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A note on some solutions of
micropolar fluid in a channel with

permeable walls
Jawad Raza, Azizah M. Rohni and Zurni Omar

School of Quantitative Sciences, Universiti Utara Malaysia, Sintok, Malaysia

Abstract
Purpose – The purpose of this paper is to investigate different branches of the solution of micropolar fluid in
a channel with permeable walls. Moreover, the intention of the study is to examine the effect of different
physical parameters on fluid flow.
Design/methodology/approach – The mathematical modeling is performed on the basis of law of
conservation of mass, momentum and angular momentum. The governing partial differential equations were
transformed into ordinary differential equations by applying suitable similarity transformation. Afterwards,
the set of nonlinear ordinary differential equations was solved numerically by a shooting method.
Findings – The study reveals that various branches of the solution of the proposed problem exist only in the
case of strong suction.
Originality/value – The investigation of new branches of the solution of non-Newtonian micropolar fluid is
relatively difficult as far as the single solution is concern. This study explores the new branches of the
solution of a micropolar fluid in a channel with suction/injection. Simultaneous effect of suction Reynolds
number and vortex viscosity parameter on velocity and micro-rotation profile is examined for different
branches of solution in order to make the analysis more interesting.
Keywords Micropolar fluid, Micro-rotation, Multiple solutions
Paper type Technical paper

1. Introduction
Fluid flow through a channel has innumerable uses on the basis of its behavior in many fields
like engineering, science, environmental, biomedical and chemical engineering, etc. (Ali and
Ashraf, 2014; Majdalani, 2008; Rawool et al., 2006; Dehghan et al., 2014; Rauf et al., 2016),
exclusively for those which have nonlinear relationship between the shear stresses and the
rate of deformation, such as micropolar fluid. This fluid actually belongs to the following class
of fluids having nonsymmetrical stress tensor with micro-structure molecular bounding.
The theory of micropolar fluid was presented by Eringen (1964). Complex fluid problems can
be studied with the help of Eringen’s theory, including flow of blood, liquid crystals, low
concentration suspensions and turbulent sheer flows. As compared to the classical Newtonian
fluids, micropolar fluids possess five additional coefficients of viscosity. Eringen (1964)
claimed that the effect of micro-rotations in a micro-structure model is observed in micropolar
fluid. These fluids can support stress momentum and body momentum and are usually
influenced by the spin inertia dynamically. As micropolar fluids consist of micro-structures,
so the effects seen on microscopic level are present on the micro-structure level by the micro
motions of fluid elements. Physically it may be explained as the rigid, spherical or bar like
elements that are randomly oriented dispersed in a viscous medium and thus the deformation
of fluid particles in it is ignored completely. These fluids have crystals of dumb-bell shaped
molecules, like in animal blood. In addition, the mathematical models of the fluids with certain
additives or polymeric fluids resemble the mathematical model of micropolar fluids
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(Mekheimer and El Kot, 2008; Nadeem et al., 2010; Busuke and Tatsuo, 1969; Kelson and
Desseaux, 2001; Joneidi et al., 2009).

In engineering problems, solving nonlinear ordinary differential equations and partial
differential equations was always a difficult task to the researchers. Therefore, with the
passage of time, many techniques came to exist to solve this issue. One of the most
prominent knowledge of the current issue is addressed in the form of literature related to
analytical methods, semi-analytical methods and numerical methods. In the field of heat
transfer, main structures of the problems are often in the form of nonlinear ordinary
differential equations. Many researchers solved the nonlinear ODEs by utilizing analytical
and semi-analytical methods such as perturbation method by Ganji et al. (2007); homotopy
perturbation method (HPM) by Turkyilmazoglu (2012), Sheikholeslami, Hatami and
Ganji (2013), Sheikholeslami, Ganji and Ashorynejad (2013) and Mirgolbabaei et al. (2009);
variational iteration method by Turkyilmazoglu (2016a), Mirgolbabaei et al. (2009) and
Samaee et al. (2015); homotopy analysis method by Sheikholeslami, Hatami and Ganji (2014),
Sheikholeslami, Ellahi, Ashorynejad, Domairry and Hayat (2014), Sheikholeslami et al. (2012)
and Turkyilmazoglu (2011b); parameterized perturbation method by Ashorynejad et al. (2014);
collocation method (CM) by Hoshyar et al. (2015); Adomian decomposition method by
Sheikholeslami, Hatami and Ganji (2013) and Sheikholeslami, Ganji and Ashorynejad (2013);
least square method (LSM) by Fakour et al. (2014); Galerkin method (GM) by Turkyilmazoglu
(2014a, b); and so on.

On the other hand, semi-analytical methods can be characterized into two main
perspectives due to their solution procedure, one of them is known as the iterative-base
method and other is trial function-base method. In the iterative-base method, for example,
HPM, VIM, ADM and so on, the essential factor which influences the iterative methods is
the number of iterations. Despite the fact that in these strategies we may accept a trial
function, which depends on our independent function, in any case, with a specific end goal
to accomplish an arrangement in each step, we need to explain previous step at first.
As per said clarifications, it is obvious that iterative steps cannot be retrieved by related
programming; we will confront the issue which will interfere with our solving procedure.
Furthermore, to follow this procedure it will take more time to solve the governing
equations. In the trial function-base method, for example, CM, LSM, Akbari-Ganji’s
Method and so forth, the fundamental factor which influences the solving procedure is
trial function. In this technique, we will expect a proficient trial function based on the
boundary and initial conditions of the given problem which contains constant coefficients.
These constant coefficients will be obtained easily by solving a set of polynomials
(Mirgolbabaee et al., 2017). Recently, analytical investigation of the problem of micropolar
fluid in a porous channel with suction/injection has been conducted by Aski et al. (2014).
Approximate solution of a micropolar fluid in a channel subject to heat transfer and
chemical reaction was presented by Sheikholeslami, Hatami and Ganji (2014). HPM was
used in order to find approximate solution of governing nonlinear differential equations of
a micropolar fluid. Sajid et al. (2009) analyzed the boundary layer flow of a micropolar
fluid in a porous channel. Fakour et al. (2015) considered the heat transfer analysis of a
micropolar fluid in a channel analytically and numerically. Approximate solution was
obtained by the LSM and the results were compared with fourth-order Runge-Kutta
method. The study revealed that the boundary layer thickness of velocity decreases by
increasing the values of Reynolds number R. Moreover, fluid temperature increases with
the increase in the strength of Peclet number Pe. Hydromagnetic flow of a micropolar fluid
between parallel plates with heat transfer was examined by Mehmood et al. (2016).
Resulting coupled nonlinear governing equations were solved by the optimal homotopy
analysis method. The study revealed that coupling parameter increases the vortex viscosity
of the fluid which reduces the fluid velocity. Sheikholeslami, Hatami and Ganji (2013)
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investigated the problem of MHD nanofluid in a semi-porous channel analytically by the LSM.
Results found an excellent agreement with the numerical technique known as GM. Differential
transformation method and DTM-Pade transformation are applied in order to find the
analytical solution of MHD nanofluid in a channel with nonparallel walls by Hatami et al. (2014).
Mohammadian et al. (2015) examined the effect of thermal radiation of Cu-water nanofluid
between two vertical plates by the HPM.

However, it is very hard to find the multiple solutions of the nonlinear fluid flow
problems. Based on the solutions of nonlinear problems, it can be argued that numerous
nonlinear fluid flow problems have multiple solutions. Without a doubt, it is stated that it is
very hard to find all the branches of multiple solutions of a given nonlinear fluid flow
problem. At the point when two various solutions are close to each other, most of the
numerical techniques fail to identify the multiple solutions due to the fact that numerical
solution might oscillate between two solutions. However, under certain circumstances, if one
solution is known others may be determined (Raza et al., 2016a, b).

Motivated from the above cited literature, the prime objective of this study is to
investigate multiple solutions of laminar, incompressible micropolar fluid in a channel with
porous walls. Shooting technique is applied in order to find the multiple solutions of the
proposed problem. Velocity, micro-rotation and skin friction profiles are presented for
the various values of suction Reynolds number R and vortex viscosity parameter C1 which
make the analysis more interesting.

2. Mathematical formulation
A two-dimensional laminar, incompressible micropolar fluid in a porous channel is
considered. The width of the channel is taken as 2h such that lower wall of the channel
is located at y¼−h and upper wall is at y¼ h as shown in Figure 1. Flow is driven by the
constant inlet velocity U with a constant pressure. Fluid is considered to be symmetric in
both axes. Moreover, fluid can be inserted or extracted into a channel through porous walls
with constant velocity V/2, neglecting body forces and body couples of the fluid.

The general equations governing themotion of micropolar fluids as given by Eringen (1964)
may be expressed as follows:

@r
@t

þrU rV
� � ¼ 0 (1)

lþ2mþkð Þr rUV� �� mþkð Þr � r � Vþkr � n�rpþrf ¼ r _V (2)

aþbþgð Þr rUnð Þ�g r �r � nð Þþkr � V�2knþrl ¼ rj_n (3)

V

2

Micropolar fluid

2

V
Y=–h

Y=h y

0
0 x

�u
� y

=

Figure 1.
Physical model of the

proposed problem
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whereV is the velocity field; n the micro-rotation vector; ρ the density; p the pressure; f and l the
body force and body couple per unit mass, respectively; j the micro-inertia; and λ, μ, α, β, γ and κ
the micropolar material constants (or viscous coefficients), dot signifies material derivatives.

Components of the velocity vector V and micro-rotation n are in the form of the
following equation:

V ¼ u x; yð Þ; v x; yð Þ; 0ð Þ n ¼ 0; 0; g x; yð Þð Þ
where g is the component of the micro-rotation normal to the xy-plane.

Governing equations of the flow for the proposed problem are as follows:

@u
@x

þ@v
@y

¼ 0 (4)

u
@u
@x

þv
@u
@y

¼ �1
r

@p
@x

þmþk
r

r2uþk
r
@g
@y

(5)

u
@v
@x

þv
@v
@y

¼ �1
r

@p
@y

þmþk
r

r2v�k
r
@g
@x

(6)

rj u
@g
@x

þv
@g
@y

� �
¼ gr2gþk

@v
@x
�@u
@y

� �
�2kg (7)

Corresponding to the boundary conditions at the lower and upper walls:

u x; 7hð Þ ¼ 0

v x; 7hð Þ ¼ V
2

g x; 7hð Þ ¼ 0

9>=
>; (8)

where VW0 corresponds to suction and Vo0 is for injection. Moreover, micro-rotation
component g is taken to be 0 because we neglect body coupling near the channel walls
(i.e. r � V ¼ 0).

In order to articulate governing partial differential equations, i.e. (4)-(7) into ordinary
differential equations, we use similarity transformation suggested by Berman (1953):

c x; yð Þ ¼ Uh�Vxð Þf Zð Þ; g x; yð Þ ¼ � U�Vx
h

� �
j Zð Þ
h

; Z ¼ y
h

(9)

By applying Equation (9) into (4)-(7) and eliminating the pressure term from Equations (5)
and (6), we obtain the following equation:

f 0000�C1j00 þR f 0f 00�f f 000
� � ¼ 0; (10)

j
00 þC2 f

00 þ2j
� �

�C3 f 0j�fj0� � ¼ 0 (11)

Subject to the appropriate boundary conditions, we get:

f 1ð Þ ¼ 1
2; f

0 1ð Þ ¼ 0; j 1ð Þ ¼ 0

f
00
0ð Þ ¼ 0;j 0ð Þ ¼ 0

)
(12)
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where R ¼ rVhð Þ= mþkð Þ� �
is the Reynolds number (RW0 suction, Ro0 injection),

C2 ¼ ðkh2Þ=ðgÞ is the spin gradient viscosity and C3 ¼ ðrjVhÞ=ðgÞ is the micro-inertia
density.

3. Numerical computation
In order to solve Equations (10) and (11) subject to boundary condition (12) numerically,
we employ the shooting technique. For this, we convert it into a first-order initial value
problem by setting Γ1¼ η, Γ2¼ f, Γ3¼ f′, Γ4¼ f″, Γ5¼ f′″, Γ6¼φ and Γ7¼φ′:

G0
1

G0
2

G0
3

G0
4

G0
5

G0
6

G0
7

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼

1

G3

G4

G5

C1 C3 G3G6�G2G7ð Þ�C2 G4þ2G6ð Þð Þ�R G3G4�G2G5ð Þ
G7

C3 G3G6�G2G7ð Þ�C2 G4þ2G6ð Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

(13)

With initial conditions, we obtain:

G1

G2

G3

G4

G5

G6

G7

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼

1
1
2

0

a

b

0

g

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

(14)

where α, β and γ are unknown initial conditions. We have to shoot these initial conditions
with some arbitrary slope such that solution of the system (13) satisfies the given
conditions at the boundary. Hit and trail approach is acquired in order to find the
unknown initial conditions. Once the slope of α, β and γ is assumed, then numerical
integration is made for the initial value problem and the accuracy of missing initial
conditions is checked by comparing the calculated value with the given terminal point.
The details of shooting method with Maple implementation shoot has been described by
Meade et al. (1996). Recently, Raza et al. (2016a, b) and Raza et al. (2017) successfully
employed the shooting method on fluid flow problems to find solve system of fourth-order
nonlinear ordinary differential equations. Results were acknowledged and multiple
solutions were investigated through the shooting technique.

4. Results and discussions
In this section, we have prepared figures in order to elaborate our numerical findings.
Our main objective is to investigate some different branches of the solution for the variation
of suction Reynolds number R and vortex viscosity parameter C1. Figures are drawn by
varying numerical values of one parameter at a time while fixing the other parameter
invariant. It is important to know that C2 and C3 on velocity and micro-rotation do not have
a significant effect, so therefore we fixed C2¼ 0.1 and C3¼ 0.3 throughout this study
(Rauf et al., 2016).
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In Figure 2, we plot skin friction −f″(1) at the wall against suction Reynolds number
RW0 by setting C1¼C2¼ 0.1, C3¼ 0.3. Based on the findings of multiple solutions of the
proposed problem, it can be argued that the solution satisfies the existence and uniqueness
theorem for 0 ⩽ Ro24.33. So, from this pictorial representation of numerical investigation,
it is claimed that there is only single solution within the range of 0 ⩽ Ro24.33, while in the
range 24.33 ⩽ Ro∞ three solutions exist for every value of suction Reynolds number R.
Therefore, R¼Rcritical¼ 24.33 is the critical value of the suction Reynolds number R where
solution has more than one branch and it can be seen clearly in Figure 2. Furthermore, for
the values of R ⩾ 70, the first branch of solution conspires with the second branch of the
solution. Without loss of any generality, we can say that triple solutions of the proposed
problem exist only for R⩾Rcritical¼ 24.33. Effect of suction Reynolds number R on velocity
profile f′(η) for C1¼ 0.5 for different branches of the solution are plotted in Figure 3. Velocity
profile f′(η) increases near the channel wall η≈1 by the enhancement of suction Reynolds
number R¼ 30, 35, 40 for the first and third branch of the solutions. It is because of this fact
that the suction adds up an extra forcing agents to the fluid particles, thus the velocity
boosts up further incalculably by increasing R. However, totally opposite behavior is
observed near the wall for the second branch of the solution. Figure 4 depicts the behavior of
micro-rotation in a channel for different values of suction Reynolds number R. Profiles
of micro-rotation for different branches of solution are seemed to be like parabolic in nature.
Micro-rotation profile is amassed upwards by increasing the values of suction Reynolds
number R¼ 30, 35, 40 for the first and third branches of the solution. Profile of the first
branch is concaved up and concaved down for the second and third branches of the solution.
Micro-rotation profile for the second branch decreases by increasing the values of suction
Reynolds number R. Point of concavity η≈0.8 where micro-rotation changes its sign from
negative to positive is actually the point where the shear stresses due to the suction
resulting in zero micro-rotation. Before the point of concavity, the micro-rotation profile
decreases and increases afterwards.

Effect of vortex viscosity parameter C1 on the velocity and micro-rotation profile for
R¼ 30, C2¼ 0.1 and C3¼ 0.3 is presented in Figures 5 and 6, respectively. Velocity profile
f′(η) shifted away from the channel wall as we increase the strength of vortex viscosity
parameter C1¼ 0.5, 5, 10, this means that the velocity increases near the center of the
channel η≈0 for first and second branches of the solution. Physically, we can say that shear
stress at the wall f″(1) decreases by increasing the values of C1, which conforms with the

35

30

25

20

15

10

5

0

–f
″ 

(1
)

0 4 8 12 16 20 22
24

.3
3 26 28 30 32 34 36 38 4240 44 46 48 50 52 54 56 58 60 62 64 66 68 70

Suction reynold number R

First branch Second branch Third branch

Existence of multiple solutions

Figure 2.
Skin friction −f″(1)
at the wall against
suction Reynolds
number R
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results derived by Hoyt and Fabula (1964). However, totally reversed phenomena are
observed for the third branch of the solution.

Micro-rotation profile φ(η) decreases for the first and second branches of the solution by
increasing the values of vortex viscosity parameter C1, it is due to the fact that couple stress
φ′(η) increases by increasing the numerical values of C1¼ 0.5, 5, 10.

5. Conclusion
The present paper is motived to investigate the multiple solutions of a micropolar fluid in a
channel with porous walls. A numerical study is carried out in order to find different
branches of the solution for the variation of suction Reynolds number R on the shear
stresses and micro-rotation field. Based on the findings of numerical investigation,
the following conclusion has been engendered:

(1) multiple solutions of the problem occur only for the case of large suction within the
range of 24.33 ⩽ Ro∞;

(2) velocity profile f′(η) increases near the wall of the channel η≈1 for the first and third
branches of the solution;

(3) enhancement of the vortex viscosity parameter C1 reduces the velocity of the fluid
particles near the channel wall, this result is a good argument of the previous
experimental study of Hoyt and Fabula (1964); and

(4) micro-rotation profile φ(η) decreases by increasing the values of C1¼ 0.5, 5, 10 for
the first and second branches of the solution.
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