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Abstract

Purpose: In this study, an implicit one‐step hybrid block

method using two off‐step points involving the presence of

a third derivative for solving second‐order boundary value

problems are subjected to Dirichlet‐mixed conditions.

Methodology: To derive this method, the approximate

power series solution is interpolated at x x{ , }n n+ 2
5

while

its second and third derivatives are collocated at all

points x x x x{ , , , }n n n n+ + +12
5

3
5

on the integrated interval

of approximation.

Findings: The new derived method not only performs

better compared with the existing methods when solving

the same problems but also obtains better properties of

the numerical method. Afterward, the proposed method

is applied to solve the problem of a convective fin with

temperature‐dependent internal heat generation. The

effects of various physical parameters on temperature

distribution are also examined.
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1 | INTRODUCTION

Typically, a fin is a fundamental mechanical body part that contributes mostly in raising the
rate of heat transfer, as it is capable of expanding the area of heat transfer, which, in turn,
results in a greater amount of heat being transferred (according to Kraus et al1). Furthermore,
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fins are extensively used in the industry, for instance, in vehicles, airplanes, modern chips, and
heavy machinery. Fins come in different shapes but the rectangular shape is the best‐known.
The reason behind this has to do with the usefulness of this design and its value in improving
the manufacturing productivity. In considering the common fins problem, the thermal
conductivity usually remains constant. However, if there is a significant temperature difference
between the top and bottom of the fin, the temperature effect on the thermal conductivity must
be taken into account. Also, it is logical to consider heat imitation generated by the electrical
current. The efficiency of heat transfer and refrigeration for fully wet circular porous fins
together with rectangular, triangular, and convex sections was examined analytically by Hatami
and Ganji.2,3 Ghasemi et al4 examined the accuracy of semianalytical method of nonlinear
temperature distribution in a longitudinal fin. In this study, temperature‐dependent heat
generation and thermal conductivity of the fin were analyzed by using the differential
transformation method (DTM). Least square method (LSM), collocation method, and fourth‐
order Runge‐Kutta method were used to examine the effects of heat transfer and temperature
distribution on semispherical convective‐radiative porous fins.5 The results revealed that LSM
had excellent agreement with the numerical method for the variations of different physical
parameters raised in the problem under consideration.

Many methods have been used for predicting the behavior of a longitudinal fin with
temperature‐dependent internal heat generation and thermal conductivity. Among the authors
of such research are Aziz and Bouaziz,6 who proved that the result of the LSM is much simpler
than the homotopy perturbation method (HPM), variational iteration method (VIM), or double
series regular perturbation method. Razani and Ahmadi,7 contrarily, identified an optimum
circular fin design by investigating nonlinear temperature‐dependent thermal conductivity in
the presence of a heat source distribution. Ünal8 performed research on the rectangular and
longitudinal fins in the presence of temperature‐dependent internal heat generation and a
temperature‐dependent heat transfer coefficient.

Ghadikolaei et al9 analyzed the problem of an incompressible homogeneous second‐grade fluid
over a stretching sheet channel with HPM. The fluid flow problem of blood containing nanoparticles
in a porous medium under the influence of the magnetic field was studied using Akbari‐Ganji’s
collocation method.10 Similarly, the problems of fluid flow between two parallel walls under the
influence of various physical parameters were analyzed under the various fluid flow conditions.11-13

In the same vein, Shouman14 conducted a similar study on both temperature‐dependent
thermal conductivity and internal heat generation. Following the same strategy, Kundu15 and
Domairry and Fazeli16 continued the research on different fin shapes. The former solved a
problem regarding thermal analysis and the optimization of longitudinal and pin fins of
uniform thickness subject to fully wet, partially wet, and fully dry surface conditions, while the
latter solved the nonlinear straight fin differential equation by the homotopy analysis method
(HAM) to evaluate the temperature distribution and fin efficiency.

Ganji et al17 used the HPM method to carry out a study on the temperature distribution for
annular fins with temperature‐dependent thermal conductivity. The effects of the temperature‐
dependent thermal conductivity of a moving fin considering the radiation losses have been
studied by Aziz and Khani.18 Bouaziz and Aziz19 introduced a double optimal linearization
method (DOLM) to get a simple and accurate solution for the temperature distribution in a
straight rectangular convective‐radiative fin with temperature‐dependent thermal conductivity.

This study discusses the model for the distribution of heat across different types of fins, which is
expressed as a boundary value problem (BVP). In most cases, this BVP fails to obtain an analytical
solution. Thus, many scholars have made efforts to develop a numerical method for such BVPs,
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such as finite difference methods, the Adomian decomposition method, and interpolation and
collocation methods. Their interpolation approach has been widely used by authors, such as Kayode
and Adeyeye,20 Badmus,21 and Kuboye and Omar22 due to its simplicity in developing the block
method and also the ease of writing its computer programs. Unfortunately, block methods cannot
overcome the Dahlquist barrier, which stipulates that “the order of a k‐step linear multistep block
method cannot exceed k + 1 (k is odd) or k + 2 (k is even) for the method to be zero‐stable. To
tackle this weakness, hybrid block methods (HBMs) have been proposed by several authors. For
example, Anake et al23 examined HBMs involving one‐step with two off‐steps. Meanwhile,
Adeyeye24 derived a two‐step HBM including two off‐steps for solving second‐order ordinary differ-
ential equations (ODEs) with the help of Chebyshev polynomials. However, the accuracy regarding
error was not very efficient. Two years later, Omar and Abdelrahim25 developed a one‐step HBM
with generalized three off‐steps using interpolation and collocation for solving second‐order initial‐
value problems (IVPs). Similarly, Abdelrahim and Omar26 derived a one‐step HBM with
generalized two off‐steps using interpolation and collocation for solving third‐order IVPs. The
following year, Omar and Abdelrahim27 proposed a one‐step HBM including three off‐step points
for the solution of general fourth‐order ODEs. All these methods were limited to solving IVPs only.
Mebarek‐Oudina28-33 solved, numerically, the differential equations of the fluid problem using the
finite volume method. Raza et al34,35 efficiently solved the fluid flow problems in a channel with
three‐stage Lobatto III‐A formula method.

The introduction of a high‐derivative approach is rarely seen in the literature of block
methods. Jator and Li36 introduced an algorithm for second‐order IVPs and boundary value
problems (BVPs) with an automatic error estimate based on a third derivative method (TDM)
with continuous coefficients, which are simultaneously applied to provide all approximations on
the entire interval. In addition, Jator et al37 examined a case of high‐order continuous third
derivative formulas for second‐order ODEs. In the same year, Sahi et al38 developed a fourth‐
derivative method (FDM) with continuous coefficients to obtain primary and additional methods
that are used to solve third‐order boundary value problems (TOBVPs). Likewise, Adeyeye and
Omar39 suggested an HBM of order eight with the third derivative for solving second‐order IVPs
of ODEs. However, they did not establish a generalized high‐derivative method for a second‐ or
third‐order IVPs, and the accuracy of these methods was not greatly encouraging.

On the basis of these previous works, we will attempt to develop a one‐step HBM for solving
BVPs of second‐order ODEs, directly, using a collocation and interpolation approach in the
presence of a third derivative.

2 | PROBLEM FORMULATION

Consider a longitudinal fin with a cross‐sectional area A, length L, thermal conductivity k, and
heat generation qn. Moreover, the fin is in contact with a heated surface Tb, and loses heat to
the surrounding medium with temperature T1 over an invariant convective heat transfer
coefficient h. Furthermore, it is assumed that heat conduction occurs only in the direction of
the x‐axis, as shown in Figure 1.

2.1 | Solid fin with temperature‐dependent internal heat generation
For this problem, the governing differential equation and boundary conditions can be written
as6
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d T
dx

hP
kA

T T
q
k

− ( − ) + = 0,
*2

2 ∞ (1)

x dT
dx

= 0,   = 0, (2)

x L T T= ,  = .b (3)

Consider that the heat generation in the fin varies with temperature as shown in Equation
(4) and the thermal conductivity is constant k°

q q ϵ T T= (1 + ( − )),* *
∞ ∞ (4)

where q *
∞ is the internal heat generation at temperature T∞. Introduce the dimensionless

variables as

θ T T
T T

X x
L

G
q A

hP T T
N hPL

k A
ϵ ϵ T T= −

−
,   = ,   =  

( − )
,   = ,   = ( − ).

*

°b b
G b

2
2

∞

∞ ∞
∞

So Equations (1)–(3) become

d θ
dX

N θ N G ϵ θ− + (1 + ) = 0.G
2

2
2 2 (5)

FIGURE 1 Physical sketch of the problem [Color figure can be viewed at wileyonlinelibrary.com]
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Subject to the boundary conditions

X dθ
dX

= 0,   = 0, (6)

X θ= 1,   = 1. (7)

2.2 | Porous fin with temperature‐dependent internal heat generation
Consider a porous fin such that the energy equation for this case becomes:

q x q x x q A x mc T x T h p x T x T( ) − ( + ) + = [ ( ) − ] + ( )[ ( ) − ].* p∆ ⋅ ⋅ ∆ ⋅ ∆∞ ∞ (8)

Use the rate of mass flow of the fluid through porous material m ρV xw= ẇ ∆ and Darcy’s
model V gKβ T T v= ( − )/W ∞ in Equation (7) and use x 0∆ → , so we get:

dq
dx

q A
ρC gKβw

v
T x T hp T x T+ = [ ( ) − ] + [ ( ) − ].* p 2

∞ ∞ (9)

From Fourier’s law of conduction

q k A dT
dx

= − ,eff (10)

where A is the cross‐sectional area of the fin A wt= and keff is the effective thermal
conductivity of the porous fin and is defined as:

k φk φ k= + (1 − ) .f seff (11)

Using the last two equations into the previous third and using the following dimensionless
parameters:

θ T T
T T

X x
L

G
q A

hP T T
N hPL

k A
T T= −

−
, = , =

( − )
, = , ϵ = ϵ( − ).

*
b b

G b
2

2

0

∞

∞ ∞
∞

Then, we get:

d θ
dX

N θ N G θ S θ− + (1 + ϵ ) − = 0.G h
2

2
2 2 2 (12)

Subject to the boundary conditions:

θ dθ
dX

x(0) = 1, = 0 at = 1, (13)

where Sh is the porosity parameter and N is the convection parameter.
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3 | DEVELOPMENT OF HBD

To derive the method of Equation (1) subject to the boundary conditions (6) and (7), we consider

y f x y y N θ N G θ x a b y a α y b β″ = ( , , ′) =  − (1 + ϵ ) ,      [ , ],  ( ) = ,  ( ) = .G
2 2 ∈ (14)

Employ the following power series to provide Equation (14) with the approximate numerical
solution:

y x c x x
h

( ) = − ,
i

θ

i
n

i

=0

2ϑ+ −1

∑ ⎜ ⎟
⎛
⎝

⎞
⎠ (15)

where θ and ϑ refer to the interpolation and collocation points respectively. Evaluating the
second and third derivatives of Equation (14), the following two equations are obtained:

y x i ac
h i

x x
h

f x y y″( ) = !
( − 2)!

− = ( , , ′),
i

θ
i n

i

=0

2ϑ+ −1

2

−2
∑ ⎜ ⎟

⎛
⎝

⎞
⎠ (16)

y x
i c

h i
x x

h
g x y( ) =

!
( −3)!

− = ( , ,y′). ‴
i

θ
j n

i

=0

2ϑ+ −1

3

−3

∑ ⎜ ⎟
⎛
⎝

⎞
⎠ (17)

Then, Equation (15) is interpolated at the points x θ, for ˆ = {0,3/5}n θ+ ˆ and Equations (16)
and (17) are collocated at all points xn+ϑ̂, for ϑ̂ = {0,2/5, 3/5,1}, respectively. Then, combine the
resulting equations in a matrix form:

A

h

h h h h h h h h

h h h h h h h h

h h h h h h h h

h

h h h h h h h

h h h h h h h

h h h h h h h

=

1 0 0 0 0 0 0 0 0 0

1 2
5

4
25

8
125

16
625

32
3125

64
15625

128
78125

1511157274518287
2305843009213693952

4835703278458519
18446744073709551616

0 0 2 0 0 0 0 0 0 0

0 0 2 12
5

48
25

32
25

96
125

1344
3125

3584
15625

9216
78125

0 0 2 18
5

108
25

108
25

486
125

10206
3125

40824
15625

157464
78125

0 0 2 6 12 20 30 42 56 72

0 0 0 6 0 0 0 0 0 0

0 0 0 6 48
5

48
5

192
25

672
125

10752
3125

32256
15625

0 0 0 6 72
5

108
5

648
25

3402
125

81648
3125

367416
15625

0 0 0 6 24 60 120 210 336 504

2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

3

3 3 3 3 3 3 3

3 3 3 3 3 3 3

3 3 3 3 3 3 3

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
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B a a a a a a a a a a= ( )T
0 1 2 3 4 5 6 7 8 9

X y y f f f f g g g g= ( )n n n n n n n n n n
T

+ 2
5 + 2

5 + 3
5 +1 + 2

5 + 3
5 +1

The unknown values a ′i s resulting from solving the system AX B= using matrix inversion
are listed in Appendix (A). Now, substituting the values of a ′si back into Equation (15) produces
a linear multistep continuous hybrid scheme of the form:

y x α y h β f h γ g( ) = + + ,
j

j n j
j

j n j
j

j n j
=0, 2

5

+
2

=0, 2
5 , 3

5 ,1
+

3

=0, 2
5 , 3

5 ,1
+∑ ∑ ∑ (18)

where the coefficients α α β, , j0 1 and γj for { }j = 0, , ,12
5

3
5 are listed in Appendix (B).

Now, on deriving Equation (18) once we obtain:

y x
h

α y h β f h γ g( ) = 1 + + ,′ ′ ′ ′
j

j n j
j

j n j
j

j n j
=0, 3

5

+
=0, 3

5 ,1
+

2

=0, 3
5 ,1

+∑ ∑ ∑ (19)

After that, Equation (18) is evaluated at the points xn+ 3
5
and x ,n+1 while Equation (19) is

evaluated at all points xn+ i
5
, for i = {0, 2, 3, 5}, which produces the following main block:

E Y hE Y h R F h K G= + + ,p p
i

i
p i

i

i
p i

(0)
+1

(1) 2

=0

1
( )

+
3

=0

1
( )

+∑ ∑ (20)

where

E E R=
1 0 0
0 1 0
0 0 1

, =

0 0 2
5

0 0 3
5

0 0 1

,

0 0 47631028758991
1108307720798208

0 0 8928152074081389
126100789566373888

0 0 9811091788226625536
76606229661572140625

,(0) (1) (0)
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

R =

−693179042646125
11399736556781568

23445811717684840103936
245139934917030712890625

523714593467660238848
239394467692412939453125

−5003481171610111574016
61284983729257666015625

747
4000

979396966539331633152
239394467692412939453125

−46116860184268
1255116466775197

278348191826528
717209409585827

100862617254584
4902798698340617

,(1)

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟
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K K

0 0 13886
8859375

0 0 9423
3500000

0 0 461
90720

, =

−6004
354375

−3196
354375

−1684
8859375

−4563
140000

−603
35000

−621
1750000

−1025
18144

−25
1296

−31
22680

.(0) (1)

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

Y y y y Y y y y= , , , = , , ,p n n
n

T

p n n n

T
+1 + 2

5 + 3
5

+1 − 3
5 − 2

5

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

F f f f F f f f= , , , = , , ,p n n
n

T

p n n n

T
+1 + 2

5 + 3
5

+1 − 3
5 − 2

5

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

G g g g G g g g= , , , and = , , .p n n
n

T

p n n n

T
+1 + 2

5 + 3
5

+1 − 3
5 − 2

5

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

The derivative of the main block (20) is given below:

E Y E Y h R F h K Gˆ = ˆ + ˆ + ˆ ,p p
i

i
p i

i

i
p i

(0)
+1

(1)

=0

1
( )

+
2

=0

1
( )

+∑ ∑̃ ̃ ̃ (21)

E R˜ =
0 0 1
0 0 1
0 0 1

, ˜ =

0 0 16417
118125

0 0 19497
140000

0 0 899
6048

,(1) (0)
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

R̃ =

−3088718744438125
17732923532771328

4639356134537952231424
10895108218534697265625

1108
118125

−4867778707638183788544
65370649311208193359375

4141904282296875
7881299347898368

1353
140000

2351959869397632
6693954489467719

1224979098644774912
3486434629931103125

189784503047153125
1276770494359535616

,(1)

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

K K˜ =

0 0 221
39375

0 0 789
140000

0 0 13
2016

, ˜

−211
2625

−104
2625

−32
39375

−2151
28000

−1209
28000

−117
140000

−25
672

25
672

−13
2016

.(0) (1)

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
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Y y y y Y y y yˆ = ′ , ′ , ′ , ˆ = ′ , ′ , ′ ,p n n n
T

p n n n
T

+1 + 2
5 + 3

5
+1 − 3

5 − 2
5

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

F f f f F f f fˆ = ′ , ′ ,  ′ , ˆ  = ′ ,  ′  ,   ′ ,p n n n
T

p n n n
T

+1 + 2
5 + 3

5
+1 − 3

5 − 2
5

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

G g g g G g g gˆ = ′ , ′ , ′ , and ˆ = ′ , ′ , ′ .p n n n
T

p n n n
T

+1 + 2
5 + 3

5
+1 − 3

5 − 2
5

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

3.1 | Analysis of the one‐step third derivative HBD

In this section, we discuss the zero‐stability, order, consistency, convergence, and region of
absolute stability of the one‐step third derivative HBD.

3.1.1 | Zero stability

The zero‐stability property of the HBD Formula (21) is satisfied if all roots r( )z of the first
characteristic equation ρ r( ) are inside the unit circle and if rz = 1. Then, the multiplicity of r( )z
must not exceed two.

rE E rdet[ − ] =
1 0 0
0 1 0
0 0 1

−

0 0 2
5

0 0 3
5

0 0 1

= 0(0) (1)
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

Implies: r r( − 1) = 02

Moreover, r = 0,0,1. Thus, Equation ((21)) fulfills the zero‐stability condition.

3.1.2 | Order of the method

According to Jator and Li,36 the HBD Formula (20) possesses an order q if the linear operator π
associated with the block can be expressed as

π y x h E Y R F K G{ ( ), } = (−1) − − .
i

i i
p i

i

i
p i

i

i
p i

=0

1
( )

+1−
=0

1
( )

+
=0

1
( )

+∑ ∑ ∑ (22)

Using Taylor series expansion and gathering similar terms

y x h D h yπ{ ( ), } = ˆ =0 ,
i

i
i i

=0

( )∑
∞

(23)

where

D D D Dˆ = ˆ = ˆ = … = ˆ = 0q0 1 2 +1 and D̂ 0q+2 ≠ .

The term Ĉq+2 is called the error constant and the local truncation error is given by
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t D h y O h= ˆ + ( ).k q
n n n

+2
+2 +2 +3

Comparing the coefficients of y i( ) and hi produce D D D Dˆ = ˆ = ˆ = … = ˆ = 00 1 2 9 , with a vector
of error constants

D̂ = [2.3233e , 4.2759e , 9.7632e ] ,T
10

−10 −10 −10

which concludes that the order q( ) of this algorithm is 8.

3.1.3 | Consistency

Definition 3.2. A HBD is said to be consistent if q( 1)≥ , that is, the order is greater
than one.

From the analysis shown above for the HBD (20), we conclude that the order exceeds
one. Thus, the HBD is consistent.

3.1.4 | Convergence

Theorem 3.1. Referring to Henrici,40 a linear multistep method is convergent if it is
consistent and zero‐stable.

The HBD Formula (20) is convergent as it fulfills both the consistency and zero‐stability
conditions.

3.1.5 | Absolute stability

Considering the methods of the block (13), the stability region is discussed in Jator et al.37

FIGURE 2 Region of absolute stability [Color figure can be viewed at wileyonlinelibrary.com]
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Then, the test problem of the form y μy′ = , y μ y y μ y″ = and ′′′ =2 3 are substituted into
Equation (23) to yield:

Y M w Yˆ = ( ) ˆ ,p p+1 (24)

where v μh= and

M v E v R v K vE v R v K( ) = ( − − ) ( + + ).(0) 2 (1) 3 (1) −1 (1) 2 (0) 3 (0)

Calculating the eigenvalues for the matrix M v( ) produces only one nonzero value, namely μ.
Thus, the region of absolute stability is depicted in the Figure 2.

FIGURE 3 Temperature distribution in the fin for the variation of ϵG [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 4 Temperature distribution in the fin for the variation of G [Color figure can be viewed at
wileyonlinelibrary.com]
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4 | RESULTS AND DISCUSSION

The current section presents the numerical results in the form of pictorial representation.
Figures 3-6 indicate the numerical results of the first case. Figure 3 shows the effect of
temperature distribution in the fin for the variation of ϵG. The choice of parameter
ϵ = 0.2, 0.4, 0.6G shows that a fin with moderate temperature‐dependent heat generation and
the thermal conductivity variation of 20% between the base and the surrounding coolant
temperatures that are often used in nuclear rods Ghasemi et al.41 Furthermore, it is noticed that
the temperature profile increases monotonically with the enhancement of the strength of ϵG.
From the physical point of view, we can say that the temperature of the fin increases due to the
increase in the heat generation. Figure 4 elucidates the effects of G on temperature distribution

FIGURE 5 Temperature distribution in the fin for the variation of N [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 6 Error of hybrid block method for successive iterations [Color figure can be viewed at
wileyonlinelibrary.com]
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in the fin. The temperature profile rises gradually for the variations of G = 0.2, 0.4, 0.6, due to
the increase in heat generation. The effect of different values of N on temperature distribution
is presented in Figure 5. The choice of N = 0.3, 0.6, 0.9 is used in compact heat exchanger fin
design. The temperature profile drops monotonically for the variations of N . The error of the
proposed numerical method for the variations ofG = 0.2, 0.4, 0.6 is also plotted in Figure 6. It is
seen that maximum error occurs at the tip of the solid fin.

Figures 7-10 are plotted for the second case considered in this problem. The effect of the
thermal conductivity parameter ϵ = 0.2, 0.4, 0.6G on temperature distribution is presented in
Figure 7. It is depicted from this plot that the profile for temperature distribution rises
monotonically with enhancement in the strength of the heat generation parameter ϵG, both for
the case of high porosity as well as that of low porosity. Moreover, it is seen that the profile of

FIGURE 7 Temperature distribution in a porous fin for the variation of ϵG [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 8 Temperature distribution in a porous fin for the variation of G [Color figure can be viewed at
wileyonlinelibrary.com]
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low porosity is much higher than the high porosity rate. This is due to the collision between the
fluid particles and the pores of the porous screen.

The same phenomenon is seen for the variations of G = 0.2, 0.4, 0.6 in Figure 8. The error of
the proposed numerical method for the variations of ϵ = 0.2, 0.4, 0.6G is also plotted in Figure
10. It is depicted that maximum error occurs at the bottom of the porous fin.

The effect of the porosity parameter on temperature distribution is elucidated in Figure 9. It is
clearly seen that the temperature distribution profile drops gradually as the porosity parameter
changes from low to high. The porosity parameter actually depends upon the Darcy number
D k t= /a

2; therefore, we can say that the permeability of the fin decreases as the Darcy number
reduces. In addition, considering the permeability definition, if the increases of the permeable media
are small or in the event that they are ineffectively associated, the porosity will be low and the fluid

FIGURE 9 Temperature distribution in the porous fin for the variation of Sh [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 10 Error of hybrid block method for successive iterations [Color figure can be viewed at
wileyonlinelibrary.com]
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will not flow through effectively. In this way, when the Darcy number and, therefore, the porosity
diminishes, the crash between the fluid flow and the pores of the permeable screen increments. In
this manner, the passing fluids give more space to contact with the permeable media, which have
inward heat generation. Therefore, the estimation of the temperature is expanded by diminishing the
Da number. Then again, Sh is associated specifically to Da number variation.

5 | CONCLUSION

A successful derivation of a one‐step HBD of order (8) incorporating two off‐step points in the
presence of a third derivative is presented. In addition, the developed method is used to solve
second‐order BVPs of ODEs directly for the Dirichlet and mixed cases. The numerical analysis
presented reveals that the proposed method is not only consistent but also zero‐stable, which
concludes that it is convergent beside a significant interval of absolute stability, making it a
suitable candidate for solving general ODEs. The graphs and tables shown above illustrate the
superiority of the numerical results.

NOMENCLATURE

A Cross‐sectional area (m2)
g Acceleration(m·s−2)
p Pressure (Pa)
K Permeability (m2)
k Thermal conductivity of the fluid (W/m·K)
keff Effective thermal conductivity of the porous fin (W/m·K)
h Convective heat transfer coefficient(W/m2·K)
L Length (m)
ṁ Rate of mass flow of the fluid(Kg/s)
qn Heat generation (J)
q *

∞ Internal heat generation (J)
T Fluid temperature (K or °C)
vw Uniform velocity
cp Specific heat at constant pressure (J/kg·K)
u v( , ) Velocity component in Cartesian co‐ordinate

GREEK SYMBOLS

β Thermal expansion coefficient of the fluid (K−1)
μ Dynamic viscosity (Pa·s)
θ Dimensionless temperature
ρ Density (kg/m3)

DIMENSIONLESS NUMBERS

Da Darcy number
Pr Prandtl number
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N Convection parameter
G Heat generation parameter
Sh Porosity parameter
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