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Abstract

This study investigates the numerical solutions of MHD boundary layer and heat
transfer of the Williamson fluid flow on the exponentially vertical shrinking
sheet, having variable thickness and thermal conductivity under effects of the
velocity and thermal slip parameters. It is also assumed that shrinking/stretching
velocity, as well as the wall temperature, has the exponential function form. In
this study, the continuity, momentum and energy equations with buoyancy
parameter and Hartmann number are incorporated especially in the Williamson
fluid flow case. Similarity transformation variables have been employed to
formulate the ordinary differential equations (ODEs) from partial differential
equations (PDEs). The resultant ODEs are solved by shooting method with
Runge Kutta of fourth order method in Maple software. The effects of the
different applied non-dimensional physical parameters on the boundary layer and
heat transfer flow problems are presented in graphs. The effects of Williamson
parameter, Prandtl number, and slip parameters on velocity and temperature
profiles have been thoroughly demonstrated and discussed. The numerical results
show that the buoyancy force and the slip parameters contribute to the
occurrence of the dual solutions on the boundary layer and heat transfer flow
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problems. Furthermore, the stability analysis suggests that the first solution is stable

and physically possible.

Keywords: Computational mathematics, Electromagnetism, Mechanics

1. Introduction

The boundary layer pseudo-plastic fluids flows have vast industrial applications such
as solutions of the polymers with higher molecular weight, emulsion covered sheets
such as polymer sheets extrusion and photographic films etc. Since Navier-Stokes
equations are not able to define all kinds of fluid flows, a comprehensive study is
required to explore the rheological characteristics of all kind of fluids such type of
the deficiency different type of the rheological models have been introduced. To
study the behavior of the pseudo-plastic (shear thinning) fluids several models are
introduced such as Cross model, Ellis model, Carreaus model, the power law models
any many other non-Newtonian models, see [1, 2, 3, 4, 5]. However, there has been a
little attention given to investigate the multiple solutions of Williamson fluid over a

shrinking/stretching surface in presence of MHD.

The Williamson fluid was firstly introduced by Williamson [6] in his pioneer research
of pseudo-plastic materials flow. He described the flow of pseudo-plastic fluids by
developing a model equation and verified this hypothesis with the experiment. Since
then, many other researchers worked on the Williamson fluid, such as [7, 8, 9]. A flow
of a thin layer of the Williamson fluid in the presence of a gravitational field over an
inclined surface was studied by Lyubimov and Perminov [10]. The perturbation
method to the Williamson fluid inserted in the fracture of the rock was developed
by Dapra and Scarpi [11]. The effect of the presence of an inclined magnetic field
over the Williamson peristaltic flow fluid in the inclined asymmetric or symmetric
channel was analyzed by Nadeem and Akram [12, 13]. Meanwhile, the Williamson
peristaltic pumping fluid flow and heat transfer over the porous medium was studied
by Vasudev et al., [14]. Cramer et al. [15], indicated that the Williamson fluid model
is perfect for the experimental data of the polymeric solutions as well as suspensions
of the particle as compared to the other previous fluid models. Mixed convection flow
of different fluids has been considered by many researchers such as Mabood [16] and
Turkyilmazoglu [17]. For the shear thinning fluids, power law model indicates that
the dynamic viscosity decreases indefinitely when shear rate increases. This implies
that there will be zero viscosity when shear rate tends infinity and infinite viscosity
when the shear rate is zero or at the rest. Each real fluid may have both maximum
and minimum dynamic viscosities depending on the fluid’s molecular structure. In
the present Williamson model, both viscosities maximum (u,) and the minimum
(4 ) are taken into account. But in the case of pseudo-plastic fluids, the apparent vis-
cosity cannot be zero at infinity, so this model gives better results.
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Due to numerous applications in engineering and industries, MHD fluid flows on
shrinking sheet have gained much attention nowadays [18, 19, 20, 21]. Such appli-
cations include liquid coating on photographic films, extrusion of the polymeric
sheet from expire, boundary layer through the liquid film in the concentration pro-
cess, aerodynamic extrusion of plastic sheets, etc. Turkyilmazoglu [22] dealt with
the MHD flow through analytical approach. Mabood et al. [23], considered MHD
flow of rotating fluid over a vertical surface. Akbar et al. [24] studied “partial slip
and heat transfer peristaltic flow behavior of the Williamson fluid through the in-
clined asymmetric channel”. This study was later extended by incorporating nano-
particle. Vajravelu et al. [25] analyzed Williamson fluid flow (peristaltic) in
asymmetric channels with permeable walls having different amplitudes and phases.
They have also discussed the effect of the various waveforms on the fluid flow
pattern. Akram et al. [26], analyzed the effects of an induced magnetic field over
the peristaltic flow of the Williamson fluid by analytical and numerical techniques.
Bhatti and Rashidi [27] suggested the thermal radiation and thermos diffusion effects

of the flow pattern of the Williamson nanofluid on shrinking/stretching porous sheet.

The aim of this study is to investigate the multiple solutions numerically of MHD
mixed convectional flow of the Williamson fluid on an exponentially shrinking/
stretching sheet with combined effects of the velocity and the thermal slip condi-
tions. The nonlinear coupled governing equations in partial differential equations
form are transformed into ordinary differential equations form by using similarity
transformations. Then, the equations are solved by applying the shooting method,
it is already implicated successfully such as [28, 29]. The calculations are obtained
for the different applied physical parameters until the desired level of the accuracy
obtained. The results of the shear stress, as well as the temperature gradient, are
calculated at the wall of the solid surface. It is expected that the findings of the pre-
sent study will prove fruitful in the future research to enhance the development in

science and technology.

2. Model

Let us consider the MHD two-dimensional incompressible steady laminar William-
son fluid flow on the vertical exponential shrinking/stretching sheet along with slip
boundary condition placed in the plane y = 0. The plate is shrieked and stretched
exponentially along x-axis at the velocity u,, = C e’ with a wall temperature 7.
The fluid taken into account is electrically conducting and the applied magnetic field
is perpendicular to the sheet. Due to the small Reynolds number, the polarization of
magnetic field is ignored. The rheological equations of Williamson fluid are taken as
mentioned by Reddy et al., [30]. In case of Williamson fluid flow, Cauchy stress

tensor (S) will be written as
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S=—pl+7 (1)

where S stands for the extra stress tensor, u,, restrictive viscosity with infinite shear
rate, u, restrictive viscosity with zero shear rate, 4, first Rivlin Erickson tensor, I'

> 0 is the constant of time and v will be written as

¥ = \/g , T = trace (Af) (3)

It is considered that

e =0, /7 <1 (4)

which leads to

= (1 _MO\/?>A1. (5)

Applying binomial expansion on (5), which gives

T:MO(l—fy)Al. (6)

Under the given conditions, the boundary layer and heat transfer flow equations

without viscous dissipation with magnetic force will be (refer [31])

ou v
0 7
ox 0y (7)
Ou Oou udu oBu
— ——19— r—— T—-T, 8
v =g+ VI LT - 1) - T 8)
oT OT  O'T
Ly —a— 9
uaervay aayz 9)
subjected to initial and boundary conditions below

] oT
v:vw,u:qurNﬂ—u T=T,x)+K—,aty=0

dy Ay
u—0, T—T, asy— (10)

where, (u,, = C ex/’) and T, = Tw + Ty eI, In the above mentioned conditions
N = N, ¢ "2 and K = K; e /2 indicate the velocity slip and the thermal slip fac-
tors that vary with x (but at the values N =0 and K = 0, the no-slip cases are
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examined), Njand K are values of initial velocity and thermal slips factors respec-
tively, u,, is shrinking/stretching velocity with U,, as a shrinking/stretching con-
stant, the velocity components are u# and v along x and the y-directions,
respectively. [ is characteristic length of the sheet and B:Boex/’ is a magnetic field

in which By is the constant of magnetic field.

Velocity components will be written as

L N
u=g V= (11)

For relations of (11), (7) is satisfied automatically and (8, 9) takes the form:

oy 0%y ooy Oy 0%y 0’y oB? 0y
= 2N — — T—Ty)———— 12
0y 0x0y Ox 0y? v 0y3 V2 0y? 0y? 8 ) p Oy (12)

oy oT oy or 0T
QyOr Byar_ o7 (13)
dy 0x Ox Oy 0y?

The boundary conditions in (10) will then be reduced to

2
—gf‘f’(:vll,; %:uw+Nﬁ%‘f ; T= T\,V(x)JrKg—)T,, at y =0
0
a—w—>0, T—Teasy— ®© (14)
y

To get the similarity solutions, the following similarity transformations are used

Y=/ 201U,e"f (n), 6(n) = LT“’)) ,n= y\/%ex/ﬂ (15)

(T — T

where 7 represents the similarity variable and v,,(x) is denoted by

19 w X,
v (x) = — ,/z—lfe/zzs (16)

Using similarity transformations in Equations (12), (13) produces;
F" )+ A" (m)f" () = 2£%(n) +f (n) £ (n) — Mf'(n) +2 0 6(n) =0 (17)
0" (n) + Prf (n)0' (n) — 4Prf'(n)0(n) =0 (18)

The related boundary conditions will be,

f(0) =S5, £'(0) =£+of"(0); (where £= Ui) , 0(0) =1+ 86(0)

w
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f'(n)—0, 8(n)—0 asn— (19)

where 8 = K4/ 2U_01 and 6 = N, ﬁz—L; are thermal and velocity slip parameters [32],

20821 . U3 exp(3x/1) . . . c1-
M= :UO is Hartmann number, A =T %ﬁ) is dimensionless Williamson
w

fluid parameter, the mixed convection parameter is ¢ = %(Gr:gﬁgfz, Re =
UT!"I), and Pr :% is Prandtl number. At A = 0, the Eq. (13) will be reduced to

the form of the classical boundary layer equation in case of viscous fluid flow.

The parameter A = F\/w does not allow the problem to be self-similar,

henceforth, this analysis is considered as a local similar. N,, represents the gradient
of the wall temperature and Cr for the coefficient of the skin friction are important
interesting physical quantities that are to be measured. The coordinate system and
flow regime are illustrated in Fig. 1. By boundary layer approximations, 7,, and
q, take the form

ou T [ou\’ oT
=y | — +—(—> and g, = —a(—) 20
0 <6y V2 \dy > /o (20

That are written as,

Tw X4y
=0 N =
4 pU2 " " T, — Tw)

|

<

Fig. 1. Physical model and coordinate system.
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In the dimensionless form, both parameters above can be written as
\/_ —3x/21 1 A 1 2 / 2 —x/21
2Ree PG = (£1(0)+ 51 (0)) )i —(0) =[N, (22)

2.1. Stability analysis

In this regard, unsteady state of our governing model has been considered to do a
stability analysis on the present problem. While Eq. (7) continues as before, Eqs.
(8) and (9) supplanted by as pursues:

ou du Ou 0%u Ou 0%u oB%u
v e D T gB(T —Ta) — 23
a i m ey ay2+fv ayaszrgﬁ( ) p (23)
oT 9T T  &T
i Ly —a— 24
o Yo ey T Yo (24)
subjected to new boundary conditions

0 or
v=vw,u=uw—|—Nt9—u T=T,x)+K— ,aty=0

dy dy
u—0, T—>Te asy— ® (25)

Another dimensionless variable 7 is presented, where T is uniform with the problem
of which solutions will be related with problem of an initial value and physically
feasible. With the presentation of new dimensionless variable T in Eq. (15), we

now have

V= 201U,e"2f (n,7);0(n,7) = (T =T )/, _ T,

U, . U, .
— Yoot =_—Yolt 26
M=o T (26)

Substituting Eq. (26) into Eqgs. (23) and (24) yields

Of(n, 1) 0f(n, 1) 0f(n, 7) of(n, 1)\ 8f(n, 7)
or T on _2( an ) REARE o
2
+200(n,7) —Maf(;; m_3 ];‘(’_g’nT) =0
1 9*0(n,7) a0(n,7)  of(n, 7) 30(n, )
ET”ZJF]C(W 7) on —4 an H(an)_T*O (28)

The boundary conditions, in Eq. (25), become
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_ o YO, 1) &f(0, 7). _ 0¢'(0, 7)
f((),T)—S, an —E+567n2, 0(0,7’)—1—}—‘8 67]
8f(777 T)_’O 0( T)_)O asmn— o (29)
an ’ n, ] n

The stability of solution of f(n) = fo(n) and 6(n) = 6y(n) is tested in order to satisfy
the boundary value problems in Eq. (19) as proposed by Merkin [33] and Weidman
et al., [34]

fn,7) =fon) +e F(n,7)

0(n,7) = bo(n) +e"G(n,7) (30)

where the unknown eigenvalue is € or likewise can be depicted as the rate of devel-
opment or disturbances decay. A set of infinite eigenvalues €; < & < &3... is given
by the eigenvalue solutions. Furthermore, if the values of smallest eigenvalue are
positive (initial decay of disturbances) which means that solution is stable and phys-
ical possible. On the other hand, the negative values of smallest eigenvalue show

the initial disturbances growth which mean flow is unstable.

Substituting Eq. (30) into Eqgs. (27) and (28); gives

Fo' + MoFy + AFof o — AfoFo + foFg + Fof g +20Go — MF, + eF = 0 (31)

1

EG{)'++foGg+F00{) —4f Gy — 4F 0y + €Go =0 (32)
subjected to boundary conditions below
FO(O) = 07F6(0> = 6Fg(0)aG0(O) = 6G6(0)7

The smallest number of eigenvalue ¢ determines the stability of dual solutions. Ac-
cording to Rehman et al. [35], we have to relax the Gy(n) on our initial boundary
condition. In this manner, we solved the equations with new boundary condition
of Gy(n) = 1, which is relaxed from Gy(n) —0as n — . Finally, we determine

a fixed smallest value of €, which is called smallest eigen value.

3. Result & discussion

The computation of Egs. (17) and (18) with initial and boundary conditions given by
(19) have been done by applying shooting method. The results of the skin friction
coefficient //(0) and the heat transfer rate —6'(0) at various values of applied pa-

rameters as Hartmann number (M), velocity slip parameter (6) and the thermal
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slip parameter () are obtained numerically. Furthermore, the velocity and temper-
ature profiles are determined by solving nonlinear ordinary differential equations.
Numerical solutions are presented with the help of graphs to examine the effects
of the different parameters such as velocity slip parameter (6), thermal slip parameter
(8), magnetic parameter (M), Williamson fluid parameter (1) Prandtl number (Pr).
Variation of the skin friction coefficient f”(0) and heat transfer rate —6/(0) with
respect to Hartmann number (M) for various values of all the mentioned parameters
are presented in Table 1. In order to verify our applied numerical method, our results
have been compared with the results of bvp4c method in Table 2. Table 2 shows an
excellent agreement between shooting method and three-stage labatoo three-A-
formula in bvp4c solver in MATLAB. f”(0) and —6/(0) are presented graphically
in Figs. 10 and 11 respectively.

Fig. 2: demonstrates the impact of the momentum (hydrodynamic) slip parameter 6
on the velocity distribution profiles. It can clearly be examined that the velocity dis-
tribution profiles are decreasing as the slip parameter are increasing and momentum
boundary layer thickness decreases in first solution. On the other hand, the numerical
result show that no change occurs in momentum boundary layer thickness in second
solution with increments in velocity slip parameter (6). The effect of thermal slip
parameter ( over temperature distribution is enlightened in Fig. 3. In the case of
the 1st solution, the increment in thermal slip parameter § decreases the temperature

and the thickness of the thermal boundary layer that is also mostly observed in

Table 1. The values of the skin friction coefficient and rate of the heat transfer of

considered Parameters.
M 6 8 A S o Pr £ f'(0) —6(0)

1% Solution 2"® Solution 1°' Solution 2" Solution

08 0 0 01 2 025 2 -1 1.213807 1.038613 0.252532 -0.67397
0.1 0.1 1.376217 0.725463 1.515805 -1.60832

05 05 0.984085 0.382931 1.201361 -1.07531

2 0 o0 2273161 0.889304 1.815061 -11.4029
0.1 0.1 1.924793 0.656778 1.948979 -9.32232

05 05 1.119306 0.323239 1.239023 -5.02345

1 0.1 0.1 0.1 1.510519 0.688307 1.65597 -2.93329
0 1.382296 0.7017285 1.538828 2.667072

0.1 25 2.04788 -0.1605 2.7438 -12.4147

4 3.194703 -4.53368 4.26351 4.77032

2 0 1.70550 _ 1.80370 _

-0.5 1.237112 0.813012 1.36303 0.076830

-0.25 1 -2.085813 -3.46665 3.35283 -8.370184
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Table 2. Comparison of numerical methods for various values of different

parameters.
M ) I A S o Pr 13 f"(0)

Shooting Results BVP4C Results
0 0 0 0 0 0 1 1 -1.28181638 -1.28181639
0.5 0 0 0 0 0 1 1 -1.46644548 -1.46644548
1 0.1 0.1 0.1 2 -0.25 1 1 -2.12641933 -2.12641933
0 0 0 0 2.5 0 1 -1 1.64190906 1.64190906
1 0.1 0.1 0.1 2 0 1 -1 1.705508323 1.70550832
1 0 0 0 2 0 1 -1 1.70939369 1.70939368
1 0.1 0.1 0.5 2 -0.25 2 -1 1.55546734 1.55546685

——1st Solution
— — — 2nd Solution

8=$=0,0.1,0.5

7(n)

Fig. 2. Variation of velocity profile f’(n) at various values of slip parameters.

literature. In the second solution, the heat transfer rate and thickness of the thermal

boundary layers increase by increasing thermal slip parameter.

The effects of Prandtl number (Pr) over velocity distribution profile is represented in
Fig. 4. The figure shows that velocity and thickness of momentum boundary layer
reduce as the Prandtl number (Pr) is increasing in the first solution. On contrary,
in the second solution the reverse effect is observed. Fig. 5 shows that in the first so-
lution the heat transfer rate decreases as the Prandtl number increase. As a sample,
MATLAB program for Fig. 5 is given in Appendix A. This behavior resembles with
the first solution observed in Fig. 3. It is examined that the increasing value of Pr

10
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=025, M=1;£=-1;5=2;
Pr=2;A=0.1;

8B=0,0.1,0.5

— 1st Solution
— — — 2nd Solution

Fig. 3. Variation of temperature profile §(n) at various values of slip parameters.

Article No~e01345

decreases rate of the heat transfer in fluid considerably and the boundary layer comes

closer to wall because the increasing value of the Prandtl number decreases rate of

thermal diffusivity so in the result thinning boundary layer. However, thickness of

thermal boundary layer and temperature rise in the first solution. However, in the

second solution at start it is rising but after a point it is decreasing by increasing

in Prandtl number.

——— st Solution

— — — 2nd Solution

0=-025;M=1;E=-1,5=2;
B=06=0.1;A=0.1;

1 2 3 4 5

Fig. 4. Variation velocity profile //(n) at various values of Prandtl number.
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c=-025;M=1;=-1;5=2;
B=6=0.1;A=0.1;

Pr=2,34
\
\ 1st Solution
W — = — 2nd Solution
ANNN
a—
1 2 3 4 5 6

n

Fig. 5. Variation of temperature profile §(n) at various values of Prandtl number.

Fig. 6 represents the effect of the Hartman number (M) over the velocity distribution

profile. Figure shows that the velocity and thickness of momentum boundary layer

decline by the increasing value of the Hartmann number (M), the one of the reason is

that the Lorentz force is increasing by increasing in Hartman number (M) that pro-

duce resistance in flow of the fluid. Furthermore, the thickness of boundary layer and

velocity distribution has remained same when Hartmann number increases in second

solution. Fig. 7 shows that the heat transfer rate is increasing as magnetic parameter

0 -—
/
_0'1_
-0.2 / M=23,4
/
_0-3,
/
-0.41 /
-0s)
06| | 1st Solution
I = — — 2nd Solution
-0.7
/
~0.81 0=-0.25;Pr=2;E=-1,5=2;
09 B=0=0.1;A=0.1;
0 R R A P P S T

Fig. 6. Variation of velocity profile f'(n) at various values of the Hartmann number.
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0=-0.25; Pr=2;E=-1;5=2;
B=08=0.1;A=0.1;

—— st Solution
— — — 2nd Solution

b3
X

2

—
3

Fig. 7. Variation of temperature profile 6(n) at various values of the Hartmann number (M).

(M) is increased in both solutions. The influence of the magnetic field is main reason
behind the rise of thermal boundary layer thickness as well as rate of the heat
transfer.

Fig. 8 illustrates the influence of dimensionless Williamson fluid parameter Aon ve-
locity profile. This number Zis present only in momentum equation in combined de-

rivative form as Af”(n)/"” (n). This is number also named as Weissenberg number (1)

0
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Fig. 8. Variation of Velocity profile f’(n) at various values of Williamson parameter (A).
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which measures the relative effects of viscosity to elasticity. The A = Oand A =
oo represent Newtonian fluid and elastic solid respectively. The middle values stand
for polymeric viscoelastic fluid properties. The magnitude of the velocity is
increased along the boundary layer as value of 4 is increased, so it decreases the
cohesive forces between the fluid molecules and flowing layer therefore flowing
fluid is accelerated with greater Weissenberg number. In present studys, it is observed
that the dual solution exists only in range of 0 < A < 0.1. The velocity distribution
profile decreases in first solution as A increases but no effect is observed in the second

solution in spite of increasing A.

In order to show the existing of dual solutions over stretching surface, Figs. 9 and 10
are drawn. Velocity profile decreases in first solution when suction is increased in
Fig. 9. On the other hand, dual behavior of velocity profile has been noticed.
Fig. 10 demonstrated the effect of suction parameter on temperature profile. When
suction increased, temperature and thickness of thermal boundary layer decrease
in the first solution. However, dual behavior of increasing and decreasing of temper-

ature profile can be seen in the second solution.

Fig. 11, shows the coefficient of skin friction; skin friction diminutions as velocity
slip effect increases in both solutions. However, skin friction is increased in first so-
lution and the reverse behavior is observed in second solution in which skin friction

is decreasing by increment in the magnetic parameter (M).

Graph of local Nusselt number is plotted in Fig. 12, which demonstrates that as the

slip parameter increases heat transfer rate increases in the second solution and

L 1st Solution

0.6 — — — 2nd Solution

0.4

c=-0.25;Pr=2;E=1;A=.1
[ SO A=
- B=8=0.1; M=1;

0 2 4 6 8 10
n

Fig. 9. Variation of Velocity profile /’(n) at various values of suction parameter (S) over stretching

surface.
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Fig. 10. Variation of Temperature profile /' (n) at various values of suction parameter (S) over stretching

surface.

declines monotonically as the Hartmann number is increased. In first solution, no

more change occurs in the heat transfer rate when thermal slip parameters increase.

In like way, because of the presence of double solutions in a chose limit of param-
eters, as appeared in our separate numerical outcomes, an investigation of stability
has been performed to decide the most stable solution between them by verdict
the smallest eigen value e. With the help of bvp4c solver in MATLAB software,
the Eqgs. (31) and (32) along with boundary conditions (33) has been solved

25
15t Solution
= = = = 2ud Splution 6=p=0,0.1,0.5
2
15 |
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~ el T e —————
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M

Fig. 11. The profile of coefficient of skin friction f”(0) with different values of M and 9, 8 when A =
0.1,S=2,{=-1,Pr=2and o = -0.25.
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Fig. 12. The profile of heat transfer rate —¢'(0) with different values of M and 6, 3 when A = 0.1, S = 2,
{=-1,Pr=2and o = -0.25.

Table 3. List of several values of the smallest eigenvalue ¢ when £ < 0O (for
Shrinking surface) and £ > O (for Stretching surface).

0 B8 13 e

1% Solution 2" Solution
0.1 0.1 -1 1.0994 -0.94705
0 0.1 -1 0.81561 -0.72048
0 0 -1 0.8375 -0.73862
0.1 0 -1 1.10014 -0.94768
0.1 0.1 1 3.0857 -2.16463
0 0.1 1 3.26891 -2.29312

numerically. The certain values of 6, ( and £ together with the smallest eigenvalue &
properly listed in Table 3, when other parameters are fixed suchas o = — 0.25; 4 =
0; M =1; S =2;and Pr = 2;. From this table, it is seen that the second solutions
demonstrate negative values, while the first solutions indicate positive values. At that
point, it is concluded that the second solution is not stable and not physically

feasible, on the other side, the first solution is stable and physically possible.

4. Conclusion

The MHD flow of Williamson fluid and heat transfer with exponentially vertical
shrinking/stretching sheet is examined unanimously into consideration of velocity
and thermal slip effect. The similarity solutions are obtained by applying similarity

transformations over governing boundary layer partial differential equations in form
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of the ordinary differential equations which have been solved by applying shooting
method with maple software. Moreover, stability equations are derived from un-
steady equations of basic governing equations. The summarized conclusion of the

study is presented here.

1. The magnitude of the coefficient of the skin-friction is decreasing with Hartmann

number.

2. The slip parameters are caused to decrease the velocity and temperature distri-

bution inside the boundary layer in the first solution.

3. The velocity boundary layer thickness of the Williamson fluid is smaller as

compare to the Newtonian fluid.
4. The magnetic parameter reduces the thickness of the velocity boundary layer.
5. The magnetic parameter increases the thickness of the thermal boundary layer.

6. The first solution is stable and physically possible.
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