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Abstract: In this article, the magnetohydrodynamic (MHD) flow of Casson nanofluid with thermal
radiation over an unsteady shrinking surface is investigated. The equation of momentum is derived
from the Navier–Stokes model for non-Newtonian fluid where components of the viscous terms
are symmetric. The effect of Stefan blowing with partial slip conditions of velocity, concentration,
and temperature on the velocity, concentration, and temperature distributions is also taken into
account. The modeled equations of partial differential equations (PDEs) are transformed into the
equivalent boundary value problems (BVPs) of ordinary differential equations (ODEs) by employing
similarity transformations. These similarity transformations can be obtained by using symmetry
analysis. The resultant BVPs are reduced into initial value problems (IVPs) by using the shooting
method and then solved by using the fourth-order Runge–Kutta (RK) technique. The numerical results
reveal that dual solutions exist in some ranges of different physical parameters such as unsteadiness
and suction/injection parameters. The thickness of the velocity boundary layer is enhanced in the
second solution by increasing the magnetic and velocity slip factor effect in the boundary layer.
Increment in the Prandtl number and Brownian motion parameter is caused by a reduction of the
thickness of the thermal boundary layer and temperature. Moreover, stability analysis performed
by employing the three-stage Lobatto IIIA formula in the BVP4C solver with the help of MATLAB
software reveals that only the first solution is stable and physically realizable.

Keywords: dual solution; unsteady flow; Stefan blowing; Casson nanofluid; stability analysis

1. Introduction

In the past few decades, non-Newtonian fluids have attracted the interest of scientists, researchers,
and mathematicians due to their significant applications in various industrial sectors. Many studies
on non-Newtonian fluids have been carried out by considering several physical parameters.
Tanveer et al. [1] found exact solutions for the non-Newtonian fluid known as Bingham nanofluid.
Hayat et al. [2] examined non-Newtonian fluid under the influence of Brownian motion and the
Bejan number. They concluded that the Bejan number and entropy rate display double behaviors in
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contradiction to the Eckert number. The Casson fluid model is one of the non-Newtonian fluid models
in which yield stress characteristics are extensively studied. The fluids of this model fall within the
dilatant liquid category. This model represents an inverse relationship between yield stress and shear
stress. If the shear stress is less (more) than the yield stress, then the fluid behaves like a solid (fluid).
Some common examples of this type are jam, sauce, nectar, soup, and organic product juices [3,4].
To the best of our knowledge, no such study on the unsteady flow of Casson nanofluid with the effect
of Stefan blowing and partial slip conditions for multiple solutions has been reported in the literature.

Nowadays, nonlinear boundary value problems (BVPs) of fluid flows and their multiple solutions
are important in engineering, physics, and mathematics due to their wide applications in engineering
and scientific research. Therefore, it is very important not to miss any solution of nonlinear BVPs.
Many numerical approaches fail to identify multiple solutions because the solutions may oscillate [5,6].
It is worth mentioning that the occurrence of multiple solutions of fluid flow over linear and nonlinear
stretching surfaces is possible when the flow has a stagnation point or opposing flow [7]. On the contrary,
flow over an exponential surface, which is quite different from the linear and nonlinear stretching
surfaces, may have multiple solutions over a stretching surface even without cases of stagnation points
and opposing flow [8]. In real situations, multiple solutions cannot be visualized in the boundary
layer problems experimentally [9]. Therefore, mathematical analysis of the fluid flow model should be
considered to detect the presence of multiple solutions. Terrill and Thomas [10] succeeded in discovering
multiple solutions of laminar flow in a uniformly permeable pipe. In particular, their investigation
uncovered that dual solutions exist outside the interval of estimations of suction Reynolds number 2.3 <

R < 9.1 though no solution exists inside this range. Many other researchers [11–13] considered channel
flow problems with uniformly permeable channels and reasoned that the existence and uniqueness
theorem for their solutions is fulfilled for the scope of Reynolds number −∞ < R <∞. Raithby [14]
examined the problem of two-dimensional fluid flow in a permeable channel with suction and infusion
numerically and found a second solution for R > 12. This investigation was restricted to various
solutions for instances of suction R > 0. Lund et. al. [15] found multiple solutions of steady laminar
Casson fluid with nanoparticles on a nonlinear stretching sheet with the assumption that an external
magnetic field is applied on the flow. Their study revealed that multiple solutions exist only for the
case of suction. Moreover, linear analysis of stability showed that only the first solution is physically
reliable (stable). Meanwhile, Cu-C6H9NaO7 and Ag-C6H9NaO7 nanofluids were investigated by
Lund et al. [16], who found that multiple solutions do not exist if the shrinking surface is impermeable.
Recently, many authors [17–22] succeeded in obtaining multiple solutions of various fluid models
under the influence of physical parameters. It was claimed that nonlinearity in the fluid model causes
the existence of multiple solutions [23–25]. In light of the above discussion, it can be concluded that
the existence of multiple solutions depends not only on nonlinearity in the equations but also on the
values of different physical parameters.

Some applications of the magnetohydrodynamic (MHD) flow of Casson fluid can be seen
in industrial sectors; therefore, the MHD characteristics of the flow need to be considered.
Further, the Casson model shows distinct behavior when a magnetic field effect is imposed on
it. The non-Newtonian problems of Casson fluid boundary layer flow over a shrinking surface have
numerous applications in manufacturing processes and industry, particularly in the metal and plastic
industries. There are various applications where a blowing effect is incorporated into the fluid flow
problems. The effect of blowing on the MHD flow of a nanofluid on a shrinking surface has inspired
numerous scholars to conduct further investigations. The Stefan blowing effect is different from
mass blowing or injection because of transpiration [26]. Shahzad et al. [27] considered the MHD
flow of Casson fluid with a thermal radiation effect. However, they found only one solution using
the homotropy analysis method. Previously, multiple flow configurations involving the impact of
blowing were explored by many researchers [22,28–31] for regular fluids. To the best of our knowledge,
there have been no investigations focusing on the MHD flow of Casson nanofluids on a shrinking
sheet with the Stefan blowing effect. Therefore, unsteady MHD flow of a Casson nanofluid with the



Symmetry 2020, 12, 487 3 of 17

combined effect of Stefan blowing and velocity slip conditions was taken into account in this study.
Furthermore, thermal radiation and slip conditions were also considered.

2. Modeling and Simulation

The two-dimensional unsteady MHD flow of a Casson nanofluid on a shrinking surface, along with
the effects of slip conditions and thermal radiation, was considered; these assumptions are presented
in Figure 1.
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The base (Casson) fluid with nanoparticles has fluid properties that are supposed to be not in
thermal equilibrium. The isotropic equation of state is discussed thoroughly in Lund et al. [15,16] and
Nakamura and Sawada [32], and can be expressed as
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It is also assumed that the flow is subjected to a transverse magnetic field of strength B = B0

(1−εt)1/2

where B0 is the constant applied magnetic field. The effect of B is applied perpendicular to the shrinking
sheet (refer to Figure 1). Based on all assumptions, we have the following governing equations:
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subject to the boundary conditions

v = DB

1−Cw

∂C
∂y , u = uw + N1

(
x, t

)
ν
(
1 + 1

β

)
∂u
∂y , T = Tw + D1

(
x, t

)
∂T
∂y , C = Cw + D2

(
x, t

)
∂C
∂y at y = 0

u→ 0, T→ T∞, C→ C∞ as y→∞
(6)

where β, ρ,µ, k, υ, and uw represent the Casson parameter, density, viscosity, thermal conductivity,
and kinematic viscosity of the fluid, and the velocity of the plate, respectively. Further, qr =

−
4σ∗
3K∗

∂T
4

∂y , α, τ1 and
(
ρcp

)
n f

are, respectively, the radiation heat flux and thermal diffusivity of the

Casson nanofluid, the ratio between the effective heat capacity of the nanoparticle material and the
capacity of the fluid, and the heat capacitance in the nanofluid. DT, DB, N1

(
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)
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(
x, t

)
, and D2

(
x, t

)
are, respectively, the parameters of thermophoresis, mass diffusivity, velocity slip factor, thermal slip
factor, and concentration slip factor. These parameters can be defined as
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We use the following similarity transformations to get similarity solutions:
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By substituting Equation (7) into Equations (3)–(6), the two-point BVPs below are obtained:(
1 +

1
β

)
f ′′′ − f ′2 + f f ′′ −A(0.5η f ′′ + f ′) −M f ′ = 0 (8)
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where A is the unsteadiness parameter. It should be noted that A < 0 indicates decelerating flow,
while A > 0 shows accelerating flow. M, Nr, Pr, Nt, Nb, Sc, fw, δ, δT, and δC are the dimensionless
magnetic parameter, thermophoresis parameter, thermal radiation parameter, Brownian motion
parameter, suction/injection parameter, Schmidt number, thermal slip factor, velocity slip factor,
and concentration slip factor, respectively. These dimensionless parameters are defined as
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√
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√
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c
ϑ .
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The physical quantities from an engineering point of view are the coefficient of skin friction (C f x),
local Nusselt (Nux), and Sherwood number (Shx), obtained from the following equations:

C f x =
τw

ρuw2 , Nux =
xq1

k(Tw − T∞)
, Shx =

xq2

k(Cw −C∞)
(12)

where τw, q1, and q2 are the shear stress, heat, and mass flux at the wall, respectively, represented as

τw = −µ

(
1 +

1
β

)(
∂u
∂y

)
y=0

, q1 = −k
(
∂T
∂y

)
y=0

+ (qr)y=0, q2 = −k
(
∂C
∂y

)
y=0

. (13)

Which leads to

C f x
√

Rex =

(
1 +

1
β

)
f ′′ (0),

Nux
√

Rex
= −(1 + Nr)θ

′(0),
Shx
√

Rex
= −∅′(0) (14)

where Rex = uwx
ν is the local Reynolds number.

3. Stability Analysis

When there exists more than one solution in any fluid flow problem, stability analysis must be
performed in that study. It should be noted that we describe the first (second) solution instead of the
upper (lower) branch throughout the whole manuscript. Lund et al. [33] and Dero et al. [34] stated in
their papers that the only stable and physically possible solution is the first solution (upper branch),
whereas the second solution (lower branch) is physically unrealizable and unstable. Lund et al. [35],
Weidman and Sprague [36], Lund et al. [20], and others also considered this analysis in their studies.
We need to introduce a new dimensionless time variable τ in order to perform a stability analysis of
the solution where τ corresponds to the initial value problems (IVPs).

The new similarity transformation variables with τ and (7) can be written as
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(1−εt)
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2
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(

c
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) 1
2
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(1−εt)

.
(15)

By substituting Equation (15) into Equations (3)–(5), the following equations can be obtained:(
1 +

1
β

)
∂3 f
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(
∂ f
∂η

)2

+ f
∂2 f
∂η2 −A

(
0.5η

∂2 f
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∂ f
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)
−M

∂ f
∂η
− (1 + Aτ)

∂2 f
∂τ∂η

= 0 (16)
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∂2θ

∂η2 + f
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(
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)2

+ Nb
∂∅
∂η

∂θ
∂η
− 0.5Aη
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1
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subject to the boundary conditions

f (0, τ) = fw
Sc
∂∅(0,τ)
∂η , ∂ f (0, τ)
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∂2 f (0, τ)
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(19)
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To check the stability of steady flow solutions where f (η) = f0(η),θ(η) = θ0(η), and∅(η) = ∅0(η)

satisfying the boundary value problem (8)–(11), we write

f (η, τ) = f0(η) + e−γτF(η, τ)
θ(η, τ) = θ0(η) + e−γτG(η, τ)
∅(η, τ) = ∅0(η) + e−γτH(η, τ)

(20)

where F(η), G(η), and H(η) are small relative to f0(η), θ0(η), and ∅0(η), respectively. Further, γ is the
unknown eigenvalues. An infinite set of eigenvalues is obtained by solving the eigenvalue problem
(21)–(23). From that set, we have to choose the smallest values of γ. Using Equation (20) in Equations
(16)–(19) leads to(

1 +
1
β

)
F′′′0 − 2 f ′0F′0 + f0F′′0 + F0 f ′′0 −A

(
0.5ηF′′0 + F′0

)
−MF′0 + γF′0 = 0 (21)

(1 + Nr)

Pr
G′′0 + f0G′0 + F0θ

′

0 + 2Ntθ
′

0G′0 + Nb
(
∅′0G′0 + H′0θ

′

0

)
− 0.5ηAG′0 + γG0 = 0 (22)

H′′0 + Sc
(

f0∅′0 + F0H′0
)
+

Nt

Nb
G′′0 − 0.5ηAScH′0 + ScγH0 = 0 (23)

subject to boundary conditions

F0(0) =
fw
Sc H0(η), F′0(0) = δ

(
1 + 1

β

)
F′′0 (0), G0(0) = δTG′0(0), H0(0) = δCH′0(0),

F′0(η)→ 0, G0(η)→ 0, H0(η)→ 0, as η→∞.
(24)

According to Lund et al. [37], in order to assess the stability of Equations (21)–(24) we need
to relax one boundary condition on F′0(η), G0(η), or H0(η). It should be noted that we relaxed
F′0(η)→ 0 as η→∞ to F′′0 (0) = 1 in this problem.

4. Results and Discussion

In this study, the unsteady MHD flow of a Casson nanofluid on a shrinking sheet under the
influence of thermal radiation and slip conditions was examined. The graphical results of the
velocity, concentration, and temperature distributions for magnetic parameter M, thermal radiation
parameter Nr, thermophoresis parameter Nt, Brownian motion Nb, Schmidt number Sc, parameter of
suction/injection fw, velocity slip factor δ, thermal slip factor δT, and concentration slip factor δC were
taken into account.

4.1. Analysis of Skin Friction, Temperature, and Concentration Rates

A comparison of the numerical values of the coefficient of skin friction obtained by fixing the
values of M = 0.5, Nr = 0.5, Pr = 1, Nt = 0.5, Nb = 0.3, Sc = 1, δ = 0.1, δT = 0.1, and δC = 0.1 is
presented in Table 1. From this table, we found an excellent agreement with the numerical values of
the skin friction coefficient computed using two different numerical approaches. The collective effects
of suction/injection parameter fw and Casson parameter β on the skin friction f ′′ (0) are shown in
Figure 2. It was observed from this figure that there exist dual solutions for Casson parameters β = 1.5
and β = 2.5 at fw = −4.9909 and fw = −4.98645, respectively. Without any doubt, we can say that
fw = −4.9909 and fw = −4.98645 are our critical points where multiple solutions exist. In the same vein,
we concluded from this profile that the skin friction coefficient magnitude increases monotonically for
both solutions (first solution and second solution).
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Table 1. Comparison of the shooting method with the three-stage Lobatto IIIA formula for values of
f ′′ (0) when M = 0.5, Nr = 0.5, Pr = 1, Nt = 0.5, Nb = 0.3, Sc = 1, δ = 0.1, δT = 0.1, and δC = 0.1.

fw β A
Shooting Method Three-Stage Lobatto IIIA Formula

1st Solution 2nd Solution 1st Solution 2nd Solution

−5 ∞ −1 5.2069632 0.6228652 5.2069632 0.6228652

−5.1 5.8082723 0.5521204 5.8082723 0.5521204

−5.2 ∞ 6.1370006 0.4934203 6.1370006 0.4934203

1.5 3.6769605 1.7569470 3.6769605 1.7569470

2.5 −1 4.3796524 1.8324565 4.3796524 1.8324565

−0.5 4.3574468 2.6719383 4.3574468 2.6719383

0 4.3317923 2.9915082 4.3317923 2.9915082

0.5 4.3013107 3.2212830 4.3013107 3.2212830

1 4.2634822 3.4128383 4.2634822 3.4128383Symmetry 2020, 12, x FOR PEER REVIEW 7 of 17 
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Figure 2. Skin friction coefficients for different values of fw by varying β.

Figure 3 exhibits the skin friction coefficient with variation in unsteady parameter A for suction
parameters fw = −5.2,−5.3,−5.4. The skin friction increases gradually for the first solution when
the values of the unsteady parameter and suction parameter are increased. However, a completely
contradictory trend was observed from the same profile for the second solution. It can be concluded
from Figures 3–5 that there exist two ranges of solutions, namely, no solution and dual solutions.
Dual solutions exist when A ≤ Ai where i = 1, 2, 3. When A > Ai, a solution does not exist over
the shrinking surface. Figure 4 demonstrates the heat transfer rates for various values of unsteady
parameter and suction parameter. This figure shows that the heat transfer rate increases monotonically
with increasing suction and unsteady parameters. This is because unsteadiness leads the fluid particles
to migrate from one place to another with a collisional effect which produces heat. Therefore, heat
transfer increases (decreases) gradually as the value of the unsteady parameter increases in the first
(second) solution. Figure 5 shows the effect of the unsteady parameter on the concentration rate. It can
be observed from this profile that the concentration transfer rate increased (decreased) with increasing
unsteady parameter and suction parameter for the first (second) solution.
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4.2. Analysis of Velocity Profiles

The velocity profiles under the variation of various physical parameters are plotted in Figures 6–8.
Figure 6 demonstrates the velocity profile with variation of the Casson magnetic parameters. It can be
observed that the velocity profile for both solutions decreases with enhanced magnetic field strength
for both cases, Newtonian (β→∞ ) and non-Newtonian (β = 2.5). In practical terms, it can be said
that an increase in the magnetic parameter generates more Lorentz force, which then reduces the
velocity of the fluid due to drag force strength. Consequently, the velocity profile and thickness
of the momentum boundary layer decline as the magnetic parameter increases. The impact of the
velocity slip parameter on the velocity profile is depicted in Figure 7. From this figure, we came to
understand that the velocity profile inclines (declines) for the first (second) solution as the velocity slip
parameter increases. Figure 8 illustrates the effect of the unsteady parameter on the profile of velocity
for Newtonian (β→∞ ) and non-Newtonian (β = 2.5) cases. This profile shows that the momentum
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boundary layer thickness increases gradually with increasing value of the unsteady parameter for both
Newtonian and non-Newtonian cases. Therefore, the velocity profile increases for both solutions.
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4.3. Analysis of Temperature Profiles

Figure 9 presents the behavior of the temperature profile for various values of Prandtl number in
the presence of a thermal radiation effect. It was observed from this profile that the radiation parameter
tends to increase the temperature of the nanofluid as the numerical value of the radiation parameter is
enhanced. Physically, we can say that the strength of the radiation parameter tends to develop the
thermal boundary layer. However, the opposite trend was noticed for higher values of the Prandtl
number. According to Khan et al. [38], “an increase in Pr accompanies with weaker thermal diffusivity
and restricts the heat from flowing deeper into the nanofluid, so thermal boundary layer becomes
decreased with an augmentation of Pr”.
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The impact of the thermal slip parameter on the temperature profile is depicted in Figure 10.
It can be observed that the thickness of the thermal boundary layer decreases (increases) for the
first (second) solution. As a result, the temperature profile decreases for the first solution, and the
opposite trend was observed for the second solution. The temperature profile for both solutions
is gradually reduced as the Brownian motion parameter Nb increases (see Figure 11). The effect of
thermophoresis Nt on the temperature profile is shown in Figure 12. A force, known as thermophoresis
force, pushes the nanoparticles towards the ambient flow, and as a result, the thermal boundary layer
becomes thicker. It is worth mentioning that the temperature gradient becomes smaller due to the huge
number of nanoparticles in the fluid flow and thus increases the thermal boundary layer thickness and
nanoparticle volume fraction.
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4.4. Analysis of Concentration Profiles and Stability

Figures 13 and 14 show the effect of Nb and Nt on the concentration profiles. In these figures,
it can be easily seen that thermophoresis and Brownian motion parameters have an inverse relation to
each other with regard to the distributions of concentration. The thickness of the concentration layer
becomes thinner as the Brownian motion impact is increased. Physically, this is due to the fact that
Brownian motion creates more random movement of nanoparticles inside the fluid flow, and as a result,
the concentration of nanoparticles decreases. However, the opposite trend was noticed in Figure 14.

The values of the smallest eigenvalues γ for various values of fw are presented in Figure 15. Linear
stability analysis was adopted to plot this graph, which is divided into two regions. The lower half of
the region is the area where the negative eigenvalues are plotted, which refers to an initial growth
of disturbance, and flow is therefore unstable in this mode. However, in the upper half, the positive
eigenvalues show an initial decay of the disturbance, and therefore, the flow is stable. In the same
vein, the smallest eigenvalues tend to zero for the upper and lower branches of the solutions as
fw → −4.98645 . Physically, we can say that fw = −4.98645 is the critical point where the system

has multiple solutions. Moreover, from this graphical representation, we can conclude that the first
solution is physically reliable and stable. On the other hand, the second solution is physically unreliable
and unstable.
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5. Conclusions

In this study, we considered the unsteady flow of electrically conductive Casson nanofluid in
the presence of thermal radiation over an unsteady shrinking surface. The effect of Stefan blowing
with partial slip conditions of velocity, temperature, and concentration on the velocity, temperature,
and concentration distributions was examined. The modeled PDEs were transformed into ODEs in the
form of BVPs by employing similarity transformations. The resultant BVPs were reduced to IVPs using
the shooting method and then solved using the fourth-order Runge–Kutta (RK) technique. The main
pointwise conclusions that can be drawn from this investigation are as follows:

1. Dual solutions exist when A ≤ Ai where i = 1, 2, 3 and fw ≤ fwc where c = 1, 2.
2. The temperature and thickness of the thermal boundary layer are reduced when the Prandtl

number and Brownian motion parameter are increased.
3. The velocity boundary layer becomes thicker in the second solution when the magnetic and

velocity slip factor effect is increased.
4. Beyond the critical point, there is a range with no solution.
5. The results of stability analysis revealed that there exists initial decay (growth) of disturbances

for the first (second) solution.
6. The more physical realizable solution is the first solution.
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