remaining six 

T-states. So once the Control Unit has decoded that the instruction is an 

ADD/SUB instruction, control is passed over to the Cu2 stage which enables 

the necessary counter by driving that particular counter which further drives 

a decoder to produce the necessary T-state signals. More of this is explained 

in Chapter 4, where examples of some instructions have been discussed. 

3.2.2 Datapath Components of the ARC  

Arithmetic operations in the critical path require careful logic and circuit 

design. Care should be taken to see that there is minimal loading on the 

adder. The ARC has a 32-bit ALU. See Figure 3-7 for a description of the 

datapath. Its basic parts, namely latches, functional unit, and busses are the 

following: 
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Figure 3-7.  Components of the Datapath. 

• Register file: Which includes the following registers. 

•TOP of LDS pointer to the Local Data Stack 

•TOP of PAS pointer to the Parameter Address Stack 

•TOP of LDS 

•PC Program Counter (Address of the next instruction) 

•C_Flag Control Flag (Indicate Zero or Negative) 
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•C_reg Holds Clone number 

•FR Facility Register (contains an offset) 

•FDR Facility Data Register (contains an address) 

•MDR Memory Data Register 

•MAR Memory Address Register 

•Label (2-bit unique location identifier) 

•Offset (address offset for PC incrementation) 

•TEMP (Temporary Storage area) 

• Arithmetic and Logic Unit (ALU) 

The ALU is a 32-bit carry look-ahead adder which is capable of addi-

tion and subtraction. The subtraction is performed by 2's complement addi-

tion. The structure of the ALU is shown in Figure 3-8. When the control sig-

nal is logic 1 (assuming logic 1 = HIGH level), the ALU performs addition. 

Two's complement addition (subtraction) is performed when the ALU con-

trol is logic 0. It is to be noted that the ARC does not directly support float-

ing point arithmetic. For intensive applications a numeric co-processor could 

be used. 

3.2.3 Memory Components of the ARC  

There are four kinds of memory in the ARC. They are the Local Data Stack 

(LDS), Instruction memory (InsM), Indexed memory (IM), and the Facility 

memory (FM). The data memory components are the LDS and the IM. FM  
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contains a table for each facility used in a program. The LDS is intended to 

be used for storing activation records for operation invocations. Each entry 

is typically the address of a variables representation IM memory. The LDS 

has a word stack because the activation records are stacked and are created 

and destroyed in a last-in-first-out fashion. The top pointer of the LDS is 

incremented (or decremented) when an item is pushed (or popped). The LDS 

is not a true stack since entries can also be accessed randomly. Values on the 

LDS can be copied, swapped with values in IM, destructively read and writ-

ten. 

Indexed memory contains static module data and the representations of 

local variables. IM entries are addressed by specifying a base and an offset. 

Values can be copied, swapped with values in LDS, destructively read and 

written. 

Facility memory (FM) holds tables used by CALL instructions. These 

tables are called run-time facility records (RFRs). The facility register (FR) 

is also used by CALL instructions and points to the RFR of the current facil-

ity. 

The ARC also contains the Parameter Address Stack (PAS) to automati-

cally restore parameters. The PAS contains a record of addresses of all items 

pushed onto the LDS, since the LDS is used for passing parameters to opera-

tions. 
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ARC is designed to be a word addressed machine, providing several 

advantages over byte addressed architecture. Word addressed architecture 

simplifies memory interface since insertion and extraction hardware is not 

required. This is particularly important since instruction and data fetch and 

data store are in the critical path. Word addressing also makes computation 

more efficient. 

The number of address bits is 32, which gives us about 232  = four giga-

bytes of physical address space. This amount of memory is not intended for 

use with the ARC in the immediate future, but later developments and appli-

cations may demand this amount of memory. At this time the ARC memory 

is split up with the LDS and the InsM having about 4K address space, the 

IM and the FM having about 64K address space. 

Modern processors face the problem that the sum of memory access 

time and the memory mapping time is too great to allow the processor to run 

at its full speed. There are several constraints on implementing memory on 

chip and off chip memory leads to the above mentioned delay. The present 

ARC can hold all of its memory on chip given that the memory is limited as 

mentioned previously. But this is not the case as the ARC is further devel-

oped. There may be a need to implement a cache memory. In some proces-

sors increased bandwidth was achieved by implementing an instruction 

cache [14]. All these considerations should be dealt with in the future. 



CHAPTER 4 

4 SYSTEM MODELLING AND SIMULATION  

This chapter provides a description of the actual modelling and the 

procedure adopted in the modelling process. It discusses the inherent 

problems associated with the modelling process itself. 

4.1 Fundamentals of Modelling  

The idea was to break up the instruction set and to simulate them 

individually. The datapath remains the same for all the instructions. Most 

of the control unit also remains the same. There are a few differences as to 

producing the right number of T-states for each instruction. We shall start 

first with the design of the datapath and then go on to talk about the control 

unit followed by a discussion on memory implementation.. 

Modern day IC designers use just behavioral models of their circuits 

to build their designs. These people in the commercial world have software 

that can convert their circuit from behavioral descriptions to structural 

models and also easily create a netlist. Not many designers start with a 

structural model description. Structural modelling has been used here so 

that work on the processor can continue at the university level and future 

researchers in this area can actually implement certain blocks of the ARC, 

due to the fact that the internal details of the components are available in 

the structural model. Behavioral models treat the circuit black-box. 
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Figure 4-1.  Behavioral and Structural models. 

4.2 Design of Datapath 

4.2.1 Register Set Design  

The datapath was previously introduced in Chapter 3 and its diagram is 

shown in Figure 3-7. The datapath consists of a register set, ALU and 

busses. These resources are interconnected through a pair of source busses 

and one destination bus. As in most datapath designs, the convention fol-

lowed here is that, there is only one unique path to traverse through the data-

path. All data originates from a register, is gated to one of the source busses, 

onwards into the ALU, then into the destination bus and back into a register. 

The source and destination registers are determined by the instruction. 

The instruction operations were observed. It was noticed that only three 

registers need use of a second source bus, to input data into the ALU. This 

bus has been provided so that future design changes in the instruction set can 

be accomodated. The S2_bus is local or internal to the datapath. The S1_bus 

and the D_bus are global. It is to be noted that at the interface with memory 
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the D_bus and the S1_bus are multiplexed and the datapath has only two 

global busses and they are the Address bus and the Data bus. The external 

interface to the other Processing Elements (PEs) are provided by the same 

global address and data busses. 

The registers are implemented using basic D flip-flops. See Figure 4-2 

for the implementation of a single register. These are parallel load and paral-

lel read. When the load input is 1 (logic high state), the I inputs are trans-

ferred to the register on the next clock pulse. When the load input is 0 (logic 

low state), the load inputs are inhibited and the D flip-flops are reloaded with 

their present value, thus maintaining the content of the register. This is nec-

essary because a D flip-flop does not have a "no-change" input condition. 

The other signals are the enable and the clear signal. The clear signal 

resets the register to zero state. This signal can be tied to a reset pin. The 

enable signal is used to drive a tri-state buffer whose outputs are tied to the 

source bus. This enables data read from a register. See Figure 4-3. 

The lowest level is the logic level. The first task was to construct D flip-

flops and this was done using the primitive logic level constructs. The D flip-

flops were clubbed together with the other logic circuitry to obtain one 

32-bit parallel read/load register. This now becomes a higher level. To create 

a bunch of registers now, all we have to do is call the register module using a 

for loop that creates as many registers as is necessary. 
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Figure 4-2.  Register with Parallel Load/Read using D-flipflop. 

Figure 4-3. 32 Bit Register with Parallel Load/Read. 
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4.2.2 Bussing Systems  

The initial consideration to be given when designing busses is how fast 

should data transfer take place. It also depends on how much a designer 

wishes to pay for higher speed logic circuitry. The speed of data transfer 

within the internal data bus is related directly to the number of bits that are 

transferred in parallel. Since full word transfers take place on the ARC, max-

imum tranfer rate is only dependent on the propagation delay of the bus. The 

ARC uses a multiple bus structure. It is to be noted that within the datapath 

the busses are unidirectional. To create them structurally and implement 

them using realistic propagation delays, the busses have been modeled as 

shown in Figure 4-4. 

Figure 4-4.  Bus Implementation within the Datapath. 

Observe Figure 4-4, and it can be seen that in case of implementing a 

bus, the propagation delay is of utmost importance. In any normal situation 

of implementing a bus, the propagation delays would differ from point to 

point on the bus. This essentially means that the point at which one register 

transfers data onto a bus is different from the point at which another register 
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tansfers data onto the bus. In ICs this difference in the distance between, one 

point of transfer to another will constitute different delays. 

In the ARC the busses have been modeled with worst case delay. This 

ensures that data injected to the bus at any point along the bus takes the max-

imum delay possible. This maximum delay can be changed to any arbitrary 

number of unit delays. This helps model the structure with a worst case 

delay. 

At the external interface of the datapath to the memory components, the 

S1_bus and the D_bus are both multiplexed using bi-directional tri-state 

buffers whose enable signal signify a read/write operation. See Figure 4-5 

for details of the interface circuit. If the control signal is logic low then a 

write operation occurs and a read operation occurs if the control signal is 

logic high. 

The remaining issues to be dealt with are the control signal lines. There 

are a lot of control signals and these basically perform the following opera-

tions: Drives data from a register to the source bus. Drives data from ALU 

output buffer to the Data bus. Also loads registers with data from the Data 

bus. The control lines are single unidirectional buffered busses, which must 

be designed for high speed operation. The effect of the propagation delay in 

the control line should not affect the overall delay to a very large extent. 
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Figure 4-5.  Interface/multiplexing of Busses in the Datapath. 

4.2.3 Arithmetic and Logic Unit  

A ripple carry adder has been used to implement the ALU of the ARC. The 

data stabilizes after about 98 unit delays at the output. This means that the 

propagation delay in the adder is 98 unit delays. A faster implementation 

would be to use a carry look ahead adder. The carry look ahead adder has a 

higher gate count but is faster. See Figure 4-6 for a description of the ALU 

of the ARC. 
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Figure 4-6.  Arithmetic and Logic Unit. 

4.3 Design of Control Unit  

The control unit for the ARC, introduced earlier is based on simulating the 

instructions individually. Most processors use microcode for their control 

units. But in this situation, hardwired logic implementation of the control 

has been proposed. The number of T-states taken by the instructions were 

discussed earlier in Table 3-2. Some instructions have repeated states 

depending on the busy-bit. Some may avoid a particular state depending on 

the logic level of a certain bit. 
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The state table and diagram for the main control unit is shown in Table 

4-1. The control inputs are the ones specified in the input condition column. 

The state diagram shows the transitions from one state to another. 

Figure 4-7.  State Table and Diagram of the Main Control Unit. 

This state table diagram yields the circuit diagram in Figure 4-7. The 

circuit produces the T-states, T0, T1 , T2 , T3 . The 'S' control input is the 

start signal to the processor. The control unit is in state T0  until the 'S' sig-

nal goes high. When this happens, the unit changes state on the next clock 

pulse. It jumps to 

T1 

 state. It remains in 

T1 

 state for one clock cycle and 

then changes to 

T2 

 state in the next clock cycle. Now if the instruction 

demands that it go into 

T3 

 state, then the processor goes into 

T3 

 state and 
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remains in 

T3 

 state until the unit has received the 'FIN' signal. This 'FIN' 

signal is the finish signal.  

Figure 4-8.  Diagram of the Main Control Unit. 

The instructions NOP, END, and WAIT are the only instructions that do 

not require the control unit to go into 

T3 

 state. All other instructions go into 

T3 

 state. The control is transferred over to the next stage of the control unit. 

The instruction is recognized by a decoder in this case and a particular signal 

is driven high. This signal starts the individual instruction control units. 

These control units are based on the number of T-states that are required 

to complete the execution of the instruction. Some instructions just follow a 

certain arbitrary number of T-states, while others depend upon certain condi-

tion codes that decides the number of T-states they take to execute. The  
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T-state diagrams of all the instructions that were implemented are included 

in APPENDIX B. 

We shall have to take a particular instruction to show how the imple-

mentation works. We shall take the ADD/SUB instruction. This instruction 

takes about 6 more T-states after it has gained control from the previous 

stage. To traverse through these 6 T-states, we use an 8-bit counter that feeds 

a 3-8 decoder which generates the necessary T-states with two unused states. 

See Figure 4-8 for block diagram description of the control unit. A single 

control unit can be used for both the ADD and the SUB instruction due to 

the fact that they are almost identical.  

Figure 4-9.  Control Subsystem for ADD/SUB Instruction. 

The control subsystem which includes the counter uses a JK flip-flop for 

its counting operation. The JK flip-flops operate in the master-slave mode  
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and are edge-triggered. They are driven by a combinational logic block. The 

design of the elements of this combinational logic block was done by using 

state flow diagrams and Karnaugh map reduction. 

The clock signal is fed only if the 'Ins' signal occurs. When this occurs, 

the counter is reset to 0 by the 'CLR' signal which signifies clear. This starts 

the counter operation and at the same time the counter output is fed to the 

decoder. The decoder gives the necessary T-states. These signals are the ones 

that connect to the datapath unit control lines. They determine the flow of 

data within the datapath or the processor. See Figure 4-9 for the control sig-

nals produced by the subsystem. 
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Figure 4-10.  Control Signals Produced by the Subsystem.  

Every state line is logically anded with a 4 — ϕ clock to break up the 

T-state pulse into 4 different signal components. Each of these signal compo-

nents have a unique function. See Figure 4-10 for details. The internal opera-

tions for two states has been shown. Most other T-state operations follow in 

the same manner. 
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Figure 4-11.  T-state Internal Operations. 

4.4 Design of Memory  

The memory can be modeled in many ways in HDL. It could be incorpo-

rated as a large bank of registers. This is most practical when the models are 

implemented structurally in HDL. One of the other ways of implementing 

memory is the behavioral level. but it does not serve the purpose of the sim-

ulation here. Any memory implementation also has associated decoding cir-

cuitry. The size of this decoding circuitry depends on the size of the memory 
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implementation. Since in the ARC the data-transfer through busses is being 

modeled with a worst case delay, we are assuming that the time for a mem-

ory access is the same immaterial of the distance it has to traverse. 

Based on the register implementation of memory, the register module 

has to be used to build the memory. The memory module consists of a 

databus, an address bus, and a read/write signal. It also consists of decoding 

logic which uses the address bus as input to point to a particular location in 

memory. 

Figure 4-12.  Architecture of the Memory. 

4.5 Hierarchy in the Design Environment  

The basic steps in the design process are to create the lower level modules. 

As we all know the any digital architecture is built from a collection of basic 

gates. These basically are Inverters, And gates, Or gates, Nand and Nor 
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gates etc. The advantage in VHDL is that these gates do not have to be built 

everytime an instance of it is called. The basic gates can be called in as 

primitive logic. Once a module is built from these basic gates, then that 

module can be called over and over again, while maintaining the same char-

acteristics at the higher level. 

Figure 4-13 shows the basic level of hierarchy involved in the design 

process. The lower level modules are used to build the next higher level 

modules and so on. This helps in faster simulation and higher accuracy. 

Figure 4-13.  Design Hierarchy.  
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4.5.1 Timing Considerations in a Hierarchial Environment  

As the design evolves around building higher level blocks from lower level 

modules, it is to be noted that the timing characteristics are passed on to the 

higher level by the lower level module. If the lower level modules are 

assumed to be of zero-delay (i.e. 0NS  for both the rise-time and the fall-time 

of the input and output), then the Logic simulators give the modules a unit 

delay when used at a higher level. It is also the same when we assume unit 

delays for every lower level module. 

In a particular example, the positive-edge-triggered D-flip-flop with a 

clear pin uses 3 nand gates with 3 inputs and 3 nand gates with 2 inputs. 

Each of the lower level modules are instantiated with a unit delay at the 

higher level module. The propagation delays are added up when the D-flip-

flop module is simulated. This gives us an understanding of the approximate 

delays to expect when this module is used at a higher level. When these 

modules are instantiated and used, the delay of the lower modules is 

summed up to arrive at the propagation delays for the higher level modules. 

If the modules are netted in series then the propagation delays are automati-

cally added up at simulation time. If they are netted such that they are in 

parallel, then the propagation delays are not summed up. This can be 

observed in Figure 4-14 and Figure 4-15. 
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Figure 4-14.  Propagation Delay in a Module. 

Figure 4-15.  Propagation Delay in Series and Parallel Modules. 

This propagation delay through the modules give us an approximation 

of when the output stabilizes. Knowing such parameters, the design of con-

trol units to generate control signals becomes much easier. The control sig-

nals are fed to the datapath and other units only after the data has stabilized. 

If all lower level modules are simulated and their delay parameters are 

known, then the design of the control unit is rendered easier. 
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The concept of unit delay at the lowest level is a big advantage in the 

design of digital systems using HDL. Certain parts of a circuit may not 

behave as expected due to incorrect data transfer. These faults can be veri-

fied by adding delays in the circuit by including buffers with specific delays. 

These buffers act as delay elements and create the necessary delay, which 

accounts for output stability. 



CHAPTER 5 

SIMULATION RESULTS AND DISCUSSION  

This chapter provides a step by step discussion of the simulation focusing 

on particular instances involving transfer of data. It also discusses the 

problems encountered in the architecture of the different elements of the 

processor. 

The architecture of the ARC has been broken down to be able to 

comprehend the simulation results. Every instruction, involves the use of 

the elements in the datapath, and memory. The data is transferred from one 

point to another. Our concern is to look at the lowest level. The simulation 

of any instruction involves transfer of data at the lower level. Some 

instances of data transfer are: from registers to busses, from busses to 

ALU, from ALU to output buffers, from memory to datapath, and bit-data 

transfer from datapath to control. The other kind of data-transfer is that of 

the control circuitry. The control circuit produces signals which drive 

certain elements within the datapath and memory. All these are discussed 

individually. 

5.1 Data Handling by Registers  

The registers in the datapath are constructed from basic D-flip-flops. This 

have been shown in Figure 4-2 and Figure 4-3. The input to a particular 

register is applied at the 'I' inputs. The register inputs are driven from the 

destination bus through a tri-state buffer unit. The buffer unit passes the 
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available at the bus to the register only if it is enabled. This enable signal is 

available as a control line. It has to be noted that all the enable signals of the 

input buffers are control lines. The output of the register is also fed-back to 

the input so as to maintain the internal data by refreshing it every clock cycle 

if no input is present. See Figure 5-1 for input and output data of a register. 

Figure 5-1.  Data Handling by Registers. 

5.2 Data Transfer to Busses  

The data transfer to busses are either from the register set or from memory. 

In case of transfer from the register set, the register outputs are enabled and 

the data at the outputs of the registers are gated to the bus. In case of data 

transfer from memory, the difference is in the amount of time taken for the 
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data to propagate to the ALU, which is usually the destination, is higher. 

Figure 5-2. Simulated Structure for Data Transfer to Busses. 

Figure 5-3.  Data Transfer to Busses. 
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Figure 5-2 gives on overview of data transfer to busses. The transfer of 

data to busses is achieved when a register's output terminals are enabled. All 

registers are connected to the bus via a tri-state buffer. When this tri-state 

buffer is enabled, the data in the register is transposed onto the databus. 

Whatever previous data that existed on the bus is overwritten. 

When simulating M-HDL modules on an Lsim simulator, it is necessary 

that each module be declared with input and output ports. Therefore for the 

purpose of simulation input and output ports have been declared and the 

same is shown in Figure 5-3. Arbitrary names have been given to the points 

at which the data has been probed.  

Figure 5-4. Effect of a Clear Operation.  
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Also observe in Figure 5-4 where the effect of a clear register operation 

is reflected on the bus due to the fact that the particular register has been 

enabled. In the case of a memory access, the same principle holds except 

that the propagation time for data transfer is longer. The effect of a clear 

operation loads the bus with zeroes. This operation is used in computations 

where the second operand needs to be zero. 

5.3 Data Propagation in Busses  

The structure of the bus, already introduced in Chapter 4, see Figure 4-4. is 

modeled as a delay buffer. In actual VLSI implementation of a bus. the 

inherent capacitance and resistance offered by the metal line give rise to 

propagation delays. No primitive instances of a bus are available to model a 

bus in HDL. The best modeling method would be to simulate the bus as a 

series of delay buffers. The bus could also be modeled using a single delay 

buffer with a known delay parameter. 

Figure 5-5.  Propagation Delay in Bussing Systems. 
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5.4 Operation of The ALU  

The Arithmetic and Logic Unit in the ARC is a basic ripple carry adder. It 

also has a provision for 2's complement addition (subtraction). The ARC 

does not support on chip floating point arithmetic. For such computations a 

co-processor would have to be used. The ALU shown in Figure 4-6 is mod-

eled for 32 bit capacity. It has an overflow bit which is the carryout from the 

last stage. 

Figure 5-6.  Operation of the ALU. 

The ALU is a concatenation of 32 single bit adders. The carry is propa-

gated from the least significant bit to the most significant bit. The ALU in 

its present implementation takes about 100 delay units to stabilize at the out-

put. This delay is because of the time taken for the carry to propagate 
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through the 32 stages of the ALU. The carry out from the 32nd stage is the 

overflow indicator. This signal has been made available at the outside and 

could be used to generate interrupts for future design implementations. 

It can be seen in Figure 5-6 that data stabilizes at the output of the ALU 

approximately about 100 unit delays after input is applied. The control sig-

nals to drive the ALU output buffer should therefore be delayed by an 

amount greater than the propagation delay of the ALU. This is a slow 

implementation of the ALU. A much faster implementation of the ALU 

could be achieved by using the carry look-ahead principle. But this has a 

very large gate count. This principle could be applied in future imlementa-

tions of the ALU. 

Figure 5-7 illustrates a part of the datapath unit. This when expanded to 

include more registers gives us almost the entire datapath. In this particular 

case two registers have been modeled together with the source and destina-

tion busses and the ALU to provide an idea of the working of the datapath 

unit. There are control lines which enable tri-state buffers which gate data 

onto a bus from the registers or vice-versa. 

In this particular example the registers are preloaded with certain data, 

and they are then gated to the source bus. This in turn is fed to the ALU 

which performs the operation as indicated by its control signal and the 

resulting output is stored in an ALU output buffer register. This data is then 

fed to the destination bus from where it is gated into one of the registers. In 
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totality this operation involves all of the other operations discussed above. 

Figure 5-7.  Simulated Structure of the Datapath 

Figure 5-8. Simulated Operation of the Datapath 

5.5 Memory Read/Write Operation  

A memory fetch operation usually involves the transfer of data to the to the 

Memory Data Register (MDR) from the memory location pointed to by the 

Memory Address Register (MAR). The MAR is gated to the address bus, 
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which in turn feeds the address decoder. This address decoder points to a 

location and either enables the memory register output or the input for a read 

or write operation respectively. The above procedure involves all of the 

above mentioned operations. The MAR is loaded with the contents of the 

destination bus which has the address of the location in memory. 

Figure 5-9.  Reference Circuit for Memory Access 

The MAR in addition to being connected to one of the source busses is 

also connected to the address bus external to the datapath. This interface 

when enabled points to a location in memory. Since the memory in the ARC 

is specifically split up into four categories, the first 2-bits could be used to 
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reference the particular memory component. See Figure 5-8 for a load oper-

ation on the MAR. Also refer to Figure 5-7 where one of the registers may 

be assumed as the MAR. 

The Maddr component in Figure 5-8 is the memory address bus. The 

Reg2a component is the MAR. The Menb component is the memory enable 

signal. 

Figure 5-10. Simulated Operation of a Memory Access 

5.6 Bit Data Access  

There is a need to access some bits of information from within the datapath. 

One of them, the Busy-Bit is the most significant bit (MSB) of data stored in 

memory. This bit is accessed only after the data from a memory access has 
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reached the datapath. If this bit signifies the busy state, then the procedure of 

memory access is repeated. This goes on until the Busy-Bit is in the not busy 

state. The other bit data, which is the control-flag is needed with instructions 

like CLRZ and CLRN. 

If any of the instructions need to execute with a check on the Busy-bit, 

then the following happens. The address of a location is loaded into the 

MAR, and the contents of the location pointed to by the MAR are brought to 

the MDR. The most significant bit of the MDR can be led to the outside of 

the datapath to check its value. This is also the case in the control flag bit. 

The other point of discussion is that the ARC does not support bit data 

manipulation in the present version of the instruction set. 

5.7 Simulation of Control Unit Components  

The control unit previously described in Figure 4-8, provides the main 

T-state signals. It is designed to work through states T0  to T2 , immaterial of 

what the instruction might be. It is during these two T-states that operations 

like loading of instruction register from memory, incementing the program 

counter take place. When the main control unit was first designed, some 

instabilities at the output were noticed. This was due to improper swiching. 

Extra delay parameters have been added an ensure smoother transition. See 

Figure 5-11. 
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The control sub-units are basically constructed from counter and 

decoder circuits. Figure 5-12 here shows the working of the counter circuit. 

These counters are built using JK flip-flops. The outputs of these control 

units drive the inputs of the decoder units. 

Figure 5-11.  Control Unit Simulation 

Figure 5-12. Corrected Control Unit Simulation 
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The corrected module produced the desired results as can be seen in 

Figure 5-12 and Figure 5-14. 

Figure 5-13.  Unstable Counter Operation 

Figure 5-14. Stable Counter Operation 
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5.8 Sequence of Instruction Execution  

Every instruction that executes has a certain number of T-states. It is within 

these T-states, that certain operations are performed. These operations within 

the T-states are a combination of the above mentioned operations. The exe-

cution of any instruction at the logic level involves operations such as: trans-

fer of data to a bus, an alu operation which may be add or subtract, transfer 

of data from a bus to a register, gating of data to the memory address bus, 

receiving data from the memory data bus into the datapath source bus. 

Figure 5-15. Instruction Flow Sequence of ADD/SUB 

As we discussed, to understand the execution of a particular instruction 

at the logic level it is necessary to traverse through the different elements of 

the ARC. Looking back at Figure 3-4 where we have presented the T-state 
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diagrams of some of the instructions, we shall constrict our discussion to a 

particular instruction. All T-state internal operations are all included in 

APPENDIX B. We shall discuss the instruction with references to simulation 

results. The T-state internal operations for the ADD/SUB instruction is 

shown in Figure 5-15. 

The operations that occur within the T-states of the ADD/SUB instruc-

tion can be seen in Figure 5-15. Figure 5-15a describes the instruction just 

by specifying the T-states involved. Figure 5-15b gives a more descriptive 

view of the operations involved. Now each operation occuring within the 

T-states are a sum of repeated processes discussed above. 
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Figure 5-16 shows the data flow within a particular T-state. It is to be 

understood that at the logic level every operation is just a sequential flow of 

data. As can be seen in Figure 5-16 the first T-state operation of the 

ADD/SUB instruction is the movement of data from a register to another 

register. This sequence can be easily comprehended from the figure. It there-

fore follows that most other T-states follow the same internal operations 

more or less. The difference may occur if the T-state operation is a memory 

access operation. 

In case of a memory access operation, the difference is in the propaga-

tion delay. This is explained in Figure 5-17. The propagation time delays are 

more in this case and therefore it adds up to the total delay. The T-states T27  

and T25  are examples of such operations. 

T27 

 is a memory read and T25  is a 

memory write operation. These are the only two T-states which access mem-

ory. All the other T-states are just a variation of the T-state discussed in Fig-

ure 5-16. 

The memory in the ARC has been modeled as a bank of registers. This 

is the only way memory can be structurally represented. In a behavioral 

model memory can also be modeled as a read only memory (ROM). To 

model a ROM in structural representation, it is only necessary to not provide 

any input lines to the memory bank and to preload the memory bank individ-

ually at initialization time. 
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Figure 5-17. Memory Read Operation 

The propagation delay could be reduced by avoiding the path through 

the ALU. For a memory read operation, this path through the ALU could be 

avoided by gating the data to the destination bus through a tri-state buffer. 

This path would reduce the delay. In case of a memory write operation 

which is shown in Figure 5-18, the exact opposite of a memory read opera-

tion takes place. The 

T25 

 State is a memory write operation.  
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Figure 5-18.  Memory Write Operation 

5.9 Instruction Execution Time  

The time taken for an instruction to execute Ttotal  is the sum of the time 

taken for all the individual T-states. It is therefore necessary to compute 

beforehand the time taken by every individual T-state. When this has been 

done, the time taken by every instruction could be stated with the best 

approximation. The processor is being modeled with the worst case delay 

parameters. So any timing approximation done here is with respect to the 



63  

worst case delay parameters. An approximation of the time taken by each 

T-state has been provided in Appendix B. Using this data, the time for each 

instruction can be computed. 

In computing the time taken by the individual T-states, we have consid-

ered only the delays associated with data transfer. We have also to consider 

delays in the control circuit, because the delays in the control circuit are not 

negligible compared to the delays in the datapath and memory components.  

Figure 5-19. Main Timing Diagram 

Observe Figure 5-19, where the instruction execution time is graphically 

represented as to the number of T-state delays involved. The instructions that 

operate only in the 

T1 

 and 

T2

, states are the NOP, WAIT, and END. Most  
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other implemented instructions go into the 

T3 

 state, and the execution time 

then depends on the number of sub T-states within 

T3 

 state for a particular 

instruction. 

Figure 5-20.  Data Transfer Operation 
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The data transfer operations in some of the T-states is shown in Figure 

5-20. This is the 

T1 

 state in the ADD instruction where the top pointer of the 

local data stack gets transferred to the MAR. The operations involved are: 

data transfer from register (TOPLDS) to source bus, data transfer from 

source bus to destination bus and the data transfer from destination bus to 

the MAR. It is also during the same T-state that the program counter (PC) 

gets incremented. This has been shown in Figure 5-21. Also refer to the 

block diagram of the datapath for this discussion. 

Figure 5-21. Incrementation of Program Counter 

Therefore the execution of an instruction at logic level amounts to data 

transfer through the different elements of the processor. It is to be 
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understood that for an instruction to execute, the above mentioned opera-

tions get repeated as many times as the instruction demands. The only differ-

ence would be in the fact that the registers involved at every step of the oper-

ation would be different. 



CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

6.1 Conclusions  

A start has been made on the architecture design of ARC processor. HDL, 

a very powerful tool for Integrated Circuit design, has been used to build 

and simulate the different elements of the processor. The flow of data 

through the different elements of the processor have been observed and the 

timing analysis has been done. The delays involved in the propagation of 

data have been studied. The stability of the control circuits have been 

achieved by adding delay elements. 

This work provides a stepping stone for future work towards the 

completion of the ARC processor. The circuit modules built so far could be 

further extended to include all the instructions. Work could be started on 

building the circuit schematics using an interactive graphics editor. This 

could also be supplemented by floorplanning of the architecture. Once the 

major components within the architecture have been built, an autoroute 

package for layout placing and route packing could be employed. 

The completion of the ARC would also require a Network Control 

Unit (NCU). This NCU would assist in the control of operations, 

particularly with respect to the CALL instructions of the ARC. The CALL 

instructions are basically remote procedure calls, where multiple ARC 

processors would be involved. The NCU would have to be able to keep 
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track of other processors in the same environment. It should be more of an 

Asynchronous Interface Unit. This NCU of the ARC would have communi-

cate with its counterparts on the other ARCs. 

Figure 6-1.  NCU and the ARC in a Multiprocessor Environment . 

The NCU would be more of an extension of the control unit of the 

ARC. It would have active participation only in the execution of the control 

instructions. It would not only have an interface with the other processors in 

a multiprocessor environment, but also have internal connectivity with the 

different elements of the processor. As the NCU would handle requests for 

remote procedure calls, it would in a way be a dedicated control unit for the 

CALL instructions of the ARC. 

Observation of the CALL instructions leads us to understand the differ-

ent elements that the NCU needs to communicate with. For a better under-

standing of the operation of the interface that these instructions need, it is 
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necessary to refer [1-3], which provide details about the architectural support 

needed for these instructions, the different elements necessary for the NCU 

to communicate with thus providing the internal and the external interface 

can be realized. This can be seen in Figure 6-2. 

Figure 6-2.  Internal Interface of the NCU 

It is necessary to talk about the interface in greater detail. The ARC is a 

processor that is intended to be used in a multi-processor environment. It 

therefore needs to have an excellent handshaking capability with the other 

processors in the system. The ARCs operate on a stand-alone basis until 

interrupted by a CALL routine from another processor. This CALL is 
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serviced with a higher priority and the processor goes back to its original 

state. 

Most CALL instructions access data from the Facility Register (FR) and 

the Facility Data Register (FDR) and the Facility Data Memory (FDM). The 

FR and the FDR are registers that hold addresses and are located in the Data-

path. The Facility Data Memory holds data accessed by these instructions. 

This suffices the need for interface between the NCU and the other elements 

discussed. The NCU would definitely need to read the entire contents of the 

IR since for the CALL operation it is necessary to distinguish between the 

many CALL instructions and the immediate arguments included within. The 

NCU would also need an interface with the memory because it needs access 

to the FDM. 

The External Interface of the NCU could be multiplexed together with 

the external interface bus. There is an address and data bus interface that 

already exists. This external interface could be accomodated to include the 

NCU interface. The CALL instructions have immediate arguments in them. 

Some have two and others have three immediate arguments. The NCU 

should also be able to handle the RETURN (RETURN from CALL) instruc-

tions. The NCU can be designed to accomodate the READ and WRITE 

instructions. For this operation the NCU could send some control signals to 

the Datapath unit and to the external interface to either read or write data. 

The source bus and destination bus interface has been shown in Figure 4-5. 
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The same concept could be applied at the external interface. In this case we 

would have only one bus for read and write respectively. 

Figure 6-3.  External Interface of the NCU . 

6.2 Future Research  

Future work on the ARC needs to be split up to provide for rapid implemen-

tation. The ARC could be implemented as the summation of the work of var-

ious smaller projects representing modules in the instruction set. The sug-

gested partition for future work is as indicated: 

• To break the ARC into smaller modules such as those implemented 

• This break-up would enable work on the ARC to progress at a classroom 

level, wherein the smaller modules could be implemented as one semester 



72  

projects. 

• Work from the modeling environment would have to proceed to the next 

level, where the modules could be implemented using tools such as 

schematic editors, and layout tools to realize the modules. 

• Work would have to be commenced on the design of the NCU taking into 

considerations the interface requirements in case of a multi-processor 

environment. 

• Parallelism in the instructions at the logic level needs to be investigated. 

This would lead to reduction in redundant control logic circuitry. Some 

optimization circuits have been included in Appendix B. On the same 

lines, the T-state diagrams for the CALL instructions would have to be 

studied and instructions with redundant operations can be clubbed 

together with optimization circuits. 

• When all instructions have been implemented, the state machine imple-

mentation of the control logic for the ARC would have to be designed and 

implemented. 

The break-up of projects: 

• One major project would be to first implement the Datapath unit. Once the 

mask layout and extraction characteristics have been obtained, the actual 

internal propagation delays would be known. This information would be 

needed to design the control logic with necessary delay, allowing for the 



73  

data to stabilize. The design of the datapath is vital. This is because all 

the register transfer delays, the bus delays and other control line delays 

within the datapath have to be known in order to build the other control 

logic circuits. 

• To design and implement a circuit to perform the operations indicated. 

The operations would be the ones indicated by the T-state diagrams. 

Design control logic circuitry to produce the necessary T-states. Care 

should be taken to see that the T-states are active high long enough con-

sidering the delays in the datapath. This means that the control logic cir-

cuitry should wait for data to stabilize in the datapath. Use the datapath is 

given in the figure as a model for your design. 

• Implement the above design to obtain mask layouts using mask layout 

tools. Extract the parameters using extraction techniques and give a feed-

back to the design section to use these extracted parameters in their design 

simulations. 

• Another design project would be to implement the external interface 

cicuitry. The project should be designed on the idea from the Figure 6-3. 

The interface should have the control signals to read data into the process-

ing element and to write data out of the processing element to the external 

bus. 

• Merge the structures so developed for the individual modules. The control 

logic designed by using the state machine techniques could replace all the 
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individual modules here. Simulate this using a logic simulator and acco-

modate for delays. 

For example the design of the control unit for an instruction requiring a 

maximum of 8 T-states with a control bit to specify repeated T-states has the 

structure indicated in Figure 6-4. It is necessary to design the combinational 

logic to drive the counter. This counter drives the decoder which produces 

the T-states. Given data-transfer delays for the datapath unit, design the cir-

cuit such that the control unit produces the necessary signals at required 

time. 

The logic structure of the control unit has been designed. It is necessary 

to implement the mask layout for the structure and obtain extraction parame-

ters. These extraction parameters could be used to run a circuit simulation on 

the structure using a circuit simulation package. The delays then observed in 

the simulation output files could be used to modify the structure to alter the 

delay characteristics of the control logic structure. 
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Figure 6-4.  Design Example for a Project. 

• List of Implementation projects: 

Given Data should include specifications of the datapath, Bus propaga-

tion delays, memory access delays, and register transfer delays. 

• Project 1: Given the parameters of the datapath of the ARC, design a con-

trol logic circuitry for the instruction specified using HDL. Use the delay 

parameters of the datapath for designing the control logic. Use a 

schematic editor to create lower instances of the logic modules. Use these 

lower level modules to build the layout cells. Capture the electrical con-

nectivity information. Write out the logic simulator (Lsim) netlist and use 

this information to verify the design. 
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• Project 2: Given the parameters of the datapath of the ARC, design a Net-

work Control Unit (NCU). The NCU is based on the CALL instruction. It 

receives the opcode information from the Instruction register (IR). Design 

the T-states required to perform the specified CALL instruction and 

together with the parameters specified for the datapath, arrive at the con-

trol logic that will enable a CALL instruction to execute. 

Project 3: The NCU must also be able to handle RETURN instructions. 

Design the T-states required to perform the specified RETURN instruction 

and together with the parameters specified for the datapath, arrive at the 

control logic that will enable a RETURN instruction to execute. 

These are all the different ways in which the projects could be split up 

to slowly realize the ARC. A freeze on the project would be necessary at 

some stage to realize a primitive structure. It is to be noted that to build a 

processor of commercial practicality is not a one-man job. It takes a team 

and a lot of man-hours to build a processor from scratch. What has been 

done so far, has been a part of that design process utilizing new Computer 

Aided Design and Engineering tools to begin the realization of the ARC. 



APPENDIX A  

This chapter contains some of the source files that were developed. It also 

includes some of the testvector and initialization files. 

• SOURCE FILE FOR THE DATAPATH UNIT: 

//The module of the datapath which includes such elements such as the 

//register set, the source buses, the destination bus, the various 

//control signals which control the operation of these elements, the ALU 

//and the interface of the Memory Address register MAR, to the memory. 

MODULE datapath() 

{ 

IN Cts1_bus[9], Cts2_bus[3], C_tdbus, C_alu, C_fdbus[12]; 

IN D IRin[32], CtALUbuf, Clock, Reset[13]; 

OUT Maddr[32], DMEMout[32]; 

OUT Ovflow; 

//The number of registers in the datapath are 13. They are 

//all connected in such a way as to receive data from the 

//destination bus 'd_bus' and to place data onto the Source 
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//bus 's_bus'. The dataflow around the datapath is unique. 

//The data from the registers have only one way of reaching 

//their intended destination and that is through the ALU and 

//the d_bus. This can be visualized by looking at the block 

//diagram of the datapath. 

// 	The functions of the control signals follow. 

// 

//Cts1_bus: The control signal to gate data from the registers to 

// 	the source bus 1. 

//Cts2_bus: The control signal to gate data from the registers to 

// 	the source bus 2. 

//Ct_dbus: The control signal to gate data from the ALU output 

// 	buffer to the databus 

//C_alu: The ALU control signal. 

//C_fdbus: The control signal to load registers from databus 

// 

BUILD{ 	 int i; 	 //The registers that are linked 

only to s1_bus// 
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INSTANCE(reg32buf, TopLDS); // Register pointer to LDS// 

INSTANCE(reg32buf, TopPAS); // Register pointer to PAS// 

INSTANCE(reg32buf, MDR); // Memory Data Register// 

INSTANCE(reg32buf, C_Reg); // Clone # register// 

INSTANCE(reg32buf, P_cntr); Program Counter/) 

INSTANCE(reg32buf, FDR); // Facility Data Register// 

INSTANCE(reg32buf, FR); // Facility Register// 

INSTANCE(reg32buf, C_flag); // Control Flag// 

INSTANCE(reg32buf, MAR); // Memory Address Register// 

//The ALU output buffer which holds ALU output data// 

INSTANCE(reg32buf, ALUop); // ALU output Buffer// 

//The registers that are linked only to s2_bus// 

INSTANCE(reg32buf, TEMP); // Temporary register// 

INSTANCE(reg32buf, Offset); // For address computation// 

INSTANCE(reg32buf, Label); // Label register// 

// Create instances of Busses within the datapath// 

INSTANCE(Bus, s1_bus); // Create Source bus 1// 

INSTANCE(Bus, s2_bus); // Create Source bus 2// 

INSTANCE(Bus, d_bus); // Create Destination bus// 

// Create instance of an ALU within the datapath// 
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INSTANCE(ad_sb4, alu); 1/ Create Instance of an ALU// 

// Create the links between the various elements in the datapath // 

for(i=0;i<=31;i++){ 	// Register To Bus Link// 

NET(s1_bus.inp[i], TopLDS.A[i]); 

NET(s1_bus.inp[i], TopPAS.A[i]); 

NET(s1_bus.inp[i], MDR.A[i]); 

NET(s1_bus.inp[i], MAR.A[i]); 

NET(s1_bus.inp[i], C_Reg.A[i]); 

NET(s1_bus.inp[i], P_cntr.A[i]); 

NET(s1_bus.inp[i], FDR.A[i]); 

NET(s1_bus.inp[i], FR.A[i]); 

NET(s1_bus.inp[i], C_flag.A[i]); 

NET(s2_bus.inp[i], Offset.A[i]); 

NET(s2_bus.inp[i], Label.A[i]); 

NET(s2_bus.inp[i], TEMP.A[i]); 

NET(alu.A[i], s1_bus.out[i]); // ALU To BUS Link// 

NET(alu.B[i], s2_bus.out[i]); 

NET(ALUop.I[i], alu.Qo[i]); 

NET(ALUop.A[i], d_bus.inp[i]); 
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Bus to Register Link// 

NET(TopLDS.I[i], d_bus.out[i]); 

NET(TopPAS.I[i], d_bus.out[i]); 

NET(MDR.I[i], d_bus.out[i]); 

NET(MAR.I[i], d_bus.out[i]); 

NET(C_Reg.I[i], d_bus.out[i]); 

NET(P_cntr.I[i], d_bus.out[i]); 

NET(FDR.I[i], d_bus.out[i]); 

NET(FR.I[i], d_bus.out[i]); 

NET(C_flag.I[i], d_bus.out[i]); 

NET(Label.I[i], d_bus.out[i]); 

NET(TEMP.I[i], d_bus.out[i]); 

NET(Offset.I[i], d_bus.out[i]); 

NET(Maddr[i], MAR.A[i]); 

NET(DMEMout[i], d_bus.out[i]); 

NET(s2_bus.inp[i], D_IRin[i]); 

} 

// The link from main reset to individual resets of the registers// 

NET(TopLDS.Reset, Reset[0]); 

NET(TopPAS.Reset, Reset[1]); 
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NET(MDR.Reset, Reset[2]); 

NET(MAR.Reset, Reset[3]); 

NET(C_Reg.Reset, Reset[4]); 

NET(P_cntr.Reset, Reset[5]); 

NET(FDR.Reset, Reset[6]); 

NET(FR.Reset, Reset[7]); 

NET(C_flag.Reset, Reset[8]); 

NET(Label.Reset, Reset[9]); 

NET(TEMP.Reset, Reset[10]); 

NET(Offset.Reset, Reset[11]); 

NET(ALUop.Reset, Reset[12]); 

// The link from main Clock to individual Clocks of the registers// 

NET(TopLDS.CP, Clock); 

NET(TopPAS.CP, Clock); 

NET(MDR.CP, Clock); 

NET(MAR.CP, Clock); 

NET(C_Reg.CP, Clock); 

NET(P_cntr.CP, Clock); 

NET(FDR.CP, Clock); 

NET(FR.CP, Clock); 
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NET(C_flag.CP, Clock); 

NET(ALUop.CP, Clock); 

NET(TEMP.CP, Clock); 

NET(Label.CP, Clock); 

NET(Offset.CP, Clock); 

// The link from main Enable to individual Enable signals of the registers// 

NET(TopLDS.En0, Cts1_bus[0]); 

NET(TopLDS.En1, Cts1_bus [0]); 

NET(TopPAS.En0, Cts1_bus[1]); 

NET(TopPAS.En1, Cts1_bus [1] ); 

NET(MDR.En0, Cts1_bus[2]); 

NET(MDR.Enl, Cts1_bus[2]); 

NET(MAR.En0, Cts1_bus[3]); 

NET(MAR.En1, Cts1_bus[3]); 

NET(C_Reg.En0, Cts1_bus[4]); 

NET(C_Reg.En1, Cts1_bus[4]); 

NET(P_cntr.En0, Cts1_bus[5]); 

NET(P_cntr.En1, Cts1_bus[5]); 

NET(FDR.En0, Cts1_bus[6]); 

NET(FDR.En1, Cts1_bus[6]); 

NET(FR.En0, Cts1_bus[7]); 
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NET(FR.En1, Cts1_bus[7]); 

NET(C_flag.En0, Cts1_bus[8]); 

NET(C_flag.En1, Cts1_bus[8]); 

NET(Label.En0, Cts2_bus[0]); 

NET(Label.Enl, Cts2_bus[0]); 

NET(TEMP.En0, Cts2_bus[1]); 

NET(TEMP.En1, Cts2_bus[1]); 

NET(Offset.En0, Cts2_bus[2]); 

NET(Offset.En1, Cts2_bus[2]); 

// The link from main Load to individual Load signals of the registers// 

NET(TopLDS.Ld, C_fdbus[0]); 

NET(TopPAS.Ld, C_fdbus[1]); 

NET(MDR.Ld, C_fdbus[2]); 

NET(MAR.Ld, C_fdbus[3]); 

NET(C_Reg.Ld, C_fdbus[4]); 

NET(P_cntr.Ld, C_fdbus[5]); 

NET(FDR.Ld, C_fdbus[6]); 

NET(FR.Ld, C_fdbus[7]); 

NET(C_flag.Ld, C_fdbus[8]); 

NET(Label.Ld, C_fdbus[9]); 
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NET(TEMP.Ld, C_fdbus[10]); 

NET(Offset.Ld, C_fdbus[11]); 

// The control signals relative to the ALU output buffer // 

NET(ALUop.Ld, CtALUbuf); 

NET(ALUop.En0, C_tdbus); 

NET(ALUop.En1, C_tdbus); 

NET(alu.Sc, C_alu); 

NET(Ovflow, alu.Qo[32]); } 

} 
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• INITIALIZATION AND SIMULATION FILE FOR THE DATAPATH 

# initialization file 

bus -w1 S1_bus[31:0] x //Create a bus of width 31 bits and radix hex. 

bus -w1 S2_bus[31:0] x 

bus -w1 D_bus [31:0] x 

bus -w1 reset[12:0] x 

Rename S1_bus[31:0] S1_bus // Rename the busses with specific names 

and 

Rename S2_bus[31:0] S2_bus // also to view all the 32 bits in a single 

Rename D_bus[31:0] D_bus // bus waveform. 

Rename reset[12:0] reset 

low Reset S1_bus S2_bus D_bus 

1pulse -w1 Clock Low High 0 0 0 6 10 

# LPULSE: S1=SL31 S2=SH31 Td=0 Tr=0 Tf=0 Pw=5 Per=10 

simulate 4 

33221100 Sl_bus[31:0] // Give certain test inputs to the bus. 

33220000 S2_bus[31:0] 

high C_alu CtALUbuf C_tdbus // Operate the control signals 

probe D_bus S2_bus S 1_bus // To probe a particular bus or signal 

simulate 10 II Simulate for a 10 unit time.  
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• SOURCE FILE FOR THE ALU: (Refer Figure 4-6) 

//Module of a 32 bit ALU which can perform addition/subtraction 

//operations. The lower level module is the 1-bit adder. // 

MODULE ad_sb4() { 

IN A[32],B[32],Sc; 

OUT Qo[33]; 

BUILD{ 

int i; 

for (i=0;i<=31;i++){ 

INSTANCE(add_sub, ads[i]); 

NET(ads[i].A,A[i]); 

NET(ads[i].B,B[i]); 

NET(ads[i].Sb,Sc); 

NET(ads[i].SUM,Qo[i]); 

} 

for (i=1;i<=31;i++){ 

NET(ads[i].C,ads[i-1].CARRY); 

}  
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NET(ads[31].CARRY,Qo[32]); 

NET(ads[0].C,Sc); } 

} 

• SOURCE FILE FOR THE 32 BIT PARALLEL READ/LOAD REGIS-

TER: (Refer Figure 4-3) 

//module of a 32 bit parallel load/read register using the 1-bit 

//register module. This register can be loaded in parallel & can 

//be read in parallel. 

MODULE reg32buf() { 

IN Ld, I[32], CP, Reset, En0, En1; 

OUT A[32]; 

BUILD{ 

int i; 
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for(i=0;i<=31;i++){ 

INSTANCE(reg1b, reg[i]); 

INSTANCE(prim_tribuf, tribuf[i], 1.0, 1.0, 2, 2, 0); 

NET(tribuf[i].enable0, En0); 

NET(tribuf[i].enable1, En1 ); 

NET(reg[i].L1, Ld); 

NET(reg[i].CP, CP); 

NET(reg[i].R, Reset); 

NET(reg[i].I, I[i]); 

NET(tribuf[i].in, reg[i].Q); 

NET(A[i], tribuf[i].out); } 		} 

} 

• SOURCE FILES FOR SOME BASIC FLIP-FLOPS 

D Flip-Flop 

MODULE dff() // module of a dfip_flop 
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{ 

IN CP,D,R; // declaration of the inputs 

OUT Q; // declaration of the output terminals. 

BUILD{ 

//INSTANCE(type, name, inputs, rt, ft, foot); 

INSTANCE(prim_nand, nand0, 2, 1.0, 1.0, 2, 2, 0);//using 

INSTANCE(prim_nand, nand1, 3, 1.0, 1.0, 2, 2, 0);//instances 

INSTANCE(prim_nand, nand2, 2, 1.0, 1.0, 2, 2, 0);//of 

INSTANCE(prim_nand, nand3, 2, 1.0, 1.0, 2, 2, 0);//primitive 

INSTANCE(prim_inv, inv0, 1, 1.0, 2, 2, 0); 	//logic 

NET(nand0.in[0],nand2.out); 

NET(nand0.in[1],nand1.out); 

NET(nand1.in[0],nand3.out); 

NET(nand1.in[1],nand0.out); 

NET(nand1.in[2],R); 

NET(nand2.in[0],CP); 

NET(nand2.in[1],D);  
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NET(nand3.in[0],inv0.out); 

NET(nand3.in[1],CP); 

NET(inv0.in,D); 

NET(Q,nand0.out); 

} 

} 

JK Master Slave Flip-Flop 

MODULE jkff() 

{ 

IN J,K,CP,Clr; 

OUT Q; 

BUH,D{ 

int i; 

for (i=0;i<=3;i++){ 

INSTANCE(prim_nand, nand3[i], 3 ,1.0 ,1.0 , 2, 2, 0); } 

for (i=0;i<=3;i++){ 

INSTANCE(prim_nand, nand2[i], 2, 1.0 ,1.0 , 2, 2, 0); 
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} INSTANCE(prim_inv, inv, 1.0,1.0, 2, 2, 0); 

NET(nand3[0].in[0],nand2[3].out); 

NET(nand3[0].in[1],J); 

NET(nand3[0].in[2],CP); 

NET(nand3[1].in[0],nand3[3].out); 

NET(nand3[1].in[1],K); 

NET(nand3[1].in[2],CP); 

NET(nand3[2].in[0],nand3[0].out); 

NET(nand3[2].in[1],nand2[0].out); 

NET(nand3[2].in[2],Clr); 

NET(nand3[3].in[0],nand2[1].out); 

NET(nand3[3].in[1],nand2[3].out); 

NET(nand3[3].in[2],Clr); 

NET(nand2[0].in[0],nand3[2].out); 

NET(nand2[0].in[1],nand3[1].out); 

NET(nand2[1].in[0],nand3[2].out); 
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NET(nand2[1].in[1],inv.out); 

NET(nand2[2].in[0],inv.out); 

NET(nand2[2].in[1],nand2[0]. out); 

NET(nand2[3].in[0],nand3[3].out); 

NET(nand2[3].in[1],nand2[2].out); 

NET(Q,nand3[3].out); 

NET(inv.in,CP); } } 
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• SOURCE FILE FOR THE MAIN CONTROL UNIT (figure 4-8): 

MODULE Ctrlmain1() 

{ 

IN O, I, X, Z, Y, S, Clk, Clr; 

OUT Ts[4]; 

BUILD 

int i; 

INSTANCE(prim_and, and, 2, 1.0, 1.0, 2, 2, 0); 

INSTANCE(prim_buf, buffer, 1.0, 1.0, 2, 2, 0); 

INSTANCE(Dec2_4, dec); 

for(i=0;i<=1;i++){ 

INSTANCE(MUX4_1, Mux[i]); 

INSTANCE(deff, deff[i]); 

INSTANCE(prim_or, or[i], 2, 1.0, 1.0, 2, 2, 0); 

INSTANCE(prim_inv, inv[i], 1.0, 1.0, 2, 2, 0); 
} 

} 
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NET(inv[0].in, X); 

NET(inv[1].in, Z); 

NET(and.in[0], inv[0].out); 

NET(and.in[1], Y); 

NET(or[0].in[0], and.out); 

NET(or[0].in[1], X); 

NET(or[1].in[0], Z); 

NET(or[1].in[1], inv[1].out); 

NET(Mux[0].I[0], O); 

NET(Mux[0].I[1], I); 

NET(Mux[0].I[2], X); 

NET(Mux[0].I[3], inv[1].out); 

NET(Mux[1].I[0], S); 

NET(Mux[1].I[1], O); 

NET(Mux[1].I[2], or[0].out); 

NET(Mux[1].I[3], or[1].out); 

NET(deff[0].D, Mux[0].out); 

NET(deff[1].D, Mux[1].out); 
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NET(deff[0].Clr, Clr); 

NET(deff[1].Clr, Clr); 

NET(deff[0].Clk, Clk); 

NET(deff[1].Clk, Clk); 

NET(deff[0].Q, buffer.in); 

NET(dec.A, buffer.out); 

NET(deff[1].Q, dec.B); 

NET(Mux[0].S[0], deff[1].Q); 

NET(Mux[1].S[0], deff[1].Q); 

NET(Mux[0].S[1], buffer.out); 

NET(Mux[1].S[1], buffer.out); 

for(i=0;i<=3;i++){ 

NET(Ts[i], dec.T[i]); } } } 



APPENDIX B 

T-STATE OPERATIONS 

Figure B-1  Internal T-state Operations. 

97  



98  

Figure B-1 Internal T-state Operations. 
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Figure B-2 T-state Sequence of Instructions. 
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Figure B-2  T-state Sequence of Instructions. 



APPENDIX C 

OPTIMIZATION CIRCUITS  

Some instructions are very similar at the logic transfer level. These have 

been identified and some of them are presented here with logic optimization 

for their control circuitry. The extra logic has been avoided by clubbing the 

instructions together with simple extra logic to supplement for the execution 

of both instructions with just one control circuit. See Figure C-1. 

Figure C-1.Control Logic Optimization for Branch instruction. 

Observe the figure where the table shows the parallelism exhibited by 

the BRANCH instruction. A simple 2-input XOR gate would suffice for the 

operation of both the instructions with one control logic. After the instruc-

tion signal is obtained from the respective instructions, they are used to drive 

the INS signal at one of the XOR inputs. This implementation is one case of 

optimization. 
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In the ADD or SUB instruction the same T-states are followed except 

for one state. This can be observed in the T-state diagrams in Appendix B. 

This case could be exploited as another case of parallelism and optimization 

of the control logic could be performed. 

In case of the CLRN and CLRZ parallelism is again observed. The 

T-state flow of these instructions are almost similar except for the order. This 

can be seen in Appendix B. The logic optimization in this case is shown in 

Figure C-2. 

Figure C-2.Control Logic Optimization for CLRN/CLRZ instruction. 
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