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Abstract. Stochastic volatility (SV) models are substantial for financial

markets and decision making because they can capture the effect of time-
varying volatility. There are two ways to describe SV; in discrete time setting

and continuous time setting. Since the intuitive setting for market trading

is normally continuous, it is natural to focus on studying a continuous time
setting in a financial environment. In this paper, we review and discuss the

most important financial models of continuous stochastic volatility via high-

light the advantages and the disadvantages of each one.

1. Introduction: Stochastic Volatility Models in Financial
Environment

Stochastic volatility (SV) models are considered the most appropriate
approaches to capture an implied volatility smile and fat tailed distribution of
asset price return (Kim and Wee, 2014). Such properties can significantly improve
the pricing of asset under the Black–Scholes model.

SV models are also substantial for financial markets and decision making be-
cause they can capture the effect of time-varying volatility. For this reason, many
studies on SV models have been carried out in financial environment such as op-
tion pricing, value at risk, risk assessment and portfolio allocation. In addition,
SV models also provide alternatives to standard Black-Scholes assumption where
observations to volatility do not need to be perfectly correlated with observations
of the underlying asset price (Heston, 1993; and Stein and Stein, 1991). These
SV type models can offer better information for the joint time-series behavior of
option prices and stocks, which could not be captured by using other models.

In a SV model, the constant volatility σ in standard geometric Brownian motion
(GBM) model is replaced by a deterministic function of a stochastic process σ(Yt)
where Yt represents the solution of stochastic differential equation (SDE) that is
driven by other noise. This implies that SV model has two sources of randomness
which can either be correlated or not.

There are two ways to describe SV; in discrete time setting and continuous
time setting. Since the intuitive setting for market trading is normally continuous
such as derivative pricing (Johnson and Shanno, 1987; Hull and White, 1987;
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Stein and Stein, 1991; Comte and Renault, 1998; and Chronopoulou and Viens,
2012a; 2012b) and portfolio optimization (Pakdel, 2016; and Vierthauer, 2010), it
is natural to embark studying a continuous time setting in a financial environment.

2. Classical Stochastic Volatility Models

SV models were first introduced by Taylor (1986) to account for inconsistency in
implied volatility values. Taylor recommended modeling the logarithm of volatil-
ity as an autoregressive AR(1) process. This model is known as autoregressive
stochastic volatility ARSV(1) and is given by

xt = exp
(yt

2

)
ut, ut ∼ N(0, 1)

yt = µ+ φ(yt−1 − µ) + ηt, ηt ∼ N(0, σ2
ηt),

where xt denotes the log return at time t, where t = 1, . . . , T and yt is the log–
volatility which is assumed to follow a stationary AR(1) process with persistence
parameter |φ| < 1. The error terms ut and ηt are Gaussian white noise sequences.
Although the Taylor model is simple and easy to use, it has some drawbacks such
as the absence of the mean-reverting part, zero correlation assumption between
stock price and volatility, and non-existence of memories in its returns series and
volatility.

Subsequently, Johnson and Shanno (1987) used time changing volatility in op-
tion pricing where the deterministic function σ(Yt) = Yt is defined by

dSt = µStdt+ σ(Yt)StdW1t,

dYt = αYtdt+ βYtdW2t,

where α and β are mean and volatility of a volatility of process Yt, respectively.
In this model, Wiener processes W1t and W2t are correlated. The main advantage
of this model is that the computational results of option prices are consistent
with empirical observations. This model exhibits volatility smile and an increase
in value with toward expiry (Mitra, 2011). However, this model only provides
numerical method to option pricing instead of in its closed form. The mean-
reverting parameter as well as memories of both returns and volatility are also
absent in this model.

Scott (1987) later developed the following option pricing model which allows
the variance parameter to change randomly of an independent diffusion process,

dSt = µStdt+ σ(Yt)StdW1t,

dYt = α(m− Yt)dt+ βdW2t,

where α, m and β represent mean reverting parameter, mean of volatility and
volatility of volatility of process Yt respectively. The instantaneous volatility pa-
rameter for stock prices is assumed to follow Ornstein-Uhlenbeck process. He
also noticed that σ(Yt) = eYt and the Wiener processes W1t and W2t were not
correlated. This model is able to observe marginal improvement in option pric-
ings accuracy as compared to standard Black-Scholes option pricing (Mitra, 2011)
and included mean reverting parameter into account. However, its returns series
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and volatility have no memory and its two sources of randomness are assumed
uncorrelated, which is conflicting with the current literature.

Meanwhile, Hull and White (1987) represented option price by a form of series
provided that stochastic volatility is independent of the stock price. They proposed
a continuous time diffusion model where σ(Yt) =

√
Yt and Yt obeys log-normal

process as in the following equations

dSt = µStdt+ σ(Yt)StdW1t,

dYt = αYtdt+ βYtdW2t,

where α and β are mean and volatility of a volatility of process Yt respectively,
with both Wiener processes W1t and W2t are correlated. This model setsthe price
of volatility risk to be zero, which is contrary to Heston (1993) who presented a
closed–form model with a non–zero price of volatility risk. This model is among the
most significant in the literature since it presents closed form solution to European
option pricing. Nevertheless, the absence of meanreverting parameter and the
nonexistence of both memory of returns and volatility in this model are the flaws.

In the same year, Wiggins (1987) proposed stochastic volatility model under

σ(Yt) =
√
eYt and both Wiener processes, i.e W1t and W2t are correlated as given

below

dSt = µStdt+ σ(Yt)StdW1t,

dYt = α(m− Yt)dt+ βdW2t,

where α, m and β represent mean reverting parameter, mean of volatility and
volatility of volatility of process Yt, respectively. Although this model has taken
into account the mean reverting parameter, it fails including memories in returns
and volatility.

In a bid to develop models which can describe the real financial environment
better, Stein and Stein (1991) and Schöbel and Zhu (1999) considered stock price
distributions that follow diffusion process with a stochastically varying volatility
parameter as defined below

dSt = µStdt+ σ(Yt)StdW1t,

dYt = α(m− Yt)dt+ βdW2t,

where α, m and β represent mean reverting parameter, mean of volatility and
volatility of volatility of process Yt, respectively, with assumption of σ(Yt) = |Yt|.
The difference between the models of Stein and Stein (1991) and Schöbel and Zhu
(1999) is in terms of the correlation between W1t and W2t . It was observed that
in the former model, W1t and W2t are not correlated but both parameters are
correlated in the latter model. Besides considering mean reverting parameter into
account, both models also share the same disadvantages by omitting memory of
returns or the memory of volatility.

An attempt to derive a closed-form solution for the pricing of a European call
option was made by Heston (1993). In his approach, the deterministic function of
volatility is assumed as σ(Yt) =

√
Yt, provided that Yt obeys Cox-Ingersoll-Ross

(CIR) process as follows
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dSt = µStdt+ σ(Yt)StdW1t,

dYt = θ(ω − Yt)dt+ ξ
√
YtdW2t,

where θ, ω and ξ are mean reverting parameter, long variance parameter and
volatility of volatility parameter, respectively. The Brownian processes W1t and
W2t are correlated. Hestons model stands out from other SV models as it has
analytical solution for European options under assumption of correlated Brownian
motions. It can also describe the asymmetric smiles by instant correlation between
returns series and its volatility. Furthermore, the empirical performance of Hestons
model also outperforms other SV models. As a result, this model generates rich
mathematical results and enjoys the positivity of the volatility process besides
taking into account of mean reverting parameters (Kim and Wee, 2014). However,
this model also omits the existence of memories for returns and volatility in which
is considered as a drawback of this model.

Hagan et al. (2002) revealed that the market smile dynamics predicted by
using local volatility models (i.e. volatility is merely a function of the current
asset St and of time t) are contrary of observed market behavior. As a treatment
of this issue, they proposed an extension of the local volatility model in which the
volatility is assumed to be stochastic model and both asset price and volatility are
correlated. This extension is called the stochastic alpha-beta-rho (SABR) model
as written follows:

dSt = α(Yt)S
β
t dW1t,

dYt = vYtdW2t,

where St , α(Yt) and v are forward value, volatility of forward value and volatility
of volatility, respectively. In this case, they assumed σ(Yt) = |Yt| and Yt follows a
non–mean reverting process. The Wiener processes W1t and W2t are ρ correlated.
This is the simplest stochastic volatility model which is homogeneous in St and
α, which enables to accurately fit the implied volatility curves observed in the
marketplace for any single exercise date. This model can also predict the correct
dynamics of the implied volatility curves. However, this model also lack of memory
in its return or volatility. Furthermore, mean reverting parameter is also not
included in this model.

In summary, there are three main advantages that can be highlighted from the
existing models. First, the mean reverting parameter is being taken into account
in Scott (1987), Wiggins (1987), Stein and Stein (1991), Schobel and Zhu (1999)
and Heston (1993). Second, a closed form of solution is established in Heston
(1993) and Hull and White (1987)). Finally, the correlation between the error
terms existed in Johnson and Shanno (1987), Hull and White (1978), Wiggins
(1987), Hagan (2002), Heston (1993) and Schobel and Zhu (1999).

Based on the previous discussion, it can be deduced that each model mentioned
previously has at least one of three main drawbacks. First, the existence of zero
correlation between stock price and volatility occurs in models proposed by Taylor
(1982), Stein and Stein (1987) and Scott (1987). Second, the absence of incor-
porating mean-reverting parameter into volatility dynamics is observed in works
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carried out by Taylor (1982), Johnson and Shanno (1987), Hull and White (1978)
and Hagan (2002). Third, it is also noted that all previous models did not consider
the existence of memory in neither its returns series nor its volatility component.

Previous literature also suggested that the third drawback pose serious concern
in modeling financial asset (Willinger et al., 1999) and (Grau-Carles, 2000). This
is strongly supported by the empirical investigations which reveal that volatilities
and returns of stock prices habitually show long memory property or long-range
dependence (Painter, 1998;and Rejichi and Aloui, 2012). In the following discus-
sion, we will review some of the long memory stochastic volatility (LMSV) models.

3. Stochastic Volatility Models Perturbed by Long Memory

As we mentioned before, empirical studies showed that the volatility of many
assets has long memory properties. Thus, taking long memory into account of
volatility contribute in providing better understanding for financial transaction
and then better forecasting of future risky asset’s prices.

Bredit et al. (1998) introduced general case of LMSV model as follows

yt = σtξt,

σt = σ exp
{vt

2

}
,

where yt is the return at time t, σt is stochastic volatility of return, σ is volatility
of volatility, vt a stationary long memory process, ξt is independent and identically
distribution, and both {vt} and {ξt} are independent.

In 1998, Harvey proposed the following equivalent model of LMSV:

yt = σtξt,

σt =σ2 exp
{ ηt

(1− L)d
}
,

where yt is the return at time t, σt is stochastic volatility of return, σ is volatility
of volatility, L is lag operator, ξt is independent identically distribution and ηt a
stationary long memory process or ηt has normal independent distribution (nid)
(i.e. ηt ∼ nid(0, ση)), with 0 < d < 1.
These two models share similar advantages in incorporating long memory into their
volatility parameter, and both models are also simple in their nature. However,
they ignore memory of the returns, mean reverting parameter and the correlation
between stock price and volatility.

In the same year, Comte and Renault (1998) introduced long-memory mean
reverting volatility processes in the setting of continuous time Hull and White
model. They modeled the log of volatility as a fractionally integrated Brownian
motion (i.e. σ(Yt) = eYt in which Yt follows fractional Ornstein-Uhlenbeck process
for H > 0.5) as shown below:

dSt = µStdt+ σ(Yt)StdW1t,

dYt = α(m− Yt)dt+ βdBH(t).

According to them, not only this model could empirically capture observed strong
smile effect for long maturity times, it also incorporated memory in volatility and
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considered mean reverting into account. However, this model lacks of memory
in its return series in addition to lacks of correlation between stock price and
volatility.

Subsequently, Comte et al. (2012) extended Hestons model by influencing long
memory to its model based on the fractional integration of a square root volatility
process. This approach has been approved by Chronopoulou and Viens (2012a;
2012b) as it succeeded in describing volatilities with strong memory in the long
run. They also came up with a new LMSV model as follows

dSt = µStdt+ σ(Yt)StdW1t,

dYt = αYtdt+ βdBH(t).

However, this model fails to consider memory in return series, as well as the
assumption of zero correlation between stock price and volatility.

In the recent work that follows, Mishura and Swishchuk (2010) studied financial
markets with stochastic volatilities driven by fractional Brownian motion with
Hurst index H > 0.5. Firstly, they assumed that stock price St satisfies the
following stochastic differential equation

dSt = rStdt+ σ(Yt)StdWt,

where r is an interest rate, σ(Yt) is a volatility, and Wt is a standard Brownian
motion. Subsequently, they proposed four SV models in which all models incorpo-
rated strong memory into its volatility. First, LMSV model driven by fractional
Ornstein–Uhlenbeck process where σ(Yt) = Yt given by

dYt = −aYtdt+ γYtdBH(t),

where a > 0 is mean–reverting parameter, γ > 0 is volatility of volatility and BH
is FBM with Hurst index H > 0.5, independent of Wt.
Second, LMSV model driven by continuous–time GARCH process where σ(Yt) =√
Yt is expressed as

dYt = a(b− Yt)dt+ γYtdBH(t),

where a > 0 is meanreverting parameter, b mean–reverting level, γ > 0 is volatility
of volatility, and BH is FBM with Hurst index H > 0.5, independent of Wt.
Third, LMSV model driven by Vasicek processwhere σ(Yt) = Yt is given by

dYt = a(b− Yt)dt+ γYtdBH(t),

where a > 0 is mean–reverting speed, b equilibrium level, γ > 0 is volatility of
volatility, and BH is FBM with Hurst index H > 0.5, independent of Wt.
The setbacks of these three models can be abridged into two points. These models
ignore the existence of memory in return series and the assumption of zero corre-
lation between stock price and volatility.
Finally, the fourth model is LMSV model driven by GFBM process where σ(Yt) =√
Yt is written as

dYt = aYtdt+ γYtdBH(t),

where a > 0 is drift, γ > 0 is volatility of Yt , and BH is FBM with Hurst index
H > 0.5, independent of Wt . This model also has no memory in its return, its
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mean reverting parameter does not exist, and zero correlation is assumed between
stock price and volatility.

Based from previous discussions, the common disadvantage shared in all LMSV
models is that they assumed returns series of the stock price is independent, mean-
ing no memory. This is contradictory to most empirical findings conducted by
Painter (1998),Willinger et al. (1999), Grau–Carles (2000), and Rejichi, and Aloui
(2012), to name only a few. They also suggested GFBM model should be consid-
ered as underlying process for financial variables, due to its ability to incorporate
long memory in the system under study.

To recap, there are three stages of evolutions for volatility in GBM model.
First, GBM model with assumption of constant volatility.Second, GBM model
with assumption of stochastic volatility.Third, GBM model with assumption of
stochastic volatility influenced by long memory.

Alhagyan, Misiran and Omar (2016 a, 2016 b, 2017) introduced a model of
GFBM under the assumption LMSV where the volatility is considered as a frac-
tional Ornstein–Uhlenbeck process where σ(Yt) = Yt as follows:

dSt = µStdt+ σ(Yt)StdBH1(t),

dYt = α(m− Yt)dt+ βdBH2
(t),

where µ is mean of return, Yt is a stochastic process, BH1(t) is a fractional Brow-
nian motion (FBM) with Hurst index H1. While the parameters α, β and m
represent mean reverting of volatility, volatility of volatility and mean of volatil-
ity, respectively. BH2

(t) is another FBM which is independent from BH1
(t) where

both H1 and H2 are greater than 0.5 with assumption that this model exhibits
long memory. The main disadvantage of this model is the assumption of zero
correlation between stock and volatility.

Table 1 below, summarizes all models of continuous stochastic volatility models
mentioned under this study, in addition to their main properties.

Table 1. Continuous Stochastic Volatility Models and their main properties.

Scholar Mean
reverting

Corr. error
terms

Memory of
volatility

Memory of
returns

Johnson (1979) x

Taylor (1986)

Scott (1987) x
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Scholar Mean
reverting

Corr. error
terms

Memory of
volatility

Memory of
returns

Hull and White (1987) x

Wiggins (1987) x x

Hagan (2002) x

Stein and Stein (1991) x

Heston (1993) x x

Schöbel and Zhu (1999) x x

Bredit (1998) x

Harvey (1998) x

Comte and Renault
(1998)

x x

Mishura and
Swishchuk-1(2010)

x

Mishura and
Swishchuk-2(2010)

x x

Mishura and
Swishchuk-3(2010)

x

Mishura and
Swishchuk-4(2010)

x x

Chronopoulou and Viens
(2012)

x

Alhagyan (2017) x x x

62



DISCUSSIONS ON CONTINUOUS STOCHASTIC VOLATILITY MODELS 9

Acknowledgment. The authors wish to acknowledge support provided by the
of Prince Sattam Bin AbdulAziz University.

References

1. Alhagyan, M., Misiran, M., and Omar, Z.: Estimation of Geometric Fractional Brownian
Motion Perturbed by Stochastic Volatility Model, Far East Journal of Mathematical Sciences

99 (2) (2016 a) 221–235.

2. Alhagyan, M., Misiran, M., and Omar, Z.: Geometric Fractional Brownian Motion Perturbed
by Fractional Ornstein-Uhlenbeck Process and Application on KLCI Option Pricing, Open

Access Library Journal 3 (08) (2016 b) 1.
3. Alhagyan, M., Misiran, M., and Omar, Z.: Surveying the Best Volatility Measurements to

Forecast Stock Market, Applied Mathematical Sciences 11 (23) (2017) 1113–1122.

4. Breidt, F. J., Crato, N., and De Lima, P.: The detection and estimation of long memory in
stochastic volatility, Journal of Econometrics 83 (1) (1998) 325–348.

5. Chronopoulou, A., and Viens, F. G.: Estimation and pricing under long–memory stochastic

volatility, Annals of Finance 8 (2) (2012 a) 379–403.
6. Chronopoulou, A., and Viens, F. G.: Stochastic volatility and option pricing with longmem-

ory in discrete and continuous time, Quantitative Finance 12 (4) (2012 b) 635–649.

7. Comte, F. and Renault, E.: Long memory in continuous–time stochastic volatility models,
Mathematical Finance 8 (4) (1998) 291–323.

8. Comte, F., Coutin, L., and Renault, .: Affine fractional stochastic volatility models, Annals

of Finance 8 (2) (2012) 337–378.
9. Grau–Carles, P.: Empirical evidence of long–range correlations in stock returns, Physica A:

Statistical Mechanics and its Applications 287 (3) (2000) 396–404.
10. Hagan, P. S., Kumar, D., Lesniewski, A. S., and Woodward, D. E.: Managing smile risk,

The Best of Wilmott 1 (2002) 249–296.

11. Harvey, A. C.: Long memory in stochastic volatility. In J. Knight and S. Satchell (Eds.),
Forecasting Volatility in Financial Markets (1998) 307–320.

12. Heston, S. L.: A closedform solution for options with stochastic volatility with applications

to bond and currency options, Review of Financial Studies 6 (2) (1993) 327–343.
13. Hull, J. and White, A.: The pricing of options on assets with stochastic volatilities, Journal

of Finance 42 (1987) 281–300.

14. Johnson, H., and Shanno, D.: Option pricing when the variance is changing, Journal of
Financial and Quantitative Analysis (1987) 143–151.

15. Kim, B., and Wee, I. S.: .Pricing of geometric Asian options under Hestons stochastic

volatility model, Quantitative Finance 14 (10) (2014) 1795–1809.
16. Mishura, Y., and Swishchuk, A.: Modeling and pricing of variance and volatility swaps for

stochastic volatilities driven by fractional Brownian motion, Applied Statistics, Actuarial
and Financial Mathematics (2010) 52–67.

17. Mitra, S.: A review of volatility and option pricing, International Journal of Financial

Markets and Derivatives 2 (3) (2011) 149–179.
18. Painter, S.: Numerical method for conditional simulation of Levy random fields, Mathemat-

ical Geology 30 (2) (1998) 163–179.

19. Pakdel, M.: Essays in financial economics, Doctoral dissertation, Northern Illinois Univer-
sity, 2016.

20. Rejichi, I. Z., and Aloui, C.: Hurst exponent behavior and assessment of the MENA stock
markets efficiency, Research in International Business and Finance 26 (3) (2012) 353–370.
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