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Abstract

In the first part of this thesis, we consider B-spline based methods for pricing Ameri-
can options in the Black-Scholes and Heston model. The difference between these two
models is the assumption on the volatility of the underlying asset. While in the Black-
Scholes model the volatility is assumed to be constant, the Heston model includes a
stochastic volatility variable. The underlying problems are formulated as parabolic vari-
ational inequalities. Recall that, in finance, to determine optimal risk strategies, one is
not only interested in the solution of the variational inequality, i.e., the option price,
but also in its partial derivatives up to order two, the so-called Greeks. A special feature
for these option price problems is that initial conditions are typically given as piece-
wise linear continuous functions. Consequently, we have derived a spatial discretization
based on cubic B-splines with coinciding knots at the points where the initial condition
is not differentiable. Together with an implicit time stepping scheme, this enables us
to achieve an accurate pointwise approximation of the partial derivatives up to order
two. For the efficient numerical solution of the discrete variational inequality, we pro-
pose a monotone multigrid method for (tensor product) B-splines with possible internal
coinciding knots. Corresponding numerical results show that the monotone multigrid
method is robust with respect to the refinement level and mesh size.
In the second part of this thesis, we consider the pricing of a European option in the
uncertain volatility model. In this model the volatility of the underlying asset is a priori
unknown and is assumed to lie within a range of extreme values. Mathematically, this
problem can be formulated as a one dimensional parabolic Hamilton-Jacobi-Bellman
equation and is also called Black-Scholes-Barenblatt equation. In the resulting non-
linear equation, the diffusion coefficient is given by a volatility function which depends
pointwise on the second derivative. This kind of non-linear partial differential equation
does not admit a weak H1-formulation. This is due to the fact that the non-linearity
depends pointwise on the second derivative of the solution and, thus, no integration by
parts is possible to pass the partial derivative onto a test function. But in the discrete
setting this pointwise second derivative can be approximated in H1 by L1-normalized
B-splines. It turns out that the approximation of the volatility function leads to dis-
continuities in the partial derivatives. In order to improve the approximation of the
solution and its partial derivatives for cubic B-splines, we develop a Newton like al-
gorithm within a knot insertion step. Corresponding numerical results show that the
convergence of the solution and its partial derivatives are nearly optimal in the L2-norm,
when the location of volatility change is approximated with desired accuracy.

1



Kurzzusammenfassung

Der erste Teil dieser Arbeit beschäftigt sich mit B-spline basierten Verfahren zur Be-
wertung Amerikanischer Optionen anhand des Black-Scholes und Heston-Modells. Die
beiden Modelle unterscheiden sich in der Annahme an die Volatilität des Basiswertes.
Während im Black-Scholes-Modell die Volatiliät als konstant vorausgesetzt wird, wird
im Heston-Modell eine stochastische Volatilität angenommen. Die resultierenden Pro-
bleme werden als parabolische Variationsungleichungen formuliert. Um optimale Risiko-
strategien zu entwickeln, sind in der Finanzwelt neben der Berechnung des Options-
preises auch deren partiellen Ableitungen bis zur Ordnung zwei, die sogenannten Grie-
chen, von besonderem Interesse. Eine Besonderheit der Optionspreisprobleme ist, dass
die Anfangsbedingung üblicherweise als stückweise lineare stetige Funktion gegeben
ist. Aufgrund dessen werden die Probleme hinsichtlich des Ortes mit kubischen B-
Splines und zusammenfallenden Knoten an solchen Punkten, wo die Anfangsbedingung
nur stetig ist, diskretisiert. Dieser Ansatz ermöglicht zusammen mit einem impliziten
Zeitschrittverfahren die punktweise genaue Approximation der Griechen. Zur effizienten
Lösung der diskreten Variationsungleichung haben wir ein monotones Mehrgitterver-
fahren für (Tensorprodukt-)B-Splines mit zusammenfallenden Knoten im Inneren des
Gebietes entwickelt. Zugehörige numerische Resultate zeigen, dass das monotone Mehr-
gitterverfahren robust bezüglich der Verfeinerungslevel und Gitterweiten ist.
In dem zweiten Teil dieser Arbeit werden mit dem sogenannten Uncertain-Volatility-
Modell (Modell mit unsicherer Volatilität) Europäische Optionen bewertet. In diesem
Modell ist die Volatilität a priori nicht bekannt und es wird angenommen, dass sie
in einem Intervall von Extremwerten liegt. Mathematisch kann dieses Problem als
eine eindimensionale parabolische Hamilton-Jacobi-Bellman-Gleichung formuliert wer-
den und wird auch Black-Scholes-Barenblatt-Gleichung genannt. In der resultieren-
den nichtlinearen Gleichung ist der Diffusionskoeffizient durch eine Volatilitätsfunk-
tion gegeben, die punktweise von der zweiten partiellen Ableitung der Lösung abhängt.
Diese Art von nichtlinearen partiellen Differentialgleichungen haben keine schwache H1-
Formulierung. Das liegt daran, dass der nichtlineare Term von der punktweisen Auswer-
tung der zweiten Ableitung der Lösung abhängt und keine partielle Integration möglich
ist, um die partielle Ableitung auf die Testfunktion zu übertragen. Aber im diskreten
Fall kann diese zweite partielle Ableitung in H1 mit L1-normalisierten B-Splines ap-
proximiert werden. Es stellt sich heraus, dass die Approximation der Volatilitätsfunk-
tion zu Unstetigkeiten in den partiellen Ableitungen führt. Um die Approximation der
Lösung und dessen partielle Ableitungen für kubische B-splines zu verbessern, wird
das Newton Verfahren um einen Schritt erweitert, in dem Knoten eingefügt werden.
Zugehörige numerische Resultate zeigen, dass die Konvergenzraten für die Lösung und
dessen partielle Ableitungen fast optimal sind, wenn die Stelle, wo sich die Volatilität
verändert, genau genug approximiert wird.
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1. Introduction

Motivation and overview

The pricing of options plays an important role on financial markets. Options can be
seen as some kind of insurance against future price fluctuations. More precisely, an
option is a financial contract, which allows but not obligates the holder to buy (Call)
or to sell (Put) an underlying asset S at a specific time T (European option) or within
a time period (0, T ] (American option) at a specific strike price K. In return the holder
receives a non-negative payoff H(S). In financial mathematics option pricing has been
consistently gaining attention since the 1970’s, when Black and Scholes introduced the
Black-Scholes equation.
The central goal in this research area is to find a fair price of an option. Nevertheless,
to determine optimal risk strategies, it is not only important to focus on the option
value but also on its sensitivities to a change in the underlying parameter (or model
parameter) on which the value of a portfolio or financial instrument is dependent. Math-
ematically, these sensitivities or so called Greeks are described by the partial derivatives
of the option value with respect to the model parameters up to order two.
To answer all these questions regarding financial markets many different models have
been developed. The most famous one is the Black-Scholes model developed by Black
and Scholes in 1973 [BS73] in which the option value V (t, S) as a function of the un-
derlying asset S ∈ R+ and time t ∈ [0, T ] is described by a parabolic partial differential
equation. Moreover, this equation depends on a strike price K, a risk free interest rate
r, dividend yields D0 and on a constant volatility σ. One of the main limitations of the
model is the assumption of constant volatility and can expose the user to an unexpected
risk. To study the fluctuation of the underlying asset researchers started to determine
the implied volatility, which can be determined in the Black-Scholes model from real
observed option prices. It was discovered that the implied volatilities for different strikes
and maturities vary which gives a so called volatility smile or skewness effect.
A lot of models were developed to explain this empirical fact. In the most obvious
approach, suggested by Merton in 1973 [Mer73], the volatilities are imposed to be a
deterministic function of time. This model explains the implied volatilities for different
maturities but it still does not consider the effect on the implied volatilities for varying
strike prices. To overcome this difficulty Heston developed the Heston stochastic volatil-
ity model in 1993 [Hes93], in which not only the underlying asset but also the volatility
is assumed to follow a stochastic process. Here the option price V (t, S, v) as a function
of the stock price S ∈ R+, time t ∈ [0, T ] and variance v ∈ R+ (root of the volatility)
is determined by a parabolic two dimensional partial differential equation. As pointed
out by [Hes93], this model allows an arbitrary correlation between the underlying asset
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1. Introduction

and the volatility and is able to clarify the skewness effect in the Black-Scholes model.
Another approach, where the volatility is a priori unknown and is only assumed to
lie within a range of extreme values, the so called Uncertain Volatility model was de-
veloped independently by Avellaneda, Levy and Paras [ALP95] and Lyons [Lyo95] in
1995. As pointed out by [ALP95] the bounds can be inferred from high-low peaks of
option-implied volatilities and be considered as defining a confidence interval for future
volatilities. With these extreme values of the volatility the option value can be computed
in a worst and best case scenario. Assuming the worst case the holder can hedge his
position and the value of the portfolio is increasing minimally, regardless of the actual
volatility movement. In the resulting non-linear pricing equation, also known as Black-
Scholes-Barenblatt equation, the volatility depends on the time t, the underlying asset S
and on the second derivative of the option value. For simple convex payoff functions the
model reduces to the Black-Scholes Problem with one of the maximal or minimal value
of the volatility. Therefore, most authors in the literature study non-convex payoff func-
tions such as butterfly-spread or barrier options [Bud13, FP03, Hei10, Sen15, ZW09].

In the first part of this thesis we consider the pricing of American options with Black-
Scholes and Heston’s model. A fundamental difficulty arises from the fact that Amer-
ican options can be exercised at any time; thus leading to a free boundary problem.
For American put options in Heston’s model with payoff HP(S) := max(0,K − S) the
free boundary problem reads as follows: Find V (t, S, v) with (t, S, v) ∈ [0, T ) × Ω and
Ω ⊂ R2 a domain such that

V = HP(S) for S ≤ Sf (t, ·),
∂V

∂t
+ LV = 0 for S > Sf (t, ·) (1.1)

with end condition V (0, S, v) = HB(S) and appropriate boundary conditions. In He-
ston’s model the differential operator is a two dimensional parabolic equation; thus
leading to a free boundary Sf (t, v) : [0, T ] × R+ → R+ depending on time t and
variance v. In the Black-Scholes model the partial differential operator LV (t, S) is a
one-dimensional parabolic equation and the free boundary Sf (t) : [0, T ] → R+ is a
function depending on time t. In option pricing problems the free boundary can be
interpreted as the optimal underlying price to which exercising the option is optimal.
In order to obtain a formulation where the a priori unknown free boundary does
not explicitly appears, the problem is reformulated as a linear complementarity prob-
lem. A classical way to approximately solve such problems is the finite difference
method. In a finite difference method, one defines a finite number of grid points
and approximates the partial derivatives with difference quotients. This class of dis-
cretizations in the context of American options has been analyzed by many authors
[CP99, IT09, Oos03, Sey12, ZFV98]. One well-known drawback of finite difference
methods is that the discrete solution is only given at the grid points and that strong
regularity assumptions on the solution are required to obtain error estimates.
Another approach is to reformulate the linear complementarity problem as a parabolic
variational inequality. This formulation is derived by multiplying test functions from a
closed convex set in H1(Ω) and integrating over the spatial domain Ω. Finally, the vari-
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ational inequality (weak formulation) is derived by integration by parts. Well-posedness
for (parabolic) variational inequalities is often derived by using a method called penal-
ization (cf. [BL82, KS00, KTK17, Mem12]). The penalty approach consists of substi-
tuting the variational inequality by a family of non-linear equations and proving some
results for the penalized problem. Finally, it can be shown that their solutions converge
to the solution of the variational inequality and the solution is unique. This method
is also used in this thesis to establish well-posedness for the Black-Scholes and Heston
variational inequality. Note that the well-posedness of the Black-Scholes variational
inequality for put options and call options with dividend payments were already estab-
lished in [Ach05, DL19b].
A parabolic variational inequality is typically solved approximately by a time step-
ping method and by replacing the convex set by a linear finite element space. Thus,
in each time step a discrete linear complementarity system is solved. Essential to the
success of a spatial discretization with linear basis functions is the nodal basis prop-
erty that enables an appropriate approximation of the constraint set by comparing
the function values. For the numerical computation to solutions of elliptic variational
inequalities on closed convex sets employing a discretization with linear basis func-
tions, error estimates, adaptive methods and monotone multigrid solvers have been
investigated over the past decades [BHR77, Fal74, GK09, Kor94, Kor96, Man84]. This
methods for a discretization with linear basis functions are already applied with success
to the semi-discrete variational inequality arising in the valuation of American options
[DL19a, HRSW13, KSW12, KTK17, Mau06, Mem12, Sey12, Zha07].
However, of particular importance in the valuation of options are the partial derivatives
of the option price up to order two (Greeks) to determine optimal risk strategies. A spe-
cial feature for these option price problems is that initial conditions are typically given
as piecewise linear continuous functions. Consequently, in this work, we have derived a
spatial discretization based on cubic B-splines with coinciding knots at the points where
the initial condition is not differentiable. Together with an implicit Euler scheme, this
enables us to achieve an accurate pointwise approximation of the partial derivatives
up to order two. This is confirmed by numerical computations for an American put
option as well as for a call option with dividend payments in the Black-Scholes model
and a put option in Heston’s model. In former approaches the authors applied a cubic
B-spline discretization without internal coinciding knots to the Black-Scholes ([Hol04])
and Heston variational inequality [Bos15, Wei14]. In particular in [Bos15, Wei14] one
could observe that an approximation of the initial condition without internal coincid-
ing knots results in oscillations in both the first and second partial derivatives of the
numerical solution.
In the context of variational inequalities it should be noted that, due to the free bound-
ary, classical solutions of variational inequalities do not exist. In particular, for elliptic
variational inequalities the second derivative of the solution is discontinuous along the
free boundary. The threshold of smoothness for elliptic variational inequalities has been
established by [Bré71]. It can be shown that for a sufficiently smooth boundary, right
side and obstacle function in C3(Ω), the solution lies in the Sobolev-Slobodeckij space
W s,p(Ω)∩W 2,∞(Ω) for all s < 2 + 1/p and 1 < p <∞. Based on this realistic smooth-
ness assumption, the authors in [BHR77] have established optimal O(h3/2−ε) a priori

5



1. Introduction

estimates for quadratic basis functions in the H1(Ω)-norm. Since the obstacle function
for pricing American options are given as a piecewise linear function, it is still unknown
whether the solution to the semi-discrete Black-Scholes or Heston variational inequal-
ity satisfies this regularity result. But numerical experiments for the Black-Scholes and
Heston variational inequality with quadratic (k = 3) and cubic (k = 4) (tensor prod-
uct) B-splines confirm the optimal convergence rate of O(h3/2−ε) in the H1(Ω)-norm
for the semi-discrete solution, when the initial condition is approximated with k − 1
coinciding knots at those points where the initial condition is not differentiable. This
convergence rates for American option pricing problem seems to be never discovered in
the previous literature. At this point it should be mentioned that the constraint for an
American put option in the Black-Scholes or Heston variational inequality are binding
for S ≤ Sf < K, where the obstacle function is smooth. A similar consideration applies
to the Black-Scholes variational inequality with dividend yields for an American call
option. Thus, it seems that the irregularity of the obstacle function at S = K has no
influence on the smoothness of the solution. We also provide numerical results with
linear basis functions, where optimal O(h) convergence in the H1(Ω)-norm can be ob-
served. A priori estimates and corresponding numerical results for the Black-Scholes
variational inequality with linear basis functions and an implicit time stepping method
in Bochner spaces can also be found in [DL19a, DL].
For an efficient computation of numerical solutions we propose a monotone multigrid
method (MMG) for (tensor product) B-splines with possible coinciding knots. In or-
der to maintain the robustness and monotonicity of the scheme we construct a quasi-
optimal monotone coarse grid approximation which is based on the B-spline expansion
coefficients. The constructed method profits heavily from the positivity of B-splines. A
MMG method for higher order B-splines without coinciding knots was first established
by [Hol04, HK07]. It is shown here that the method is globally convergent and reduces
asymptotically to a subspace correction method when the contact set is identified. Fi-
nally, the method is applied to the Black-Scholes and Heston variational inequality for
linear, quadratic and cubic (tensor product) B-splines. In particular, it is observed that
the MMG method is robust with respect to the refinement level and mesh size, but the
convergence rate and number of iterations increase with the order of the B-spline basis
functions.

In the second part of this thesis we consider the valuation of a European butterfly-
spread option in the uncertain volatility model. The resulting non-linear Black-Scholes-
Barenblatt equation is a parabolic partial differential equation of Hamilton-Jacobi-
Bellman type. Hamilton-Jacobi-Bellman (HJB) equations are fully non-linear second
order equations where the differential operator is included in an infimum or supremum.
The equation has been introduced in the 1950’s by Rowan Hamilton, Carl Gustav Ja-
cobi and Richard Bellman. This type of equation arises from models for optimal control
with stochastic processes. A butterfly-spread option is a trading strategy where posi-
tions with three different strike prices can be taken. It can be constructed by buying a
call option at a strike price K1, buying a call option at a higher strike price K2 > K1
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and selling two call options at strike price K := (K1 +K2)/2. In the worst case scenario
the problem is given as follows: Find V (t, S) with (t, S) ∈ [0, T )× R+ such that

F (V ) := Vt+ inf
σ∈Σ

(LσV ) := Vt+ inf
σ∈Σ

(1
2S

2σ2VSS

)
+(r−D0)SVS−rV = 0 in [0, T )×R+

(1.2)
with Σ := [σmin, σmax], end condition V (T, S) = HBS(S) and appropriate boundary
conditions. In this setting V (t, S) corresponds to the option price with dynamic hedging
with underlying asset under the worst case volatility path and solves (1.2) with

σ− [VSS ] :=
{
σ2

min if S2VSS ≥ 0,
σ2

max if S2VSS < 0.
(1.3)

The corresponding problem in the best case scenario is obtained by replacing the infi-
mum by a supremum.
For the well-posedness for classical linear parabolic equations one usually introduces a
weak formulation. Assuming that the bilinear form is bounded and coercive one derives
the well-posedness in the Bochner space L2(0, T,H1

0 (Ω))∩H1(0, T,H−1(Ω)) by the well
known Lax-Milgram like theorem for parabolic equations [Eva98]. This approach is not
applicable for the Black-Scholes-Barenblatt equation or HJB equations in general, since
it does not admit a weak formulation. This is due to the fact that the non-linearity
depends pointwise on the spatial second derivative of the solution, and thus no inte-
gration by parts is applicable to pass the partial derivative onto a test function.
A novel theory for parabolic HJB equations that satisfy the Cordes condition has been
established in [Sme15] or in the later published article [SS16]. The Cordes condition is
an algebraic assumption on the coefficients in the differential operator and has origi-
nally been introduced for elliptic equations in non-divergence form. For partial differ-
ential equations in non-divergence form it is usually not possible to introduce a weak
formulation when the diffusion coefficients are not sufficiently regular. Assuming the
Cordes condition and a convex bounded domain Ω enables us to prove existence and
uniqueness of the solution in the space H2(Ω) ∩ H1

0 (Ω). It turns out that this anal-
ysis for the well-posedness fits also in the context of HJB-equations. In this thesis
we apply the theory from [Sme15, SS16] to prove the well-posedness for the Black-
Scholes-Barenblatt equation. Since this theory was developed for non-degenerate diffu-
sion coefficients we introduce a log-transformation x := log(S/K) to avoid a degenerate
coefficient in S. In particular it is shown that the Black-Scholes-Barenblatt equation is
well-posed in the Bochner space L2(0, T ;W)∩H1(0, T ;L2(Ĩ)) withW := H2(Ĩ)∩H1

0 (Ĩ)
and Ĩ := (Smin, Smax), 0 < Smin < Smax.
Since no exact solution formula is available in the simple case of European option
with a non-convex payoff function, many authors have studied finite difference or finite
volume methods to approximately solve the Black-Scholes-Barenblatt equation. Essen-
tial to their success was that Barles and Sougandis in [BS91] provided a convergence
analysis which is applicable to low order discretizations. In particular, it was shown
in [Var01], that the Black-Scholes-Barenblatt equation has a unique viscosity solution.
Therefore, the Barles and Souganidis theorem provides the convergence to the viscos-
ity solution if the method is consistent, stable and monotone. This was proven for the
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1. Introduction

Black-Scholes-Barenblatt equation with a finite difference method in [FP03, Hei10] and
with a finite volume method in [ZW09]. Moreover, the author in [Bud13] has discussed
finite difference methods for options with one or two underlying assets.
Considerably less literature in the context of HJB equations is available for finite ele-
ment methods or discontinuous finite element methods. However, the authors in [JS13]
provide a finite element method for possible degenerate parabolic HJB equations. In
particular, they introduce an approximation of the non-linear second order term in
H1(Ω) with L1-normalized linear finite element functions. Furthermore, it was shown
that the finite element solution converges to the viscosity solution in the L∞-norm,
as well as in the H1-norm, if there is a non-degenerate subset of the discrete spatial
operator. A higher order discretization with a discontinuous finite element method for
elliptic and parabolic HJB equations is established in [Sme15, SS16]. Considering the
elliptic case the authors introduce a H2(Ω)-formulation on a bounded domain Ω and
provide well-posedness in H2(Ω)∩H1

0 (Ω), assuming the Cordes condition. Particularly,
the introduction of the Cordes condition enables the development of a discontinuous
finite element method with a complete analysis in terms of consistency, stability and
error bounds.
However, as mentioned before, in financial mathematics a pointwise accurate approx-
imation of the Greeks is highly relevant to determine optimal risk strategies. Thus, a
higher order discretization is preferable for a pointwise approximation of the Greeks up
to second order. In this thesis we provide an approximation with B-spline basis func-
tions to approximately solve the Black-Scholes-Barenblatt equation with high precision
when the location of the volatility change is approximated with desired accuracy. An
essential advantage of this method is its simplicity. In the linear case this method is
equivalent to the monotone finite element method from [JS13], where a discretization
with L1-normalized linear finite element functions is analyzed.
One particular difficulty arises from the fact that no weak formulation for the Black-
Scholes-Barenblatt equation is available in order to use a classical Galerkin approach
for the discretization. For this reason, the second order term in the non-linear partial
differential operator is approximated in H1(I) with L1(I)-normalized B-splines of order
k. The corresponding problem is solved by a semismooth Newton algorithm. It turns
out that the weak approximation of the volatility function in (1.3) leads to disconti-
nuities in the first derivatives and to small oscillations in the second derivative of the
approximated solution. This is due to the fact that the locations of volatility change
given by the zeros of the second derivative are only an approximation and the second
derivatives are not exactly zero at those points. Since this approximation of the volatil-
ity function needs only a stable approximation of the solution in H1(I) an unstable
approximation of the second derivative has no direct influence on the approximation of
the volatility function. But it is clear that this approach leads to low order convergence
rates for cubic B-splines. To obtain a stable approximation of the second derivative
with B-splines of order k it is necessary to repeat those knots k − 1 times where the
volatility jumps from σ2

min to σ2
max or vice versa. In order to improve the approximation

of the solution we compute the approximation of the volatility function by a pointwise
evaluation of the second derivative with cubic B-splines in the semismooth Newton step
and insert knots at the zeros of the second derivative. Corresponding numerical results

8



show that the convergence of the solution and its partial derivatives are nearly optimal
in the L2-norm, when the location of volatility change is approximated with desired
accuracy.

The central goal of this thesis is the highly accurate numerical computation of the
American option price and its partial derivatives up to order two based on a cubic
(tensor product) B-spline discretization with coinciding knots. In particular we con-
sider the American option price in the Heston or Black-Scholes variational inequality
and the European option price with the Black-Scholes-Barenblatt equation. While the
formulation of the Black-Scholes variational inequality has been already formulated in
[Ach05, DL19b], we establish a variational inequality for Heston’s problem. In particu-
lar, the derivation of the weak form in this thesis differs from [Bos15, Bur16, KSW12,
Wei14] due to an error in the integration by parts at the boundaries where a Neumann
boundary condition holds. Moreover, we prove the existence and uniqueness of a solu-
tion for the Heston variational inequality derived in this thesis.
The special feature of this thesis is the discretization of the mentioned problems based
on a (tensor product) B-spline approximation with coinciding knots at the locations
where the initial condition (or numerical solution) is not differentiable. Former ap-
proaches [Bos15, Hol04, Sen15, Wei14] are based on cubic (tensor product) B-splines
without coinciding knots which results in oscillations in the partial derivatives. For the
highly accurate and fast numerical computation of the American option price we have
developed a monotone multigrid method based on coinciding knots. In the scope of
this thesis a Matlab package for the numerical realization of the B-spline discretization
for the above mentioned problems with linear, quadratic and cubic (tensor product)
B-splines and corresponding numerical solution algorithms was developed. Most of the
function works for arbitrary B-spline order, but due to the low regularity of the so-
lution to variational inequalities a linear, quadratic and in particular cubic B-spline
discretization is recommended. Several numerical results confirm that a cubic B-spline
discretization with coinciding knots facilitates a pointwise highly accurate approxima-
tion of the partial derivatives up to order two. These numerical results for the considered
option pricing problems with a quadratic or cubic B-spline discretization seems to be
never discovered in the previous literature.
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1. Introduction

Outline

Chapter 2: In Section 2.1, we briefly introduce some financial option pricing instru-
ments which are used throughout the thesis. Then the mathematical descriptions of
the Black-Scholes model, Heston stochastic volatility model and the uncertain volatil-
ity model are presented. An overview of the mathematical definitions of the Greeks
and their relevance on a financial market is discussed. In Section 2.2 we concentrate on
the valuation of American options. We present a weak formulation within the Black-
Scholes equation as a parabolic variational inequality in a weighted Sobolev space
on a bounded interval for put and call options. Note that this formulation has al-
ready been established in [Ach05, AP05, DL19a, DL19b]. Furthermore, the valuation
of American put options with Heston’s model is presented. Therefore, we introduce a
log-transformation x = log(S/K) and the corresponding problem is formulated as a
parabolic variational inequality in two dimensions on a bounded domain. In this regard
it turns out that one has to proceed somewhat differently in the integration by parts
as in [Bos15, BHSW15, KSW12, Wei14].
Chapter 3: Section 3.1 is devoted to study some regularity results for variational in-
equalities. These results are important for two reasons, namely for the error analysis for
further numerical computations and to clarify the maximal smoothness of the Greeks.
First, we introduce existence and uniqueness results of weak solutions to elliptic and
parabolic variational inequalities, which can be found in standard textbooks [KS80,
BL82]. In order to prove higher regularity one main difficulty for American option pric-
ing problems arises from the fact that the obstacle function given by a piecewise linear
continuous function is only once weak differentiable. Under some appropriate assump-
tion on the obstacle and the bilinear form we present a regularity result for elliptic and
parabolic variational inequalities in Sobolev or Bochner spaces, which fits into the con-
text of many option pricing problems. The results are based on [Mem12] and [KTK17],
where the log-transformed Black-Scholes and the partial integro-differential variational
inequality are considered.
Moreover, provided that the obstacle function and right side is smooth enough, the
maximal smoothness to elliptic variational inequalities from [Bré71] is discussed.
Fundamental properties on B-splines are presented in Section 3.2. Relevant properties
on splines for the implementation and their approximation properties are presented.
Of special interest in this thesis is the spatial discretization of the Black-Scholes and He-
ston variational inequality after a semi-discretization. Thus, in Section 3.3 we present
a priori estimates for elliptic variational inequalities for a conforming discretization
with linear and quadratic B-spline basis functions based on the results from [BHR77].
In particular, under realistic regularity assumptions for elliptic variational inequalities
optimal O(h) and O(h3/2−ε) error bounds in the H1(Ω)-norm are obtained for linear
and quadratic B-splines. Due to the limited smoothness of the solution to an elliptic
variational inequality the global error bound for a uniform grid size cannot be improved
when the B-spline order is increased for k > 3. Note that the required smoothness re-
sult for the semi-discrete Black-Scholes or Heston variational inequality in the case of
quadratic basis function is still outstanding.
Chapter 4: In Section 4.1 we discuss the well-posedness of the Black-Scholes vari-
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ational inequality in a weighted Sobolev space. Particularly, we employ the results
presented in Section 3.1 to the Black-Scholes variational inequality for a put and call
option. Note that these results are already established in [AP05, Ach05, DL19a, DL19b]
but the proof in this thesis is based on the techniques from [Mem12] and [KTK17].
Next, we introduce a semi-discretization of the Black-Scholes variational inequality and
discuss different time stepping methods in Section 4.2.
Furthermore, we derive a spatial B-spline discretization of the Black-Scholes varia-
tional inequality. Since initials condition for option pricing problems are typically given
as piecewise linear continuous functions we derive a spatial discretization based on lin-
ear (k = 2), quadratic (k = 3) or cubic (k = 4) B-splines with k − 1 coinciding knots
at the points, where the initial condition is continuous.
Chapter 5: In Section 5.1 we discuss the well-posedness of the Heston variational
inequality for a put option. Assuming a strictly positive variance and appropriate as-
sumptions on the data we prove that the bilinear form, derived in this thesis, is bounded
and satisfies a G̊arding inequality. Therefore, the result presented in Section 3.1 implies
that there exists a unique weak solution to the parabolic variational inequality. Since
the diffusion part of the derived bilinear form is not symmetric the results presented in
Section 3.1 to prove higher regularity in Bochner spaces are not applicable. Thus, we
prove H2(Ω)-regularity for the semi-discrete problem.
After semi-discretization a spatial tensor product B-spline discretization with coincid-
ing knots of the Heston variational inequality is presented in Section 5.2. Due to the
tensor product structure, the corresponding discretization matrices can be expressed as
sums of Kronecker products of matrices with respect to one coordinate. This enables
an efficient implementation.
Chapter 6: Next, we discuss the approximation of the Greeks. Since the derivatives
of splines can be expressed as a sum of B-splines of lower order, the approximation of
the partial derivatives can be computed efficiently by using a Neville-like scheme.
Chapter 7: In order to accelerate basic iterative schemes we propose a monotone
multigrid method for the fast and efficient numerical solution of the semi-discrete vari-
ational inequality with higher order B-splines arising in the valuation of American
options. The novel approach facilitates the numerical solution of discrete variational
inequalities arising from a uniform (tensor product) B-spline discretization with possi-
ble internal coinciding knots. Former approaches in [Hol04, HK07, Bos15] are based on
uniform B-splines without repeating knots. In order to ensure the robustness, or mono-
tonicity, of the multigrid scheme monotone coarse grid approximations with possible
coinciding knots are proposed. Finally, the global convergence of the MMG method is
proven.
Chapter 8: In order to verify the B-spline discretization and the corresponding nu-
merical solution algorithm to solve elliptic variational inequalities a one dimensional
test problem is constructed in Section 8.1. In Section 8.2, several numerical results are
proposed to study the discretization error of the solution and its partial derivatives for
the Black-Scholes and Heston variational inequality. Finally, several numerical exper-
iments show that the proposed monotone multigrid method is robust with respect to
the refinement level and mesh size.
Chapter 9: In this chapter we consider the valuation of a European butterfly-spread
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option in the Uncertain Volatility model. In Section 9.2 we prove the well-posedness of
the Black-Scholes-Barenblatt equation by assuming the Cordes condition. This theory
in the context of HJB equations was first established in [Sme15, SS16].
The discretization with a semi-discretization and a spatial B-spline discretization is
discussed in Section 9.3. Since the initial condition given as the butterfly-spread op-
tion payoff is also a piecewise linear continuous function, a B-spline discretization with
coinciding knots at the critical points is proposed. Since no weak formulation of the
Black-Scholes-Barenblatt equation is available in the continuous setting, we present an
approximation of the second derivative in a weak form with L1-normalized B-splines.
It turns out that the approximation of the non-linearity or volatility function in H1(I)
leads to discontinuities in the partial derivatives at those knots where the volatility
changes.
In order to construct a semi-smooth Newton method to solve the discrete Black-Scholes-
Barenblatt equation, one has to find an analog formulation of the Jacobian since the
discrete operator of the Black-Scholes-Barenblatt equation is not differentiable in the
classical sense. Thus, we first discuss slant-differentiability in Section 9.4. This concept
was also used in [Sme12, BMZ09] to solve discrete HJB equations. In order to stabilize
the approximation of the partial derivatives knots are inserted at the location of volatil-
ity changes. Corresponding numerical results for cubic B-splines in Section 9.5 show
that the convergence rates of the solution and its partial derivatives are nearly opti-
mal in the L2-norm, as for linear variational equations, when the locations of volatility
changes are approximated with desired accuracy.
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2. Option pricing

2.1. Option pricing models

We begin with some basic definitions and an overview of option pricing models. A
detailed introduction to option pricing problems can be found in [ABM09, Ach05,
Hul09, Rou13, Sey12, WDH93], only to mention a few. Also, the theses of [Bud13,
Bur16, Sen15, Wei14] are recommendable for a short introduction to option pricing
problems.
The organization of this chapter is as follows. In Section 2.1.1 we briefly introduce some
financial option pricing instruments and in Section 2.1.2, Section 2.1.3 and Section
2.1.4 we discuss a mathematical description of the Black-Scholes, Heston stochastic
volatility and Uncertain volatility model. An overview of mathematical definitions of
the Greeks and their meaning on a financial market is discussed in Section 2.1.5. Finally,
we introduce the mathematical formulation of pricing an American option in the Black-
Scholes or Heston’s model in Section 2.2.

2.1.1. Options

First of all, we present the definition of an option.

Definition 2.1. An option is a financial contract, which allows but not obligates the
holder (buyer) of an option to trade an underlying asset S at a specific point in time
T (European option) or during a period of time [0, T ] (American option). When the
holder of the option makes use of his right he pays a fixed strike price K to the seller
(writer). In return the holder receives a non-negative payoff H(S).

An underlying asset typically is a stock, but also parcel of shares of a company, stock
indices, currencies or commodities are possible. Numerous types of options such as
Vanilla, Barrier, Bermudan, Exotic and Asian options etc. are traded on markets as
well. The mentioned options all differ in their expiration dates, payoff structures or
conditions on expiration. In this thesis we are going to concentrate on Vanilla options,
these are European and American options as defined in Definition 2.1. In particular,
we will focus on American options in the Black-Scholes and Heston’s model. For the
more complicated non-linear Black-Scholes-Barenblatt equation we are going to con-
sider European options.
At an expiration date T the holder receives a so-called payoff. There are numerous
types of payoff structures possible. We concentrate on call, put and butterfly-spread
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2. Option pricing

options. If the holder of an option is allowed to buy an underlying asset S at a specific
strike price K, the option is called call option and the payoff is defined as

HC(S) := max(0, S −K). (2.1)

If the holder of an option is allowed to sell an underlying asset S at a specific strike
price K, the option is called put option and the payoff is defined as

HP(S) := max(0,K − S). (2.2)

A graphical illustration of a put and call option is presented in Figure 2.1. Options can
be considered as an insurance against future price fluctuations and can be employed for
hedging transactions. From the holder’s point of view, a call option can be considered
as a kind of insurance against future rising underlying prices and a put option as a
insurance against falling underlying prices.

K

K

underlying S

HP(S)

K
underlying S

HC(S)

Figure 2.1.: Payoff of a put (left) and call (right) option out of the perspective of the
holder.

There are also trading strategies possible where purchases and sales of put and call
options are combined such as bull spread, bear spread, strangle and butterfly spread
options (see for example [Sey12, p.72] or [Hul09, pp. 219-234]). We will only discuss the
butterfly-spread option, since this strategy will be considered in the following chapters.
A butterfly-spread option is a trading strategy, where positions with three different
strike prices K1,K and K2 are taken. It can be constructed with call and put options,
and both possibilities are leading to the same payoff function. A combination of call
options consists of buying a call option at a strike price K1, buying a call option at
a higher strike price K2 with K1 < K2 and selling two call options at strike price
K := (K1 + K2)/2, where the strike price K is normally close to the current stock
price. Due to the put-call parity (c.f. [Sey12, p. 5]), a butterfly spread can also be
created by buying a put option at strike price K1, buying a put option at higher strike
price K2 > K1 and selling two put options at strike price K.
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K1 K K2
underlying S

HBS(S)

Figure 2.2.: Payoff of a butterfly-spread option out of the perspective of an investor.

At the expiration date T the value of an butterfly-spread option from the investor’s
point of view is given by the following payoff

HBS(S) : = max(0, S −K1)− 2 max(0, S −K) + max(0, S −K2)

=





0 S < K1, S > K2

S −K1 K1 ≤ S ≤ K
K2 − S K ≤ S ≤ K2.

(2.3)

Graphically, the payoff of a butterfly-spread option can be presented as in Figure 2.2.
As can be seen, a butterfly-spread option leads to a high profit if the stock price S is
close to the strike price K, but the profit is increasing if the stock price tends to the
strike prices K1 or K2. Therefore a butterfly-spread option is a recommendable strategy
for an investor, who relies on barely changing stock prices around the strike price K.
In other words, a butterfly-spread option leads to a limited high profit for an investor
when the future volatility of the stock price is expected to be lower than the implied
volatility.

As one can see, what all these payoff functions have in common is that they are piecewise
linear. In particular, they are not differentiable when the underlying asset is equal to
the strike price. This plays an important role for further numerical computations in
this thesis.

2.1.2. Black-Scholes Model

In this section we briefly describe the derivation of the Black-Scholes equation. This
partial differential equation of parabolic type was first introduced by [BS73]. There
is a lot of literature about the derivation of the Black-Scholes equation available; we

19



2. Option pricing

follow here the approach of [Hul09, Wil01]. Regarding the valuation of options with the
Black-Scholes model it is very important to consider the underlying assumption from
which the resulting partial differential equation can be derived. The assumptions of the
Black-Scholes model are not all empirically valid and it is necessary to understand its
limitations for a proper application.

Assumption 2.2. (Model assumptions)
The assumptions on the assets are:

i) The underlying asset (or stock price) is modeled by a geometric Brownian motion

dS = (µ−D0)Sdt+ σSdW (2.4)

with constant drift µ, constant volatility σ and Wiener process W . Assuming
continuous dividend payments of the underlying asset S leads to a decrease of S
in each time interval by the amount of dD = D0Sdt with constant dividend yields
D0 (see [Sey12, p. 156]).

ii) The interest rate r on the riskless asset is constant.

The assumptions on the market are:

iii) There is no arbitrage opportunity on the market, that means it is not possible to
make a riskless profit.

iii) It is possible to borrow and lend any amount of cash at the riskless interest rate
r at any time.

iv) Everyone has the ability to buy and sell any amount of the stock (securities). This
also includes short selling of stocks.

v) The market is frictionless, that means that the market is free of any transactions
costs or taxes. Securities are perfectly divisible.

The assumptions can be relaxed by assuming the volatility or interest rate to be a
deterministic function over time [Mer73]. Let V (t, S) the price of an option. Applying
Itô’s formula results in

dV (t, S) =
(
∂V (t, S)

∂t
+ (µ−D0)S∂V (t, S)

∂S
+ 1

2σ
2S2∂

2V (t, S)
∂S2

)
dt+

(
σS

∂V (t, S)
∂S

)
dW.

(2.5)
As one can see, both SDE’s in (2.4) and (2.5) are driven by the random terms dW .
In the next step we eliminate the random terms to express the value of an option as a
fully deterministic partial differential equation. To do so, a portfolio Π of ∆1 stocks S
and ∆2 options V (t, S) is constructed as follows

Π := ∆1S + ∆2V (t, S). (2.6)

Therefore the change of the portfolio over the time interval dt results in

dΠ = ∆1(dS + dD) + ∆2dV (t, S), (2.7)
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where the term ∆1dS denotes the change of the underlying stock price S and ∆1dD(t)
corresponds to the amount of dividend payments of the stock S over the time interval
dt. To eliminate the random terms dW , ∆1 and ∆2 are choosen as

∆1 := ∂V (t, S)
∂S

∆2 := −1. (2.8)

Inserting the SDE’s (2.4) and (2.5) in dΠ provides

dΠ =∆1(dS + dD) + ∆2dV (t, S)

= −
(
∂V (t, S)

∂t
+ 1

2σ
2S2∂

2V (t, S)
∂S2

)
dt+D0S

∂V (t, S)
∂S

dt. (2.9)

Since no random terms in the change of the portfolio dΠ over dt appears, the portfolio
is riskless. Then the no-arbitrage-principle implies that the portfolio must earn the
same rate of return as investments in other riskless securities. Therefore, the following
formula is valid

dΠ = rΠdt. (2.10)

Finally, by applying (2.9) and (2.6) to (2.10), the following linear parabolic partial
differential equation with a diffusion, convection and reaction term is derived

∂V (t, S)
∂t

+ 1
2σ

2S2∂
2V (t, S)
∂S2 + (r −D0)S∂V (t, S)

∂S
− rV = 0. (2.11)

The above equation is called Black-Scholes or Black-Scholes-Merton equation. To shorten
the notation we define

LBV (t, S) := 1
2σ

2S2∂
2V (t, S)
∂S2 + (r −D0)S∂V (t, S)

∂S
− rV, (2.12)

and the equation (2.11) can be rewritten as

∂V (t, S)
∂t

+ LBV (t, S) = 0. (2.13)

In the case of European options, an exact closed-form solution formula for the Black-
Scholes equation for given terminal and boundary data has been established in [BS73].
This means that a European option can be priced by an easy formula. Due to its simple
handling, the so-called Black-Scholes formula became very famous. In the case of an
American put option or call option with dividend payments (D0 > 0) the problem
leads to a more complex free boundary problem, to which until today no exact solution
formula is available and numerical computation is needed. The resulting problem for
pricing an American put and call option with the Black-Scholes model is discussed in
Section 2.2.1.
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2.1.3. Heston’s stochastic volatility model

In the following section we briefly describe the derivation of the Heston equation, which
was first introduced by [Hes93] in 1993. The content of this section is also based on the
following literature [AMST07, Bur16, Gat06, ABM09, Rou13].
One of the main limitations of the Black-Scholes model is the assumption on the con-
stant volatility in the stock price process. Here the stock return is assumed to be
normally distributed with a constant volatility violating most of the real market situ-
ations. An empirical determination of the volatility (implied volatility) from observed
option prices for short maturities shows that the volatility in dependency of the strike
prices can graphically be represented as a so-called volatility smile because when im-
plied volatilities are plotted against the strike prices K, the resulting graph looks like
a smile. The implied volatility is minimal when the strike price K is equal to the stock
price S. For long maturities one often observe a volatility skew. One of the first models
that was able to explain the volatility smile or skewness effect for different strike prices
K was the Heston model. Another advantage of the Heston equation is that it provides
closed-form solutions for a European call or put options for given terminal-boundary
conditions. Due to this reasons the Heston model became very popular over the last
decades (cf. [Rou13]).
To derive the Heston equation, it is required to make some assumptions on the asset
and the market. The assumptions on the market are the same as in the Black-Scholes
model, as provided in Assumption 2.2, but what is different is the stock price process,
where the variance v, or volatility

√
v, is modeled as a CIR-process (Cox-Ingersoll-

Ross-process)

dS = µSdt+
√
vSdW1, dv = κ(γ − v)dt+ ξ

√
vdW2.

W1 and W2 are two different Wiener processes and they are correlated by a constant
correlation |%| < 1, κ > 0 denotes the mean reversion rate, γ > 0 is the mean reversion
level and ξ > 0 is the volatility of the process. For the sake of simplicity, we also assume
that the underlying asset does not pay dividends.
One important property of the CIR-process is that the variance remains always positive.
To ensure that the volatility process is strictly positive it is often assumed in the
literature that the parameters satisfy the following Feller condition

2κγ > ξ2, (2.14)

otherwise the process degenerates to a deterministic function at the time when the
volatility is zero. When calibrating the Heston model to real market option prices, the
Feller condition can violate this condition, but in most experiments the parameters are
selected so that the condition is satisfied.
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In the next step we present the derivation of the Heston equation closely based on
[Bur16, Gat06, Rou13].
We start by constructing a portfolio Π with one option V := V (t, S, v), ∆1 units of the
underlying asset S and ∆2 units of another underlying asset U . Then the value of the
portfolio is given as follows

Π := V + ∆1S + ∆2U. (2.15)

Therefore, the change of the portfolio over the time interval dt is given by

dΠ = dV + ∆1dS + ∆2dU. (2.16)

In the next step we apply the multidimensional version of Itô’s formula to dV and dU
([KS91, Theorem 3.6]), which yields

dV = ∂V

∂t
dt+ ∂V

∂S
dS + ∂V

∂v
dv + 1

2vS
2∂

2V

∂S2 dt+ 1
2ξ

2v
∂2V

∂v2 dt+ ξρvS
∂2V

∂S∂v
dt, (2.17)

dU = ∂U

∂t
dt+ ∂U

∂S
dS + ∂U

∂v
dv + 1

2vS
2∂

2U

∂S2 dt+ 1
2ξ

2v
∂2U

∂v2 dt+ ξρvS
∂2U

∂S∂v
dt. (2.18)

Inserting the SDE’s (2.17) and (2.18) in dΠ provides

dΠ =
(
∂V

∂t
+ 1

2vS
2∂

2V

∂S2 + 1
2ξ

2v
∂2V

∂v2 + ρξvS
∂2V

∂S∂v

)
dt

+ ∆2

(
∂U

∂t
+ 1

2vS
2∂

2U

∂S2 + 1
2ξ

2v
∂2U

∂v2 + ξρvS
∂2U

∂S∂v

)
dt

+
(
∂V

∂S
+ ∆2

∂U

∂S
+ ∆1

)
dS +

(
∂V

∂v
+ ∆2

∂U

∂v

)
dv. (2.19)

In the next step we eliminate the random terms dS and dv. Therefore we choose ∆1
and ∆2 as

∆2 := −
∂V
∂v
∂U
∂v

, ∆1 = −∂V
∂S
−∆2

∂U

∂S
. (2.20)

As in the Black-Scholes model the no arbitrage principle implies the formula dΠ = rΠdt.
Inserting dΠ from (2.19) and Π from (2.15) with ∆1 and ∆2 as above in dΠ = rΠdt
yields

dΠ =
(
∂V

∂t
+ 1

2vS
2∂

2V

∂S2 + 1
2ξ

2v
∂2V

∂v2 + ρξvS
∂2V

∂S∂v

)
dt

+ ∆2

(
∂U

∂t
+ 1

2vS
2∂

2U

∂S2 + 1
2ξ

2v
∂2U

∂v2 + ξρvS
∂2U

∂S∂v

)
dt

= rΠdt = r(V + ∆1S + ∆2U). (2.21)
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Rearranging leads to

∂V
∂t + 1

2vS
2 ∂2V
∂S2 + 1

2ξ
2v ∂

2V
∂v2 + ρξvS ∂2V

∂S∂v + rS ∂V∂S − rV
∂V
∂v

=
∂U
∂t + 1

2vS
2 ∂2U
∂S2 + 1

2ξ
2v ∂

2U
∂v2 + ξρvS ∂2U

∂S∂v + rS ∂U∂S − rU
∂U
∂v

. (2.22)

Since the left-hand side is a function of V and the right-hand side is a function of U ,
equality is only possible if both sides are equal to a function. As suggested by [Hes93]
the function is choosen as f(t, S, v) = −κ(γ − v) + λv, where λ(S, v, t) ≥ 0 represents
the market price of volatility risk and is proportional to v, hence λ(v) = λv. Then the
Heston partial differential equation is given by

∂V

∂t
+ LHV (t, S, v) := ∂V

∂t
+ 1

2

(
S2v

∂2V

∂S2 + 2%ξvS ∂2V

∂S∂v
+ ξ2v

∂2V

∂v2

)

+rS ∂V
∂S

+ (κ(γ − v)− λ(t, S, v)) ∂V
∂v
− rV = 0. (2.23)

The Heston equation is a parabolic PDE with a diffusion, a convection and a reac-
tion term. In the case of a European call or put option, Heston [Hes93] proposed a
closed-form solution for suitable terminal-boundary conditions. Since this closed-form
solution includes complex integrals that can be only computed with quadrature rules,
the solution is also called semi-analytical. In the case of an American put option, such
a closed form solution is not available to date and a numerical discretization of a free
boundary problem is needed. Regarding an American call option it can be shown that
an early exercise decision makes no sense when the underlying asset pays no dividends.
That is why the closed form solution for a European call option can also be used for an
American call option without dividends. This result was first established by [Mer73] for
the Black-Scholes model without dividends and it can also be applied for the Heston
model. The derivation of the free boundary problem for the valuation of an Ameri-
can put option with Heston’s model and its weak formulation as parabolic variational
inequality can be found in Section 2.2.2.

2.1.4. Uncertain volatility model (Black-Scholes-Barenblatt equation)

In this section, we recall a simplified derivation of the Black-Scholes-Barenblatt equation
from [Sey12]. The Black-Scholes-Barenblatt equation was first introduced by [ALP95,
Lyo95]. In this model the volatility is a priori unknown and it is only assumed to lie
within a range of extreme values. With this extreme values, the option value can be
computed in a worst and best-case scenario. In the original paper of [ALP95], the Black-
Scholes-Barenblatt equation is derived from a conditional expectation operator with a
stochastic control variable σ(t), a so-called stochastic control problem. To avoid the
use of the theory for stochastic control problems, we follow the simplified arguments of
[Sey12].
In the uncertain volatility model the assumptions are the same as in the Black-Scholes
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2.1. Option pricing models

model, but what is different is the stochastic process of the underlying asset. For sim-
plicity we assume that the underlying asset pays no dividends. The underlying asset is
assumed to follow the stochastic process

dS = µ(t)Sdt+ σ(t)SdW (2.24)

where the stochastic variable σ(t) lies in the range of

σmin ≤ σ(t) ≤ σmax. (2.25)

Similar to the Black-Scholes equation we construct a portfolio Π with ∆1 underlying
assets S and ∆2 options V (t, S)

Π := ∆1S + ∆2V (t, S). (2.26)

Therefore, the change of the portfolio depending on the stochastic variable σ(t), over
the time interval dt is as follows

dΠ(σ) =∆1dS + ∆2dV (t, S)
=∆1 (µ(t)Sdt+ σ(t)SdW )

+ ∆2

(
∂V (t, S)

∂t
+ µ(t)S∂V (t, S)

∂S
+ 1

2σ(t)2S2∂
2V (t, S)
∂S2

)
dt

+ ∆2

(
σ(t)S∂V (t, S)

∂S

)
dW. (2.27)

To eliminate the random terms dW we choose

∆1 := −∂V (t, S)
∂S

, ∆2 = 1, (2.28)

that leads to
dΠ(σ) =

(
∂V (t, S)

∂t
+ 1

2σ(t)2S2∂
2V (t, S)
∂S2

)
dt (2.29)

with the unknown stochastic variable σ(t). Now the stochastic variable σ(t) is choosen
such that the return of dΠ(σ) increases by the maximal or minimal amount. Mathe-
matically, this can be formulated as follows:

• Choose σ such that dΠ(σ) is the greatest lower bound. (Worst case scenario)

• Choose σ such that dΠ(σ) is the least upper bound. (Best case scenario)

Finally, applying the no arbitrage principle to the two cases above implies

inf
σ∈Σ

(dΠ(σ)) = rΠdt, (Worst case scenario) (2.30)

sup
σ∈Σ

(dΠ(σ)) = rΠdt (Best case scenario) (2.31)
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with Σ := [σmin, σmax]. Exploiting (2.26) and (2.27) and rearranging of the two equa-
tions above leads to the following partial differential equations of Hamilton-Jacobi-
Bellman type

∂V (t, S)
∂t

+ inf
σ∈Σ

(
1
2σ

2S2∂
2V (t, S)
∂S2

)
+ rS

∂V (t, S)
∂S

− rV = 0 (2.32)

and

∂V (t, S)
∂t

+ sup
σ∈Σ

(
1
2σ

2S2∂
2V (t, S)
∂S2

)
+ rS

∂V (t, S)
∂S

− rV = 0. (2.33)

These two equations are known as Black-Scholes-Barenblatt equation [ALP95, Lyo95].
Assuming that the asset pays out a dividend D0, the Black-Scholes-Barenblatt equation
can be rewritten in the following compact form for the worst case scenario

∂V (t, S)
∂t

+ inf
σ∈Σ

(LσV (t, S)) = 0 (2.34)

and for the best case scenario we have

∂V (t, S)
∂t

+ sup
σ∈Σ

(
LσV (t, S)

)
= 0, (2.35)

where the linear differential operator LσV (t, S) is defined as

LσV (t, S) := 1
2σ

2S2∂
2V (t, S)
∂S2 + (r −D0)S∂V (t, S)

∂S
− rV. (2.36)

In the case of European options, the two extreme option values can be obtained by
solving the equations above for a given terminal condition V (T, S) = H(S) with payoff
H(S). In this setting V (t, S) corresponds to the costs of dynamic hedging with the
underlying asset under the worst case volatility path and solves (2.34) with

σ− [VSS ] :=
{
σ2

min if VSS ≥ 0,
σ2

max if VSS < 0,
(2.37)

and (2.35) the best-case scenario with

σ+ [VSS ] :=
{
σ2

max if VSS ≥ 0,
σ2

min if VSS < 0.
(2.38)

Since the volatility function σ+ [VSS ] or σ− [VSS ] depends on the second derivatives of
the solution for each t ∈ [0, T ), the Black-Scholes-Barenblatt equation is a non-linear
partial differential equation. For convex payoff functions, as for a put or call option,
this problem reduces to the Black-Scholes equation with one of the extreme values of
the volatility. In the simple case of a European option for initial condition given as
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a non-convex payoff function, no closed-form solution of the Black-Scholes-Barenblatt
equation is available and numerical experiments for non-linear PDE’s are needed.

2.1.5. Greeks

To determine optimal risk strategies in finance, the focus of interest is not only in the
solution of the partial differential equation or of the free boundary problem (i.e. the
European or American option price), but also on its partial derivatives up to order two,
the so-called Greeks. The name is used since most of these sensitivities are denoted in
Greek letters. One of the main objectives of this thesis is to find an pointwise approxi-
mation with cubic (tensor product) B-splines of these sensitivities, in particular for the
more challenging case of an American option. In this section we give a short overview
of the most relevant Greeks and their meaning on a financial market. The content of
the next section is based on [Hul09, p.247, pp. 349–376]. A short introduction can also
be found in [Bos15, Wei14].
The Delta of an option measures the change of the option value V with respect to a
small change of the underlying asset S. Mathematically, Delta is the partial derivative
of the option value with respect to the underlying asset S

∆ := ∂V

∂S
(2.39)

and it satisfies 0 ≤ ∆ ≤ 1 for a call option and −1 ≤ ∆ ≤ 0 for a put option. Delta is
the amount of underlying assets the owner of one option should buy or sell to create a
riskless portfolio. This is also known as Delta-hedging. Adjusting the amount of sales
or purchases of the underlying asset such that the Delta of the portfolio sums to zero
is called delta neutral. Since Delta is changing over time, the owner of the portfolio
remains delta neutral for only a relatively small period of time and the hedge has to be
adjusted for each period. In order to control the adjustments to remain delta neutral,
the sensitivity Gamma is highly relevant. Gamma is the change of Delta ∆ with respect
to a small change of the underlying asset S. Formally speaking, Gamma is the second
partial derivative with respect to the underlying price S

Γ := ∂2V

∂S2 (2.40)

and is positive for a put and call option. If the absolute value of Gamma is small,
Delta changes slowly, and the hedge has to adjust infrequently to remain delta neutral.
Otherwise, if the absolute value of Γ is high, Delta is very sensitive to a small change
of the underlying asset, and the hedge has to adjust frequently to remain delta neutral.
As discussed earlier, the option value depends also on the volatility. Therefore, the
sensitivity Vega measuring the change of the option value to a small change of the
volatility

√
v, is highly relevant. In Heston’s model, where the volatility is not constant,

Vega can be obtained by the first partial derivative of the option value with respect
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to the volatility
√
v. For the sake of simplicity the partial derivative is often computed

with respect to the variance v
ν := ∂V

∂v
. (2.41)

For European and American vanilla options, Vega is always non-negative, ν ≥ 0. If
the value of Vega is high, volatility changes have a great impact on the option value.
Otherwise, if the value of Vega is low, the option value is not sensitive to a small change
of the volatility. In order to manage the volatility risk, it is also possible to hedge a
portfolio against the volatility of the underlying asset. Therefore, a portfolio with an
Vega of νΠ can be made vega neutral by including −νΠ/ν of one option with an Vega
of ν. Explicit examples for hedging strategies can be found in [Hul09, pp. 349–367]
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2.2. Valuation of an American option

2.2. Valuation of an American option

2.2.1. Formulation as parabolic variational inequality with
Black-Scholes model

In this section we consider the valuation of an American put and call option in the Black-
Scholes model. The option price V := V (t, S) is assumed to depend on an underlying
asset S ∈ R+, time t, volatility σ, interest rate r, dividend yields D0 and is subject to
a strike price K. In the case of a put option the payoff is given by (2.2) and in the case
of call option by (2.1).
In comparison to a European option, a fundamental difficulty arises from the fact
that American option can be exercised during a time period [0, T ] and not only at
a specific end time T . Since the optimal underlying price Sf := Sf (t) : [0, T ] → R+

depending on time t ∈ [0, T ], such that exercising the option is optimal, is a priori
not known, the valuation of an American option leads to a free boundary problem.
Usually, a log-transformation x = log(S/K) is introduced to eliminate the degenerate
part in S transforming the Black-Scholes equation to a non-degenerate equation on
the whole axis of R. For the numerical computation the domain is truncated such that
xmin < x < xmax with xmin < 0 and xmax > 0 and artificial boundary conditions are
set. For an American put option the solution of the free boundary problem is given
by the obstacle HP(S) for all S ≤ Sf (t), such that the truncation on the left interval,
for small enough xmin and standard parameter r, σ and K used in the literature, has
no truncation effect to the numerical solution. Since for an American call option the
solution is modeled by the Black-Scholes equation for all S ≤ Sf (t), truncation on the
left interval has a direct influence on the numerical solution and leads to truncation
errors. As a result, we present a weak formulation as a parabolic variational inequality
in a weighted Sobolev space on a bounded domain without changing the solution, which
has been introduced in [AP05, DL19a, DL]. This allows us to compute an accurate
numerical approximation of the American call option. Therefore, it is assumed that the
coefficients of the Black-Scholes equation in (2.11) satisfy the following assumptions

σ > 0, r > 0 and D0 ≥ 0, (2.42)

with D0 ≥ 0 for an American put option and D0 > 0 for an American call option.

The free boundary problem for pricing an American option and the reformulation as a
linear complementarity problem is well known and can be found in [WDH93].

Valuation of an American put option

First, we consider the valuation of an American put option with payoff HP as defined in
(2.2). Let Sf be the unique a priori not known underlying, such that for all S ≤ Sf ≤ K
exercising the option is optimal and the holder will receive a positive profit HP(S) > 0,
whereas for all S > Sf holding the option and speculating on future falling underlying
prices is a better strategy. For t = T the optimal underlying price is Sf (T ) = K. Based

29
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on this consideration, the option price V (t, S) with (t, S) ∈ [0, T )× (0,∞) is given by
the payoff function

V (t, S) = HP(S) for all S ≤ Sf (t) (2.43)

and is modeled by the Black-Scholes equation

∂V (t, S)
∂t

+ LBV (t, S) = 0 for all S > Sf (t) (2.44)

with LB defined in (2.12). At the end of the time period, there is no other possibility
for the holder than to make use of his right or let the option expire. Thus, the option
value at its expiration date t = T is given by the following end condition

V (T, S) = HP(S). (2.45)

In order to find a discrete formulation of the free boundary problem we truncate the
infinite domain R+ to I := (0, Smax), choosing Smax such that 0 < K < Smax < ∞. If
Smax is large enough the Dirichlet boundary condition is given by

V (t, Smax) = HP(Smax) = 0, (2.46)

since as for a large underlying price the American put option becomes worthless. In
summary we can formulate the following free boundary problem in a finite domain:

Problem 2.3. (Localized free boundary problem – Valuation of American put option)
Find V (t, S) with (t, S) ∈ [0, T )× I such that

V = HP(S) for S ≤ Sf (t), (2.47)
∂V

∂t
+ LBV = 0 for S > Sf (t) (2.48)

with boundary and end condition

V (t, Smax) = HP(Smax), V (T, S) = HP(S), (2.49)

where the payoff function is given by HP(S) := max{0,K − S}.

The free boundary for the valuation of an American put option lies in the range

0 < Sf (t) < K for a.e. τ ∈ (0, T ] (2.50)

(see e.g. [Ach05]) and is a continuous monotonically decreasing function for t→ 0.
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K

T

Sf (t)
(stopping region)

V = HP(S)
∂V
∂t + LBV < 0

(continuation region)

∂V
∂t + LBV = 0
V > HP(S)

underlying S

tim
e

t

Figure 2.3.: Free boundary problem for the valuation of American put option with
the Black-Scholes model. The figure is reproduced from [Sey09].

In order to obtain a formulation where the a priori unknown free boundary does not
explicitly appear, the problem is typically reformulated as a linear complementarity
problem (c.f. [WDH93]). Therefore, (2.47) implies that the option value is given by
the payoff function V (t, S) = HP(S) = K − S for 0 ≤ S ≤ Sf < K, applying the
Black-Scholes equation to the payoff leads to

∂V

∂t
+ LBV = ∂(K − S)

∂t
+ 1

2σ
2S2∂

2(K − S)
∂S2 + (r −D0)S∂(K − S)

∂S
− r(K − S)

= −D0S − rK ≤ −(D0 + r)K < 0 for D0 ≥ 0, r > 0. (2.51)

For S > Sf the option value must be greater than the payoff function

V (t, S) > HP(S) (2.52)

because otherwise the holder can immediately exercise the option and receives a positive
profit, which contradicts the no arbitrage principle. A graphical illustration of this
formulation can be found in Figure 2.3. In summary, together with (2.47) and (2.48),
the following linear complementarity problem is derived:

Problem 2.4. (Complementarity problem – Valuation of American put option)
Find V (t, S) with (t, S) ∈ [0, T )× I such that

(
∂V

∂t
+ LBV

)
(V −HP) = 0

∂V

∂t
+ LBV ≤ 0

V −HP ≥ 0

and V (t, Smax) = HP(Smax), V (T, S) = HP(S), where the payoff function is given by
HP(S) := max{0,K − S}.
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To simplify further theoretical considerations, we introduce the time transformation
τ := T − t, hence we have the following time transformed option price and free bound-
ary

y(τ, S) := V (T − t, S), Ŝf (τ) := Sf (T − t). (2.53)

Here τ can be interpreted as the time until the option expires. The transformation leads
to the following time transformed Black-Scholes equation

∂y

∂τ
− LBy = ∂y

∂τ
− 1

2σ
2S2 ∂

2y

∂S2 + (D0 − r)S
∂y

∂S
+ ry = 0. (2.54)

To this end, the time transformed solution satisfies the following complementarity prob-
lem:

Problem 2.5. (Time transformed complementarity problem – put option)
Find y(τ, S) with (τ, S) ∈ (0, T ]× I such that

(
∂y

∂τ
− LBy

)
(y −HP) = 0 (2.55)

∂y

∂τ
− LBy ≥ 0 (2.56)

y −HP ≥ 0 (2.57)

and y(0, S) = HP(S) and y(τ, Smax) = 0, where the payoff function is given by
HP(S) := max{0,K − S}.

Valuation of an American call option

Now, we present the valuation of an American call option with payoff function HC(S)
as defined in (2.1) on a continuous dividend paying asset. In order to induce an early
exercised decision of the holder, the value of an American call option must be deeper
in the money. An option is said to be deep in the money when the corresponding
payoff is strictly positive. Hence, the holder will exercise the American call option for
all S ≥ Sf (t) > K, whereas for all S < Sf (t) the continuation of the option and
speculating on future increasing underlying prices will be a better strategy. Exploiting
these arguments the value of an American call option V (t, S) with (t, S) ∈ [0, T )×(0,∞)
is given by

V (t, S) = HC(S) for all S ≥ Sf (t) (2.58)

and is modelled by the Black-Scholes equation

∂V

∂t
+ LBV (t, S) = 0 for all S < Sf (t). (2.59)

At the end of the period the holder will receive the payoff, such that the end condition
is given by the payoff

V (T, S) = HC(S). (2.60)
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For the numerical computation, we truncate the domain (0,∞) to a finite interval
(0, Smax). It can be shown (see [DL]) that for large Smax, more precisely,

Smax = a

a− 1K, a > 1 (2.61)

the Dirichlet boundary condition V (t, Smax) = HC(Smax) is an exact condition. Finally,
the following free boundary problem can be formulated for the valuation of an American
call option:

Problem 2.6. (Localized free boundary problem – Valuation of American call option)
Find V (t, S) with (t, S) ∈ [0, T )× I such that

V = HC(S) for S ≥ Sf (t), (2.62)
∂V

∂t
+ LBV = 0 for S < Sf (t) (2.63)

with boundary and end condition

V (t, Smax) = HC(Smax), V (T, S) = HC(S), (2.64)

where the payoff function is given by HC(S) := max{0, S −K}.

To formulate the free boundary problem as complementarity problem for an Ameri-
can call option, we apply the Black-Scholes operator to the payoff function HC(S) :=
max{0, S −K} for S ≥ Sf (t)

∂V

∂t
+ LBV = ∂(S −K)

∂t
+ 1

2σ
2S2∂

2(S −K)
∂S2 + (r −D0)S∂(S −K)

∂S
− r(S −K)

= −D0S + rK ≤ −(D0 + r)K < 0 (2.65)

for D0 > 0, r > 0 and S ≥ Sf (t) > Sf (T ) = K max{1, rq}. Due to the no arbitrage
principle we have

V (t, S) > HC(S). (2.66)

The two equations above, along with (2.62) and (2.63), imply the following comple-
mentarity problem for an American call option:

Problem 2.7. (Complementarity problem – Valuation of American call option)
Find V (t, S) with (t, S) ∈ [0, T )× I such that

(
∂V

∂t
+ LBV

)
(V −HC) = 0

∂V

∂t
+ LBV ≤ 0

V −HC ≥ 0

and V (t, Smax) = 0, V (T, S) = HC(S), where the payoff function is given by
HC(S) := max{0, S −K}.
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Finally, a transformation in time as described in (2.53) leads to the following time
transformed problem:

Problem 2.8. (Time transformed complementarity problem – American call option)
Find y(τ, S) with (τ, S) ∈ (0, T ]× I such that

(
∂y

∂τ
− LBy

)
(y −HC) = 0 (2.67)

∂y

∂τ
− LBy ≥ 0 (2.68)

y −HC ≥ 0 (2.69)

and y(0, S) = HC(S) and y(τ, Smax) = 0, where the payoff function is given by
HC(S) := max{0, S −K}.

Formulation as a parabolic variational inequality

Now, we pose Problem 2.5 for an American put option and Problem 2.8 for an American
call option in variational form. Since the complementarity problem for an American
call and put option only differs in the payoff HP(S) or HC(S), the derivation of the
variational formulation is the same. To simplify the notation, we will write H(S) for
both type of options. We denote by H := L2(I) the space of square integrable functions
and we define a weighted Sobolev space by

V :=
{
ϕ ∈ H : S ∂ϕ

∂S
∈ H

}
(2.70)

equipped with the norm

‖ϕ‖2V :=
∫ Smax

0

(
ϕ2 +

(
S
∂ϕ

∂S

)2)
dS. (2.71)

Let
V0 :=

{
ϕ ∈ H : S ∂ϕ

∂S
∈ H,ϕ(Smax) = 0

}
(2.72)

the space with zero boundary condition. We denote by V∗ the dual space of V0. The
embeddings V0 ⊂ H = H∗ ⊂ V∗ are continuous and dense (c.f. [AP05, p.30]), the inner
product (·, ·) of H is used to define the duality pairing between V∗ and V. A norm of
the dual space V∗ is given by the operator norm

‖f‖V∗ := sup
η∈V0\0

(f, η)
‖η‖V

. (2.73)

We also need the following convex and closed set

K := {ϕ ∈ V : ϕ ≥ H in I, ϕ(Smax) = H(Smax)}. (2.74)
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2.2. Valuation of an American option

For the derivation of the variational inequality, let ϕ ∈ K, which ensures the positivity
of ϕ−H ≥ 0. Multiplying (2.56) in the case of a put option (or (2.68) in the case of a
call option) with ϕ−H ≥ 0 and integrating over I leads to

∫

I

(
∂y

∂τ
− LBy

)
(ϕ−H)dS ≥ 0 and

∫

I

(
∂y

∂τ
− LBy

)
(y −H)dS = 0.

Subtraction results in ∫

I

(
∂y

∂τ
− LBy

)
(ϕ− y)dS ≥ 0. (2.75)

Finally, integration by parts for the diffusion term and y ∈ K,
∫

I

(
−1

2σ
2S2 ∂

2y

∂S2

)
(ϕ− y)dS

=
∫

I

(
σ2

2 S
2 ∂y

∂S

∂(ϕ− y)
∂S

)
+ σ2S

∂y

∂S
(ϕ− y)dS, (2.76)

leads to a parabolic variational inequality. This formulation can also be found in [AP05,
p. 187-188] or [DL19a, DL].

Problem 2.9. (Variational inequality with inhomogeneous boundary conditions)
Find y ∈ L2(0, T ;K) such that ∂y

∂τ ∈ L2(0, T ;H),
(
∂y

∂τ
, ϕ− y

)
+ aB(y, ϕ− y) ≥ 0 for all ϕ ∈ K (2.77)

and y(0) = H(S), where aB(·, ·) := V × V → R defines the bilinear form

aB(y, ϕ) : = aB0 (y, ϕ)− aB1 (y, ϕ) (2.78)

with

aB0 (y, ϕ) :=
∫

I

(
σ2

2 S
2 ∂y

∂S

∂ϕ

∂S

)
dS (2.79)

and

aB1 (y, ϕ) := −
∫

I
ryϕ+

(
σ2 +D0 − r

)
S
∂y

∂S
ϕdS. (2.80)

The payoff is given by H(S) := HP(S) for a put option or H(S) := HC(S) for a call
option.

For subsequent numerical computation, it is convenient to transform Problem 2.9 into
a variational inequality with homogeneous Dirichlet boundary condition. Observe that
H(S) ∈ V yields K = H+K0, where the convex set K0 is defined as

K0 := {ϕ ∈ V0 : ϕ ≥ 0 in Ω}. (2.81)
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2. Option pricing

Setting y = u+H leads to the following parabolic variational inequality with homoge-
neous boundary condition:

Problem 2.10. (Variational inequality with homogeneous boundary conditions)
Find u ∈ L2(0, T ;K0) such that ∂u

∂τ ∈ L2(0, T ;H),
(
∂u

∂τ
, ϕ− u

)
+ aB(u+H, ϕ− u) ≥ 0 for all ϕ ∈ K0 (2.82)

and u(0) = 0, where aB(·, ·) is defined as in (2.78). The payoff is given by H(S) :=
HP(S) for a put option or H(S) := HC(S) for a call option.

2.2.2. Formulation as parabolic variational inequality with Heston’s
model

In this section we consider the valuation of an American put option in Heston’s model.
Therefore, similar considerations as for the valuation of an American option in the
Black-Scholes model are used to derive a free boundary problem and the corresponding
complementarity problem. Similar results can also be found for instance in [Bos15,
Bur16, IT09, KSW12, Oos03, Wei14].
Since many different boundary conditions for the valuation of an American put option in
Heston’s model are used in the literature, we present an short overview of the boundary
conditions. For simplicity, we also use a log-transformation of the underlying price to
avoid a degenerate coefficient in S. To this end, we derive a weak formulation for the
valuation of an American put option in Heston’s model. The derivation of the weak form
in this thesis differs from [Bos15, Bur16, KSW12, Wei14] due to an error, as indicated
below.
As discussed before, the option price V (t, S, v) in Heston’s model is assumed to depend
on time t ∈ [0, T ), underlying price S ∈ R+ and variance v ∈ R+. To avoid a degenerate
coefficient in v it is assumed that the Feller-condition

2κγ > ξ2 and v ≥ vmin > 0 (2.83)

is satisfied such that the variance is strictly positive. It is also assumed that the coeffi-
cients satisfy the following assumptions

|ρ| < 1, r > 0. (2.84)

As described before, American options can be exercised at any time t ∈ [0, T ]. The
a priori unknown underlying price to which exercising the option is a better strategy
depends on the variance v and time t. Due to this fact, the optimal exercising price
in Heston’s model is mathematically expressed as a surface, referred to as the free
boundary, Sf (t, v) : [0, T ] × R+ → R+. Since for all S ≤ Sf (t, v) exercising the option
is a better strategy, the option value is given by

V (t, S, v) = HP(S) for all S ≤ Sf (t, v). (2.85)
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2.2. Valuation of an American option

For all S > Sf (t, v) speculating on future falling underlying prices and holding the
option is a better strategy, therefore the option value is modeled by the Heston equa-
tion

∂V

∂t
+ LHV = 0 for all S > Sf (t, v). (2.86)

Several variations of boundary conditions for the valuation of an American option in
Heston’s model can be found in the literature. For a detailed summary of the bound-
ary condition used in the literature, we also refer to [Bur16, pp. 24–26]. We start by
introducing the boundary conditions in the S-direction derived from some financial
considerations. For small underlying prices S → 0, the option is at the money and the
holder of the option will receive a positive payoff HP(S). As a result, the following
boundary condition is used in the literature [CP99, Oos03, IT09, KSW12]

lim
S→0

V (t, S, v) = lim
S→0
HP(S) = K. (2.87)

In the case of high underlying prices S → ∞, the option is worthless and the holder
will let the selling right expire. This is modeled by the following Dirichlet boundary
condition in [CP99, KSW12, Che11]

lim
S→∞

V (t, S, v) = lim
S→∞

HP(S) = 0. (2.88)

The choice of the boundary condition for v → 0 is still subject to discussion. It is well
known, that if Feller’s condition 2κγ > ξ2 is fulfilled, the process of the volatility will
not attain the boundary v = 0 (see e.g. [AMST07]). An extensive discussion from the
financial and the mathematical point of view in [Che11, ZC11] supports that for a small
variance v → 0 the option price behaves almost deterministic and the price is equal
to the payoff HP(S). The same boundary condition can be found in [Oos03, KSW12,
Che11]. Since in this thesis it is assumed that v ≥ vmin > 0, we write v → vmin instead
of v → 0

lim
v→vmin

V (t, S, v) = HP(S). (2.89)

In [CP99] the authors argue that due to the degeneracy for v → 0 the Heston equation
becomes increasingly hyperbolic and imposing a Dirichlet boundary condition is not
appropriate. They recommend a Neumann boundary condition for v → 0

lim
v→vmin

∂V (t, S, v)
∂v

= 0. (2.90)

It was found out that the partial derivative of the solution with respect to the variance,
Vega, is stable when implemented as a one-sided difference quotient. We make the same
observation for a cubic B-spline discretization in Section 8.2.1.
At least it is known that for increasing volatility the fluctuations of the option price
decrease. This is modelled by the following Neumann boundary condition in [CP99,
Oos03, IT09, Che11, KSW12]

lim
v→∞

∂V (t, S, v)
∂v

= 0. (2.91)

37



2. Option pricing

Note, that in [Oos03, IT09], instead of (2.88) a Neumann boundary condition is used.
In [FLMN11] the authors use

lim
v→∞V (t, S, v) = HP(S). (2.92)

instead of (2.91), but they do not mention why.
In this thesis, we study two different boundary conditions for v → vmin. The boundary
conditions under consideration are

lim
S→0

V (t, S, v) = K, lim
v→vmin

V (t, S, v) = HP(S),

lim
S→∞

V (t, S, v) = 0, lim
v→∞

∂V (t, S, v)
∂v

= 0
(2.93)

and

lim
S→0

V (t, S, v) = K, lim
v→vmin

∂V (t, S, v)
∂v

= 0,

lim
S→∞

V (t, S, v) = 0, lim
v→∞

∂V (t, S, v)
∂v

= 0.
(2.94)

Note that the difference just lies in the boundary condition for v → vmin. In particular,
we will show in Section 8.2.1 that choosing a Dirichlet boundary condition as the payoff
for vmin leads to unstable approximation of Vega and Gamma. Thus, as pointed out by
[CP99] the Neumann boundary condition is preferable for v → vmin.

Problem 2.11. (Free boundary problem)
Find V := V (t, S, v) with (t, S, v) ∈ [0, T )× R+ × R+ such that

∂V

∂t
+ LHV = 0 for all S > Sf (t, v), (2.95)

V = HP(S) for all S ≤ Sf (t, v), (2.96)

with appropriate boundary conditions and end condition V (T, S, v) = HP(S).

For the numerical treatment of the free boundary problem, it is necessary to derive
an equivalent formulation in which the a priori unknown free boundary Sf (t, v) does
not explicitly appear. Therefore, it is known from (2.96) that in the stopping area
S ≤ Sf (t, v) < K for a.e. t ∈ [0, T ) the option value V (t, S, v) is determined by
the payoff function HP(S). Applying the Heston equation to the payoff function for
S ≤ Sf (t, v) < K leads to

∂V

∂t
+ LHV = ∂(K − S)

∂t
+ LH(K − S) = −rK < 0 for r > 0. (2.97)

Due to the no arbitrage principle (see e.g. [Sey09], appendix 7) we have V (t, S, v) > HP,
because otherwise the holder of the option could immediately exercise the option and
receive a positive profitH(S)−V (t, S, v) > 0. Multiplying (2.95) with (2.96) one derives
the following complementarity problem:
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2.2. Valuation of an American option

Problem 2.12. (Complementarity problem)
Find V (t, S, v) with (t, S, v) ∈ [0, T )× R+ × R+ such that

(
∂V

∂t
+ LHV

)
(V −HP(S)) = 0, (2.98)

(
∂V

∂t
+ LHV

)
≤ 0, (2.99)

V −HP(S) ≥ 0 (2.100)

with the set of boundary conditions in (2.93) or, alternatively, with the set of boundary
conditions in (2.94) and end condition V (T, S, v) = H(S).

A similar formulation can be found in [Bos15, Bur16, KSW12] or with some modifica-
tion of the boundary condition in [CP99, Oos03, IT09].
To eliminate the degeneracy in the Heston equation (2.23) a standard way is to trans-
form the underlying price S by x = ln

(
S
K

)
. To simplify further calculations we trans-

form the backward problem to a forward problem by a new time coordinate τ := T − t.
Then the option price in new coordinates is defined by

y := y(τ, x, v) = V (T − t,Kex, v). (2.101)

Following [AWW01, Bos15, Bur16, KSW12, Wei14], the Heston equation can be written
as

− ∂y

∂τ
+ ZHy := −∂y

∂τ
+∇ ·A∇y − b · ∇y − ry, (2.102)

where∇y :=
(
∂y
∂x ,

∂y
∂v

)T
∈ R2 denotes the gradient of y and∇·c(x, v) := ∂c1(x,v)

∂x + ∂c2(x,v)
∂v

the divergence of the vector field c(x, v) : R2 → R2. The matrix A ∈ R2×2 and the vector
b ∈ R2 are defined by

A := 1
2v
(

1 %ξ
%ξ ξ2

)
,b :=

(
1
2v + 1

2%ξ − r
κ(v − γ) + λ(v) + 1

2ξ
2

)
. (2.103)

The transformed payoff function is denoted by

g(x) = g(x, v) := HP(Kex, v) = max{K(1− ex), 0}. (2.104)

The time interval and the spatial domain in the new coordinates are given by

(τ, x, v) ∈ (0, T ]× R× R+. (2.105)

Note that the transformed underlying price is now on the whole axis of real numbers
and the boundary condition in (2.93) reads as

lim
x→−∞

y(τ, x, v) = K, lim
v→vmin

y(τ, x, v) = g(x),

lim
x→∞y(τ, x, v) = 0, lim

v→∞
∂y(τ, x, v)

∂v
= 0,

(2.106)
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2. Option pricing

and for the boundary conditions in (2.94) one has

lim
x→−∞

y(τ, x, v) = K, lim
v→vmin

∂y(τ, x, v)
∂v

= 0,

lim
x→∞y(τ, x, v) = 0, lim

v→∞
∂y(τ, x, v)

∂v
= 0.

(2.107)

The free boundary Sf (t, v) transforms into xf (τ, v) := log
(
Sf (t,v)
K

)
. With this notation

we can reformulate Problem 2.12 to the following complementarity problem in new
coordinates:

Problem 2.13. (Transformed complementarity problem)
Find y(τ, x, v) with (τ, x, v) ∈ (0, T ]× R× R+ such that

(
−∂y
∂τ

+ ZHy
)

(y − g) = 0

−∂y
∂τ

+ ZHy ≤ 0

y − g ≥ 0

with the set of boundary conditions in (2.106) or, alternatively, with the set of boundary
conditions in (2.107) and initial condition y(0, x, v) = g(x).

In order to enable numerical computations, we localize the domain as

(0, T ]× Ω := (0, T ]× (xmin, xmax)× (vmin, vmax). (2.108)

with −∞ < xmin < 0 < xmax < ∞ and 0 < vmin < vmax. Therefore, the truncated
boundaries are defined as follows:

Υ1 := {v ∈ (vmin, vmax) : x = xmin}, Υ2 := {v ∈ (vmin, vmax) : x = xmax},
Υ3 := {x ∈ (xmin, xmax) : v = vmin}, Υ4 := {x ∈ (xmin, xmax) : v = vmax}.

(2.109)

The boundary conditions for an American put option in (2.106) are set to

y(τ, x, v) = g(x) on Υ := Υ1 ∪Υ2 ∪Υ3,
∂y(τ, x, v)

∂v
= 0 on Υv := Υ4. (2.110)

The alternative set of boundary conditions in (2.107) are replaced by

y(τ, x, v) = g(x) on Υ := Υ1 ∪Υ2,
∂y(τ, x, v)

∂v
= 0 on Υv := Υ3 ∪Υ4. (2.111)
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2.2. Valuation of an American option

Problem 2.14. (Localised transformed complementarity problem)
Find y(τ, x, v) with (τ, x, v) ∈ (0, T ]× Ω, such that

(
−∂y
∂τ

+ ZHy
)

(y − g) = 0
(
−∂y
∂τ

+ ZHy
)
≤ 0

y − g ≥ 0 (2.112)

with y = g on Υ, ∂y
∂v = 0 on Υv and y(0, x, v) = g(x) for all (x, v) ∈ Ω.

The same formulation of the localised transformed complementarity problem with
boundary condition as defined in (2.110) can be found in [Bos15, KSW12, Wei14],
or with both alternatives (2.110) and (2.111), in [Bur16].
In the next step we formulate the problem as a parabolic variational inequality.

Remark 2.15. It should be mentioned here that the bilinear form derived in this thesis
differs from the bilinear form derived in [Bos15, Bur16, KSW12, Wei14]. This is due to
the fact that after applying integration by parts the boundary integral on the Neumann
boundary Υv, where yx is unknown, does not vanish. To derive a bilinear form without
a boundary integral, we apply integration by parts to the mixed term

∫
vρξyxv(ϕ− y)dΩ

only with respect to x, which leads to a different bilinear form with an asymmetric
matrix Ã. Due to this different result, it is impossible to use the same weighted Sobolev
space ‖ · ‖A as in [Bur16, KSW12] citing [AWW01] induced by the symmetric matrix
A defined in (2.103), to show the existence and uniqueness of the solution.

In order to derive a variational formulation of Problem 2.14, we introduce the following
spaces: Let H := L2(Ω) the space of square integrable function. We define by V the
Sobolev space of once weak differentiable function as follows

V :=
{
ϕ ∈ H : ∂ϕ

∂x
,
∂ϕ

∂v
∈ H

}
(2.113)

equipped with the norm

‖ϕ‖2V :=
∫

Ω

((
∂ϕ

∂x

)2
+
(
∂ϕ

∂v

)2
+ ϕ2

)
dΩ. (2.114)

Let further
V0 := {ϕ ∈ V : ϕ = 0 on Υ ⊂ ∂Ω} (2.115)

be the space with zero boundary conditions on Υ and V∗ the dual space of V0. We
know from [DB06] that the space D(Ω) := C∞(Ω) ∩ V0 is dense in V0. Since D(Ω) is
dense in V0 and D(Ω) ⊂ L2(Ω), the space V0 is also dense in L2(Ω) as well. It is obvi-
ous, that the embedding V0 ⊂ L2(Ω) is continuous because the V-norm is by definition
stronger than the L2(Ω)-norm. In summary, we conclude that V0 ⊂ H = H∗ ⊂ V∗ with
H := L2(Ω) is a continuous and dense embedding.
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The inner product (·, ·) of H can be considered as an extension to the pairing between
V∗ and V0,

‖f‖V∗ := sup
η∈V0\0

(f, η)
‖η‖V

. (2.116)

We also define the closed convex set by

K := {ϕ := ϕ(x, v) ∈ V : ϕ(x, v) ≥ g(x) for all (x, v) ∈ Ω, ϕ = g on Υ} ⊂ V. (2.117)

Now, we present the derivation of the parabolic variational inequality. Let ϕ ∈ K,
multiplication of the first and second equation in Problem 2.14 by ϕ − g ≥ 0 and
integration over the domain Ω leads to

∫

Ω

(
−∂y
∂τ

+ ZHy
)

(y − g)dΩ = 0 and
∫

Ω

(
−∂y
∂τ

+ ZHy
)

(ϕ− g)dΩ ≤ 0 (2.118)

for all ϕ ∈ K. Subtraction of the inequality and the equation above gives us
∫

Ω

(
−∂y
∂τ

+ ZHy
)

(ϕ− y)dΩ ≤ 0 for all ϕ ∈ K. (2.119)

We first present the derivation of the weak formulation in V associated with the oper-
ator ZH , where the boundary integral does not vanish due to the Neumann boundary
condition on Υv. More precisely, let us consider the diffusion term of the Heston equa-
tion defined in (2.102), applying integration by parts to

∫ 1
2v(yxx + %ξyxv)(ϕ − y)dΩ

with respect to x and to
∫ 1

2v
(
%ξyxv + ξ2yvv

)
(ϕ− y)dΩ with respect to v leads to

∫

Ω
∇ ·A∇y(ϕ− y)dΩ =

∫

Ω

1
2v (yxx + %ξyxv) (ϕ− y)dΩ

+
∫

Ω

1
2v
(
%ξyxv + ξ2yvv

)
(ϕ− y)dΩ +

∫

Ω

1
2
(
%ξyx + ξ2yv

)
(ϕ− y)dΩ

=−
∫

Ω

1
2v
(
yx + %ξyv
%ξyx + ξ2yv

)
·
(

(ϕ− y)x
(ϕ− y)v

)
dΩ−

∫

Ω

1
2
(
%ξyx + ξ2yv

)
(ϕ− y)dΩ

+
∫

∂Ω

1
2v
(
yx + %ξyv
%ξyx + ξ2yv

)
· n(ϕ− y)d∂Ω +

∫

Ω

1
2
(
%ξyx + ξ2yv

)
(ϕ− y)dΩ

=−
∫

Ω
(A∇y) · ∇(ϕ− y)dΩ +

∫

∂Ω
(A∇y) · n(ϕ− y)d∂Ω (2.120)

for all ϕ ∈ K, where n is the outward pointing unit normal vector of the boundary
∂Ω. First we consider the boundary integral for the set of boundary conditions defined
in (2.110). Due to the boundary conditions and the choice of the test function space
ϕ = y = g on Υ := Υ1 ∪ Υ2 ∪ Υ3, the boundary integrals on Υ are equal to zero.
Together with the Neumann boundary condition on Υv := Υ4 this yields
∫

∂Ω
(A∇y) · n(ϕ− y)d∂Ω =

∫

Υ4
(A∇y) ·

(
0
1

)
(ϕ− y)dΥ4 =

∫

Υ4

1
2v(%ξyx)(ϕ− y)dΥ4.

(2.121)
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For the alternative set of boundary conditions defined in (2.111) one has
∫

∂Ω
(A∇y) · n(ϕ− y)d∂Ω

=
∫

Υ3
(A∇y) ·

(
0
−1

)
(ϕ− y)dΥ3 +

∫

Υ4
(A∇y) ·

(
0
1

)
(ϕ− y)dΥ4

=
∫

Υ4

1
2v(%ξyx)(ϕ− y)dΥ4 −

∫

Υ3

1
2v(%ξyx)(ϕ− y)dΥ3. (2.122)

Consequently, for both sets of boundary conditions the boundary integral on Υv does
not vanish.
Using one of the formulations above to show existence and uniqueness of a weak solution
causes difficulties because of the boundary integral, where yx is unknown. To avoid this
problem, we apply the integration by parts theorem to

∫
Ω

1
2v (yxx + 2%ξyxv) (ϕ− y)dΩ

only with respect to x and to
∫ 1

2vξ
2yvv(ϕ−y)dΩ with respect to v. Due to the boundary

condition on Υv and the choice of the test function space ϕ = y = g on Υ all boundary
integrals vanish, i.e. this yields

∫

Ω
∇ ·A∇y(ϕ− y)dΩ =

∫

Ω

1
2v (yxx + 2%ξyxv) (ϕ− y)dΩ

+
∫

Ω

1
2vξ

2yvv(ϕ− y)dΩ +
∫

Ω

1
2
(
%ξyx + ξ2yv

)
(ϕ− y)dΩ

=−
∫

Ω

1
2v
(
yx + 2%ξyv

ξ2yv

)
·
(

(ϕ− y)x
(ϕ− y)v

)
dΩ−

∫

Ω

1
2ξ

2yv(ϕ− y)dΩ

+
∫

∂Ω

1
2v
(
yx + 2%ξyv

ξ2yv

)
· n(ϕ− y)ds+

∫

Ω

1
2
(
%ξyx + ξ2yv

)
(ϕ− y)dΩ

=−
∫

Ω
Ã∇y · ∇(ϕ− y)dΩ +

∫

Ω

1
2%ξyx(ϕ− y)dΩ, (2.123)

where Ã ∈ R2×2 is defined as

Ã := 1
2v
(

1 2%ξ
0 ξ2

)
. (2.124)

Inserting (2.123) in the spatial operator of (2.119) we get

(ZHy, ϕ− y) =−
∫

Ω
Ã∇y · ∇(ϕ− y)dΩ +

∫

Ω

1
2%ξyx(ϕ− y)dΩ

−
∫

Ω
b · ∇y(ϕ− y)dΩ−

∫

Ω
ry(ϕ− y)dΩ

=−
∫

Ω
Ã∇y · ∇(ϕ− y)dΩ +

∫

Ω

1
2%ξyx(ϕ− y)dΩ

−
∫

Ω

(1
2v + 1

2ρξ − r
)
yx(ϕ− y)dΩ

−
∫

Ω

(
κ(v − γ) + λ(v) + 1

2ξ
2
)
yv(ϕ− y)dΩ−

∫

Ω
ry(ϕ− y)dΩ
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=−
∫

Ω
Ã∇y · ∇(ϕ− y) +

(1
2v − r

)
yx(ϕ− y)dΩ

−
∫

Ω

(
κ(v − γ) + λ(v) + 1

2ξ
2
)
yv(ϕ− y) + ry(ϕ− y)dΩ

=:−
∫

Ω
Ã∇y · ∇(ϕ− y) + b̃ · ∇y(ϕ− y) + ry(ϕ− y)dΩ, (2.125)

where b̃ ∈ R2 is defined as

b̃ :=
(
b̃1(v)
b̃2(v)

)
:=
(

1
2v − r

κ(v − γ) + λ(v) + 1
2ξ

2

)
. (2.126)

In summary, we have proved:

Lemma 2.16. The weak formulation of ZHy defined in (2.102) with the set of boundary
conditions in (2.106) or (2.107) is

−
∫

Ω
Ã∇y · ∇(ϕ− y) + b̃ · ∇y(ϕ− y) + ry(ϕ− y)dΩ. (2.127)

Inserting (2.125) in (2.119) and multiplication of the inequality by −1 leads to the
following parabolic variational inequality:

Problem 2.17. (Variational inequality with non-homogeneous boundary condition)
Find y ∈ L2(0, T ;K) such that ∂y

∂τ ∈ L2(0, T ;H)
(
∂y

∂τ
, ϕ− y

)
+ aH(y, ϕ− y) ≥ 0 for all ϕ ∈ K

and y(0, x, v) := g is satisfied, where aH(·, ·) : V × V → R defines the bilinear form

aH(y, ϕ− y) : =
∫

Ω

(
Ã∇y · ∇(ϕ− y) + (b̃ · ∇y + ry)(ϕ− y)

)
dΩ (2.128)

with Ã ∈ R2×2 and b̃ ∈ R2 as defined in (2.124) and (2.126).

Now, we transform Problem 2.17 into a problem with homogeneous boundary con-
ditions. The trace theory (c.f. [AF03]) indicates that a linear continuous extension
operator

T : Hm− 1
2 (Υ)→ Hm(Ω) (2.129)

for some m ∈ N, m ≥ 1 extends the non-homogeneous boundary condition to the interior
of the domain, i.e. the extension of g ∈ Hm− 1

2 (Υ) is the function ug ∈ Hm(Ω).
For the set of boundary conditions in (2.110) the Dirichlet condition for v = vmin is
given by the non-smooth payoff function g(x) ∈ H1(Υ) for all x ∈ (xmin, xmax). For the
alternative set of boundary conditions in (2.111) the Dirichlet conditions are only set
to the function g(x) on the boundaries for x = xmin < 0 and x = xmax > 0, where the
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2.2. Valuation of an American option

function g(x) is arbitrarily smooth. In other words, in this case the Dirichlet boundary
conditions are only specified by the point evaluations g(xmin) and g(xmax). Thus, for
the set of boundary conditions in (2.111) a linear extension of g(xmin) and g(xmax)
enables ug ∈ H2(Ω).
Since the initial condition and the obstacle function are also specified by the function
g(x), for further numerical computations it is comfortable to choose ug := g(x, v) =
g(x) ∈ H1(Ω) for both sets of boundary conditions. We set u(τ, x, v) := y(τ, x, v) −
g(x, v) =: y − g and introduce the following closed convex set

K0 := {ϕ := ϕ(x, v) ∈ V0 : ϕ(x, v) ≥ 0}. (2.130)

For g ∈ H1(Ω) the term aH(g, ϕ − u) is well-posed and Problem 2.17 is equivalent to
the following problem with homogeneous boundary conditions:

Problem 2.18. (Variational inequality with homogeneous boundary condition)
Find u ∈ L2(0, T ;K0) such that ∂u

∂τ ∈ L2(0, T ;H)
(
∂u

∂τ
, ϕ− u

)
+ aH(u, ϕ− u) ≥ 〈f, ϕ− u〉 for all ϕ ∈ K0

and u(0, x, v) := 0 is satisfied, where aH(·, ·) : V0 × V0 → R defines the bilinear form
in (2.128) and right side

〈f, ϕ− u〉 := −aH(g, ϕ− u). (2.131)
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3. Background Material

After having introduced the parabolic variational inequality for the valuation of an
American option in the Black-Scholes or Heston’s model, this section is devoted to
study some regularity results for variational inequalities. These results are important
for two reasons, namely, for the error analysis for further numerical computations and to
clarify the maximal smoothness of the Greeks, the partial derivatives of the American
option price with respect to the model parameters. Since the initial condition and
the obstacle function for pricing American options is only once weak differentiable, the
results for variational inequalities given in the literature have to be considered carefully.

3.1. Well-posedness and regularity results for variational
inequalities

3.1.1. Elliptic variational inequalities

In this subsection we give an introduction to second order elliptic variational inequalities
and an short overview of some regularity results. For a very good introduction to elliptic
variational inequalities we refer to [KS00] and [BL82, Chapter 3.1].
We start with the introduction of the notation. We denote by H := L2(Ω) the space of
square integrable function on Ω ⊂ Rd for d = 1, 2 equipped with the norm

‖w‖H = (w,w)
1
2
H :=

(∫

Ω
w2dΩ

) 1
2

for all w ∈ H. (3.1)

The dual space of H is denoted by H∗ and is defined by

H∗ :=
{
f : H → R

∣∣∣ sup
w∈H

|(f, w)|
‖w‖H

<∞
}
. (3.2)

Due to the Riesz representation theorem, it is well known that H∗ is isomorphic to H
and one can identify H∗ with H. We denote by V ⊂ H the Sobolev space (or possi-
bly weighted Sobolev space) of once weakly differentiable functions and inner product
(ϕ,ϕ)V , which induces the norm

‖ϕ‖V := (ϕ,ϕ)
1
2
V for all ϕ ∈ V, (3.3)
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3.1. Well-posedness and regularity results for variational inequalities

such that the canonical embedding is continuous, i.e.,

‖ϕ‖H <∼ ‖ϕ‖V for all ϕ ∈ V. (3.4)

Let further the space V0 ⊂ V denote the Sobolev space of once weakly differentiable
functions with homogeneous Dirichlet boundary condition on Υ ⊆ ∂Ω. For any w ∈ H
the map ϕ → (w,ϕ) belongs to the dual space H∗, since by applying the Cauchy-
Schwarz inequality and the canonical embedding we have

|(w,ϕ)H | ≤ ‖w‖H‖ϕ‖H <∼ ‖w‖H‖ϕ‖V for all ϕ ∈ V. (3.5)

The dual space of V0 is defined as

‖f‖V∗ := sup
ϕ∈V0\0

(f, ϕ)H
‖ϕ‖V

, (3.6)

hence we have the following dense and continuous embedding, V0 ⊂ H = H∗ ⊂ V∗.
In the triple we define the linear operator A : V0 → V∗ associated with the bilinear
form

〈Au, ϕ〉V∗,V = a(u, ϕ). (3.7)

We also define the non-empty closed convex set

K := {ϕ ∈ V : ϕ ≥ ψ, ϕ = ψ on Υ} ⊂ V (3.8)

of functions with inhomogeneous Dirichlet boundary condition ψ on Υ ⊆ ∂Ω.
With this notation a general elliptic variational inequality can be defined as follows:

Problem 3.1. (Elliptic variational inequality with inhomogeneous boundary condition)
Let f ∈ V∗ and K ⊆ V be a non-empty closed convex set. Find y ∈ K such that

a(y, ϕ− y) ≥ 〈f, ϕ− y〉V∗,V for all ϕ ∈ K, (3.9)

where a : V × V → R is a bilinear form.

For f ∈ L2(Ω) the duality pairing 〈·, ·〉V∗,V in (3.9) can be replaced by the L2(Ω) inner
product (·, ·). In order to find an equivalent formulation with homogeneous boundary
conditions on Υ ⊆ Ω we can set u := y − uψ, where uψ is the linear extension to the
interior of the domain. Further we denote the modified obstacle function by ψ̃ := ψ−uψ
and introduce the closed convex subset of V0

K0 := {ϕ ∈ V0 : ϕ ≥ ψ̃}. (3.10)
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With this notation we can formulate an equivalent formulation with homogeneous
boundary conditions on Υ ⊆ ∂Ω.

Problem 3.2. (Elliptic variational inequality with homogeneous boundary condition)
Let K0 ⊆ V0 be a non-empty closed convex set. Find u ∈ K0 such that

a(u, ϕ− u) ≥ (f, ϕ− u)− a(uψ, ϕ− u) for all ϕ ∈ K0, (3.11)

where a : V × V → R is a bilinear form.

The existence and uniqueness result for elliptic variational inequalities has been devel-
oped by Lions and Stampacchia [LS67]. The main idea of this proof is the application
of the well known Banach fixed point theorem. A different approach is proposed by
Kinderlehrer and Stampacchia [KS80, KS00]. There, the existence result for a symmet-
ric bilinear form is proved by a minimization principle and treating the general case as
an perturbation of the symmetric one. The authors in [TLG81] have proved some results
for variational inequalities with a penalty approach. The following theorem summarizes
the result of [KS80, KS00].

Theorem 3.3. (Existence and uniqueness for elliptic variational inequalities)
Suppose f ∈ V∗, ψ̃ ∈ V0 and the following conditions

i) K0 is a closed convex non-empty set in V0.

ii) The bilinear form a(·, ·) is bounded, i.e. there exists C > 0 such that

|a(w,ϕ)| ≤ C‖w‖V‖ϕ‖V for all w,ϕ ∈ V. (3.12)

iii) The bilinear form a(·, ·) is coercive on V0, i.e. there exists α0 > 0 such that

a(ϕ,ϕ) ≥ α0‖ϕ‖2V for all ϕ ∈ V0. (3.13)

Then there exists a unique solution u ∈ V0 to Problem 3.2.

Remark 3.4. If K0 = V0 Theorem 3.3 reduces to the well known Lax-Milgram Theo-
rem.

The authors in [KS00, pp. 106–113] or [BL82, Chapter 3.1, p. 206] have shown that
for f ∈ L2(Ω) and Aψ̃ ∈ L2(Ω) the solution satisfies u ∈ H2(Ω) using a method called
penalization. As for American option pricing problems, which are considered in this
thesis, the assumption on the obstacle given by the non-smooth payoff function is in
general not satisfied, we present a result with less restrictive assumptions on the ob-
stacle. Since no regularity results for the elliptic case with obstacle functions in H1(Ω)
are found in the literature, we give a proof in Lemma 3.5. The main trick in the proof
(i.e. assuming (3.15) below) is based on the ideas from [Mem12] and [KTK17] proving
some results for the parabolic case in the context of American options.
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3.1. Well-posedness and regularity results for variational inequalities

To do so, we use the penalty approach. The penalty method consists of substituting the
variational inequality by a family of non-linear equations and showing some regularity
results for this penalized problem. Then, it can be shown that their solutions con-
verge to the solution of the variational inequality. Therefore, we introduce the penalty
problem corresponding to Problem 3.2 as follows: For ε > 0 find uε ∈ V0 such that

a(uε, ϕ) + ε−1(Quε, ϕ) = 〈f, ϕ〉 − a(uψ, ϕ) (3.14)

for all ϕ ∈ V0 with penalty function Quε := min(uε − ψ̃, 0). It is well known that the
penalty problem has a unique solution uε ∈ V0 (see [BL82, Chapter 3.1, p. 193]).
Note that the assumption on the obstacle in (3.15) below is satisfied for convex func-
tions.

Lemma 3.5. Let a(·, ·) be a bounded and coercive bilinear form. Suppose f ∈ L2(Ω),
uψ ∈ H2(Ω). Moreover, let ψ̃ ∈ V0 such that

− a(ψ̃,Quε) <∼ ‖ψ̃‖V‖Qu
ε‖H , (3.15)

then the solution of Problem 3.2 satisfies uε ∈ H2(Ω) and the following estimate holds

‖uε‖H2(Ω) <∼ ‖ψ̃‖V + ‖f‖L2(Ω) + ‖uψ‖H2(Ω) (3.16)

with a constant independent of the penalty parameter ε.

Proof. We start by setting ϕ = Quε ∈ V0 in (3.14), which results in

a(uε,Quε) + ε−1‖Quε‖2H = 〈f,Quε〉 − a(uψ,Quε). (3.17)

As a(Quε,Quε) = a(uε − ψ̃,Quε) the relation above leads to

a(Quε,Quε) + ε−1‖Quε‖2H = −a(ψ̃,Quε) + 〈f,Quε〉 − a(uψ,Quε). (3.18)

Thus, assumption (3.15), coercivity and boundedness of a(·, ·), f ∈ H and applying
Cauchy-Schwarz inequality results in

α0‖Quε‖2V + ε−1‖Quε‖2H <∼
(
‖ψ̃‖V + ‖f‖H + ‖uψ‖H2(Ω)

)
‖Quε‖H , (3.19)

which implies
‖Quε‖H <∼ ε

(
‖ψ̃‖V + ‖f‖H + ‖uψ‖H2(Ω)

)
. (3.20)

It follows from the elliptic regularity theory for variational equations that for Ω ⊂ Rd

a(uε, ϕ) = 〈f, ϕ〉 − a(uψ, ϕ)− ε−1(Quε, ϕ) (3.21)

with f ∈ H, uψ ∈ H2(Ω) and Quε ∈ H that there exists a unique solution and the
following estimate holds

‖uε‖H2(Ω) <∼ ‖u‖V + ‖uψ‖H2(Ω) + ε−1‖Quε‖H + ‖f‖H . (3.22)
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Finally, applying (3.20) together with Theorem 3.3 gives the desired result.

By passing to the limit in (3.16) as ε → 0 it can be shown that the solution of the
variational inequality satisfies the following regularity result.

Theorem 3.6. Let a(·, ·) be a bounded and coercive bilinear form. Suppose f ∈ L2(Ω),
uψ ∈ H2(Ω). Moreover let ψ̃ ∈ V0 satisfy (3.15). Then the solution satisfies u ∈ H2(Ω).

Proof. The proof consists of passing to the limit as ε→ 0 and proving that the solution
is a unique solution of the variational inequality. It can be proven analogously to [BL82,
Chapter 3.1].

For an elliptic variational equation the smoothness of the right hand side f , the bound-
ary condition function ψ on ∂Ω and the domain Ω are directly related to the smoothness
of the solution u, i.e. if f ∈ Hm−2(Ω), ψ ∈ Hm−1/2(∂Ω), and the boundary of Ω is in
Cm, then the solution satisfies u ∈ Hm(Ω). But the statement is not true for elliptic
variational inequalities in general. The threshold of smoothness for an elliptic varia-
tional inequality with zero boundary condition has been established by Brézis [Bré71]
and is provided in Theorem 3.7.

Theorem 3.7. (Maximal smoothness for elliptic variational inequality)
If f ∈ C1(Ω), ψ̃ ∈ C3(Ω) and if the boundary of Ω is sufficiently smooth, the solution
satisfies

u ∈W s,p(Ω) ∩W 2,∞(Ω) for all s < 2 + 1
p

and 1 < p <∞, (3.23)

where W s,p(Ω) denotes the Sobolev-Slobodeckij space with non-integer s > 0 .

For integer s,m ∈ N the Sobolev-Slobodeckij space reduces to the well known Sobolev
space Wm,p of m’th weak differentiable function in the Lebesgue space Lp(Ω). A proof
for W 2,∞(Ω) regularity assuming f ∈ C1(Ω) and ψ ∈ C2(Ω) was also established by
[KS00, Chapter IV.6].
As regards the valuation of American option we are interested in the approximation of
the partial derivatives up to order two, we also consider the behavior of the classical
derivatives of the solution. At this point, it should be mentioned that the smoothness
assumption in Theorem 3.7 for variational inequalities arising in the valuation of Amer-
ican options for the obstacle function, given by a non-smooth piecewise linear payoff
function, is not satisfied. But it is still helpful to explain, which regularity for an vari-
ational inequality can be expected in the best case.
Under the presented assumption the conclusion is that the solution of an elliptic varia-
tional inequality lies in the Hölder space C1,1(Ω), because the space W 2,∞(Ω) is defined
to be the Hölder space C1,1(Ω). Moreover, this implies that the solution is once classical
differentiable for the presented assumption.
W 2,∞(Ω) regularity for the solution of a variational inequality also implies that the
second derivative of the solution is bounded and exists on some neighborhood in Ω.
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3.1.2. Parabolic variational inequalities

In this section, we consider time dependent problems on the time interval [0, T ] ⊂ R. Let
H,V and V0 as defined in Section 3.1.1. For the formulation of parabolic variational
inequality, we introduce the definition of Bochner spaces. A detailed explanation of
Bochner spaces can be found in [Eva98].
The Bochner space Lp(0, T ;X) contains all real vector-valued functions u : (0, T )→ X,
where X is a real Banach space, such that the norms

‖u‖Lp(0,T ;X) :=
(∫ T

0
‖u(τ)‖2Xdτ

) 1
p

for 1 ≤ p <∞ and
‖u‖L∞(0,T ;X) := ess sup

0≤t≤T
‖u(τ)‖X

are finite. Let further C([0, T ];X) be the space of all continuous real vector-valued
functions u : (0, T )→ X with finite

‖u‖C([0,T ];X) := max
0≤t≤T

‖u(τ)‖X .

Due to the definition of Bochner spaces, the elements u ∈ Lp(0, T ;X) are functions
defined on (0, T ) with values in X. The next theorems for Bochner spaces will be
essential for further regularity results on parabolic variational inequalities.
Theorem 3.8. Suppose u ∈ L2(0, T ;V0) and ut ∈ L2(0, T,V∗) then

u ∈ C([0, T ];H).

Proof. See [Eva98, Chapter 5, pp. 287–288 ].

In particular, Theorem 3.8 ensures that point evaluations on the interval [0, T ] exists
for functions u ∈ L2(0, T ;V0) and ut ∈ L2(0, T,V∗).
Theorem 3.9. Suppose u ∈ L2(0, T ;Hm+2(Ω)) with ut ∈ L2(0, T ;Hm(Ω)), then

u ∈ C([0, T ];Hm+1(Ω)). (3.24)

Parabolic variational inequalities in the context of option pricing problems have often
the special structure that the initial condition and the obstacle function are given by
the same non-smooth function ψ ∈ H1(Ω) and can be formulated as follows:
Problem 3.10. (Parabolic variational inequality)
Let K := {ϕ ∈ V : ϕ ≥ ψ} ⊆ V a closed convex non-empty set, ψ ∈ V a given obstacle
function and f(τ) : (0, T ) → V∗ a given source term. Find y : (0, T ) → V such that
y(τ) ∈ K for a.e. τ ∈ (0, T ), y(0) = ψ and
〈
∂y(τ)
∂τ

, ϕ− y(τ)
〉

V∗,V
+a(y(τ), ϕ−y(τ)) ≥ 〈f(τ), ϕ−y(τ)〉V∗,V for all ϕ ∈ K. (3.25)
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First, we rewrite Problem 3.10 to a problem with homogeneous boundary condition
with the time independent function uψ as defined in Section 3.1.1.

Problem 3.11. (Parabolic variational inequality with homogeneous boundary condi-
tion)
Let K0 := {ϕ ∈ V0 : ϕ ≥ ψ̃} ⊆ V a closed convex non-empty set, where ψ̃ := ψ − uψ
denotes the transformed obstacle function. Find u : (0, T ) → V0 such that u(τ) ∈ K0

for a.e. τ ∈ (0, T ),
〈
∂u(τ)
∂τ

, ϕ− u(τ)
〉

V∗,V
+ a(u(τ) + uψ, ϕ− u(τ)) ≥ 〈f(τ), ϕ− u(τ)〉V∗,V for all ϕ ∈ K0

(3.26)
and u(0) = ψ − uψ =: ψ̃.

There are many articles discussing existence and uniqueness results for parabolic varia-
tional inequalities. The authors in [TLG81] show the existence and uniqueness of a solu-
tion u, ∂u∂τ ∈ L2(0, T ;V)∩L∞(0, T ;H) for parabolic variational inequalities based on an
approximation method, if the operator is bounded and coercive and f, ∂f∂τ ∈ L2(0, T ;V∗)
and f(0) − Au(0) ∈ H is given. In the context of option pricing problems the last-
named result is not applicable, because due to the non-smooth initial condition usu-
ally f(0) − Au(0) ∈ H is not satisfied. Further Ito and Kunisch [IK06] introduced
a Lagrange multiplier approach to prove the existence and uniqueness of solutions
u ∈ H1(0, T ;H) ∩ C(0, T ;V) for parabolic variational inequalities, if the operator is
symmetric, bounded and satisfies a G̊arding inequality and f ∈ L2(0, T ;H) is given.
Existence and uniqueness of the solution and regularity results for parabolic variational
inequalities using a penalty approach are discussed in the literature [BL82, Chapter 3.2].
In particular [Ach05, DL19b, KTK17, Mem12] discussed it in the context of American
options. Following the authors mentioned, we introduce the penalized problem corre-
sponding to Problem 3.11 with homogeneous boundary conditions as follows:
For ε > 0, find uε : (0, T ]→ V0 such that
〈
∂uε(τ)
∂τ

, ϕ

〉
+a(uε(τ), ϕ)+ε−1(Quε, ϕ) = 〈f(τ), ϕ〉−a(uψ, ϕ) for all ϕ ∈ V0, a.e. τ ∈ (0, T ],

(3.27)
and uε(0) = ψ̃, where Quε := min(uε − ψ̃, 0) denotes the penalty function.
We shall see that the regularity results presented in Lemma 3.13 or Theorem 3.14 differ
depending on which of the following cases we are considering:

Assumption 3.12. Let a(·, ·) be a bilinear form. In Lemma 3.13 and Theorem 3.14
we will distinguish between the following cases:

i) The bilinear form a(·, ·) is bounded, i.e. there exists C1 > 0 such that

|a(ϕ,w)| ≤ C1‖ϕ‖V‖w‖V for all ϕ,w ∈ V. (3.28)

Moreover, there exists real numbers, α > 0 and β, such that the following G̊arding-
inequality

a(ϕ,ϕ) ≥ α‖ϕ‖2V − β‖ϕ‖2H for all ϕ ∈ V0 (3.29)

holds.
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ii) Let a(·, ·) := a0(·, ·) − a1(·, ·) be a bilinear form, where a0(·, ·) is assumed to be
symmetric. There exists constants C2 > 0 and C3 > 0 such that

|a0(ϕ,w)| ≤ C2‖ϕ‖V‖w‖V for all ϕ,w ∈ V (3.30)

and
|a1(ϕ,w)| ≤ C3‖ϕ‖V‖w‖H for all ϕ,w ∈ V. (3.31)

Moreover the bilinear form a0(·, ·) is coercive in V0, i.e. there exists α0 > 0 such
that

a0(ϕ,ϕ) ≥ α0‖ϕ‖V‖ϕ‖V for all ϕ ∈ V0. (3.32)

Let a(·, ·) satisfy i) in Assumption 3.12 and let ψ ∈ H be given, then it is well known
that the penalized problem has a unique solution uε ∈ L2(0, T ;V0) ∩H1(0, T ;V∗) (see
[BL82, Chapter 3.2, Theorem 2.3]). The following Lemma summarizes some regularity
results for the penalized problem. A very similar proof of Lemma 3.13 in the context of
the transformed Black-Scholes and the integro-differential variational inequality with
x := log(S/K) can be found in [Mem12] and [KTK17]. Note that statements i) and ii)
in Lemma 3.13 fit into the context of many option pricing problems, since it is only
assumed that the obstacle function lies in the space V. In particular, (3.35) is satisfied
for a convex obstacle function ψ̃ and ensures that the solution is given by the obstacle
in a subdomain of Ω, where the obstacle function is smooth enough.
Lemma 3.13. (Regularity for the penalty problem)

(i) Suppose that i) in Assumption 3.12 is satisfied. Assume also f ∈ L2(0, T ;V∗),
ψ̃ ∈ V0 and uψ ∈ V. Then the solution satisfies uε ∈ L∞(0, T ;H) ∩ L2(0, T ;V0)
and we have the estimate

‖uε‖L∞(0,T ;H) + ‖uε‖L2(0,T ;V) <∼ ‖ψ̃‖V + ‖uψ‖V + ‖f‖L2(0,T ;V∗) (3.33)

with constant independent of the penalty parameter ε.
ii) Suppose that ii) in Assumption 3.12 is satisfied. Assume also f ∈ H1(0, T ;V∗),

ψ̃ ∈ V0 and uψ ∈ V. Then the solution satisfies uε ∈ H1(0, T ;H) ∩ L∞(0, T ;V0)
and we have the estimate

‖∂τuε‖L2(0,T ;H) + ‖uε‖L∞(0,T ;V) <∼ ‖ψ̃‖V + ‖uψ‖V + ‖f‖H1(0,T ;V∗) (3.34)

with constant independent of the penalty parameter ε.
(iii) Suppose that ii) in Assumption 3.12 is satisfied. Assume also f ∈ L2(0, T,H),

f ∈ H1(0, T ;V∗), ψ̃ ∈ V0 and uψ ∈ H2(Ω). Moreover let ψ̃ such that

− a0(ψ̃,Quε(τ)) <∼ ‖ψ̃‖V‖Qu
ε(τ)‖H for a.e. τ ∈ (0, T ]. (3.35)

Then the solution satisfies uε ∈ L2(0, T ;H2(Ω)) and we have the estimate

‖uε‖L2(0,T ;H2(Ω)) <∼ ‖ψ̃‖V + ‖uψ‖H2(Ω) + ‖f‖H1(0,T ;V∗) + ‖f‖L2(0,T ;H) (3.36)

with constant independent of the penalty parameter ε.
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Proof. (i) Since uε(τ) ∈ V0 for a.e. τ ∈ (0, T ] and taking ϕ = uε(τ) − ψ̃ in (3.27) we
have

〈uετ , uε〉+ a(uε, uε) + ε−1 (Quε, uε) = 〈uετ , ψ̃〉+ a(uε, ψ̃) + 〈f, uε − ψ̃〉 − a(uψ, uε).

Since 〈uετ , uε〉 = 1
2
∂
∂τ ‖uε‖2H and (Quε, uε) = ‖Quε‖2H for a.e. τ ∈ (0, T ] one has

1
2
∂

∂τ
‖uε‖2H + a(uε, uε) + ε−1‖Quε‖2H = 〈uετ , ψ̃〉+ a(uε, ψ̃) + 〈f, uε − ψ̃〉 − a(uψ, uε).

Integrating between 0 and τ and observing uε(0) = ψ̃(S) yields

1
2‖u

ε(τ)‖2H +
∫ τ

0
(a(uε(r), uε(r))) dr + ε−1

∫ τ

0

(
‖Quε(r)‖2H

)
dr

= 〈uε, ψ̃〉 − 1
2‖ψ̃‖

2
H +

∫ τ

0

(
a(uε(r), ψ̃) + 〈f(r), uε(r)− ψ̃〉 − a(uψ, uε(r))

)
dr

for all τ ∈ (0, T ]. Then Cauchy-Schwarz inequality, the boundedness in (3.28) and the
G̊arding inequality in (3.29) implies

1
2‖u

ε(τ)‖2H + α

∫ τ

0

(
‖uε(r)‖2V

)
dr + ε−1

∫ τ

0

(
‖Quε(r)‖2H

)
dr

≤‖uε‖H‖ψ̃‖H +
∫ τ

0

(
C(‖uψ‖V + ‖ψ̃‖V)‖uε(r)‖V + ‖f(r)‖V∗‖u(r)‖H

)
dr

+ β

∫ τ

0

(
‖uε(r)‖2H

)
dr for all τ ∈ (0, T ].

Applying Young’s inequality and
∫ τ

0 ‖uψ‖2Vdr ≤
√
T‖uψ‖2V leads to

1
2‖u

ε(τ)‖2H + α

∫ τ

0

(
‖uε(r)‖2V

)
dr + ε−1

∫ τ

0

(
‖Quε(r)‖2H

)
dr ≤ 1

4‖u
ε‖2H

+ α

2

∫ τ

0

(
‖uε(r)‖2V

)
dr + C̃

(
‖uψ‖2V + ‖ψ̃‖2V +

∫ τ

0

(
‖f(r)‖2V∗ + ‖uε(r)‖2H

)
dr
)

with C̃ := C̃(T ) and for all τ ∈ (0, T ]. Rearranging yields

1
4‖u

ε(τ)‖2H + α

2

∫ τ

0

(
‖uε(r)‖2V

)
dr + ε−1

∫ τ

0

(
‖Quε(r)‖2H

)
dr ≤

C̃

(
‖uψ‖2V + ‖ψ̃‖2V +

∫ τ

0

(
‖f(r)‖2V∗ + ‖uε(r)‖2H

)
dr
)

for all τ ∈ (0, T ].

Applying Gronwall’s inequality in integral form and
∫ τ
0 ‖uψ‖2Vdr ≤

√
T‖uψ‖2V leads to

‖uε(τ)‖2H +
∫ τ

0

(
‖uε(r)‖2V

)
dr + ε−1

∫ τ

0

(
‖Quε(r)‖2H

)
dr

≤ C̃
(
‖uψ‖2V + ‖ψ̃‖2V +

∫ τ

0
‖f(r)‖2V∗dr

)
(3.37)
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for all τ ∈ (0, T ] and

‖uε‖L∞(0,T ;H) + ‖uε‖L2(0,T ;V) ≤ C̃(‖uψ‖V + ‖ψ̃‖V + ‖f‖L2(0,T ;V∗)) (3.38)

completes the proof of (i).
To simplify the notation for the proof of ii), we will frequently use û(τ) :=

∫ τ
0 u(r)dr

and Q̂u(τ) :=
∫ τ

0 Qu(r)dr. First, we rewrite the homogenized penalty problem in (3.27)
as
〈
∂uε

∂τ
, ϕ

〉
+a0(uε(τ), ϕ)+ε−1(Quε, ϕ) = a1(uε(τ), ϕ)+〈f, ϕ〉−a(uψ, ϕ) for a.e. τ ∈ (0, T ].

Then integration between 0 and τ and using
∫ τ

0 a0(uε(r), ϕ))dr = a0(ûε(τ), ϕ)) and
uε(0) = ψ̃ yields

〈uε(τ), ϕ〉+ a0(ûε(τ), ϕ)) + ε−1(Q̂uε(τ), ϕ) =〈ψ̃, ϕ〉+
∫ τ

0
a1(uε(r), ϕ)dr

+ 〈f̂(τ), ϕ〉 − a(ûψ(τ), ϕ) (3.39)

for all τ ∈ (0, T ]. Then the relation above also implies

〈uε(τ − s), ϕ〉+ a0(ûε(τ − s), ϕ))+ε−1(Q̂uε(τ − s), ϕ) = 〈ψ̃, ϕ〉+
∫ τ−s

0
a1(uε(r), ϕ)dr

+ 〈f̂(τ − s), ϕ〉 − a(ûψ(τ − s), ϕ) (3.40)

for all τ ∈ (s, T ]. Subtracting (3.40) from (3.39) and dividing by s leads to

〈δsuε(τ), ϕ〉+ a0(δsûε(τ), ϕ))+ε−1(δsQ̂uε(τ), ϕ) = 1
s

∫ τ−s

τ
a1(uε(r), ϕ)dr

+ 〈δsf̂(τ), ϕ〉 − a(δsûψ(τ), ϕ), (3.41)

where δsuε(τ) := uε(τ)−uε(τ−s)
s denotes the difference quotient.

Now we take ϕ = δsu
ε(τ) = ∂τ (δsûε(τ)) in the above relation, which results in

‖δsuε(τ)‖2H + a0
(
δsûε(τ), ∂τ (δsûε(τ))

)
+ ε−1(δsQ̂uε(τ), ∂τ (δsQ̂uε(τ)))

= ε−1(δsQ̂uε(τ), ∂τ (δsQ̂uε(τ))− δsuε(τ)) + 1
s

∫ τ−s

τ
a1(uε(r), δsuε(τ))dr

+ 〈δsf̂(τ), δsuε(τ)〉 − a(δsûψ(τ), δsuε(τ)). (3.42)

Since a0(·, ·) is symmetric one has

a0
(
δsûε(τ), ∂τ (δsûε(τ))

)
= 1

2
∂

∂τ
a0
(
δsûε(τ), δsûε(τ)

)
(3.43)

and for the penalty term one observes

ε−1(δsQ̂uε(τ), ∂τ (δsQ̂uε(τ))) = ε−1

2
∂

∂τ
‖δsQ̂uε(τ)‖2H . (3.44)
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Then relation (3.42) together with (3.43) and (3.44) yields

‖δsuε(τ)‖2H + 1
2
∂

∂τ
a0
(
δsûε(τ), δsûε(τ)

)
+ ε−1

2
∂

∂τ
‖δsQ̂uε(τ)‖2H

= ε−1(δsQ̂uε(τ), ∂τ (δsQ̂uε(τ))− δsuε(τ)) + 1
s

∫ τ−s

τ
a1(uε(r), δsuε(τ))dr

+ 〈δsf̂(τ), δsuε(τ)〉 − a(δsûψ(τ), δsuε(τ)). (3.45)

Further applying the boundedness in (3.31) and Young’s inequality yields

1
s

∫ τ−s

τ
a1(uε(r), δsuε(τ))dr ≤ C 1

s

∫ τ−s

τ
‖uε(r)‖2Vdr + 1

2‖δsu
ε(τ))‖2H . (3.46)

Integration between s and τ in (3.45) and applying (3.46) implies
∫ τ

s
‖δsuε(s)‖2Hds + a0

(
δsûε(τ), δsûε(τ)

)
+ ε−1‖δsQ̂uε(τ)‖2H

≤ a0
(
δsûε(s), δsûε(s)

)
+ 2ε−1

∫ τ

s
(δsQ̂uε(s), ∂τ (δsQ̂uε(s))− δsuε(s))ds

+
∫ τ

s
C

1
s

∫ τ−s

τ
‖uε(r)‖2Vdr + 2〈δsf̂(s), δsuε(s)〉 − 2a(δsûψ(s), δsuε(s))ds. (3.47)

Applying the boundedness in (3.30), the coercivity in (3.32) of a0(·, ·) and Young’s
inequality yields

∫ τ

s
‖δsuε(s)‖2Hds + α0‖δsûε(τ)‖2V + ε−1‖δsQ̂uε(τ)‖2H

≤ C‖δsûε(s)‖V + 2ε−1
∫ τ

s
(δsQ̂uε(s), ∂τ (δsQ̂uε(s))− δsuε(s))ds

+
∫ τ

s
C

1
s

∫ τ−s

τ
‖uε(r)‖2Vdr + 2〈δsf̂(s), δsuε(s)〉 − 2a(δsûψ(s), δsuε(s))ds. (3.48)

Then integration by parts and ∂s(δsûψ(s)) = δsuψ = 0 implies

−
∫ τ

s
2a(δsûψ(s), δsuε(s))ds =− 2a(δsûψ(τ), δsûε(τ)) + 2a(δsûψ(s), δsûε(s))

+
∫ τ

s
2a(∂s(δsûψ(s)), δsûε(s))ds

=− 2a(δsûψ(τ), δsûε(τ)) + 2a(δsûψ(s), δsûε(s))

≤ C(‖δsûψ(τ)‖2V + ‖δsûψ(s)‖2V + ‖δsûε(s)‖2V)

+ α0
4 ‖δsû

ε(τ)‖2V (3.49)
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and
∫ τ

s
2〈δsf̂(s), δsuε(s)〉ds =2〈δsf̂(τ), δsûε(τ)〉 − 2〈δsf̂(s), δsûε(s)〉

−
∫ τ

s
2〈∂sδsf̂(s), δsûε(s)〉

≤C
(
‖δsf̂(τ)‖2V∗ + ‖δsf̂(s)‖2V∗ +

∫ τ

s

(
‖δsf(s)‖2V∗ + ‖δsûε(s)‖2V

)
ds
)

+ α0
4 ‖δsû

ε‖2V∗ . (3.50)

Relation (3.48) together with (3.49) and (3.50) implies
∫ τ

s
‖δsuε(s)‖2Hds + α0

2 ‖δsû
ε(τ)‖2V + ε−1‖δsQ̂uε(τ)‖2H

≤ C‖δsûε(s)‖V + 2ε−1
∫ τ

s
(δsQ̂uε(s), ∂τ (δsQ̂uε(s))− δsuε(s))ds

+
∫ τ

s
C

1
s

∫ τ−s

τ
‖uε(r)‖2Vdrds + C(‖δsûψ(τ)‖2V + ‖δsûψ(s)‖2V)

+ C

(
‖δsf̂(τ)‖2V∗ + ‖δsf̂(s)‖2V∗ +

∫ τ

s

(
‖δsf(s)‖2V∗ + ‖δsûε(s)‖2V

)
ds
)
. (3.51)

By passing to the limit as s→ 0 on both sides yields

lim
s→0

(∫ τ

s
‖δsuε(s)‖2Hds + α0

2 ‖δsû
ε(τ)‖2V + ε−1‖δsQ̂uε(τ)‖2H

)

≤ C‖ψ̃‖2V + 2ε−1
∫ τ

0
(Quε(s), ∂τ (Quε(s))− ∂suε(s))ds + C(‖uε‖2L2(0,T ;V) + ‖uψ‖2V)

+ C‖f‖2H1(0,T ;V∗)

= C(‖ψ̃‖2V + ‖uε‖2L2(0,T ;V) + ‖uψ‖2V + ‖f‖2H1(0,T ;V∗)). (3.52)

Taking the limit and using relation (3.38) leads to

‖∂tuε‖2L2(0,T ;H) + ‖uε‖2L∞(0,T ;V) + ε−1‖Quε‖2H ≤ C(‖ψ̃‖2V + ‖uψ‖2V + ‖f‖2H1(0,T ;V∗)),
(3.53)

which gives the desired result (ii).
To prove (iii) we set ϕ = Quε in (3.27). This yields
〈
∂uε

∂τ
,Quε

〉
+ a0(uε(τ),Quε) + ε−1‖Quε‖2H = a1(uε(τ),Quε)− a(uψ,Quε) + 〈f(τ), ϕ〉

(3.54)
for a.e. τ ∈ (0, T ].
Then, as

〈
∂uε

∂τ ,Qu
ε
〉

= 1
2
∂
∂τ ‖Quε‖2H and a0(Quε,Quε) = a0(uε − ψ̃,Quε) for a.e.

τ ∈ (0, T ], the relation above leads to

1
2
∂

∂τ
‖Quε‖2H + a0(Quε,Quε) + ε−1‖Quε‖2H = −a0(ψ̃,Quε)+a1(uε(τ),Quε)− a(uψ,Quε)

+ 〈f(τ), ϕ〉. (3.55)
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The coercivity of a0(·, ·) in (3.32), the boundedness of a1(·, ·) in (3.31), f(τ) ∈ H and
integrating between 0 and τ implies

1
2‖Qu

ε‖2H + α0

∫ τ

0
‖Quε‖2Vdr + ε−1

∫ τ

0
‖Quε(r)‖2Hdr ≤ −

∫ τ

0
a0(ψ̃,Quε(r))dr

+C
(∫ τ

0
(‖uε(r)‖V + ‖uψ‖H2(Ω) + ‖f(r)‖H)2dr

) 1
2
(∫ τ

0
‖Quε‖2Hdr

) 1
2
. (3.56)

Using the assumption in (3.35) and applying Cauchy-Schwarz inequality results in

−
∫ τ

0
a0(ψ̃,Quε(r))dr <∼

∫ τ

0
‖ψ̃‖V ‖Quε(r)‖Hdr

<∼
√
T‖ψ̃‖V

(∫ τ

0
‖Quε(r)‖Hdr

) 1
2
. (3.57)

Next, relation (3.56) together with (3.57) and (3.38) implies

‖Quε‖L2(0,T ;H) <∼ ε
(
‖uε‖L2(0,T ;V) + ‖uψ‖H2(Ω) + ‖ψ̃‖V + ‖f‖L2(0,T ;H)

)

<∼ ε
(
‖uψ‖H2(Ω) + ‖ψ̃‖V + ‖f‖L2(0,T ;H)

)
. (3.58)

It follows from the elliptic regularity theory that for Ω ⊂ R

a0(uε, ϕ) = a1(uε, ϕ))− a(uψ, ϕ)− ε−1(Quε, ϕ)− 〈∂τuε, ϕ〉 for all ϕ ∈ V0 (3.59)

with f(τ) ∈ H, uε(τ) ∈ V, uψ ∈ H2(Ω) and Quε(τ), ∂τuε(τ) ∈ H that there exists a
unique solution uε(τ) ∈ H2(Ω) and the following estimates holds

‖uε(τ)‖H2(Ω) <∼ ‖u(τ)‖V + ‖uψ‖H2(Ω) + ε−1‖Quε(τ)‖H + ‖∂τuε‖H + ‖f(τ)‖H . (3.60)

Finally, applying (3.53) and (3.58) to (3.60) gives the desired result in (iii).

By passing to the limit in (3.27) as ε → 0, it can be shown that the solution of the
variational inequality satisfies the following regularity results.

Theorem 3.14. (Regularity for parabolic variational inequalities)

(i) Suppose that i) in Assumption 3.12 is satisfied. Assume also f ∈ L2(0, T ;V∗),
ψ̃ ∈ V0 and uψ ∈ V then the solution satisfies u ∈ L∞(0, T ;H) ∩ L2(0, T ;V0).

(ii) Suppose that ii) in Assumption 3.12 is satisfied. Assume also f ∈ H1(0, T ;V∗),
ψ̃ ∈ V0 and uψ ∈ V then the solution satisfies u ∈ H1(0, T ;H) ∩ L∞(0, T ;V0).

(iii) Suppose that ii) in Assumption 3.12 is satisfied. Moreover, let the obstacle ψ̃
satisfy (3.35). Assume also f ∈ L2(0, T ;H), f ∈ H1(0, T ;V∗), ψ̃ ∈ V0 and uψ ∈
H2(Ω). Then the solution satisfies u ∈ L2(0, T ;H2(Ω)).

Proof. The proof consists of passing to the limit as ε→ 0 and proving that the solution
is unique. It can be proved analogously to [BL82, Chapter 3.2].
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Remark 3.15. (Smoothness)
In the variational equation framework (K = V) under suitable compatibility assumption
(e.g. u0 = 0, f(τ) vanishes near τ = 0) the smoothness of the solution u is directly
related to the smoothness of f , i.e. f ∈ Hq(0, T ;V) ⇒ u ∈ Hq(0, T ;V)∩Hq+1(0, T ;V∗).
This is not true for variational inequalities (K ⊂ V). Already in the simple scalar
case V = H = R the derivative of the solution u(τ) with respect to time τ can have
jump discontinuities (see e.g. [Bai89] on p.61). ∂u

∂τ ∈ L2(0, T ;V) ∩ L∞(0, T ;H∗) is the
maximal smoothness, as ∂u

∂τ cannot be continuous.
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3.2. B-Splines

In this section we present an introduction to B-spline spaces and their basis functions.
The goal of this section is to introduce the notation and to summarize relevant proper-
ties of B-splines for this work. For more detailed information on B-splines, we refer to
[dB01, PT97, Sch07, KLM+17]. A short introduction with the most relevant properties
of B-splines can also be found in [Mol16].
Let Θ := {θi}n+k

i=1 be the ordered sequence of knots for fixed k ∈ N, where we allow
repetition of knots, that is

xmin := θ1 = . . . = θk < θk+1 ≤ . . . ≤ . . . ≤ θn < θn+1 = . . . = θn+k := xmax (3.61)

where θ1 = a and θn+1 = b. We say that a knot has multiplicity qi, if it occurs exactly
qi times. The maximum multiplicity in the interior of [xmin, xmax] we allow in this thesis
is k − 1. Then we define the B-splines Ni,k(x) of order k for i = 1, . . . , n recursively
as

Ni,1(x) =
{

1, if x ∈ [θi, θi+1)
0, else

Ni,k(x) = x− θi
θi+k−1 − θi

Ni,k−1(x) + θi+k − x
θi+k − θi+1

Ni+1,k−1(x) (3.62)

for θi+k−1 6= θi and θi+k 6= θi+1. Since Ni,1(x) = 0 if θi = θi+1, the quotient for the
coinciding knots is set to zero.

Properties 3.16. B-splines defined in (3.62) have the following properties

• Local support: supp(Ni,k) ⊂ [θi, θi+k]

• Nonnegativity: Ni,k ≥ 0 for all x ∈ [xmin, xmax].

• Piecewise structure: Ni,k are piecewise polynomials of order k on [θj , θj+1].

• Smoothness: If θj is a knot of Ni,k with multiplicity qj then they have k − qj − 1
continuous derivatives, i.e. Ni,k ∈ Ck−qj−1(θj).

• Local partition of unity: B-spline functions constitute a partition of unity, that is∑n
i=1Ni,k(x) = 1 for all x ∈ (a, b).

A proof for these properties can be found for example in [KLM+17]. The space of splines
spanned by the basis function Ni,k is denoted by

Sk,Θ := span{N1,k, . . . , Nn,k}, (3.63)

where Θ is defined as in (3.61). In the following, we present some basic properties
which are important for an efficient implementation of B-splines. These formulas are
used for the implementation of the code developed for this thesis. Since B-Splines
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are piecewise polynomials fulfilling the recurrence relation the derivatives can also be
expressed recursively.

Corollary 3.17. Let Ni,k for k ∈ N and i ∈ 1, . . . , n regarding the extended sequence
of knots as defined in (3.61). Then the derivatives of B-splines are given by

N ′i,k(x) = (k − 1)
(
Ni,k−1(x)
θi+k−1 − θi

− Ni+1,k−1(x)
θi+k − θi+1

)
. (3.64)

Due to the recurrence relation and the local support of B-splines the point evaluation
of splines can efficiently be implemented by the following Neville-like scheme (see e.g.
[Sch07], Theorem 5.7).

Theorem 3.18. Let
S(x) =

n∑

i=1
ciNi,k(x) (3.65)

a spline regarding the extended sequence of knots defined in (3.61). Then the spline can
expressed equivalently as

S(x) =
n∑

i=q+1
c

[q]
i (x)Ni,k−q(x) (3.66)

for 0 ≤ q ≤ k − 1, where

c
[q]
i (x) :=





ci if q = 0
x−θi

θi+k−q−θi c
[q−1]
i (x) + θi+k−q−x

θi+k−q−θi c
[q−1]
i−1 (x) if q > 0

0 if θi+k−q = θi.

(3.67)

In particular, if x̃ ∈ [θi, θi+1) the spline can be evaluated by

S(x̃) = c
[k−1]
i (x̃). (3.68)

At this point it should be mentioned that the Matlab implementation of the Neville-
scheme as defined in Theorem 3.18 and the recurrence formula for the derivatives of
B-splines as defined in Corollary 3.17 originally stems from [Mol16].
Due to the recurrence relation for the derivatives of B-splines one can also implement
the evaluation of the derivatives of splines by the following Neville-like scheme. The
scheme can also be used for repeating knots (c.f. [DR08]).

Corollary 3.19. Let S(q)(x) the q’th derivative of the spline S then the derivative can
be expressed equivalently by

S(q)(x) = (k − 1) . . . (k − q)
n∑

i=q+1
c

(q)
i Ni,k−q(x) (3.69)
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with

c
(q)
i :=




ci if q = 0
c
(q−1)
i −c(q−1)

i−1
θi+k−q−θi if 0 < q ≤ k − 2.

(3.70)

After the recursive evaluation of c(q)
i one can compute S(q)(x) by Theorem 3.18.

Since we also consider a variational inequality on a higher dimensional spatial rectangu-
lar domain, we introduce multidimensional tensor-product splines. Therefore, let d knot
vectors Θ(j) with 1 ≤ j ≤ d be given. Associated with the knot sequence Θ(j) similar
defined as in (3.61) with uniform grid size hj := max{θ(j)

i+1 − θ
(j)
i } there is a mesh Θ,

that is a partition of Ω ⊂ Rd into d-dimensional open knot sequences Θ = {⊗dj=1Θ(j)}.
For the multidimensional case, it is assumed in this thesis that the grid sizes hj are
uniform but repetitions of knots are possible. We define by Sk,Θ(j) the space of splines
with respect to the knot sequence Θ(j). Then the d-dimensional tensor-product spline
space of order k is given by

Sdk,Θ := ⊗dj=1Sk,Θ(j) . (3.71)

To this end we consider tensor-product splines of order k with given expansion coeffi-
cients ci1,...,id

S(x) := S(x1, . . . , xd) =
n1∑

i1=1
. . .

nd∑

id=1
ci1,...,idNi1,k,Θ1(x1) · · ·Nid,k,Θd(xd) (3.72)

with respect to the knot sequence Θ(j) with grid size hj for j = 1, . . . , d. Properties for
one dimensional splines can be extended straightforwardly to tensor products in most
cases by introducing a Kronecker product.
We conclude the section by some global (optimal) approximation properties for splines
in Sobolev spaces. Considering integer Sobolev spaces, the following local error estimate
is proved for d−dimensional splines in [Sch07, Theorem 13.20]. A detailed proof for one
dimensional splines can also be found in [KLM+17].

Theorem 3.20. Let Ω := ⊗dj=1(ai, bi) a rectangular domain and let f ∈ Hm(Ω) with
m ∈ N. Then there exists a tensor-product spline S ∈ Sdk,Θ with q ≤ m ≤ k such that

‖f − S‖Hq(Ω) <∼ hm−q
∥∥∥∥∥
∂mf

∂xmj

∥∥∥∥∥
L2(Ω)

, (3.73)

where h = max
1≤j≤d

{hj} with hj := max
k≤i≤n(j)

{θ(j)
i+1 − θ

(j)
i } and constants only depending on

m, k and d.

In the context of variational inequalities we also need some global approximation prop-
erties for tensor-product splines in the Sobolev-Slobodeckij space W s,p(Ω) with non
integer s > 0. These estimate can be obtained from [Sch07, Theorem 6.31 and (6.60)],
where an approximation estimate for splines in Besov spaces is established. Due to some
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3.3. A priori estimates for elliptic variational inequalities

known embedding theorems for Besov spaces (for more details of the embeddings see
[Tri78]) one can derive the following estimates in Sobolev norms from the corresponding
estimate in Besov spaces.

Theorem 3.21. Let Ω := ⊗dj=1(ai, bi) a rectangular domain and 1 ≤ q ≤ ∞. Suppose
0 ≤ r < bs−1c and f ∈W q,s with non-integer s > 0. Then there exists a tensor-product
spline approximation S ∈ Sdk,Θ such that

‖f − S‖W q,r(Ω) <∼ h(s−r)‖f‖W q,s(Ω), (3.74)

where h = max
1≤j≤d

{hj} with hj := max
k≤i≤n(j)

{θ(j)
i+1 − θ

(j)
i }.

3.3. A priori estimates for elliptic variational inequalities

In this section, we consider a priori estimates for elliptic variational inequalities. Since
one cannot solve the problem in an infinite space V we introduce a finite dimensional
space Vh ⊂ V with (tensor product) B-spline basis functions. The corresponding ap-
proximation of the convex set K is denoted by Kh. If all assumptions for the a priori
estimates are satisfied, the following results can be applied to the semi-discrete formu-
lation of an parabolic variational inequality. A priori estimates for elliptic variational
inequalities were often discussed for finite elements. For an introduction to finite ele-
ments, see [JL13]. The first a priori estimate for elliptic variational inequalities with
homogeneous boundary condition, where an approximate convex set Kh needs not to
be contained in K has been established by Falk [Fal74]. He proves an optimal con-
vergence rate in the H1(Ω)-norm for piecewise linear elements. Later Brezzi, Raviart
and Hager [BHR77] have extended the result for variational inequalities with nonho-
mogeneous boundary condition for linear and quadratic elements. We concentrate on
the case Kh ⊂ K on an interval Ω ⊂ R or a rectangular domain Ω ⊂ R2. Let V0 the
space of once weak differentiable function with homogeneous boundary condition, V∗
the associated dual space and K be a non-empty closed subset of V. Let a(·, ·) be a
continuous bilinear form on V and coercive on V0 with V0 ⊂ V. Then we consider the
following elliptic variational inequality:
Find y ∈ K := {ϕ ∈ V : ϕ ≥ ψ in Ω, ϕ = ψ on Υ} such that

a(y, ϕ− y) ≥ 〈f, ϕ− y〉 for all ϕ ∈ K, (3.75)

where 〈·, ·〉 denotes the duality pairing between V and V∗. We also use the notation for
the linear mapping A : V → V∗ with 〈Ay, ϕ〉 = a(y, ϕ). We denote by Ωf ⊂ Ω and
Ω \ Ωf the parts of Ω, where the constraints are binding y = ψ and nonbinding y > ψ
respectively. In the B-spline Galerkin discretization, we replace the solution space by Vh
with B-splines or tensor product B-splines of order k = 2, 3, 4. For an obstacle function
and boundary conditions given by the same function ψ one can construct a discrete
solution of the form yh := uh + ψ, which lies in the following discrete convex set

Kh := {ϕh ∈ Vh : ϕh ≥ ψ in Ω, ϕ = ψ on Υ} ⊂ K. (3.76)
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In the B-spline Galerkin method we then search the discrete solution yh ∈ Kh such
that

a(yh, ϕh − yh) ≥ 〈f, ϕh − yh〉 for all ϕh ∈ Kh. (3.77)

The next lemma can be seen as an generalised formulation of the well known Céa
Lemma for variational equations (K = V). Note, that in comparison to [BHR77, Fal74]
we consider the simpler case Kh ⊂ K (conforming approximation).

Lemma 3.22. Let a(·, ·) be a bounded bilinear form on V ×V which is coercive on V0.
Let y and yh be the solutions of (3.75) and (3.77), respectively. Then one can estimate

‖y − yh‖2V <∼ inf
ϕh∈Kh

(
‖ϕh − y‖2V + 〈Ay − f, ϕh − y〉

)
for all ϕh ∈ Kh ⊂ K (3.78)

and if Ay − f ∈ H, then

‖y − yh‖2V <∼ inf
ϕh∈Kh

(
‖ϕh − y‖2V + ‖Ay − f‖H‖ϕh − y‖H

)
for all ϕh ∈ Kh ⊂ K.

(3.79)
Proof. Since Kh ⊂ K (conforming approximation) we have the following variational
inequalities for problem (3.75) and (3.77),

〈Ay, ϕh − y〉 ≥ 〈f, ϕh − y〉 for all ϕh ∈ Kh, (3.80)
〈Ayh, ϕh − yh) ≥ (f, ϕh − yh) for all ϕh ∈ Kh. (3.81)

Since Kh ⊂ K this yields

〈Ay − f, y − yh〉 ≤ 0 and 〈Ayh − f, yh − ϕh〉 ≤ 0. (3.82)

Employing the estimates in (3.82) one has

E := 〈A(y − yh), y − yh〉 = 〈Ay − f, y − yh〉 − 〈Ayh − f, y − yh〉 ≤ −〈Ayh − f, y − yh〉
= 〈Ayh − f, yh − ϕh〉+ 〈Ayh − f, ϕh − y〉 ≤ 〈Ayh − f, ϕh − y〉
= −〈A(y − yh), ϕh − y〉+ 〈Ay − f, ϕh − y〉.

Exploiting the coercivity and the boundedness of the operator results in

α‖y − yh‖2V ≤ E ≤ C‖y − yh‖V‖ϕh − y‖V + 〈Ay − f, ϕh − y〉. (3.83)

Finally, Young’s inequality leads to

C‖y − yh‖V‖ϕh − y‖V ≤
α

2 ‖y − yh‖
2
V + C2

2α ‖ϕh − y‖
2
V .

This relation together with (3.83) results in

α

2 ‖y − yh‖
2
V ≤

C2

2α ‖ϕh − y‖
2
V + 〈Ay − f, ϕh − y〉, (3.84)

whence (3.78) is satisfied. Finally, applying Cauchy-Schwarz and Ay − f ∈ H
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3.3. A priori estimates for elliptic variational inequalities

gives us the desired result in (3.79).

Remark 3.23. If Ay − f = 0 (K = V) is satisfied the second term in (3.79) vanishes.
Then Theorem 3.22 leads to the well known Céa Lemma for an elliptic variational
equation.

The next theorem gives us a priori estimates for linear B-splines. Note that there is no
need to assume that the obstacle lies in H2(Ω) on the whole domain Ω as in [BHR77].
We only assume that the solution satisfies y ∈ H2(Ω). This implies that in Ωf , where
the solution is given by the obstacle, the obstacle satisfies ψ ∈ H2(Ωf ). An example,
where the obstacle is not in H2(Ω) on the whole domain but the solution lies in H2(Ω)
is the semi-discrete Black-Scholes variational inequality (c.f. Theorem 4.5) or the semi-
discrete Heston variational inequality (c.f. Theorem 5.11).

Theorem 3.24. Let y ∈ H2(Ω) be the solution of the variational inequality in (3.75).
If f ∈ L2(Ω), then the continuous piecewise linear approximation yh ∈ Vh (k = 2)
satisfies

‖y − yh‖V = O(h). (3.85)

Proof. Recall the result from Lemma 3.22. Since Ay − f ∈ L2(Ω) for y ∈ H2(Ω) and
f ∈ L2(Ω) it yields

‖y − yh‖2V <∼ ‖ϕh − y‖
2
V + ‖Ay − f‖L2(Ω)‖ϕh − y‖L2(Ω) for all ϕh ∈ Kh ⊂ K. (3.86)

The approximation theorem for piecewise linear splines in Theorem 3.20 implies

‖Ihy − y‖V <∼ h‖y‖H2(Ω) and ‖Ihy − y‖L2(Ω) <∼ h2‖y‖H2(Ω). (3.87)

By choosing ϕh = Ihy in (3.86) it is estimated

‖y − yh‖2V <∼ ‖Ihy − y‖
2
V + ‖Ihy − y‖L2(Ω) <∼ h2.

Extracting the root gives us the result.

In the next theorem, we consider estimates for piecewise quadratic B-splines. A very
similar result for the more general case of nonconforming approximation with piecewise
quadratic finite elements has been established by Brezzi, Hager and Raviart in [BHR77].
The proof of [BHR77] is modified such that ψ ∈ H1(Ω) ∩W 2,∞(Ωf ) instead of ψ ∈
W 2,∞(Ω) ∩H3(Ω) is assumed.

Theorem 3.25. Let y ∈W l,p(Ω) for all 1 < p <∞ and l < 2+ 1
p the solution regarding

the variational inequality in (3.75). If f ∈ L∞(Ω) and ψ ∈ H1(Ω)∩W 2,∞(Ωf ) then the
continuous piecewise quadratic B-spline approximation yh ∈ Vh (k = 3) satisfies

‖y − yh‖V = O(h
3
2−ε). (3.88)
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Proof. Since Ay − f = 0 on Ω \ Ωf and Ay − f = Aψ − f ∈ L∞ in Ωf , we have
Ay − f ∈ L∞(Ω). Applying the Hölder inequality leads to

‖y − yh‖2V <∼ ‖ϕh − y‖
2
V + 〈Ay − f, ϕh − y〉

≤ ‖y − ϕh‖2V + ‖Ay − f‖L∞(Ω)‖ϕh − y‖L1(Ω). (3.89)

Due to the regularity of the solution y ∈ H5/2−ε(Ω) and y ∈W 3−ε1,1−ε2(Ω) the approx-
imation result for quadratic splines in Theorem 3.21 with r = 1, s = 2.5− ε, q = 2 and
r = 0, s = 3− ε1, q = 1 + ε1 implies

‖Ihy − y‖V <∼ h
3
2−ε‖y‖H5/2−ε(Ω) and ‖y − Ihy‖L1(Ω) <∼ h3−ε‖y‖W 3−ε1,1+ε2 (Ω). (3.90)

By choosing ϕh = Ihy in (3.89) one estimates

‖y − yh‖2V <∼ ‖Ihy − y‖
2
V + ‖Ihy − y‖L1(Ω) <∼ h3−ε.

Extracting the root gives us the result.

Since one cannot expected a higher regularity than y ∈ W s,p for all s < 2 + 1
p for

variational inequalities, increasing the order of the B-spline basis function for k > 3
does not improve the global error estimate in the H1(Ω)-norm for uniform grid sizes in
general.
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4. Pricing American Put and Call
option with Black-Scholes model

4.1. Well-posedness and regularity

In this section, we present some well-posedness and global regularity results for the
Black-Scholes variational inequality formulated in Problem 2.9. The results of the next
section can also be found in [AP05, Ach05, DL19a, DL19b]. However, we give a slightly
modified proof based on the results for parabolic variational inequalities from Section
3.1.2.

Assumption 4.1. We make the following assumption on the data σ,D0 and r: The
volatility σ and interest rate r are positive and bounded, i.e.

0 < σ <∞ 0 < r <∞. (4.1)

The dividend yield D0 is assumed to be non-negative in the case of a put option, strictly
positive in the case of a call option and bounded in both cases, i.e.

0 ≤ D0 <∞ (put) and 0 < D0 <∞ (call). (4.2)

Let us consider the weighted Sobolev space V from (2.70). From [AP05, p. 30] it is
known that the space of infinitely differentiable functions with compact support is
dense in V. With these results it can be shown that V0 ⊆ H ⊆ V∗ forms a Gelfand
triple.

Corollary 4.2. V0 ⊆ H ⊆ V∗ forms a Gelfand triple.

Proof. Since D(I) is dense in V0 and L2(I), the spaces L2(I) and V0 are separable
and V0 is also dense in L2(I). It is clear that the embedding V0 ⊆ L2(I) is continuous
because the V-norm is by definition stronger than the L2-norm.

In the next lemma, we show that the bilinear form is bounded and fulfills a G̊arding
inequality under Assumption 4.1. A proof of Lemma 4.3 can also be found in [AP05,
p. 32].
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4. Pricing American Put and Call option with Black-Scholes model

Lemma 4.3. (Properties of aB(·, ·) defined in (2.78))
Under Assumption 4.1 the following properties hold:

i) The bilinear form aB(·, ·) is continuous on V, i.e. there exists a constant C1 > 0
such that

|aB(w,ϕ)| ≤ C1‖w‖V‖ϕ‖V for all w,ϕ ∈ V. (4.3)

Moreover there exists a constant C2 > 0, C3 > 0 such that

|aB1 (w,ϕ)| ≤ C2‖w‖V‖ϕ‖H for all w,ϕ ∈ V (4.4)

and
|aB0 (w,ϕ)| ≤ C2‖w‖V‖ϕ‖V for all w,ϕ ∈ V. (4.5)

ii) There exist positive α, β such that the G̊arding inequality

aB(ϕ,ϕ) ≥ α‖ϕ‖2V − β‖ϕ‖2L2(I) for all ϕ ∈ V0 (4.6)

is satisfied. Moreover, there exists a positive constant α0 such that

aB0 (ϕ,ϕ) ≥ α0‖ϕ‖2V for all ϕ ∈ V0. (4.7)

Proof. To prove i) we have under Assumption 4.1 for all w,ϕ ∈ V
∣∣∣∣∣

∫

I

(
σ2

2 S
2∂w

∂S

∂ϕ

∂S

)
dS
∣∣∣∣∣ ≤

σ2

2 ‖w‖V‖ϕ‖V ,
∣∣∣∣
∫

I
(rwϕ)dS

∣∣∣∣ ≤ r‖w‖V‖ϕ‖V ,
∣∣∣∣
∫

I

(
(σ2 +D0 − r)S

∂w

∂S
ϕ

)
dS
∣∣∣∣ ≤ |(σ2 +D0 − r)| ‖w‖V‖ϕ‖L2(I)

≤ (σ2 +D0 + r)‖w‖V‖ϕ‖H ,

which leads to

|aB(w,ϕ)| ≤
(3

2σ
2 + 2r +D0

)
‖w‖V‖ϕ‖V =: C1‖w‖V‖ϕ‖V (4.8)

and
|aB1 (w,ϕ)| ≤

(
σ2 + 2r +D0

)
‖w‖V‖ϕ‖H =: C2‖w‖V‖ϕ‖H . (4.9)

For the proof of ii) we have under Assumption 4.1 for all ϕ ∈ V0

∫

I

σ2

2 S
2
(
∂ϕ

∂S

)2
+ rϕ2dS = σ2

2

∥∥∥∥S
(
∂ϕ

∂S

)∥∥∥∥
2

L2(I)
+ r‖ϕ‖2L2(I)

≥ min
{
σ2

2 , r
}
‖ϕ‖2V . (4.10)
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4.1. Well-posedness and regularity

Since ϕ ∈ V0 integration by parts leads to
∫

I
S
∂ϕ

∂S
ϕdS = 1

2

∫

I
S
∂ϕ

∂S
ϕdS + 1

2

∫

I
S
∂ϕ

∂S
ϕdS

= −1
2

∫

I
S
∂ϕ

∂S
ϕ+ ϕ2dS + 1

2

∫

I
S
∂ϕ

∂S
ϕdS

= −1
2

∫

I
ϕ2dS = −1

2‖ϕ‖
2
L2(I). (4.11)

With c := |σ2+D0−r| > 0 and (4.11) we have the following estimates for the convection
term

∫

I
(σ2 +D0 − r)S

∂ϕ

∂S
ϕdS ≥ −|(σ2 +D0 − r)|

∣∣∣∣
∫

I
S
∂ϕ

∂S
ϕdS

∣∣∣∣

= − c2‖ϕ‖
2
L2(I). (4.12)

Finally, together with (4.10) and (4.12), one estimates

aB(ϕ,ϕ) ≥ min
{
σ2

2 , r
}
‖ϕ‖2V −

c

2‖ϕ‖
2
H .

Together with α := min
{
σ2

2 , r
}
> 0 and β := c

2 > 0 this provides the proof of the
G̊arding inequality. Using the Cauchy-Schwarz inequality in (4.11) yields

2
∥∥∥∥S
∂ϕ

∂S

∥∥∥∥
H
‖ϕ‖H ≥ ‖ϕ‖2H , (4.13)

which leads to the following Poincare-type-inequality

2
∥∥∥∥S
∂ϕ

∂S

∥∥∥∥
H
≥ ‖ϕ‖H . (4.14)

Finally,

a0(ϕ,ϕ) :=
∫

I

σ2

2 S
2
(
∂ϕ

∂S

)2
dS = σ2

4

∥∥∥∥S
∂ϕ

∂S

∥∥∥∥
2

H
+ σ2

4

∥∥∥∥S
∂ϕ

∂S

∥∥∥∥
2

H

≥ σ2

4

∥∥∥∥S
∂ϕ

∂S

∥∥∥∥
2

H
+ σ2

16‖ϕ‖
2
H

≥ σ2

16‖ϕ‖
2
V =: α0‖ϕ‖2V (4.15)

achieves the proof of (4.7).
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To prove some regularity results for the Black-Scholes variational inequality, we intro-
duce the penalized problem corresponding to Problem 2.9 with inhomogeneous bound-
ary condition as follows:
For ε > 0, find yε(τ) : (0, T ]→ V such that
〈
∂yε(τ)
∂τ

, ϕ

〉
+a(yε(τ), ϕ)+ε−1(Qyε(τ), ϕ) = 0 for all ϕ ∈ V0, a.e. τ ∈ (0, T ], (4.16)

with yε(τ) = H on ∂I and yε(0) = H, where Qyε(τ) := min(yε(τ)−H, 0) denotes the
penalty function.
In the following lemma, we summarized some regularity results for the penalized prob-
lem. The authors in [Ach05] for the case of a put option and in [DL19b] for the case of
a call option give a short proof for the regularity in weighted Sobolev spaces. We give
a more detailed proof by applying Lemma 3.13 based on the ideas of [BL82, Mem12,
KTK17].

Lemma 4.4. Let Assumption 4.1 hold and let further H(S) be the payoff function for
a put or call option, then the penalty problem in (4.16) has a unique solution yε ∈
L∞(0, T ;H) ∩ L2(0, T ;V), yε ∈ H1(0, T ;H) ∩ L∞(0, T ;V) and yε ∈ L2(0, T ;H2(I)),
and we have the following estimates

(i) ‖yε‖L∞(0,T ;H) + ‖yε‖L2(0,T ;V) <∼ ‖H‖V + ‖H‖H1/2(∂I)

ii) ‖∂τyε‖L2(0,T ;H) + ‖yε‖L∞(0,T ;V) <∼ ‖H‖V + ‖H‖H1/2(∂I)

(iii) ‖yε‖L2(0,T ;H2(I)) <∼ ‖H‖V + ‖H‖H3/2(∂I)

with constants independent of the penalty parameter ε > 0.

Proof. For the proof, it is convenient to transform the penalty problem into a problem
with homogeneous boundary condition. We set ũε(τ) := yε(τ)− ũH, where the function
ũH on I := (0, Smax) is defined as

ũH := Smax − S
Smax

H(0) + S

Smax
H(Smax). (4.17)

Then the penalty problem in (4.16) is equivalent to the following problem: For ε > 0,
find ũε : (0, T ]→ V0 such that
〈
∂ũε

∂τ
, ϕ

〉
+ aB(ũε(τ), ϕ) + ε−1(Qũε, ϕ) = −aB(ũH, ϕ) for all ϕ ∈ V0, a.e. τ ∈ (0, T ],

(4.18)
and ũε(0) = H(S)− ũH =: H̃(S), where (Qũε, ϕ) := min(ũε − H̃(S), 0).
Since H̃ ∈ V, ũH ∈ V are satisfied and due to Lemma 4.3, the use of Lemma 3.13
implies

‖ũε‖L∞(0,T ;H) + ‖ũε‖L2(0,T ;V) <∼ ‖H̃‖V + ‖ũH‖V (4.19)

and
‖∂τ ũε‖L2(0,T ;H) + ‖ũε‖L∞(0,T ;V) <∼ ‖H̃‖V + ‖ũH‖V (4.20)
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with constants independent of the penalty parameter ε. Substituting ũε := yε− ũH and
applying the triangle inequality in (4.19) leads to

‖yε‖L∞(0,T ;H) − ‖ũH‖H + ‖yε‖L2(0,T ;V) − ‖ũH‖V <∼ ‖ũ
ε‖L∞(0,T ;H) + ‖ũε‖L2(0,T ;V)

<∼ ‖H̃‖V + ‖ũH‖V . (4.21)

Since H ∈ H1/2(∂I) and ũH ∈ H1(I) are satisfied it is estimated ‖ũH‖V <∼ ‖H‖H1/2(∂I).
This together with (4.19) and resubstituting H̃ = H− ũH gives

‖yε‖L∞(0,T ;H) + ‖yε‖L2(0,T ;V) <∼ ‖ũH‖V + ‖H̃‖V <∼ ‖H‖H1/2(∂I) + ‖H‖V ,

which completes the proof of (i). A similar approach gives the desired result in (ii).

For the proof of (iii), it is clear that H̃ ∈ V, ũH ∈ H2(Ω) are satisfied. What remains
to show is that (3.35) in Lemma 3.13 are satisfied. Therefore we have to consider the
case of a put and call option separately. Due to the homogenization with the function
ũH defined in (4.17) for a put option it follows

H̃P(S) := HP(S)− uHP(S) := HP(S)−
(
Smax − S
Smax

HP(0) + S

Smax
HP(Smax)

)

= max{0,K − S} − Smax − S
Smax

K.

This together with the definition of aB0 (·, ·) in (2.79) leads to

−aB0 (H̃P,Qũ
ε(r)) : = −

∫

I

σ2

2 S
2∂H̃P
∂S

∂Qũε(r)
∂S

dS

=
∫ K

0

σ2

2 S
2∂Qũ

ε(r)
∂S

dS +
∫

I

σ2

2 S
2∂uHP

∂S

∂Qũε(r)
∂S

dS. (4.22)

Integration by parts and Qũε(r) ≤ 0 in I and Qũε(r) = 0 on ∂I for a.e. r ∈ (0, T ] and
Cauchy-Schwarz implies

−aB0 (H̃P,Qũ
ε(r)) =σ2

2 S
2Qũε(r)

∣∣∣
K

0
−
∫ K

0
σ2SQũε(r)dS

+ σ2

2 S
2∂uHP

∂S
Qũε(r)

∣∣∣
∂I
−
∫

I
σ2S

∂uHP

∂S
Qũε(r)dS

≤−
∫ K

0
σ2SQũε(r)dS −

∫

I
σ2S

∂uHP

∂S
Qũε(r)dS

= σ2
∫

I
S

(
∂HP
∂S
− ∂uHP

∂S

)
Qũε(r)dS

≤ σ2‖HP − uHP‖V‖Qũε(r)‖H
= : σ2‖H̃P‖V‖Qũε(r)‖H . (4.23)
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For a call option the transformed payoff function is given as follows

H̃C(S) := HC(S)− uHC(S) := HC(S)−
(
Smax − S
Smax

HC(0) + S

Smax
HC(Smax)

)

= max{0, S −K} − S

Smax
(Smax −K).

This leads to

−aB0 (H̃C,Qũ
ε(r)) : = −

∫

I

σ2

2 S
2∂H̃C
∂S

∂Qũε(r)
∂S

dS

= −
∫ Smax

K

σ2

2 S
2∂Qũ

ε(r)
∂S

dS +
∫

I

σ2

2 S
2∂uHC

∂S

∂Qũε(r)
∂S

dS.

Further, similar considerations as for the put option, i.e. integration by parts and
Qũε(r) ≤ 0 in I and Qũε(r) = 0 on ∂I for a.e. r ∈ (0, T ] and Cauchy-Schwarz inequality
imply

−aB0 (H̃C,Qũ
ε(r)) =− σ2

2 S
2Qũε(r)

∣∣∣
Smax

K
+
∫ Smax

K
σ2SQũε(r)dS

+ σ2

2 S
2∂uHC

∂S
Qũε(r)

∣∣∣
∂I
−
∫

I
σ2S

∂uHC

∂S
Qũε(r)dS

≤
∫ Smax

K
σ2SQũε(r)dS −

∫

I
σ2S

∂uHC

∂S
Qũε(r)dS

= σ2
∫

I
S

(
∂HC
∂S
− ∂uHC

∂S

)
Qũε(r)dS

≤ σ2‖HC − uHC‖V ‖Qũε(r)‖H =: σ2‖H̃C‖V ‖Qũε(r)‖H . (4.24)

In summary, using (4.23) and (4.24) and applying Cauchy-Schwarz inequality we con-
clude

−
∫ τ

0
aB0 (H̃,Qũε(r))dr <∼

∫ τ

0
‖H̃‖V ‖Qũε(r)‖Hdr <∼

√
T‖H̃‖V

(∫ τ

0
‖Qũε(r)‖Hdr

) 1
2

(4.25)

for a put and call option. Then the use of Lemma 3.13 implies

‖ũε‖L2(0,T ;H2(I)) <∼ ‖H̃‖V + ‖ũH‖H2(I).

Finally, resubstituting ũε = yε− ũH, H̃ = H− ũH, applying the triangle inequality and
using ‖ũH‖H2(I) <∼ ‖H‖H3/2(∂I) leads to the desired result (iii).

Finally, by passing to the limit in (4.16) as ε→ 0 it can be shown that the solution of
the variational inequality satisfies the following regularity results.

Theorem 4.5. Under Assumption 4.1 Problem 2.9 has a unique solution

y ∈ L∞(0, T ;H)∩L2(0, T ;V), y ∈ H1(0, T ;H)∩L∞(0, T ;V) and y ∈ L2(0, T ;H2(Ω)).
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4.2. Discretization

Proof. See Theorem 3.14 in Section 3.1.2.

4.2. Discretization

4.2.1. Semi-discretization schemes in time

In this section, we introduce a semi-discrete scheme for Problem 2.10. Let s > 0 be
the time step size and let τ0 < τ (1) < . . . < τ (#T) := T be mesh points on [0, T ]. We
denote the semi-discrete solution in time step z by u(z) := u(τ (z), S). We approximate
the partial derivative in time step z− 1 by the following forward difference quotient:

∂u(τ, S)
∂τ

∣∣∣
τ=τ (z−1)

≈ u(z) − u(z−1)

s
(4.26)

In time step z the backward difference quotient is the same as above. Combining a
weighted average $ ∈ [0, 1] of the backward Euler scheme at τ (z) and the forward
Euler scheme at τ (z−1) in Problem 2.10 yields

(
u(z) − u(z−1)

s
, ϕ− u(z)

)
+$aB(u(z), ϕ− u(z)) + (1−$)aB(u(z−1), ϕ− u(z))

≥ −aB(H, ϕ− u(z)) for all ϕ ∈ K0. (4.27)

Moving the known terms in time step z−1 to the right hand side leads to the following
semi-discrete problem:

Problem 4.6. (Semi-discrete problem)
Find u(z) ∈ K0 for z = 1, . . . ,T such that

ãB(u(z), ϕ− y(z)) ≥ (f̃ (z−1), ϕ− u(z)) for all ϕ ∈ K, (4.28)
u(z) = u, (4.29)

where the bilinear form ãB(·, ·) : V × V → R is defined as

ãB(u(z), ϕ− u(z)) := s$ aB(u(z), ϕ− u(z)) + (u(z), ϕ− u(z)) (4.30)

and right hand side

(f̃ (z−1), ϕ−y(z)) := s($−1) aB(u(z−1), ϕ−u(z)) + (u(z−1), ϕ−u(z))−saB(H, ϕ−u(z)).
(4.31)

For $ = 0 we have an explicit Euler scheme, for $ = 0.5 we have the Crank-Nicolson
scheme and for $ = 1 an implicit Euler scheme.
In the literature [Glo84, chapter III, section 4], the use of an explicit Euler scheme
for variational inequalities is not recommended, since it is conditionally stable and
the numerical approximation of u(z) ∈ K will generally require the use of an iterative
method.
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4. Pricing American Put and Call option with Black-Scholes model

Remark 4.7. For parabolic partial differential equations with non-smooth initial data,
people often use the so called Rannacher timestepping instead of the well-known Crank-
Nicolson scheme. This is due to the fact that applying a Crank-Nicolson method can
result in oscillations in the numerical solution and its partial derivatives. That seems
to be confusing since the Crank-Nicolson method is known to be unconditionally stable.
But it is unconditionally stable in the L2-norm for initial data which lies in L2, see
[GC06]. In particular, some initial errors are damped very slowly and can result in
oscillations in the partial derivatives of the numerical solution, if the initial condition
is only continuous. This is due to the fact that the Crank-Nicolson timestepping is only
A-stable, not strongly A-stable. One often observes that the convergence in time is less
than the second order in the L2-norm as achieved for smooth initial data.
To avoid such problems it has been proposed by Rannacher [Ran84], known as Ran-
nacher timestepping, to replace the first two Crank-Nicolson time steps by four half-time
steps of an implicit scheme. A priori estimates for parabolic partial differential equa-
tions with non-smooth initial data in [Ran84] show that a second order convergence for
the Rannacher scheme in time can be achieved. In [GC06] the authors present some
results for the Black-Scholes Problem in the case of European options. They show that
the Rannacher timestepping together with a finite difference scheme leads to a second
order convergence for the first and second derivative of the option price, while applying
a Crank-Nicolson scheme can result in oscillations.
In the context of parabolic variational inequalities, higher order schemes like the Crank-
Nicolson scheme or the Rannacher timestepping are not recommended, since the regu-
larity of the solution over time is poor and such schemes do not improve the convergence
in time ([Glo84], chapter III, section 4). In Section 8.2.3 we present some numerical re-
sults with a spatial cubic B-spline Galerkin-discretization, which show that applying the
Rannacher timestepping scheme to the Black-Scholes variational inequality facilitates
the numerical computation of the first and second derivative of the numerical solution
(=̂ Greeks) without oscillations but does not lead to an optimal convergence rate in
time. Similar observations are made in [FV02] for an American put option, where the
authors present some numerical results for the partial derivatives computed with the
Black-Scholes variational inequality together with a spatial finite volume discretization.

For the well-posedness of the semi-discrete schemes we make the following assumption
on the time step size 0 < s < 1.

Assumption 4.8. We assume s$β ≤ Λ for some Λ ∈ (0, 1), where β := |σ2+D0−r|
2 is

the constant from G̊arding’s inequality and $ ∈ {0.5, 1}.

Corollary 4.9 provides the well-posedness of the semi-discrete Problem 4.6.

Corollary 4.9. Suppose that Assumptions 4.1 and 4.8 are satisfied, then for fixed time
level τ (k) there exists a unique solution to the semi-discrete problem 4.6.
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4.2. Discretization

Proof. Due to the existence and uniqueness Theorem 3.3 for elliptic variational inequal-
ities, it remains to show that the bilinear form ãB(·, ·) for $ ∈ {0.5, 1} is bounded and
coercive. Applying Lemma 4.3 i) to the bilinear form in (4.30) we have

|ãB(y, ϕ)| : = |s$ aB(y, ϕ) + (y, ϕ)|
≤ (s$C1 + 1)‖y‖V‖ϕ‖V for all y, ϕ ∈ V

for C1 > 0. Since aB(·, ·) satisfies a G̊arding inequality with α, β > 0 by Lemma 4.3 ii)
and under Assumption 4.8, s$β ≤ Λ for Λ ∈ (0, 1), the estimation is

ãB(ϕ,ϕ) : = s$ aB(ϕ,ϕ) + (ϕ,ϕ) ≥ s$α ‖ϕ‖2V + (1− s$β)‖ϕ‖2L2(I) ≥ s$α ‖ϕ‖2V

for all ϕ ∈ V0. Hence ãB(·, ·) is linear, bounded and coercive and there exists a unique
solution to Problem 4.6 for fixed time level τ (k).

4.2.2. B-spline Galerkin discretization

In this section we derive a fully discrete B-spline Galerkin scheme for the parabolic
variational inequality arising from the Black-Scholes model.
Recall that, in finance, to determine optimal risk strategies, the interest lies not only
in the solution of the variational inequality, i.e. the option price, but also in its partial
derivatives up to order two, the so-called Greeks. A cubic B-spline discretization facili-
tates a pointwise approximation of Gamma, the second derivative of the solution. One
advantage of the B-spline discretization in the context of variational inequalities (for
example in comparison to higher order finite elements) is that due to the non-negativity
of B-splines there is a guarantee that the solution lies in the convex set by ensuring the
non-negativity of the B-spline coefficients without evaluating the corresponding spline.
This idea was first introduced by [Hol04, HK07].

Remark 4.10. One particular difficulty for the discretization with higher order B-
splines for the valuation of an option arises from the fact that the initial condition is
typically not differentiable and an approximation with higher order B-splines results in
oscillations. Consequently, we use a spatial discretization based on B-splines of order k
with k− 1 coinciding knots at the point where the initial condition is not differentiable,
i.e. S = K for an American put and call option. To the best of my knowledge, this
application of B-splines with internal coinciding knots for the numerical solution of the
Black-Scholes variational inequality appears for the first time in the literature.
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4. Pricing American Put and Call option with Black-Scholes model

Let V0
h ⊂ V be the finite dimensional spline space, a subspace of V, with uniform grid

size h. Let Θ := {θi}n+k
i=1 , i ∈ N, be the extended sequence of knots with θ1 := 0,

θ℘ := K and θn+1 := Smax, such that

θ1 = . . . = θk < θk+1 < . . . < θ℘ = . . . = θ℘+k−2 < . . . < . . . < θn+1 = . . . = θn+k.
(4.32)

The recursive definition of B-splines Ni,k regarding the extended sequence of knots can
be found in (3.62). Then the discrete solution space V0

h is given by

V0
h := span{Ni,k, i ∈ I := {i = 2, . . . , n− 1}}, (4.33)

where N1,k and Nn,k are omitted due to the zero boundary conditions on ∂I. The
dimension of the discrete solution space is dim(V0

h) = #I = n − 2. We define an
approximation of the convex set K0 by

K0
h := {ϕh ∈ V0

h : ϕh ≥ 0}. (4.34)

Note that K0
h = K ∩ V0

h is satisfied because the obstacle is equal to zero and no ap-
proximation of the obstacle is needed. Then the discrete solution u

(z)
h ∈ K0

h for the
variational inequality is given by

u
(z)
h =

∑

i∈I
u

(z)
i Ni,k(S) for z = 1, . . . ,#T. (4.35)

This leads to the following discrete Galerkin scheme for problem 4.6:

Problem 4.11. (Fully discrete variational inequality)
Find u(z)

h ∈ K0
h for z = 1, . . . ,T such that u(z)

h = 0

ãB(u(z)
h , ϕh − u(z)

h ) ≥ (f̃ (z−1), ϕh − u(z)
h ) for all ϕh ∈ K0

h,

with bilinear form as defined in (4.30) and right hand side as defined in (4.31).

Inserting the elements u(z)
h , ϕh ∈ K0

h yields

ãB(u(z)
h , ϕh − u(z)

h ) =: (ϕ− u(z))TCu(z) (4.36)

where the discretization matrix C ∈ R#I×#I is given by

C := $s(A + B) + ($sr + 1)G. (4.37)
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4.2. Discretization

Due to the support of B-splines Q := supp(Ni,k) ∩ supp(Nj,k) we have

Aj,i := σ2

2

∫

Q

(
S2N ′i,k(S)N ′j,k(S)

)
dS,

Bj,i :=
(
σ2 +D0 − r

) ∫

Q
SN ′i,k(S)Nj,k(S)dS,

Gj,i :=
∫

Q
Ni,k(S)Nj,k(S)dS.

For the right hand side we obtain

(f̃ (z−1), ϕh − u(z)
h )− ãB(H(S), ϕh − u(z)

h ) = (ϕ− u(z))T f (z−1),

where f (z−1) ∈ R#I is defined as

f (z−1) := (($ − 1)s(A + B) + (($ − 1)sr + 1)G) u(z−1) − sd (4.38)

with d ∈ R#I defined as follows

di : =
∫ (

σ2

2 S
2H′(S)N ′i,k(S)

)
+ rH(S)Ni,k(S)dS +

∫ (
σ2 +D0 − r

)
SH′(S)Ni,k(S)dS.

Since B-splines are piecewise polynomials and H(S) is piecewise linear, employing an
appropriate quadrature rule such as Gauss quadrature the matrices and the right hand
side above can be computed exactly. Due to the non-negativity of B-splines the discrete
convex set K0

h can be determined by

K := {ϕ ∈ R#I : ϕ ≥ 0}. (4.39)

This formulation has the advantage that it can be ensured more efficiently that the
discrete solution u

(z)
h lies in the convex set K0

h as it is not necessary to evaluate the
corresponding spline. In summary, we can reformulate Problem 4.11 to the following
problem in matrix vector notation:

Problem 4.12. (Discrete variational inequality in matrix vector notation)
Find u(z) ∈ K for all z = 1, . . . ,T such that u(0) = 0 and

(
ϕ− u(z)

)T (
Cu(z) − f (z−1)

)
≥ 0 for all ϕ ∈ K

is satisfied.
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4. Pricing American Put and Call option with Black-Scholes model

For further numerical computations, it is convenient to reformulate Problem 4.12 as a
discrete complementarity problem because there exist a number of iterative schemes
which are devoted to solve such problems.

Problem 4.13. (Discrete linear complementarity problem)
Find u(z) ∈ R#I for all z = 1, . . . ,T such that u(0) = 0 and

(u(z))T
(
Cu(z) − f (z−1)

)
= 0

Cu(z) − f (z−1) ≥ 0
u(z) ≥ 0

are satisfied.
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5. Pricing American Put option with
Heston’s model

5.1. Well-posedness and regularity

In this section, we prove the existence and uniqueness of a solution for the Heston
variational inequality as stated in Problem 2.17. Therefore, we are going to apply some
results from Section 3.1.2. Unless stated otherwise, the results for the Heston variational
inequality in this section are of my own founding.

Assumption 5.1. For the analysis we make the following assumption on the data
vmin, vmax, γ, κ, ρ and r. We assume that the variance attains a minimum and is strictly
positive and bounded i.e.

0 < vmin < v < vmax <∞. (5.1)

It is also assumed that the following parameters are positive and bounded

0 < r <∞, 0 < ξ <∞ , 0 < κ <∞, 0 ≤ λ <∞ and 0 ≤ γ <∞ (5.2)

and the correlation satisfies
|ρ| < 1. (5.3)

For the set of boundary conditions in (2.110) it is assumed that the maximal volatility
vmax satisfies

∞ > vmax ≥
γκ− 0.5ξ2

κ+ λ
. (5.4)

For the set of boundary conditions in (2.111) we assume that

0 < vmin ≤
γκ− 0.5ξ2

κ+ λ
and ∞ > vmax ≥

γκ− 0.5ξ2

κ+ λ
. (5.5)

Remark 5.2. Note that Assumptions (5.2) and (5.3) are also assumed in the derivation
of the Heston equation due to their financial meaning and that there is no problem to
choose vmax large enough such that (5.4) is satisfied. The only restrictive assumptions
are vmin > 0 in (5.1) and vmin ≤ γκ−0.5ξ2

κ+λ in (5.5), which are only satisfied if the Feller
condition discussed in Section 2.1.3 is imposed.
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5. Pricing American Put option with Heston’s model

Lemma 5.3. (Properties of aH(·, ·) in (2.128))
Under Assumption 5.1 the following properties are satisfied:

i) aH(·, ·) is a bounded bilinear form on V × V, i.e. there exists C > 0 such that

|aH(w,ϕ)| ≤ C‖w‖V‖ϕ‖V for all w,ϕ ∈ V. (5.6)

ii) There exists α > 0 and β such that

aH(ϕ,ϕ) ≥ α‖ϕ‖2V − β‖ϕ‖2H for all ϕ ∈ V0. (5.7)

Proof. For the proof of i) we have

|aH(w,ϕ)| =
∣∣∣∣
∫

Ω

(
Ã∇w · ∇ϕ

)
+
(
(b̃ · ∇w + rw)ϕ

)
dΩ
∣∣∣∣

=
∣∣∣∣
∫

Ω

1
2v
(
wxϕx + 2ρξwvϕx + ξ2wvϕv

)

+
((1

2v − r
)
wx +

(
κ(v − γ) + λv + 1

2ξ
2
)
wv

)
ϕ+ rwϕdΩ

∣∣∣∣ (5.8)

Now we consider each term separately. By taking the maximum, applying the Cauchy-
Schwarz inequality and the definition of the V-norm, we have for all w,ϕ ∈ V

∣∣∣∣
∫

Ω

(1
2vwxϕx + 1

2vξ
2wvϕv + rwϕ

)
dΩ
∣∣∣∣

≤ max
{1

2vmax,
1
2vmaxξ

2, r

} ∣∣∣∣
∫

Ω
∇w · ∇ϕ+ wϕdΩ

∣∣∣∣

≤ max
{1

2vmax,
1
2vmaxξ

2, r

}
‖w‖V‖ϕ‖V =: c1‖w‖V‖ϕ‖V . (5.9)

Applying the Cauchy-Schwarz inequality for the mixed term, we estimate
∣∣∣∣
∫

Ω
vρξwvϕxdΩ

∣∣∣∣ ≤ vmaxρξ‖wv‖L2(Ω)‖ϕx‖L2(Ω)

≤ vmaxρξ‖w‖V‖ϕ‖V =: c2‖w‖V‖ϕ‖V . (5.10)

For the convection term we have
∣∣∣∣
∫

Ω

((1
2v − r

)
wxϕ

)
dΩ
∣∣∣∣ ≤

∣∣∣∣
(1

2vmax − r
)∣∣∣∣ ‖wx‖L2(Ω)‖ϕ‖L2(Ω)

≤
∣∣∣∣
(1

2vmax − r
)∣∣∣∣ ‖w‖V‖ϕ‖V =: c3‖w‖V‖ϕ‖V (5.11)

and, finally,
∣∣∣∣
∫

Ω

((
κ(v − γ) + λv + 1

2ξ
2
)
wvϕ

)
dΩ
∣∣∣∣ ≤

∣∣∣∣
(
κ(vmax − γ) + λvmax + 1

2ξ
2
)∣∣∣∣ ‖w‖V‖ϕ‖V

=: c4‖w‖V‖ϕ‖V . (5.12)
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5.1. Well-posedness and regularity

By applying the triangle inequality to (5.8) together with (5.9),(5.10),(5.11) and (5.12)
one has

∣∣∣aH(w,ϕ)
∣∣∣ ≤

4∑

i=1
ci‖w‖V‖ϕ‖V =: C‖w‖V‖ϕ‖V . (5.13)

To prove that the bilinear form satisfies the G̊arding inequality in (ii), we need the
following formulation of the convection term. We have to distinguish between the two
sets of boundary conditions. We start by applying integration by parts to the convection
term imposing the boundary conditions in (2.110), which leads to

1
2

∫

Ω
(b̃ · ∇ϕ)ϕ dΩ =− 1

2

∫

Ω
ϕ(b̃ · ∇ϕ) + (∇ · b̃)ϕ2 dΩ + 1

2 b̃2(vmax)
∫

Υ4
ϕ2dΥ4.

The boundary integrals on Υ vanishes because of the choice of ϕ ∈ V0. Then the
convection term becomes

∫

Ω
(b̃ · ∇ϕ)ϕ dΩ = −1

2

∫

Ω
(∇ · b̃)ϕ2 dΩ + 1

2 b̃2(vmax)
∫

Υ4
ϕ2dΥ4. (5.14)

Since the term ∇ · b̃ = (κ + λ) is independent of the variables (x, v) ∈ Ω and in (5.4)
it is assumed that vmax ≥ γκ−0.5ξ2

κ+λ , i.e. b̃2(vmax) ≥ 0 is satisfied, one has
∫

Ω
(b̃ · ∇ϕ)ϕ dΩ = −1

2(κ+ λ)
∫

Ω
ϕ2 dΩ + 1

2 b̃2(vmax)
∫

Υ4
ϕ2dΥ4

≥ −1
2(κ+ λ)

∫

Ω
ϕ2 dΩ. (5.15)

Imposing the boundary condition in (2.111), an analogous approach yields
∫

Ω
(b̃ · ∇ϕ)ϕ dΩ = −1

2(κ+ λ)
∫

Ω
ϕ2 dΩ + 1

2 b̃2(vmax)
∫

Υ4
ϕ2dΥ4 −

1
2 b̃2(vmin)

∫

Υ3
ϕ2dΥ3

≥ −1
2(κ+ λ)

∫

Ω
ϕ2 dΩ, (5.16)

where b̃2(vmax) ≥ 0 and b̃2(vmin) ≤ 0 due to the assumptions in (5.5).
Using the definition of the bilinear form in (2.128) and the formulation (5.15) or (5.16)
above results in

aH(ϕ,ϕ) ≥
∫

Ω

(
Ã∇ϕ

)
· ∇ϕ− 1

2(κ+ λ)ϕ2 + rϕ2ϕdΩ

for ϕ ∈ V0. Rearranging leads to

aH(ϕ,ϕ) + 1
2(κ+ λ)

∫

Ω
ϕ2dΩ ≥

∫

Ω

(
Ã∇ϕ

)
· ∇ϕ+ rϕ2dΩ

=
∫

Ω

1
2vϕ

2
x + %ξvϕxϕv + 1

2ξ
2vϕ2

v + rϕ2dΩ.

81



5. Pricing American Put option with Heston’s model

Applying Young’s inequality for v ≥ vmin > 0 yields
∫

Ω
ξvϕxϕvdΩ ≥

∫

Ω
−
∣∣(√vϕx

) (
ξ
√
vϕv

)∣∣ dΩ ≥
∫

Ω
−1

2vϕ
2
x −

1
2vξ

2ϕ2
vdΩ.

Assuming |ρ| < 1, vmin > 0 and defining C̃ := minv∈Ω
{

1
2v(1− %), 1

2vξ
2(1− %)

}
we

obtain

aH(ϕ,ϕ) + 1
2(κ+ λ)

∫

Ω
ϕ2dΩ ≥

∫

Ω

1
2v(1− %)ϕ2

x + 1
2vξ

2(1− %)ϕ2
v + rϕ2dΩ

≥min{C̃, r}
∫

Ω
ϕ2
x + ϕ2

v + ϕ2dΩ.

Since we assume |ρ| < 1 and vmin > 0 the constant C̃ is strict positive. By choosing
β := 1

2(κ+ λ) and α := min{C̃, r} this leads to the following G̊arding inequality

aH(ϕ,ϕ) + β‖ϕ‖2H ≥ α‖ϕ‖2V for all ϕ ∈ V0.

Remark 5.4. It is also possible to show that aH(·, ·) is continuous and satisfies a
G̊arding inequality in the weighted Sobolev space V0

v :=
{
ϕ ∈ H :

√
v ∂ϕ∂x ,

√
v ∂ϕ∂v ∈ H

}
.

Then the boundedness constant also depends on 1√
v

and it is assumed vmin > 0.
In [AWW01] the authors show that the different bilinear form, where the boundary inte-
gral in (2.120) is equal to zero due to a Robin type boundary condition for x = xmax and
Dirichlet boundary conditions for x = xmin, v = vmax and v = vmin, is bounded and co-
ercive in the space V0

A :=
{

(
∫
ΩA∇ϕ · ∇ϕ+ c̃ϕ2dΩ)1/2 <∞, ϕ = 0 on ∂Ω \ (xmax, v)

}
.

There, the authors assume vmin > 0 since the boundedness constant also depends on
1√
v

. In [HRSW13, pp. 108-113] the authors use a different transformation and assume
a Dirichlet boundary condition on ∂Ω, which leads to a different problem formulation
as in this thesis. Using this formulation, the authors can show that the derived bilinear
form is bounded and satisfies a G̊arding-inequality, where the constant does not depend
on v.

In order to prove some regularity results for the solution of Problem 2.17, we apply the
results from Section 3.1.2. Therefore, we introduce the penalized problem corresponding
to Problem 2.17 as follows: For ε > 0 find yε such that

〈
∂yε(τ)
∂τ

, ϕ

〉
+ aH(yε(τ), ϕ) + ε−1(Qyε(τ), ϕ) = 〈f(τ), ϕ〉 for all ϕ ∈ V0, (5.17)

with penalty operator Qyε(τ) := min(yε(τ)− yε0, 0) and yε(τ) = g on Υ, yε(0) = g(x).
It is known that the penalized problem, where the bilinear form is bounded and
satisfies a G̊arding inequality and g ∈ V, has a unique solution yε ∈ L2(0, T ;V) ∩
H1(0, T ;V∗) (see Chapter 3.2 in [BL82]). To prove higher regularity for the penalized
problem, Lemma 3.13 is applied, which is strongly based on the ideas of [BL82, Mem12,
KTK17].
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5.1. Well-posedness and regularity

Lemma 5.5. Let Assumption 5.1 hold and let further g be the transformed payoff
function for a put option. Then the penalty problem in (5.17) has a unique solution
yε ∈ L∞(0, T ;H) ∩ L2(0, T ;V), and we have the following estimate

‖yε‖L∞(0,T ;H) + ‖yε‖L2(0,T ;V) <∼ ‖g‖V (5.18)

with constant independent of the penalty parameter ε.

Proof. First, we introduce a homogenized problem for the penalty problem in (5.17)
and we set uε := yε − g: For ε > 0, find uε : (0, T ]→ V0 such that

〈
∂uε

∂τ
, ϕ

〉
+ aH(uε, ϕ) + ε−1(Quε, ϕ) = −aH(g, ϕ) for all ϕ ∈ V0 (5.19)

and uε(0) = 0, where Quε := min(uε, 0) is a nondecreasing function. Since g ∈ V and
due to Lemma the bilinear form aH(·, ·) is bounded and satisfies a G̊arding inequality,
the use of Lemma 3.13 (i) implies

‖uε‖L∞(0,T ;H) + ‖uε‖L2(0,T ;V) <∼ ‖g‖V (5.20)

with a constant independent of the penalty parameter ε. Resubstituting uε := yε − g
and applying the triangle inequality in (5.20) leads to

‖yε‖L∞(0,T ;H) − ‖g‖H + ‖yε‖L2(0,T ;V) − ‖g‖V <∼ ‖u
ε‖L∞(0,T ;H) + ‖uε‖L2(0,T ;V) <∼ ‖g‖V ,

which achieves the proof.

Finally, by passing to the limit ε → 0 in (5.17) under Assumption 5.1 there exists
a unique solution y ∈ L2(0, T ;V) ∩ H1(0, T ;V∗) to Problem 2.17, which satisfies the
following regularity result.
Theorem 5.6. Let the Assumption 5.1 hold. Then the solution of Problem 2.17 satisfies
y ∈ L∞(0, T ;H) ∩ L2(0, T ;V) and we have the estimate

‖y‖L∞(0,T ;H) + ‖y‖L2(0,T ;V) <∼ ‖g‖V . (5.21)

Proof. See Theorem 3.14 in Section 3.1.2.

Remark 5.7. To prove the existence of a strong solution, i.e. y ∈ H1(0, T ;H) ∩
L∞(0, T,V), one important step is exploiting the symmetry of the diffusion term. This
result is also needed to show that the solution satisfies y ∈ L2(0, T,H2(Ω)) and to con-
clude y ∈ C(0, T ;V). Due to the asymmetric diffusion operator in the Heston inequality
in (2.128), aH0 (y, ϕ) :=

∫
Ã∇y · ∇ϕdΩ, it is not possible to proceed as in Lemma 3.13

(ii)-(iii). However, imposing the set of boundary conditions in (2.110) with the non-
smooth Dirichlet boundary condition g(x) for v = vmin and x ∈ (xmin, xmax) it is clear
that the solution cannot satisfy y(τ) ∈ H2(Ω) for some τ ∈ (0, T ] on the whole spatial
domain Ω. Imposing the boundary conditions in (2.111) we can expect that the solution
satisfies the above mentioned regularity.
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5. Pricing American Put option with Heston’s model

5.2. Discretization

5.2.1. Semi-discretization schemes in time

In this section we establish a finite-difference semi-discretization of Problem 2.17 and
discuss its well-posedness. Therefore, we decompose the time interval into equidistant
grid points 0 = τ (0) < τ (1) < · · · < τ (#T) = T with time step size s := τ (z+1)− τ (z). We
define the semi-discrete solution in time step z by y(τ (z), x, v) =: y(z). By an analogous
approach as in Section 4.2.1 we derive the semi-discrete formulation of Problem 2.17:

(
y(z) − y(z−1)

s
, ϕ− y(z)

)
+ (1−$) aH(y(z−1), ϕ− y(z)) +$ aH(y(z), ϕ− y(z))

≥ 0,

where $ ∈ [0, 1] and (·, ·) denotes the L2-inner product. Sorting the known terms in
time step z − 1 to the right hand side, leads to the following semi-discrete problem:

Problem 5.8. (Semi-discrete variational inequality with inhomogeneous Dirichlet bound-
ary condition)
Find y(z) ∈ K for all z ∈ {1, · · · ,#T}, such that

ãH(y(z), ϕ− y(z)) ≥ f (z−1)
inh (ϕ− y(z)),

for all ϕ ∈ K0 with start condition y(0) = g(x), where the bilinear form is defined as

ãH(y(z), ϕ− y(z)) :=$s aH(y(z), ϕ− y(z)) + (y(z), ϕ− y(z))

=
∫

Ω
$sÃ∇y(z) · ∇(ϕ− y(z))dΩ

+
∫

Ω
($s(b̃ · ∇y(z) + ry(z)) + y(z))(ϕ− y(z))dΩ (5.22)

and the right hand side as

f
(z−1)
inh (ϕ− y(z)) :=− (1−$)s aH(y(z−1), ϕ− y(z)) + (y(z−1), ϕ− y(z))

=−
∫

Ω
(1−$)sÃ∇y(z−1) · ∇(ϕ− y(z))dΩ

−
∫

Ω
((1−$)s(b̃ · ∇y(z−1) + ry(z−1))− y(z−1))(ϕ− y(z))dΩ.

(5.23)

For $ = 0 we obtain an explicit Euler scheme, for $ = 0.5 we have a Crank-Nicolson
scheme and for $ = 1 an implicit Euler scheme. For further discussion of the schemes
and recommendations for numerical computation of the Greeks in the context of vari-
ational inequalities the reader is referred to Section 4.2.1.
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5.2. Discretization

To study the well-posedness we make the following assumption on the time step size
0 < s < 1.

Assumption 5.9. We assume s$β ≤ Λ for some Λ ∈ (0, 1), where β := κ+λ
2 is the

constant from G̊arding’s inequality and $ = {0.5, 1}.

For a fixed time level τ (z) the bilinear form in (5.22) under Assumption 5.9 and As-
sumption 5.1 is bounded and coercive.

Lemma 5.10. Suppose that Assumption 5.9 is fulfilled. Then the following properties
are satisfied for fixed time level τ (z):

i) ãH(·, ·) is a bounded bilinear form on V × V, i.e. there exists C0 > 0 such that

|ãH(w,ϕ)| ≤ C0‖w‖V‖ϕ‖V for all w,ϕ ∈ V. (5.24)

ii) ãH(·, ·) is coercive under Assumption 5.1, i.e. there exists α0 > 0 such that

ãH(ϕ,ϕ) ≥ α0‖ϕ‖2V for all ϕ ∈ V0. (5.25)

Proof. We start with the proof of i). By the definition of the bilinear form ãH(·, ·) in
(5.22), exploiting the boundedness of aH(·, ·) from Lemma 5.3 and applying Cauchy-
Schwarz inequality it is estimated

|ãH(w,ϕ)| := |$s aH(w,ϕ) + (w,ϕ)| ≤ (s$C + 1)‖w‖V‖ϕ‖V =: C0‖w‖V‖ϕ‖V (5.26)

for w,ϕ ∈ V. For the proof of ii) we know from Lemma 5.3 that aH(·, ·) satisfies a
Garding inequality with constants α, β > 0. Under assumption 5.9 this yields

ãH(ϕ,ϕ) := $s aH(w,ϕ) + (w,ϕ) ≥ $sα‖ϕ‖2V + (1−$sβ)‖ϕ‖2H
≥ $sα‖ϕ‖2V for all ϕ ∈ V0, (5.27)

whence ãH(·, ·) is coercive with constant α0 := $sα > 0.

Finally, one can show that the semi-discrete solution y(τ (z)) for τ (z) > 0 lies in the
space H2(Ω) for the set of boundary conditions in (2.111).

Theorem 5.11. Suppose that Assumption 5.3 and Assumption 5.9 are fulfilled.
Then the solution of the semi-discrete Problem 5.8 for an implicit Euler or Ran-
nacher time stepping method with the set of boundary conditions in (2.111) satisfies
y(τ (z), x, v) ∈ H2(Ω) for fixed τ (z) > 0.

Proof. We start by formulating the semi-discrete Heston variational inequality in Prob-
lem 5.8 with the set of boundary condition in (2.111) as a penalty problem: For ε > 0
find y

(z)
ε ∈ V such that

ãH(y(z)
ε , ϕ) + ε−1(Qyε, ϕ) = f

(z−1)
inh (ϕ), (5.28)
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with penalty function Qy
(z)
ε := min(y(z)

ε − g, 0) for all ϕ ∈ V0. In order to find an
equivalent formulation with homogeneous Dirichlet boundary condition on Υ we set
ũ

(z)
ε = y

(z)
ε − ũg and g̃ := g − ũg with

ũg = xmax − x
xmax − xmin

g(xmin) + x− xmin
xmax − xmin

g(xmax). (5.29)

Then the penalty problem is equivalent to the following problem with homogeneous
boundary condition on Υ: For ε > 0 find u

(z)
ε ∈ V0 such that

ãH(ũ(z)
ε , ϕ) + ε−1(Quε, ϕ) = f

(z−1)
inh (ϕ)− ãH(ũg, ϕ− ũ(z)

ε ), (5.30)

with penalty function Qũ
(z)
ε := min(ũ(z)

ε − g̃(x), 0) for all ϕ ∈ V0.
Now we have to show that (3.15) in Lemma 3.5 is satisfied: Recall the definition of the
bilinear form from (5.22)

− ãH(g̃,Qũ(z)
ε ) := −$saH(g̃,Qũ(z)

ε )− (g̃,Qũ(z)
ε ) (5.31)

with
−aH(g̃,Qũ(z)

ε ) := −
∫

Ω
Ã∇g̃ · ∇Qũ(z)

ε + (b̃ · ∇g + rg)Qũ(z)
ε dΩ.

Now we consider the diffusion term separately. Since g̃(x) is independent of v one has

−
∫

Ω
Ã∇g̃ · ∇Qũ(z)

ε dΩ = −
∫

Ω

1
2v
∂g̃

∂x

∂Qũ
(z)
ε

∂x
dΩ

= −
∫

Ω

1
2v
∂g

∂x

∂Qũ
(z)
ε

∂x
dΩ +

∫

Ω

1
2v
∂ũg
∂x

∂Qũ
(z)
ε

∂x
dΩ

=
∫ 0∫

xmin

1
2vK exp(x)∂Qũ

(z)
ε

∂x
dxdv +

∫

Ω

1
2v
∂ũg
∂x

∂Qũ
(z)
ε

∂x
dΩ.

Integration by parts with respect to x and Qũ
(z)
ε ≤ 0 in Ω, Qũ(z)

ε = 0 on Υ, v > 0,
∂2ũg
∂x2 = 0 and ∂ũg

∂x ≥ 0 results in

−
∫

Ω
Ã∇g̃ · ∇Qũ(z)

ε dΩ = −
∫ 0∫

xmin

1
2vK exp(x)Qũ(z)

ε dxdv +
∫ [1

2vK exp(x)Qũ(z)
ε

]0

xmin

dv

≤ −
∫ 0∫

xmin

1
2vK exp(x)Qũ(z)

ε dxdv

=
∫

Ω

1
2v
∂g

∂x
Qũ(z)

ε dΩ

≤
∫

Ω

1
2v
∂g̃

∂x
Qũ(z)

ε dΩ. (5.32)
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Finally, applying the Cauchy-Schwarz inequality to (5.31) and the use of (5.32) yields

−ãH(g̃,Qũ(z)
ε ) ≤ $s

(1
2vmax‖g̃‖V + |b̃1(vmax)|‖g̃‖V + (r + 1)‖g‖H

)
‖Qũ(z)

ε ‖H

≤
(1

2vmax + |b̃1(vmax)|+ r + 1
)
‖g̃‖V‖Qũ(z)

ε ‖H ,

whence (3.15) in Lemma 3.5 is satisfied. It remains to show that the right hand side
lies in L2(Ω). Since we employ an implicit Euler-method for the initial time steps one
has for z = 1 with ũ(0)

ε = g that the right hand side is given by f (0)
inh(ϕ) := (g, ϕ). Since

g ∈ L2(Ω) it follows from Lemma 3.5 that ũ(1)
ε lies in H2(Ω). For the remaining time

steps 2 ≤ z ≤ #T one has

f
(z−1)
inh (ϕ) :=− (1−$)s aH(ũ(z−1)

ε , ϕ) + (ũ(z−1)
ε , ϕ).

Thus, it is clear that for ũ(z−1)
ε ∈ H2(Ω) for 2 ≤ z ≤ #T the right hand side lies in

L2(Ω). By applying Lemma 3.5 we can conclude that the following estimate holds

‖ũ(z)
ε ‖H2(Ω) <∼ ‖g̃‖V + ‖f (z−1)

inh ‖H + ‖ũg‖H2(Ω)

with constant independent of the penalty parameter ε > 0. Resubstituting gives

‖y(z)
ε ‖ <∼ ‖g‖V + ‖f (z−1)

inh ‖H + ‖g‖H3/2(Υ).

Finally by passing to the limit as ε→ 0 it can be shown that the solution of the semi-
discrete Heston variational inequality in Problem 5.8 satisfies y(z) ∈ H2(Ω) for a fixed
time step z.

At this point it should be pointed out that the solution of Problem 5.8 for a Crank-
Nicolson scheme at the initial time step z = 1 does not lie in H2(Ω). This is due to the
fact that y(0) = g(x) /∈ H2(Ω) so the right hand side as defined in (5.23) does not lie
in L2(Ω) for z = 1 and $ = 0.5.
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5. Pricing American Put option with Heston’s model

As mentioned earlier for further numerical computation it is convenient to reformulate
Problem 5.8 into a problem with zero Dirichlet boundary condition on Υ and an obstacle
function, which is equal to zero.

Problem 5.12 (Semi-discrete variational inequality). Find u(z) ∈ K0 for all
z ∈ {1, · · · ,#T}, such that

ãH(u(z), ϕ− u(z)) ≥ f (z−1)(ϕ− u(z)),

for all ϕ ∈ K0 with start condition u(0) = 0 , where the bilinear form is defined as in
(5.22) and the right hand side as

f (z−1)(ϕ− u(z)) :=− (1−$)s aH(u(z−1), ϕ− u(z)) + (u(z−1), ϕ− u(z))
− saH(g, ϕ− u(z))

=−
∫

Ω
(1−$)sÃ∇u(z−1) · ∇(ϕ− u(z))dΩ

−
∫

Ω
((1−$)s(b̃ · ∇u(z−1) + ru(z−1))− u(z−1))(ϕ− u(z))dΩ

−
∫

Ω
sÃ∇g · ∇(ϕ− u(z)) + s(b̃ · ∇g + rg)(ϕ− u(z))dΩ. (5.33)

5.2.2. Tensor product B-spline Galerkin discretization

In this section, we will introduce the fully discrete scheme of the semi-discrete Heston
variational inequality corresponding to Problem 5.12 based on a spatial tensor product
B-spline discretization. To facilitate a pointwise approximation of the Greeks up to
order two, we use a cubic tensor product B-spline discretization. As in the case for the
Black-Scholes variational inequality, one particular difficulty arises from the fact that
the initial condition g(x, v) = g(x) is not differentiable at x = 0. In order to derive
a stable approximation of the partial derivatives without oscillations, we use a spatial
tensor product B-spline discretization with k− 1 coinciding knots at x = 0. Results for
a discretization of the Heston variational inequality without internal coinciding knots
and a bilinear form as in (2.120), where the boundary integral is set to zero, can be
found in [Bos15, Wei14].
Let V0

h ⊂ V0 be the finite dimensional tensor-product spline space of fixed order k ∈ N
with homogeneous boundary conditions on Υ. Let further Θx := {θ(x)

i }n+k
i=1 be the

extended sequence of knots with equidistant grid size h`x := (xmax − xmin)/2`x in the
x-direction

θ
(x)
1 = . . . = θ

(x)
k < θ

(x)
k+1 < . . . < θ(x)

℘ = . . . = θ
(x)
℘+k−2 < . . . < θ

(x)
n+1 = . . . = θ

(x)
n+k

(5.34)
where θ(x)

1 = xmin, θ(x)
℘ = . . . = θ

(x)
℘+k−2 = 0 and θ

(x)
n+1 = xmax. Then we define the

B-splines Ni,k(x) of order k for ix = 1, . . . , n recursively as defined in (3.62).
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5.2. Discretization

Let further Θv := {θ(v)
iv
}m+k
iv=1 be the extended sequence of knots with equidistant grid

size h`v := (vmax − vmin)/2`v `v ∈ N in the v-direction such that

θ
(v)
1 = . . . = θ(v)

p = vmin < θ
(v)
k+1 < . . . < θ(v)

m < vmax = θ
(v)
m+1 = . . . = θ

(v)
m+k. (5.35)

Then we can define the B-Splines Niv ,k(v) analogously to (3.62). Let i := (ix, iv) ∈ N2

a multi-index, then the i’th tensor product B-spline for the rectangular domain Ω ⊂ R2

is given by Ni,k(x, v) := Nix,k(x)Niv ,k(v). Finally, the finite dimensional tensor product
B-spline space is given by

V0
h := span{Ni,k(x, v) = Nix,k(x)Niv ,k(v) : i = (ix, iv) ∈ I} ⊂ V, (5.36)

with index set I. For the set of boundary conditions according to (2.110) the index
set I is defined as ID := {ix = 2, . . . , n − 1, iv = 2, . . . ,m} or for the boundary
conditions in (2.111) as IN := {ix = 1, . . . , n−1, iv = 2, . . . ,m}. Consequently, one has
n := 2`x + 2k− 3 B-Spline basis functions in the x-direction due to the k− 2 additional
B-Splines in x = 0 and m := 2`v + k − 1 B-spline basis functions in the v-direction.
Then the dimension of the discrete solution space for the set of boundary conditions in
(2.110) is

dim(V0
h) := #ID := NM = (n− 2)(m− 1) = (2`x + 2k − 5)(2`v + k − 2) (5.37)

and for the boundary conditions in (2.111) one has

dim(V0
h) := #IN := NM = (n− 1)(m− 1) = (2`x + 2k − 4)(2`v + k − 2). (5.38)

Furthermore, the discrete convex set is defined as

K0
h := {ϕh ∈ H : ϕh ≥ 0} ∩ V0

h. (5.39)

Note that K0
h = K0 ∩ V0

h is satisfied because the obstacle is equal to zero and no
approximation of the obstacle is needed.
For the solution u

(z)
h ∈ K0

h and test function ϕh ∈ K0
h we obtain

u
(z)
h := u

(z)
h (x, v) :=

∑

i∈I
u

(z)
i Ni,k(x, v) =: (u(z))TN,

ϕh := ϕh(x, v) :=
∑

i∈I
ϕiNi,k(x, v) =: (ϕ)TN.

(5.40)

Due to the non-negativity of B-splines it can be ensured that u(z)
h ∈ K0

h by claiming
that the coefficients satisfy u(z) ∈ K, where the discrete convex set K is given by

K := {ϕ ∈ RNM : ϕ ≥ 0}. (5.41)
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For the componentwise positivity of the coefficients ϕi ≥ 0 for all i ∈ I we write ϕ ≥ 0.
Inserting the elements uh, ϕh ∈ Kh into the bilinear form of Problem 5.12 leads to

ãH(u(z)
h , ϕh − u(z)

h ) =: (ϕ− u(z))TCu(z), (5.42)

where the matrix C ∈ RNM×NM is defined as

C := $sY +$sX + ($sr + 1)Ξ (5.43)

with Y, X,Ξ ∈ RNM×NM given by

Yj,i :=
∫

Ω
(Ã∇Ni,k) · ∇Nj,kdΩ, Xj,i :=

∫

Ω
b̃ · ∇Ni,kNj,kdΩ, Ξj,i :=

∫

Ω
Ni,kNj,kdΩ.

An analogous approach leads to the following right hand side

f (z−1)(ϕh − u(z)
h ) =: (ϕ− u(z))T f (z−1), (5.44)

where f (z−1) is defined as

f (z−1) :=− (1−$)s (Y + X) u(z−1) − ((1−$)sr − 1)Ξu(z−1) − sδ − sζ, (5.45)

with δ and ζ ∈ RNM given by

δi :=
∫

Ω
(Ã∇g) · ∇Ni,kdΩ ζi :=

∫

Ω
(b̃ · ∇g + rg)Ni,kdΩ.

Finally, the fully discrete variational inequality can be formulated as follows:
Problem 5.13 (Discrete variational inequality). Find u(z+1) ∈ K for all
z ∈ {0, . . . ,#T− 1} such that

(ϕ− u(z))T (Cu(z) − f (z−1)) ≥ 0 (5.46)

is fulfilled for all ϕ ∈ K.

For further numerical computations, it is convenient to rewrite Problem 5.13 to the
following linear complementarity problem:
Problem 5.14 (Discrete linear complementary problem). Find u(z+1) ∈ K for all
z ∈ {0, . . . ,#T− 1} such that

(u(z))T (Cu(z) − f (z−1)) = 0, Cu(z) − f (z−1) ≥ 0, u(z) ≥ 0. (5.47)

Due to the tensor product structure, all matrices in (5.43) can be expressed as sums
of Kronecker products of matrices with respect to one coordinate direction x or v as
follows

Y :=
3∑

l=1

(
Yl,x ⊗Yl,v

)
, X :=

2∑

l=1

(
Xl,x ⊗ Xl,v

)
and Ξ := Ξ1,x ⊗ Ξ1,v. (5.48)
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Due to the local support of B-splines, Qx := supp(Nix) ∩ supp(Njx) and Qv :=
supp(Niv) ∩ supp(Njv), the matrices with respect to one coordinate direction result
in

Y1,x
jx,ix

:=
∫

Qx
N ′ix(x)N ′jx(x)dx, Y1,v

jv ,iv
:=
∫

Qv

1
2vNiv(v)Njv(v)dv,

Y2,x
jx,ix

:=
∫

Qx
Nix(x)N ′jx(x)dx, Y2,v

jv ,iv
:=
∫

Qv
vρξN ′iv(v)Njv(v)dv,

Y3,x
jx,ix

:=
∫

Qx
Nix(x)Njx(x)dx, Y3,v

jv ,iv
:=
∫

Qv

1
2vξ

2N ′ivN
′
jvdv,

X1,x
jx,ix

:=
∫

Qx
N ′ix(x)Njxdx, X1,v

jv ,iv
:=
∫

Qv

(1
2v − r

)
NivNjvdv,

X2,x
jx,ix

:=
∫

Qx
Nix(x)Njxdx, X2,v

jv ,iv
:=
∫

Qv

(
κ(v − γ) + λ(v) + 1

2ξ
2
)
N ′iv(v)Njv(v)dv

and

Ξ1,x
jx,ix

:=
∫

Qx
Nix(x)Njx(x)dx, Ξ1,v

jv ,iv
:=
∫

Qv
Niv(v)Njv(v)dv (5.49)

for ix, jx ∈ {2, . . . , n− 1} and iv, jv ∈ {2, . . . ,m} for the set of boundary conditions in
(2.110) or iv, jv ∈ {1, . . . ,m} for the set of boundary conditions in (2.111). The matrices
with one coordinate direction can be set up efficiently by applying the Neville-scheme for
the evaluation of B-splines combined with an appropriate quadrature rule to compute
the integrals. Since B-splines are piecewise polynomials, the matrices above can be
computed exactly with the Gauss quadrature rule.
It remains to present the set up of the vectors δ and ζ. Since g := g(x) is independent
of the variable v one has

δ := δx ⊗ δv and ζ :=
2∑

l=1

(
ζ l,x ⊗ ζ l,v

)
(5.50)

with

δxix :=
∫
g′(x)N ′ix(x)dx, δviv :=

∫ 1
2vNiv(v)dv

and

ζ1,x
ix

:=
∫
g′(x)Nix(x)dx, δ1,v

iv
:=
∫ (1

2v − r
)
Niv(v)dv

ζ2,x
ix

:=
∫
rg(x)Nix(x)dx, δ2,v

iv
:=
∫
Niv(v)dv (5.51)
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5. Pricing American Put option with Heston’s model

for ix ∈ {2, . . . , n−1} and iv ∈ {2, . . . ,m} for the set of boundary conditions in (2.110)
or iv ∈ {1, . . . ,m} for the set of boundary conditions in (2.111).
Since g(x) is an exponential function, employing a Gauss quadrature to the integrals,
which includes g(x), is not exact but gives a good approximation if enough Gauss
points are chosen. A detailed derivation of the matrices and vectors corresponding to
the parabolic variational inequality for the set of boundary conditions in (2.110), where
the boundary integral in (2.121) are set to zero combined with B-splines without coin-
ciding knots at x = 0 can be found in [Bos15, Wei14].
Due to Theorem 5.11 and Theorem 3.24 it is clear that for a linear B-spline discretiza-
tion and an accurate approximation of the initial condition (x = 0 aligned with one
knot) an optimal convergence rate in H1(Ω) can be expected for the semi-discrete He-
ston Problem. It is still unclear if the solution of the semi-discrete Heston Problem
satisfies the smoothness assumption of Theorem 3.25. Since the obstacle function g(x)
is smooth, where the constraints are binding (i.e. for S ≤ Sf (τ, v) < K for a put
option) and the right hand side is smooth, where the constraints are non-binding, it
can be expected that the solution satisfies y(z) ∈ W l,p for z ≥ 2, 1 < p < ∞ and
l < 1 + 1

p as required for the a priori estimates in Theorem 3.25. Hence, for an accurate
approximation of the initial condition (x = 0 aligned with k− 1 knots) one can expect
a convergence rate of O(h3/2−ε) in the H1(Ω) norm for quadratic and cubic B-splines,
if the smoothness assumption in Theorem 3.25 is satisfied.
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6. Approximation of the Greeks for
American options

In finance related businesses, as described in Section 2.1.5, a particular focus of interest
lies on the approximation of the Greeks, which measure the sensitivity of the option
value to a small change in a given model parameter. Formally, the Greeks are defined
as the partial derivatives with respect to the model parameters up to order two. In this
chapter we present the approximation of the Greeks with higher order B-splines in the
Black-Scholes and Heston model. It should be mentioned at this point that the authors
in [Hol04] and [Wei14, Bos15] also proposed a B-spline discretization to approximate the
Greeks for an American put option in the Black-Scholes and Heston model. The authors
use a B-spline discretization without internal coinciding knots there. In particular, for
the two dimensional Heston problem in [Wei14, Bos15] it can be observed that the
approximation of the partial derivatives with respect to the underlying price exhibits
oscillations in a neighborhood of the point where the underlying price is equal to the
strike price. To overcome this problem the following approach is recommendable: For
the valuation of an American option the initial condition is often given by a piecewise
smooth payoff function, such as defined in (2.1), (2.2) or (2.3), so the following aspects
are necessary to find a pointwise accurate approximation of the partial derivatives
(without oscillations) up to order two:

i) An implicit Euler scheme for the initial time steps has to be employed, since this
method smoothen the numerical solution caused by irregularities of the initial
data.

ii) As the initial condition, given by a payoff function, is only continuous at this
point, where the underlying price is equal to the strike price, a cubic B-spline
discretization with k − 1 repeating knots at this point should be used.

Moreover, it should be clear from the discussions in Section 3.1.1 that the semi-discrete
solution of the Black-Scholes or Heston problem cannot be more than once classically
differentiable on the whole spatial domain and the second derivative must have dis-
continuities at the free boundary. As for the Black-Scholes variational inequality for a
put and call option it can easily checked with the results in Lemma 4.4 and Theorem
4.5 that the semi-discrete solution satisfies y(z)(S) ∈ H2(I). Applying the Sobolev em-
bedding theorem for one dimensional problems implies that the solution lies in C1(I).
Regarding the two dimensional Heston variational inequality the existence of a classi-
cal first order partial derivative of the semi-discrete solution is still an open question.
The obstacle function g(x) is smooth enough, where the constraints are binding (i.e.
for S ≤ Sf (τ, v) < K for a put option) and the right hand side is smooth enough,
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6. Approximation of the Greeks for American options

where the constraints are non-binding, so it can be expected that the solution satisfies
y(z) ∈ C1(Ω).

6.1. Greeks in Black-Scholes Model

After the discrete Black-Scholes variational inequality defined in Problem 4.13 is solved
by an iterative scheme and in consideration of the transformation τ (z) := T − t(z) the
approximation of the American option value can be computed by

Vh(t(z), S) = uh(τ (z), S) +H(S) for each z ∈ {1, . . . ,#T}. (6.1)

As stated previously, the solution is twice differentiable almost everywhere except at
the free boundary. Therefore one can expect that the discrete solution satisfies

Vh(t(z), S) ∈ C2(I \S(z)
Sh
f

) for each z ∈ {1, . . . ,#T}, (6.2)

where S
(z)
Sh
f

denotes the union of the supports of B-spline basis functions whose support

intersects Shf (t(z)). The approximation of Delta, as defined in (2.39), results in

∆h(t(z), S) := ∂Vh(t(z), S)
∂S

≈ ∂(uh(τ (z), S))
∂S

+H′+(S), (6.3)

where H′+(S) denotes the derivative of H with a right-sided derivative at the disconti-
nuity points. Furthermore, the approximation of Gamma, as defined in (2.40), can be
computed by

Γh(t(z), S) := ∂2Vh(t(z), S)
∂S2 ≈ ∂2(uh(τ (z), S))

∂S2 for S /∈ S
(z)
Sh
f

(6.4)

where the second derivative with a right-sided second derivative at the discontinuity
points satisfies H′′+(S) = 0 for payoff functions given in (2.1), (2.2) or (2.3).

6.2. Greeks in Heston’s Model

After solving the discrete Heston variational inequality defined in Problem 5.14 by
an iterative scheme and in consideration of the transformations τ (z) := T − t(z) and
x = log

(
S
K

)
the American put option value is approximated by

Vh(t(z), S, v) = yh(τ (z), x, v) = uh(τ (z), x, v) + g(x) for each z ∈ {1, . . . ,#T}. (6.5)

Furthermore, resubstituting the coordinates of the approximated free boundary yields

Shf (t(z), v) = K exp
(
xhf (τ (z), v)

)
. (6.6)

94



6.2. Greeks in Heston’s Model

Moreover, the solution for the discrete Heston variational inequality with set of bound-
ary conditions in (2.111) satisfies

Vh(t(z), S, v) ∈ C2(ΩL \S(z)
Sh
f

) for each z ∈ {1, . . . ,#T}, (6.7)

where S
(z)
Sh
f

denotes the union of the supports of B-spline basis functions whose support

intersects Shf (t(z), v). Taking into account the log-transformation of the underlying the
approximation of Delta results in

∆h(t(z), S, v) := ∂Vh(t(z), S, v)
∂S

= 1
K exp(x)

(
∂yh(τ (z), x, v)

∂x

)

≈ 1
K exp(x)

(
∂uh(τ (z), x, v)

∂x
+ g′+(x)

)
, (6.8)

where g′+(x) := g′+(x, v) denotes the partial derivative of g(x, v) regarding x with a
right-sided derivative at discontinuity points (x, v) = (0, v).
Since g′+(x) = g′′+(x) is satisfied, where g′′+(x) := g′′+(x, v) denotes the second partial
derivative of g(x, v) regarding x with a right-sided derivative at discontinuity points
(x, v) = (0, v), Gamma can be approximated by

Γh(t(z), S, v) : = ∂2Vh(t(z), S, v)
∂S2 = 1

(K exp(x))2

(
∂2yh(τ (z), x, v)

∂x2 − ∂yh(τ (z), x, v)
∂x

)

≈ 1
(K exp(x))2

(
∂2uh(τ (z), x, v)

∂x2 + g′′+(x)− ∂yh(τ (z), x, v)
∂x

− g′+(x)
)

= 1
(K exp(x))2

(
∂2uh(τ (z), x, v)

∂x2 − ∂uh(τ (z), x, v)
∂x

)
. (6.9)

Further, having in mind that the payoff function g(x) is independent of the variance v,
the approximation of Vega, as stated in (2.41), results in

νh(t(z), S, v) := ∂Vh(t(z), S, v)
∂v

= ∂uh(τ (z), x, v)
∂v

. (6.10)

For the efficient evaluation of the solution and the corresponding derivatives we em-
ploy the Neville-scheme for splines as described in Theorem 3.18 and its derivatives as
described in Corollary 3.19. Note that a pointwise approximation of the first or second
derivative is possible, if k ≥ 3 or k ≥ 4, respectively. Otherwise, the numerical solution
has to be interpolated with a smooth enough polynomial or spline.
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7. Solution algorithms to solve discrete
variational inequalities

In this chapter we study several methods to solve variational inequalities arising from
a B-spline Galerkin discretization.
Let Ω ⊂ Rd, then we define by VL ⊂ V0 the finite dimensional tensor product spline
space of piecewise polynomials of order k with dimension dim(VL) = #IL on level L.
Let further K0

L := {uL ∈ VL : uL(x) ≥ ψ̃L for all x ∈ Ω} be the discrete convex set on
level L, where ψ̃L = ∑

i∈IL ψ̃iNi,k denotes the obstacle in spline representation. Then
we consider the following problem: Find uL ∈ K0

L such that

a(uL, ϕL − uL) ≥ f(ϕL − uL) for all ϕL ∈ K0
L. (7.1)

Or equivalently, written as linear complementarity problem: Find uL ∈ VL such that

(uL − ψ̃)(ALuL − fL) = 0
ALuL − fL ≥ 0

uL ≥ ψ̃, (7.2)

where AL is the discrete form of the Riesz operator A : V0 → V∗ on level L defined
by 〈Au, ϕ〉 := a(u, ϕ) for all ϕ ∈ V0. To project the solution uL(x) in the discrete
convex set K0

L for all x ∈ Ω one essential construction for higher order B-splines is
the comparison of the B-spline expansion coefficients instead of function values, which
was first established by [Hol04, HK07]. More precisely, due to the non-negativity of
B-splines Ni,k ≥ 0 it can be ensured that the solution uL = ∑

i∈IL uiNi,k lies in the
convex set K0

h by requiring that the coefficients satisfy

uL ∈ KL := {uL ∈ R#IL : uL ≥ ψ̃L}. (7.3)

Then problem (7.1) can be written in matrix vector notation: Find uL ∈ KL such that

(ϕL − uL)T (CLuL − fL) ≥ 0 for all ϕL ∈ KL. (7.4)

Or equivalently formulated as discrete linear complementarity problem: Find uL ∈
R#IL such that

(uL − ψ̃L)T (CLuL − fL) = 0,
CLuL − fL ≥ 0,

uL ≥ ψ̃L, (7.5)

where CL ∈ R#IL×#IL denotes the discretization matrix and fL ∈ R#IL the discrete
right hand side.
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7.1. Projected iterative methods

7.1. Projected iterative methods

In the next section we describe the PJOR (Projected Jacobi overrelaxation method) and
PSOR (Projected successive overrelaxation) method to solve the linear complementary
problem (7.5) in matrix vector notation. To simplify the notation we omit the level L
in this section. Since u − ψ̃ > Cu − f , if Cu − f = 0, and Cu − f > u − ψ̃, if u = ψ̃,
the linear complementarity problem is equivalent to:
Find u ∈ R#I such that

min{u− ψ̃, Cu− f} = 0 (7.6)

is satisfied. Let u(ς) denote the ς’th iterate then (7.6) can be solved by the following
Jacobi iterate

u
(ς+1)
i = max



ψ̃i, (1− ω)u(ς)

i + ω

Ci,i


fi −

i−1∑

j=1
Ci,ju

(ς)
j −

#I∑

j=i+1
Ci,ju

(ς)
j





 , (7.7)

with the relaxation parameter ω ∈ (0, 2], if the diagonal matrix has only positive entries.
It is easy to see that for the computation of u(ς+1)

i+1 the iterate u(ς+1)
i can be used. This

leads to the following PSOR method

u
(ς+1)
i = max



ψ̃i, (1− ω)u(ς)

i + ω

Ci,i


fi −

i−1∑

j=1
Ci,ju

(ς+1)
j −

#I∑

j=i+1
Ci,ju

(ς)
j





 (7.8)

= max



ψ̃i, u

(ς)
i + ω

Ci,i


fi −

i−1∑

j=1
Ci,ju

(ς+1)
j −

#I∑

j=i
Ci,ju

(ς)
j







with initial iterate u(0) ≥ ψ̃ see e.g. [BC83, Cry71, Glo71]. For ω = 1 the above scheme
is also known as projective Gauss-Seidel (PGS) method.
It is known from [Pan84] that the optimal convergence rate of such iterative methods
can be estimated by

‖u∗ − u(k)‖ ≤ %(B)‖u∗ − u(k−1)‖, (7.9)

where %(B) denotes the spectral radius of the iteration Matrix B. If %(B) < 1 the
method is said to be convergent. For the PJOR method the iteration matrix is given
by B := I − ωD−1C and for the PSOR method by B := I − ω(D − L)−1C. A decisive
disadvantage of classical iterative methods applied to complementarity problems arising
from discretization of variational inequalities is that the convergence rate depends on
the spectral condition number. That means, if C is a symmetric positive matrix the
optimal convergence rate for the PJOR methods is estimated by

%∗(I − ωD−1C) = κ(D−1C)− 1
κ(D−1C) + 1 ≤ 1− 2

κ(D−1)κ(C) + 1 . (7.10)
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7. Solution algorithms to solve discrete variational inequalities

The condition number regarding the spectral matrix norm ‖ · ‖ of the d-dimensional
tensor product B-spline discretization matrix C increases with the grid size h, i.e.

κ(C) = ‖C‖‖C−1‖ = λmax(C)λmax(C−1) <∼ hd−2h−d = h−2, (7.11)

with a constant depending on k but independent of h (see Lemma 3 in [GKT13]).
Finally, exploiting κ(D−1) <∼ 1 the optimal convergence rate can be estimated by

%∗(I − ωD−1C) ≤ 1−O(h2). (7.12)

and as h→ 0 then the convergence rate tends to %∗ → 1.
The advantage of the projected Jacobi like version is that the iterates can be com-
puted in parallel. But on the other hand, the Jacobi like version might lead to worse
convergence in comparison to the PSOR method. It can be shown that the con-
vergence rate for the PJOR method is larger than the PSOR method, i.e. we have
%∗(I − ω(D − L)−1C) ≤ %∗(I − ωD−1C).

7.2. Monotone multigrid method

7.2.1. The basic monotone multigrid algorithm

In order to accelerate basic iterative schemes as described in Section 7.1, we introduce
the monotone multigrid method (MMG) for the fast and efficient numerical solution of
the semi-discrete variational inequality arising in the valuation of an American option
in the next section.
Monotone multigrid methods to solve elliptic variational inequalities for linear hat func-
tions in a finite element setting have been developed in [Man84, Kor94]. In comparison
to standard multigrid methods for the unrestricted case monotone multigrid methods
ensure that the constraints are met over all grid levels. In particular the author in
[Kor94] improves the approach of [Man84] by extending the set of search directions.
This approach, also known as truncated monotone multigrid method, profits from the
nodal structure of linear basis functions.
Previously, multigrid methods have been proposed for such problems using a standard
finite difference or finite element approach [BC83, HM83, Hop87], where not all of them
ensure that the constraints are satisfied.
A monotone multigrid method for the valuation of an American option for higher or-
der B-splines without coinciding knots has been developed by [Hol04, HK07]. Since, as
mentioned earlier, in finance the initial condition of the parabolic variational inequal-
ity is often given as a piecewise linear function and a discretization with coinciding
knots at the critical points stabilizes the approximation of the partial derivatives, so we
present a monotone multigrid method for B-splines with coinciding knots. Therefore,
monotone coarse grid approximations for B-splines with coinciding knots need to be
constructed.
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7.2. Monotone multigrid method

First, the basic idea of multigrid methods is summarized. For the implementation of
the multigrid method the following hierarchy of grids and approximation spaces

V`min ⊂ V`min+1 ⊂ . . . ⊂ V` ⊂ . . . ⊂ V`max := VL ⊂ V

is needed, where ` = (`1, . . . , `d) denotes the level regarding the different dimensions.
On the highest level L the following linear complementary problem has to be solved,

(uL − ψ̃L)T (ALuL − fL) = 0 (7.13)
ALuL ≥ fL

uL ≥ ψ̃L,

where AL denotes the linear operator, uL the solution and ψ̃L the obstacle function
on level L. Let u(ς,0)

L be the approximation of the solution in the ς’th iteration of the
MMG method. To eliminate high-frequency portions of the error, η1 a priori smoothing
steps are performed. For the smoothing steps we use the PGS method, see e.g. [BC83].
Denoting the iterate after η1 iterations of a smoother by u

(ς,1)
L := (Sm(u(ς,0)

L ))η1 , the
error by vL := uL − u(ς,1)

L and the defect by dL := fL − ALu(ς,1)
L , we get the following

defect problem

(vL − ψ̃L + u
(ς,1)
L )T (ALvL − dL) = 0 (7.14)

ALvL ≥ dL
vL ≥ ψ̃L − u(ς,1)

L .

Classical iterative methods eliminate high-frequency portions of the error after few
iteration steps. Knowing that smooth functions can be approximated without essential
loss of information on a coarser grid VL−1, the defect problem is transported to a coarser
grid by using different restriction operators R, r̃ : VL → VL−1,

(vL−1 − ψ̃L−1)T (AL−1vL−1 − fL−1) = 0 (7.15)
AL−1vL−1 ≥ fL−1

vL−1 ≥ ψ̃L−1,

where fL−1 := RdL and ψ̃L−1 := r̃(ψ̃L − u(ς,1)
L ). After solving this defect problem on

a coarser grid with less effort, the approximation of the error vL−1 is transported back
to the fine grid by using the prolongation operator P : VL−1 → VL and is added to
the approximation of the solution u(ς,1)

L . Applying this procedure recursively on several
grids, one receives the following MMG method.
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7. Solution algorithms to solve discrete variational inequalities

Algorithm 7.1 Monotone Multigrid method V-cycle (MMG`)
Let u(ς,0)

` a given initial iterate.
(1) A priori smoothing and projection: u(ς,1)

` := (Sm(u(ς,0)
` , ψ̃))η1 .

(2) Coarse grid correction:
d` := (f` −A`u(ς,1)

` ), (update of the defect)
f`−1 := Rd`, (standard restriction)
A`−1 := RA`P
ψ̃` := ψ̃` − u(ς,1)

` (update of the defect obstacle)
ψ̃`−1 := r̃(ψ̃`) (monotone restriction)

If ` = `min: Solve the linear complementary problem
(v − ψ̃`−1)T (A`−1v − f`−1) = 0

A`−1v ≥ f`−1

v ≥ ψ̃`−1,

exactly and set v`−1 := v.
If ` > `min: Perform one steps of MMG`−1 with initial value u(ς,0)

`−1 := 0 and the
solution v`−1.

(3) Prolongation: Set u(ς,2)
` := u

(ς,1)
` + Pv`−1 .

(4) A posteriori smoothing and projection: u(ς,3)
` := (Sm(u(ς,2)

` , ψ̃))η2 .

Set u(ς+1,0)
` := u

(ς,3)
` .

To ensure that the new iterate u(ς,2)
` satisfies the constraint u(ς,2)

` ≥ ψ̃` on each level, it
is important that the restriction operator r̃ is chosen such that

Pψ̃`−1 := P r̃
(
ψ̃` − u(ς,1)

`

)
≥ ψ̃` − u(ς,1)

` (7.16)

⇒ u
(ς,2)
` := u

(ς,1)
` + Pv`−1 ≥ u(ς,1)

` + Pψ̃`−1 ≥ ψ̃`.

That means that ψ̃`−1 must be a monotone upper coarse grid approximation to the lower
obstacle ψ̃` − u(ς,1)

` . The monotonicity ensures the global convergence of the scheme,
see Section 7.2.3. This idea was also used in [GK09, Kor94, Man84, HK07].

7.2.2. Monotone coarse grid approximation for tensor-product splines

In this section, we first establish coarse grid approximations of one dimensional splines
of order k with and without coinciding knots in the interior, which lead to suitable
restriction operators r̃. Then the coarse grid approximation for multi-dimensional tensor
product splines arises from the Kronecker product of the coarse grid approximations
for one dimensional splines. For hat functions, monotone coarse grid approximation can
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7.2. Monotone multigrid method

be found in [Kor94, Man84] and for higher order splines without coinciding knots in
[HK07]. In this section we assume that d knot vectors Θ(j) with 1 ≤ j ≤ d are given.
Associated with the knot sequence Θ(j) with uniform grid size hj there is a mesh Θ,
that is a partition of Ω ⊂ Rd into d-dimensional open knot sequences Θ = {⊗dj=1Θ(j)}.
We define by Sk,Θ(j) the space of splines regarding the knot sequence Θ(j), then the
d-dimensional tensor-product spline space of order k is given by

Sdk,Θ := ⊗dj=1Sk,Θ(j) . (7.17)

To this end we consider tensor-product splines of order k with given expansion coeffi-
cients ci1,...,id

S(x) := S(x1, . . . , xd) =
n1∑

i1=1
. . .

nd∑

id=1
ci1,...,idNi1,k,Θ1(x1) · · ·Nid,k,Θd(xd) (7.18)

regarding the knot sequence Θ(j) with grid size hj for j = 1, . . . , d. Let further the
tensor-product spline of order k with given expansion coefficients c̃i1,...,id given by

S̃(x) := S̃(x1, . . . , xd) =
ñ1∑

i1=1
. . .

ñd∑

id=1
c̃i1,...,idNi1,k,Θ̃1

(x1) · · ·Nid,k,Θ̃d(xd) (7.19)

regarding the knot sequence Θ̃j with grid size Hj := 2hj for j = 1, . . . , d. Then we
define the tensor-product space of order k on a coarser grid Θ̃ by

Sd
k,Θ̃ := ⊗dj=1Sk,Θ̃(j) . (7.20)

First, we introduce the definition of upper monotone coarse grid approximations for
d-dimensional tensor-product splines.

Definition 7.1. (Monotone upper coarse grid approximation for tensor-product splines)
Let Sdk,Θ be the space of d-dimensional splines of order k on the fine grid regarding the
knot sequence Θ with grid size hj. Let further Sd

k,Θ̃
be the space of splines on the coarse

grid regarding the knot sequence Θ̃ with grid size Hj. We call S̃(x) := c̃T Ñd
k ∈ Sd

k,Θ̃
a

monotone upper coarse grid approximation to the lower obstacle S(x) := cTNd
k ∈ Sdk,Θ,

if S̃(x) ≥ S(x) holds for all x ∈ Ω ⊂ Rd.

For a given spline obstacle function S(x) regarding the knot sequence Θ on a fine grid
we provide a coarse grid approximation S̃(x) with respect to a coarser grid Θ̃, which
satisfies

i) S̃(x) ≥ S(x) for all x ∈ Ω ⊂ Rd;

ii) the number of arithmetic operations must be of order O(nd);

iii) knots θ(j)
i ∈ Θ(j) can be repeated at least k − 1 times in the interior of Ω ⊂ Rd.
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7. Solution algorithms to solve discrete variational inequalities

The first condition ensures the robustness and monotonicity of the MMG-method and
the second condition the optimal complexity. The third condition is needed to stabilize
the computation of the Greeks (see Section 4.2.2 or Section 5.2.2).
To derive monotone restriction operators according condition (iii) we will distinguish
between the following two knot sequences. Therefore, let Jrep the index set for the
dimensions, where the knots θ(j)

℘ = . . . = θ
(j)
℘+k−2 in the extended sequence of knots

Θ(j) are repeated k − 1 times

θ
(j)
1 = . . . = θ

(j)
k < θ

(j)
k+1 < . . . < θ(j)

℘ = . . . = θ
(j)
℘+k−2 < . . . < θ(j)

nj = . . . = θ
(j)
nj+k

with nj := 2`j + 2k − 3 for j ∈ Jrep. (7.21)

Let further Jrep := {1, . . . , d} \ Jrep denote the index set for the dimensions where the
extended sequence of knots contains no internal repeated knots

θ
(j)
1 = . . . = θ

(j)
k < θ

(j)
k+1 < . . . < . . . < θ(j)

n = . . . =θ(j)
nj+k

with nj := 2`j + k − 1 for j ∈ Jrep. (7.22)

A graphical illustration of the knot series on a fine grid Θ(j) and the corresponding
knot series on a coarser grid Θ̃(j) with k − 1 repeating knots at θ(j)

2℘̃ , i.e. for j ∈ J rep,
can be found in Figure 7.1.

θ
(j)
1 =

· · · = θ
(j)
k

θ
(j)
k+1

. . . . . .
θ

(j)
2i

. . .
θ

(j)
2℘̃

= . . .=
θ2℘̃+k−2

. . . . . .
θ

(j)
n =

· · · = θ
(j)
nj+k

θ̃
(j)
1 =

· · · = θ̃
(j)
k

θ̃
(j)
k+1 θ̃

(j)
i θ̃

(j)
℘̃

= . . .=
θ̃℘̃+k−2

. . . . . .
θ̃

(j)
ñj

=
· · · = θ̃ñj+k

Figure 7.1.: Example for a knot series on a fine grid Θ(j) (above) and the correspond-
ing knot series on a coarser grid Θ̃(j) (below) with k− 1 repeating knots
at θ(j)

2℘̃ , i.e. for j ∈ J rep.

First, we consider coarse grid approximation for splines Ni,k,Θj ∈ Sk,Θ(j) associated
with the extended sequence of knots Θj for j ∈ Jrep. More precisely we consider the
directions where no internal knots are repeated. Therefore, one has to express the B-
splines Nij ,k,Θ̃(j) ∈ Sk,Θ̃(j) in the space Sk,Θ(j) . It is well known (c.f. [Sch07]), that due to
the convolution and scaling properties of B-splines, the following refinement equation
holds

Nij ,k,Θ̃(j)(xj) =
k∑

q=0
aqN2ij−k+q,k,Θ(j)(xj) for ij = k, . . . , ñj − k + 1, j ∈ Jrep (7.23)
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with ñj = 2`j−1 + k − 1 B-splines on the level `j − 1 and refinement coefficients

aq := 21−k
(
k

q

)
for q = 0, . . . , k. (7.24)

The remaining refinement coefficients can be calculated via an exact interpolation as
follows: We have

Nij ,k,Θ̃(j)(xj) = (ΦL
(•,ij),k)

TNL
k for ij = 1, . . . , k − 1 and (7.25)

Nij ,k,Θ̃(j)(xj) = (ΦR
(•,ij−(ñj−k+1)),k)TNR

k for ij = ñj − k + 2, . . . , ñj , j ∈ Jrep (7.26)

where
NL
k := (N1,k,Θ(j)(xj), . . . , N2k−2,k,Θ(j)(xj))T

and
NR
k := (Nnj−2k+3,k,Θ(j)(xj), . . . , Nnj ,k,Θ(j)(xj))T

and ΦL
k ∈ R(2k−2)×(k−1) includes the boundary adapted refinement coefficients on the

left boundary and ΦR
k ∈ R(2k−2)×(k−1) the boundary adapted refinement coefficients on

the right interval.
More precisely, the ij ’th row of the matrix ΦL

k or ΦR
k contains the refinement coefficients

of the B-spline Nij ,k,Θ̃(j) for ij = 1, . . . , k − 1 or ij = ñj − k + 2, . . . , ñj .

In matrix vector notation the refinement equation for B-splines can be expressed as
follows

Ñ(j)
k = R(j)

k N(j)
k (7.27)

with N(j)
k := (N1,k,Θj , . . . , Nnj ,k,Θj )T and Ñ(j)

k := (N1,k,Θ̃j , . . . , Nñj ,k,Θ̃j )
T and

R(j)
k : =




(ΦL)T 0

0 a0 a1 a2 . . . ak
a0 . . . ak−2 ak−1 ak

. . .
a0 a1 . . . ak 0

0 (ΦR)T




,

R(j)
k ∈ Rñj×nj , k ≥ 2, for j ∈ Jrep. (7.28)

The above matrix is the restriction operator corresponding a knot series with no internal
repeated knots, i.e. for directions where j ∈ Jrep .
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In the direction, where knots are repeated k − 1 times at the knot θ(j)
℘ B-splines

Ni,k,Θ̃(j) ∈ Sk,Θ̃(j) can be expressed in the space Sk,Θ(j) for j ∈ Jrep as follows:

Nij ,k,Θ̃j (xj) =
k∑

q=0
aqN2ij−k+q,k,Θj (xj) for ij = k, . . . , ℘̃− k and (7.29)

Nij ,k,Θ̃j (xj) =
k∑

q=0
aqN2ij−2k+2+q,k,Θj (xj) for ij = ℘̃+ k − 2, . . . , ñj − k + 1

(7.30)

with ñj = 2`j−1 + 2k − 3 and refinement coefficients aq as defined in (7.24).

The refinement equation with boundary adapted refinement coefficients for B-splines
Nij ,k,Θ̃(j)(x) for ij = 1, . . . , k − 1 or ij = ñj − k + 2, . . . , ñj can be derived analogously
to (7.25) and (7.26).

Furthermore, the B-splines on the coarse grid regarding the internal coinciding knots
can be represented on the fine grid by

Nij ,k,Θ̃(j)(xj) = (ΦI
(•,ij−(℘̃−k)),k)TNI

k for ij = ℘̃− k + 1, . . . , ℘̃+ k − 3, j ∈ Jrep,
(7.31)

where
NI
k := (N2℘̃−3k+2,k,Θ(j) , · · · , N2℘̃+k−4,k,Θ(j))T

denotes the B-splines intersecting the B-splines on the coarser grid Nij ,k,Θ̃(j)(xj) for
ij = ℘̃ − k + 1, . . . , ℘̃ + k − 3. Moreover, ΦI ∈ R(4k−5)×(2k−3) contains the adapted
refinement coefficients for the internal repeating knots.
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Now we can formulate the refinement equation for internal coinciding knots in matrix
vector notation according to (7.27) with

R(j)
k :=




(ΦL)T 0

0a0 a1 a2 . . . ak
a0. . .ak−2ak−1ak

. . .
a0 a1 . . . ak

(ΦI)T

a0 a1 a2. . . ak
a0 . . .ak−2ak−1ak

. . .
a0 a1. . . ak0

0 (ΦR)T




,

R(j)
k ∈ Rñj×nj , k ≥ 3, for j ∈ Jrep. (7.32)

The above matrix is the restriction operator corresponding a knot series with k − 1
repeating internal knots. Note, that in comparison to (7.28) the above matrix includes
the coefficients matrix ΦI due to the internal coinciding knots. It should be clear that
for k = 2 no knots are repeated, thus one can use the same restriction operator as in
(7.28). For piecewise continuous (k = 2), piecewise quadratic (k = 3) and piecewise
cubic (k = 4) B-splines the corresponding coefficient matrices are given as follows

ΦL
2 :=

(
1
1
2

)
, ΦR

2 :=
(

1
2
1

)
, (7.33)

ΦL
3 :=




1
1
2

1
2
3
4
1
4


 , ΦR

3 :=




1
4
3
4
1
2

1
2
1


 , ΦI

3 :=




ΦR
3

1
ΦL

3


 , (7.34)

ΦL
4 :=




1
1
2

1
2
3
4

1
4

3
16

11
16
1
2
1
8




, ΦR
4 :=




1
8
1
2
11
16

3
16

1
4

3
4
1
2

1
2
1




, ΦI
4 :=




ΦR
4

1
ΦL

4


 . (7.35)
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Theorem 7.2 provides monotone upper coarse grid approximation for tensor-product
splines with k− 1 coinciding knots in the interior by controlling the B-spline expansion
coefficients. A proof similar to Theorem 7.2 and Corollary 7.4 where the boundary
adapted refinement coefficients are ignored and where no repetition of the knots at
x = θ℘ are used can be found in [Hol04, HK07].

Theorem 7.2. The spline S̃(x) ∈ Sd
k,Θ̃ is an upper monotone coarse grid approximation

to the lower obstacle S(x) ∈ Sdk,Θ on the fine grid, if their B-spline expansion coefficients
satisfy the linear inequality system

Pd
kc̃ ≥ c (7.36)

with tensor product matrix Pd
k := P(1)

k ⊗ . . .⊗P(d)
k , where the matrices are defined as

P(j)
k :=




ΨL
k

0 ak−1ak−3. . . a1
akak−2. . . a2 a0
ak−1. . . a3 a1

. . . ...
... . . .

ak−1
. . . . . .

ak
. . .. . . . . .
ak−1 . . .a1
ak . . .a2 a0

. . . ...
...

ak ak−2 . . . a0
ak−1 . . . a1

ΨI
k

ak−1 . . . a1
ak . . . a0

. . . ... . . .
ak

. . . . . .. . . . . . . . .
ak−1 . . .a1
ak . . .a2 a0

. . . ...
...

akak−2. . . a0
ak−1. . . a1 0

ΨR
k




,

P(j)
k ∈ Rnj×ñj , k ≥ 3, for j ∈ Jrep and (7.37)

106



7.2. Monotone multigrid method

P(j)
k :=




ΨL
k

0 ak−1 ak−3 . . . a1
ak ak−2 . . . a2 a0

ak−1 . . . a3 a1
ak . . . a4 a2 a0

. . . ...
...

...
ak−1 ak−3

...
ak ak−2

... . . .
ak−1 ak−3

. . .
ak ak−2

. . .
ak−1

. . .
ak

. . .. . . . . .
ak−1 . . . a1
ak . . . a2 a0

. . . ...
...

ak ak−2 . . . a0
ak−1 . . . a1 0

ΨR
k




P(j)
k ∈ Rnj×ñj , k ≥ 2, for j ∈ Jrep (7.38)

with refinement coefficients aq as defined in (7.24), zero vector 0 ∈ Rk−1 and
ΨL
k ,ΨR

k ∈ R2k−2×(3k−2)/2, ΨI
k ∈ R4k−5×3k−3 defined as

ΨL
k :=




ΦL
k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
a0
a1
a2 a0
... . . .

ak−2 ak−4 . . . a0




, ΨR
k :=




ak ak−2 ak−4 . . . a2
ak−1 ak−3 . . . a3
ak ak−2 . . . a4

. . . ...
ak−1
ak
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ΦR
k




,

and ΨI
k :=




ΨR
k

1
ΨL
k


 . (7.39)

The matrix in (7.37) corresponds to the prolongation operator when k − 1 internal
knots are repeated (j ∈ Jrep) and the matrix in (7.38) is regarding a knot series with
no internal coinciding knots.
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Proof. The proof relies on the convolution and scaling properties and on the nonneg-
ativity of B-splines. We consider the case k even. To shorten the notation we define
Nij ,k := Nij ,k,Θj and Ñij ,k := Nij ,k,Θ̃j . First, we express the spline S̃(xj) ∈ Sk,Θ̃(j) for
j ∈ Jrep by splines on the fine grid

S̃(xj) =
ñj∑

ij=1
c̃ij Ñij ,k =

k−1∑

ij=1

(
c̃ij (ΦL

(•,ij),k)
TNL

k

)
+

℘̃−k∑

ij=k


c̃ij

k∑

q=0
aqN2ij−k+q,k(xj)




+
℘̃+k−3∑

ij=℘̃−k+1

(
c̃ij (ΦI

(•,ij−(℘̃−k)),k)TNI
k

)
+

ñ−k+1∑

ij=℘̃+k−2

(
c̃ij

k∑

q=0
aqN2ij−2k+2+q,k(xj)

)

+
ñj∑

ij=ñj−k+2

(
c̃ij (ΦR

(•,ij−(ñj−k+1)),k)TNR
k

)
.

In the next step, we sort the above equation according to the basis functions Nij ,k.
Therefore, we have defined the matrices for the boundary adapted refinement coef-
ficients in (7.39). The ij ’th row from ΨL

k contains the sorted refinement coefficients
according the basis function Nij ,k. Then we obtain:

S̃(xj) =
2k−2∑

ij=1
ΨL
k (ij , •)c̃L

T

k Nij ,k(xj)

+
2℘−3k+1∑

ij=2k−1

(
ak−1c̃(ij+1)/2 + ak−3c̃(ij+3)/2 + . . .+ a1c̃(ij+k−1)/2

)
Nij ,k(xj)

+
2℘̃−3k∑

ij=2k

(
ak c̃ij/2 + ak−2c̃(ij+2)/2 + . . .+ a0c̃(ij+k)/2

)
Nij ,k(xj)

+
2℘̃+k−4∑

ij=2℘̃−3k+2
ΨI
k(ij − (2℘̃− 3k + 1), •)c̃ITk Nij ,k(xj)

+
nj−2k+1∑

ij=2℘̃+k−3

(
ak−1c̃(ij+k−1)/2 + ak−3c̃(ij+k−3)/2 + . . .+ a1c̃(ij+2k−3)/2

)
Nij ,k(xj)

+
nj−2k+2∑

ij=2℘̃+k−2

(
ak c̃(ij+k−2)/2 + ak−2c̃(ij+k−2)/2 + . . .+ a0c̃(ij+2k−2)/2

)
Nij ,k(xj)

+
n∑

ij=n−2k+3
ΨR(ij − (n− 2k + 2), •)c̃RTk Nij ,k(xj).

S̃(xj) is an upper monotone coarse grid approximation to the lower obstacle S(xj), if

S̃(xj)− S(xj) =
nj∑

ij=1
d

(j)
ij
Nij ,k(xj) :=

nj∑

ij=1

(
P(j)
k c̃(j) − c(j)

)
ij
Nij ,k(xj) ≥ 0 (7.40)

is satisfied.
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Due to the non-negativity of B-splines, we only have to require dij ≥ 0, where dij for
j ∈ Jrep and k even is defined as

d
(j)
ij

:=




ΨL
k (ij , •)c̃LTk − cij 1 ≤ ij ≤ 2k − 2,

ak−1c̃(ij+1)/2 + . . .+ a1c̃(ij+k−1)/2 − cij 2k − 1 ≤ ij ≤ 2℘̃− 3k + 1, ij odd,

ak c̃ij/2 + . . .+ a0c̃(ij+k)/2 − cij 2k ≤ ij ≤ 2℘̃− 3k, ij even,

ΨI
k(ij − (2℘̃− 3k + 1), •)c̃ITk − cij 2℘̃− 3k + 2 ≤ ij ≤ 2℘̃+ k − 4,

ak−1c̃(ij+k−1)/2 + . . .+ a1c̃(ij+2k−3)/2 − cij 2℘̃+ k − 3 ≤ ij ≤ n− 2k + 1, ij odd

ak c̃(ij+k−2)/2 + . . .+ a0c̃(ij+2k−2)/2 − cij 2℘̃+ k − 2 ≤ ij ≤ n− 2k + 2, ij even

ΨR(ij − (n− 2k + 2), •)c̃RTk − cij n− 2k + 3 ≤ ij ≤ n,
(7.41)

which leads to the inequality system P(j)
k c̃(j) ≥ c(j). An analogous procedure provides

the result for the splines regarding the extended sequence of knots without repeated
knots in the interior with dij for j ∈ Jrep and k even defined as

d
(j)
ij

:=





ΨL
k (ij , •)c̃LTk − cij 1 ≤ ij ≤ 2k − 2,

ak−1c̃(ij+1)/2 + . . .+ a1c̃(ij+k−1)/2 − cij 2k − 1 ≤ ij ≤ n− 2k + 1, ij odd,

ak c̃ij/2 + . . .+ a0c̃(ij+k)/2 − cij 2k ≤ ij ≤ n− 2k + 2, ij even,

ΨR(ij − (n− 2k + 2), •)c̃RTk − cij n− 2k + 3 ≤ ij ≤ n.
(7.42)

By defining c := c(1) ⊗ . . . ⊗ c(d) and c̃ := c̃(1) ⊗ . . . ⊗ c̃(d) we obtain the inequality
system (7.36) by

S̃(x)− S(x) =
∑

i:=(i1,...,id)

(
P(d)
k c̃− c

)
i
Ni,k(x) ≥ 0. (7.43)

An analogous procedure provides the result for k odd.

For a better understanding we give an example for Theorem 7.2 in the case of cubic
k = 4 B-splines with k− 1 coinciding knots at x(j) = θ

(j)
℘ . An example without internal

coinciding knots can be found in [Bos15].

Example 7.3. (Monotone upper coarse grid approximation for k = 4)
Exact interpolation as in (7.25),(7.26),(7.31) and the refinement equations in (7.29),(7.30)
leads to

S̃(xj) =
ñj∑

ij=1
c̃ij Ñij ,4 = c̃1

(
1N1,4 + 1

2N2,4

)
+ c̃2

(1
2N2,4 + 3

4N3,4 + 3
16N4,4

)
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+ c̃3

(1
4N3,4 + 11

16N4,4 + 1
2N5,4 + 1

8N6,4

)

+
℘̃−4∑

ij=4
c̃ij

(
a0N2ij−4,4 + a1N2ij−3,4 + a2N2ij−2,4 + a3N2ij−1,4 + a4N2ij ,4

)

+ c̃℘̃−3

(1
8N2℘̃−10,4 + 1

2N2℘̃−9,4 + 11
16N2℘̃−8,4 + 1

4N2℘̃−7,4

)

+ c̃℘̃−2

( 3
16N2℘̃−8,4 + 3

4N2℘̃−7,4 + 1
2N2℘̃−6,4

)

+ c̃℘̃−1

(1
2N2℘̃−6,4 + 1N2℘̃−5,4 + 1

2N2℘̃−4,4

)

+ c̃℘̃

(1
2N2℘̃−4,4 + 3

4N2℘̃−3,4 + 3
16N2℘̃−2,4

)

+ c̃℘̃+1

(1
4N2℘̃−3,4 + 11

16N2℘̃−2,4 + 1
2N2℘̃−1,4 + 1

8N2℘̃,4

)

+
ñj−3∑

ij=℘̃+2
c̃ij

(
a0N2ij−6,4 + a1N2ij−5,4 + a2N2ij−4,4 + a3N2ij−3,4 + a4N2ij−2,4

)

+ c̃ñj−2

(1
8Nnj−5,4 + 1

2Nnj−4,4 + 11
16Nnj−3,4 + 1

4Nnj−2,4

)

+ c̃ñj−1

( 3
16Nnj−3,4 + 3

4Nnj−2,4 + 1
2Nnj−1,4

)
+ c̃ñj

(1
2Nnj−1,4 + 1Nnj ,4

)
.

Sorting according Nij ,4 yields

S̃(xj) = c̃1N1,4 +
(1

2 c̃1 + 1
2 c̃2

)
N2,4 +

(3
4 c̃2 + 1

4 c̃3

)
N3,4 +

( 3
16 c̃2 + 11

16 c̃3 + a0c̃4

)
N4,4

+
(1

2 c̃3 + a1c̃4

)
N5,4 +

(1
8 c̃3 + a2c̃4 + a0c̃5

)
N6,4 +

2℘̃−11∑

ij=7
ijodd

(
a3c̃(ij+1)/2 + a1c̃(ij+3)/2

)
Nij ,4

+
2℘̃−12∑

ij=8
ijeven

(
a4c̃ij/2 + a2c̃(ij+2)/2 + a0c̃(ij+4)/2

)
Nij ,4 +

(
a4c̃℘̃−5 + a2c̃℘̃−4 + 1

8 c̃℘̃−3

)
N2℘̃−10,4

+
(
a3c̃℘̃−4 + 1

2 c̃℘̃−3

)
N2℘̃−9,4 +

(
a4c̃℘̃−4 + 11

16 c̃℘̃−3 + 3
16 c̃℘̃−2

)
N2℘̃−8,4

+
(1

4 c̃℘̃−3 + 3
4 c̃℘̃−2

)
N2℘̃−7,4 +

(1
2 c̃℘̃−2 + 1

2 c̃℘̃−1

)
N2℘̃−6,4 + 1c̃℘̃−1N2℘̃−5,4

+
(1

2 c̃℘̃−1 + 1
2 c̃℘̃

)
N2℘̃−4,4 +

(3
4 c̃℘̃ + 1

4 c̃℘̃+1

)
N2℘̃−3,4

+
( 3

16 c̃℘̃ + 11
16 c̃℘̃+1 + a0c̃℘̃+2

)
N2℘̃−2,4 +

(1
2 c̃℘̃+1 + a1c̃℘̃+2

)
N2℘̃−1,4
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+
(1

8 c̃℘̃+1 + a2c̃℘̃+2 + a0c̃℘̃+3

)
N2℘̃,4 +

nj−7∑

ij=2℘̃+1
ijodd

(
a3c̃(ij+3)/2 + a1c̃(ij+5)/2

)
Nij ,4

+
nj−6∑

ij=2℘̃+2
ijeven

(
a4c̃(ij+2)/2 + a2c̃(ij+4)/2 + a0c̃(ij+6)/2

)
Nij ,4

+
(1

8 c̃ñ−2 + a2c̃ñ−3 + a0c̃ñ−4

)
Nn−5,4 +

(1
2 c̃ñ−2 + a1c̃ñ−3

)
Nn−4,4

+
( 3

16 c̃ñ−1 + 11
16 c̃ñ−2 + a0c̃ñ−3

)
Nn−3,4 +

(3
4 c̃ñ−1 + 1

4 c̃ñ−2

)
Nn−2,4

+
(1

2 c̃ñ + 1
2 c̃ñ−1

)
Nn−1,4 + c̃ñNn,4.

Then S̃(xj) is an upper monotone coarse grid approximation to the lower obstacle S(xj),
if

S̃(xj)− S(xj) =
nj∑

ij=1

(
P(j)

4 c̃(j) − c(j)
)
ij
Nij ,4(xj) ≥ 0 (7.44)

is satisfied. Due to the non-negativity of B-splines, we obtain the inequality system
P(j)

4 c̃(j) ≥ c(j).

Finally, we can immediately derive the quasi-optimal monotone upper coarse grid ap-
proximation for tensor product B-splines with coinciding knots.

Corollary 7.4. (Quasi-optimal monotone upper coarse grid approximation)
The Spline Lk = r̃T Ñk ∈ Sd

k,Θ̃ with expansion coefficients

r̃i(c) := max
{
cl : l := (qi1 , . . . , qid), qij = {2ij − k, . . . , 2ij}

}
(7.45)

is an upper monotone coarse grid approximation to the lower obstacle S := cTNk ∈
Sdk,Θ.

Proof. The proof follows directly from Theorem 7.2. Let us define r̃ := r̃(1) ⊗ . . .⊗ r̃(d)

and c := c(1) ⊗ . . . ⊗ c(d). As all row sums of P(j)
k are equal to one, the vector r̃(j)

containing the expansion coefficients from (7.45) satisfies P(j)
k r̃(j) ≥ c(j). Due to the

property of the Kronecker product one has
(
P(1)
k ⊗ . . .⊗P(d)

k

)
(r̃(1)⊗ . . .⊗ r̃(d)) = P(1)

k r̃(1)⊗ . . .⊗P(d)
k r̃(d) ≥ c(1)⊗ . . .⊗c(d) =: c.

(7.46)
Thus the vector r̃ containing the expansion coefficient from (7.45) satisfies the inequality
system Pd

kr̃ ≥ c.

For determining an upper monotone coarse grid approximation, a minimum has to be
found nd times. This can be solved by using a standard sorting algorithm with com-
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plexity O(k · (nd)) = O(nd), such that the optimal complexity of the MMG method is
preserved.

7.2.3. Convergence theory

In the next section we discuss the convergence theory for the MMG method. The
theory for linear finite element has been established by [Kor94]. A detailed review
article on monotone multigrid methods with linear finite elements can also be found
in [GK09]. Moreover, the author in [Hol04] has transferred the theory from [Kor94]
to B-splines. In particular, it was proven that the MMG method is asymptotically
convergent and reduces to a linear subspace correction method provided quasi-optimal
and monotone restriction operators are used. As mentioned earlier, in comparison to
[Hol04] the quasi-optimal and monotone restriction operators, derived in this thesis,
are based on tensor product B-splines with possible internal coinciding knots. Since the
theory is based on the monotonicity and quasi-optimality of the restriction operators
as provided in Corollary 7.4, the proofs are analogous to [Hol04, Kor94]. Moreover, the
author in [Kor94] has provided nearly optimal a posteriori estimates for the asymptotic
convergence rates in the case of linear finite element basis functions. A corresponding
result for tensor product B-splines is still outstanding. The results presented in the next
section are very close to [Kor94].
Our aim is to analyze the MMG method for the discrete variational inequality to find
the solution uL ∈ K0

L such that

a(uL, ϕL − uL) ≥ f(ϕL − uL) for all ϕL ∈ K0
L (7.47)

where the bilinear form is assumed to be symmetric and coercive in H1
0 (Ω) satisfying

M1 ≤ a(u, u) ≤M2 for all u ∈ H1
0 (Ω). (7.48)

Furthermore, the considerations are restricted to a polygonal domain Ω ⊂ R2. Since
a(·, ·) is symmetric the variational inequality is equivalent to the following optimization
problem, that is to find uL ∈ K0

L such that

J (uL) ≤ J (ϕL) for all ϕL ∈ K0
L (7.49)

and the linear functional

J (ϕL) := 1
2a(ϕL, ϕL)− f(ϕL). (7.50)

Let us further define the active set

K•L(ϕ) := {i := (i1, i2), ij ∈ {2, . . . , nL − 1} : ϕLi = ψ̃Li } (7.51)

on Level L.
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The remaining set

K◦L(ϕ) := {i := (i1, i2), ij ∈ {2, . . . , nL − 1} : ϕLi > ψ̃Li } (7.52)

is called inactive set. Moreover, we say that the bilinear form satisfies the strict com-
plementarity condition if

a(uL, Ni,k) > f(Ni,k) for all i ∈ K•L(uL). (7.53)

Once the active set K•L of the solution uL is identified the discrete variational inequality
reduces to the variational equation

a(uL, ϕL) = f(ϕL) for all ϕL ∈ V◦L (7.54)

with the reduced subspace V◦L ⊂ VL defined as

V◦L := {ϕL ∈ VL|ϕi = 0 for i ∈ K•L}. (7.55)

In order to analyze the convergence of the MMG method we first introduce the extended
relaxation method. This general approach includes the classical multigrid method to
solve linear variational equations as well as various extension to solve nonlinear prob-
lems. As pointed out by [Kor94] this approach can also be considered as nonlinear
subspace correction method.
As mentioned earlier the projected Gauss-Seidel method suffers from unsatisfactory
convergence rates when the the grid size is decreased. In order to accelerate basic itera-
tive schemes the smoothing property of the projected Gauss-Seidel is exploited together
with a correction step by successive minimization of the energy J on KL. To be more
precise the basic iterative scheme with high frequent search direction ΛL is extended
by additional low frequent search directions M ς

c with basis function on a coarser grid.

For simplicity we denote the set of tensor product B-spline basis function on the fine
grid ΘL by {Ni,ΘL}i∈IL with cardinality #IL = (nL − 2)2 := N2

L. Let

ΛL := {µ1, . . . , µN2
L
} := {Ni,ΘL}i∈I

denote the set of basis function of VL. Moreover, we denote the extended set of search
direction by

M ς := ΛL ∪M ς
c (7.56)

where M ς
c := {µς

N2
L+1, . . . , µ

ς
mς} denotes the coarse grid function, which can vary in

each iteration step ς.
The extended relaxation method is to find a numerical solution of (7.49) by the following
iterates: For a given iterate wς0 the iterates wς,j = wς,j−1 + v∗,η,j for j = 1, . . . ,mς are
successively computed. The corrections v∗,ς,j are the unique solutions of the following
local subproblems: Find v∗,ς,j ∈ D∗,ς,j such that

J (wς,j−1 + v∗,ς,j) ≤ J (wς,j−1 + v) for all v ∈ D∗,ς,j , (7.57)
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where the closed convex subsets are defined as

D∗,ς,j := {v ∈ span{µςj} : vi ≥ ψ̃i − wς,j−1
i for all i ∈ {1, . . . , N2

L}}. (7.58)

To ensure that the local corrections v∗,ς,j ∈ span{µςj} for j = N2
L + 1, . . . ,mς on the

coarse grid are in the subsets D∗,ς,j the functions usually needs to interpolate on a
finer grid. This destroys the optimal complexity of the multigrid method. Thus, the
correction v∗,ς,j ∈ span{µςj} is replaced by the following approximation

Dς,j := {v ∈ span{µςj} : vi ≥ ψ̃ς,ji for all i ∈ {1, . . . , N2
L}}. (7.59)

The corresponding approach is also called approximated extended relaxation method.
The local approximated obstacle functions ψ̃ς,ji are computed according to the quasi-
optimal monotone restriction operator in (7.16) (see Corollary 7.4 for the construction).
This ensures the monotonicity of the obstacle functions, i.e. the conclusion

Dς,j ⊂ D∗,ς,j (7.60)

is valid. The following Lemma ensures the global convergence of the MMG method. A
proof in the context of linear finite element functions can be found in [GK09]. Since the
same proof is also valid for tensor product B-splines we refer the reader to [GK09].

Lemma 7.5. Let us assume that the iterates uςL are produced by an algorithm of the
form

uςL = SmL(uL, ψ̃L), uς+1
L = CL(uςL) (7.61)

with SmL : K0
L → K0

L denoting the projected Gauss-Seidel iteration and some
CL : K0

L → K0
L satisfying the monotonicity condition

J (CL(w)) ≤ J (w) for all w ∈ K0
L. (7.62)

Then uςL → uL holds for any initial iterate u0
L ∈ K0

L.

A direct consequence of Lemma 7.5 is the global convergence of the MMG method
formulated in the following Theorem.

Theorem 7.6. (Global convergence)
The monotone multigrid method converges for any initial iterate u0

L ∈ K0
L.

Proof. The conclusion in (7.60) is valid, since the coarse grid approximations provided
in Corollary 7.4 are monotone, thus the result follows directly from Lemma 7.5.

Assuming a discretization with piecewise linear finite element basis functions, quasi-
optimal and monotone restriction operators and the strict complementarity condition
the author in [Kor94] has shown that the MMG method is asymptotically reducing to a
linear extended relaxation method. This offers the analysis of the asymptotic convergence
rates of the MMG method. Since we have provided quasi-optimal monotone restriction
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operators for tensor product B-splines the proof in [Kor94] works also for tensor product
B-splines. For the same proof in the context of B-splines we refer to [Hol04]. Thus, we
state the following Theorem without proof.

Theorem 7.7. Assume that the strict complementarity condition in (7.53) is satisfied.
Then after a sufficiently large number of iteration steps ς0, the MMG method is reducing
to a linear extended relaxation method for the reduced linear problem in (7.54).

In order to analyze the asymptotic convergence rates of the MMG method for finite
elements the author in [Kor94] has applied the theory of subspace correction method,
for a detailed explanation of subspace methods see [Yse93]. To apply this theory two
assumptions have to be satisfied. One assumption is the stability of the decomposition
and the other assumption is a Cauchy-Schwarz type inequality, the result can be found
in [Yse93, Theorem 5.1].
One main difficulty in the context of the MMG method is to construct an appropri-
ate subspace decomposition of the reduced subspace in (7.55) since the corresponding
subdomain where the solution is given by the variational equation in 7.55 is a priori
unknown. Thus, this subdomain has no exact representation on coarser grids. In order
to prove the stability of the decomposition the idea of [KY94] is to construct appropri-
ate subspace decompositions of the corresponding finite element spaces by way of an
embedding of the domain under consideration into a simpler domain like a square or a
cube. To do so corresponding interpolation like or L2-like projection and corresponding
estimates have to be developed, see [Yse86] or [Yse90]. To the best of my knowledge
such theory is still unknown for (tensor product) splines or hierarchical splines. The
available literature for instance in isogeometric analysis (see [HMS19, CH19]) deals with
polygonal domains and L2-projections to get h-independent stable subspace decompo-
sitions.
However, assuming the strict complementarity condition in (7.53) and quasi-optimal
restriction operators the author in [Kor94] has provided the following a posteriori esti-
mates for the MMG method with linear finite elements restricted to the 2D case

‖uL − uς+1
L ‖ ≤ (1− c(L+ 1)−3)‖uL − uςL‖ (7.63)

for large enough ς ≥ ς0 and a constant c < 1. Thus, the asymptotic convergence rates
are bounded by (1− c(L+ 1))−3 in the worst case.
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inequalities

8.1. Test problem

In this section we construct a test problem for an elliptic variational inequality to verify
the B-spline discretization and the corresponding solution algorithm. In order to check
the convergence for B-splines of order k = 2, 3, 4 a suitable test problem for a one
dimensional elliptic variational inequality shall satisfy the following requirements:

i) Let us assume that the constraints are non-binding for S ≤ Sf . The solution
is supposed to be smooth enough, where the constraints are non-binding, i.e.
w ∈ H2(I)∩H4((Sf , Smax]). Thus, due to the Sobolev embedding H2(I) ↪→ C1(I)
for I ⊂ R the solution satisfies the following conditions at the contact point Sf :

w(Sf ) = H(Sf ), w′(Sf ) = H′(Sf ), (8.1)

where the obstacle is defined as H(S) := max{K − S, 0}.
ii) The solution is supposed to fulfill the following free boundary problem:

Find w := w(S) such that

w(S) = H(S), for S ≤ Sf
Lw = f(S), for S > Sf , (8.2)

where H2(I) → L2(I) is a bounded linear operator. Formulating (8.2) as linear
complementarity problem leads to

Lw > f(S), w(S) = H(S) for S ≤ Sf (8.3)

and
Lw = f(S), w(S) > H(S) for S > Sf . (8.4)
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In order to verify the B-spline discretization for a variational inequality and the corre-
sponding PSOR-algorithm, we consider the following test problem:

Test problem 8.1. (Elliptic free boundary problem)
Let us consider the following free boundary problem: Find w(S) for S ∈ [0, 20]

w(S) = H(S), for S ≤ Sf (8.5)

L1w = f(S), for S > Sf , with L1w := −∂
2w

∂S2 and w(20) = 0. (8.6)

It is assumed that Sf < K = 10 as in the Black-Scholes Problem. First we have to
construct a right hand side f1(S) such that (8.3) and also (8.4) are satisfied. Since
L1H(S) = 0 for S ≤ Sf we choose f1(S) such that f1(S) < 0 for S ≤ Sf and
L1w = f(S) for S > Sf . A suitable choice, where w(S) is smooth for S > Sf , is

f1(S) : = L1(−15.5 cos
( 1

40πS
)

+ a2(Sf )S + a3(Sf ))

= −15.5 π
2

402 cos
( 1

40πS
)
< 0 for S ∈ [0, 20). (8.7)

The coefficients a2(Sf ), a3(Sf ) and the free boundary Sf result from the conditions
(8.1) and the boundary condition

w(Sf ) = H(Sf ), w′(Sf ) = H′(Sf ) and w(20) = 0,

which leads to Sf = 3.153096802086939. Finally, the exact solution of the free boundary
problem, where the right hand side is defined as in (8.7), is explicitly given by

w(S) =
{
H(S) for S ≤ Sf
a1 cos( 1

40πS) + a2(Sf )S + a3(Sf ) for S > Sf .
(8.8)

and a1 := −15.5. By similar arguments as in Section 2.2.1 we obtain the associated
variational inequality: Find w := w(S) ∈ K1 := {ϕ ∈ H1(I) : ϕ ≥ H(S), ϕ(20) = 0} for
S ∈ I = [0, 20] such that

a1(w,ϕ− w) ≥ (f1, ϕ− w) for all ϕ ∈ K1, (8.9)

with a1(w,ϕ) :=
∫
I
∂w
∂S

∂ϕ
∂SdS.

For the discretization of the elliptic variational inequality defined in (8.9), we proceed
as in Section 4.2.2. Figure 8.1 shows the two different knot series used for the discretiza-
tion of the elliptic variational inequality. Due to a homogenization with the function
H(S) the solution u(S) := w(S) − H(S) is not differentiable at S = K. Therefore, a
knot series with k − 1 repeating knots at this point is used to stabilize the numerical
computation. The k − 2 coinciding knots at S = Sf should ensure that the resulting
spline solution has the same regularity as the exact solution. Note, that in practice the
free boundary is a priori unknown and a uniform knot series without repeating knots
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at the free boundary is used. To solve the discrete variational inequality, the B-spline
based projected Gauss-Seidel method as described in Section 7.1 is used.

θ1 =
· · · = θk

θk+1 θk+2
. . . . . .

θi θi+1
. . . . . .

θ℘

= . . .=
θ℘+k−2
:= K

θ℘+k−1
. . . . . .

θn =
· · · = θn+k

θ1 =· · · = θk

θk+1 θk+2
. . . . . .

θ℘1
= . . .=
θ℘1+k−3
:= Sf

θ℘1+k−2
. . . . . .

θ℘2
= . . .=
θ℘2+k−2

:= K

θ℘2+k−1
. . . . . .

θn =· · · = θn+k

Figure 8.1.: Knot series used for the discretization of test problem 8.1: Knot series
with uniform grid size and k−1 repeating knots at S = K (above). Knot
series with uniform grid size and k − 2 repeating knots at S = Sf and
k − 1 repeating knots at S = K (below).

To study the discretization error, calculations are performed on a sequence of grids by
doubling the number of knots. Table 8.1 contains the results of computations for differ-
ent orders of B-spline basis functions k = 2, 3, 4. In comparison to linear basis (k = 2)
functions the H1(I)-error is significantly reduced for k = 3, 4 but is barely improved for
cubic basis functions (k = 4). As expected it can be observed that the convergence rate
is not optimal for k = 3, 4. This indicates the fact that the solution does not belong
to Hk−1(I) for k = 3, 4 due to the limited smoothness at the contact point Sf . We
also consider the error between the exact and the approximated free boundary. For
all considered orders of B-spline basis functions the error |Sf − Shf | decreases as N is
increased but is not improved for increasing order k.
In order to verify the B-spline-discretization for variational inequalities, calculations
are performed corresponding to a knot series with uniform grid size and k−2 repeating
knots at Sf , such that due to the properties of splines (see properties 3.16) the corre-
sponding spline approximation has the same smoothness as the exact solution at the
contact point Sf . The results of the computations for k = 3 and k = 4 are presented
in Table 8.2. It can be observed that, indeed, the same optimal rate of convergence as
in the unrestricted case is achieved. This is in agreement with the following theoretical
consideration:
Since a1(·, ·) in Test problem 8.1 is bounded and coercive, the following a priori esti-
mation from Lemma 3.22 is satisfied

‖w − wh‖2H1(I) <∼ inf
ϕh∈K1

h

(
‖ϕh − w‖2H1(I) + 〈Aw − f, ϕh − w〉

)
for all ϕh ∈ K1

h ⊂ K1.

(8.10)

118



8.1. Test problem

Since the free boundary is detected exactly and the approximated solution is given by
the exact obstacle function H(S) one has ϕh = w for all S ≤ Sf and

〈Aw − f, ϕh − w〉 =
∫ Sf

0
(Aw − f)(ϕh − w)dS +

∫ Smax

Sf

(Aw − f)(ϕh − w)dS

=
∫ Smax

Sf

(Aw − f)(ϕh − w)dS. (8.11)

For S ≥ Sf the solution satisfies Aw − f = 0 such that

〈Aw − f, ϕh − w〉 =
∫ Smax

Sf

(Aw − f)(ϕh − w)dS = 0. (8.12)

Applying (8.12) to (8.10) the approximation properties for splines with ϕh = Ihw and
w ∈ H4((Sf , Smax)) indicates

‖w − wh‖2H1(I) <∼ inf
Ihw∈K1

h

(
‖Ihw − w‖2H1(I)

)
<∼ hk−1. (8.13)

Hence, in this special case the B-spline approximation leads to the same optimal con-
vergence rate as in the unrestricted case.
In Figure 8.2 we present some results for a B-spline discretization with a refined knot
series at (Sf , Sf +h) for k = 3, 4 and a uniform knot series for k = 2, 3, 4. They confirm
that the discretization error ‖w − wh‖H1(I) for quadratic and cubic B-splines is only
perturbed by the free boundary.
Finally, it is also remarkable that for all considered knot series the PSOR-algorithm
identifies the knot next to the contact point as the approximated free boundary. In
particular, the PSOR-algorithm converges to the exact free boundary Sf , if the contact
point Sf is aligned with k − 2 knots.
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Figure 8.2.: Convergence of the error ‖w − wh‖H1(I) (above) and |Sf − Shf | (below)
for test problem 8.1 computed with a B-spline discretization of order k
for a uniform knot series and a refined knot series at [Sf , Sf + h] (ref.).

119



8. Numerical results for variational inequalities

k = 2 k = 3
N ‖w − wh‖H1(I) Rate |Sf − Shf | ‖w − wh‖H1(I) Rate |Sf − Shf |
9 2.11e−1 − 6.53e−1 7.48e−2 − 6.53e−1
17 9.20e−2 1.20 5.97e−1 1.91e−2 1.97 6.53e−1
33 4.63e−2 0.99 2.81e−2 1.53e−3 3.64 2.81e−2
65 2.28e−2 1.02 2.81e−2 8.19e−4 0.90 2.81e−2
129 1.14e−2 1.01 2.81e−2 4.87e−4 0.75 2.81e−2
257 5.67e−3 1.00 2.81e−2 2.29e−4 1.09 2.81e−2
513 2.83e−3 1.00 1.10e−2 8.67e−5 1.40 2.81e−2

1,025 1.42e−3 1.00 8.57e−3 3.10e−5 1.48 8.57e−3

k = 4
N ‖w − wh‖H1(I) Rate |Sf − Shf |
9 6.32e−2 − 6.53e−1
17 1.46e−2 2.11 6.53e−1
33 6.57e−3 1.15 6.53e−1
65 2.39e−3 1.46 3.41e−1
129 8.32e−4 1.52 2.81e−2
257 8.83e−5 3.24 2.81e−2
513 7.41e−5 0.25 2.81e−2

1,025 1.12e−5 2.73 8.57e−3

Table 8.1.: Errors for Test problem 8.1 with a B-spline discretization of order k and
a uniform grid size. Sf is not aligned with a knot, the corresponding knot
series is depicted in Figure 8.1 (above).

k = 3 k = 4
N ‖w − wh‖H1(I) Rate |Sf − Shf | ‖w − wh‖H1(I) Rate |Sf − Shf |
10 5.93e−3 − 0 1.35e−4 − 0
18 1.40e−3 2.08 0 1.71e−5 2.98 0
34 3.48e−4 2.01 0 2.14e−6 3.00 0
66 8.63e−5 2.01 0 2.68e−7 3.00 0
130 2.15e−5 2.00 0 3.37e−8 2.99 0
258 5.38e−6 2.00 0 4.24e−9 2.99 0
514 1.35e−6 2.00 0 5.31e−10 3.00 0

1,026 3.37e−7 2.00 0 6.86e−11 2.95 0

Table 8.2.: Errors for test Problem 8.1 with a B-spline discretization of order k = 3, 4
and a uniform grid size. Sf is aligned with k − 2 repeating knots, the
corresponding knot series is depicted in Figure 8.1 (below).
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8.2. Pricing American options with Black-Scholes and Heston’s model

8.2. Pricing American options with Black-Scholes and
Heston’s model

The code developed for this thesis is implemented in Matlab R2018b. Since the PSOR
method cannot be vectorized due to the projection step, a code implemented in Matlab
is very slow. Thus, the PSOR method is written in a MEX function based on a C code.
In this section, we present several numerical results for American options with Black-
Scholes and Heston’s model. Examples 8.2, 8.3, 8.4 and 8.5 with a small time interval
[0, T ) are devoted to study the spatial discretization for different initial condition (payoff
function). In Example 8.6 we choose a larger time interval to clarify the temporal
discretization error.

Example 8.2. (American put option in the Black-Scholes model)
Consider an American put option for the discrete Black-Scholes Problem 4.13 with
strike price K = 5 and expiration date T = 0.5. The volatility is σ = 0.6, the dividend
rate is D0 = 0 and the risk free interest rate is taken as r = 0.01. With these parameters
the option price satisfies the homogeneous boundary condition for Smax = 20. Thus, the
spatial domain is choosen as I = (0, 20).

Example 8.3. (American call option in the Black-Scholes model)
Consider an American call option for the discrete Black-Scholes Problem 4.13 with
strike price K = 7.5 and expiration date T = 0.5. The volatility is σ = 0.4, the
dividend rate is D0 = 0.05 and the risk free interest rate is taken as r = 0.01. With
these parameters the optimal exercise prices Sf (t) are smaller than Smax = 20 for all
times t. Thus, the spatial domain is chosen as I = (0, 20).

Example 8.4. (American butterfly-spread option in the Black-Scholes model)
Consider an American butterfly-spread option for the discrete Black-Scholes Problem
4.13 with strike prices K1 = 5, K2 = 15, K = (K1+K2)/2 and expiration date T = 0.5.
The volatility is σ = 0.4, the dividend rate is D0 = 0.10 and the risk free interest rate
is taken as r = 0.01. In particular, the parameters are chosen such that the optimal
exercise prices satisfy K1 ≤ Sf1(t) < K ≤ Sf2(t) ≤ K2 for all times t > 0. Thus, the
spatial domain is chosen as I = (0, 40).

Example 8.5. (American put option in Heston’s model)
Consider an American put option for the discrete Heston Problem 5.14 with strike price
K = 10 and expiration date T = 0.25. The parameters are chosen as ρ = 0.1, ξ = 0.9,
κ = 5.0, γ = 0.16, λ = 0 and r = 0.04.
The domain is chosen as Ω := (xmin, xmax)× (vmin, vmax) = (−2, 2)× (0.075, 1). Thus,
the transformed option price satisfies the boundary condition on ∂Ω.

Example 8.6. (American call option in the Black-Scholes model)
Consider an American call option for the discrete Black-Scholes Problem 4.13 with
strike price K = 7.5 and expiration date T = 2. The volatility is σ = 0.2, the dividend
rate is D0 = 0.05 and the risk free interest rate is taken as r = 0.01. With these
parameter the optimal exercise prices Sf (t) are smaller than Smax = 20 for all times t.
Thus, the spatial domain is chosen as I = (0, 20).
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8. Numerical results for variational inequalities

For the examples corresponding the Black-Scholes model we denote by N the dimension
of the discrete solution space V0

h as defined in (4.33) with a uniform grid size h. Since no
exact solution formula is known, we compute a reference solution Vref(0, S) with cubic
B-splines (k = 4) at time t = 0 with #T = 219 time steps andN = 212+1+2|rep| degrees
of freedom. We choose a uniform sequence of knots with 3 repeating knots at S = K
for a put and call option, thus the sequence of knots has 2|rep| = 2 additional knots. In
the case of the butterfly-spread option we use 3 repeating knots at S = K1,K,K2, this
results in 2|rep| = 6 additional knots. For each grid size h the approximation of the
discretization error in the H1(I)-norm for t = 0 is computed by the following formula

(
EV,∆h (0)

)2
:= ‖Vref(0, ·)− Vh(0, ·)‖2H1(I)

= ‖Vref(0, ·)− Vh(0, ·)‖2L2(I) + ‖∆ref(0, ·)−∆h(0, ·)‖2L2(I) (8.14)

with yh,∆h as defined in (6.1), (6.3). Since Vref(0, ·) and Vh(0, ·) are polynomials of
degree less than or equal k−1 = 3 on [θref

i , θref
i+1], the integrals can be computed exactly

with the Gauss-Legendre quadrature rule. Thus, the following formula is valid for the
approximation of the convergence rate:

rate ≈
log


EV,∆

h

EV,∆
h
2




log(2) . (8.15)

Since we are also interested in the approximation error of the second derivatives for
American options we approximate the error of Γh(0, S) in the L2-norm. It follows
from the discussion in Chapter 6 that the second derivative for an American option is
discontinuous at the free boundary. Thus, the error of Gamma in the neighbourhood of
the free boundary is much higher as there where the solution is twice differentiable. As
a result it cannot be excepted that the error of Γh in the L2-norm on the whole spatial
domain is reduced when the B-spline order is increased. Thus, we ignore the error of Γh
in a neighbourhood, where the support of B-splines intersects the free boundary. More
precisely, the error for the approximation of Gamma is approximated by the following
formula

ẼΓ
h (0) := ‖Γref(0, ·)− Γh(0, ·)‖L2(I\S

SH
f

), (8.16)

where SSH
f

denotes the union of the supports of B-spline basis functions whose support
intersects SHf (0) on the coarsest grid with grid size H.
For Heston’s model, we denote by N and M the dimension of the solution space V0

h

as defined in (5.36) in the x- and v- direction. Then we compute a reference solution
Vh(0, S, v) for the set of boundary conditions in (2.111) with cubic B-splines and a
uniform knot sequence with 3 repeating knots at x = 0. The reference solution is
computed with NM = (210 + 3)(29 + 2) degrees of freedom and #T = 214 time steps.
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8.2. Pricing American options with Black-Scholes and Heston’s model

For each grid size h := (hx, hv) the discretization error at t = 0 in the H1(ΩL)-norm is
given by

(EV,∆,νh (0))2 : = ‖K exp(x)(yref(0, x, v)− yh(0, x, v))‖2L2(Ω)

+ ‖K exp(x)(∆ref(0, x, v)−∆h(0, x, v))‖2L2(Ω)

+ ‖K exp(x)(νref(0, x, v)− νh(0, x, v))‖2L2(Ω) (8.17)

with yh,∆h and νh as defined in (6.5), (6.8), (6.10). The additional term K exp(x)
results from the transformation of the integral from to S to x coordinates. The integrals
are approximated with a Gauss-Legendre quadrature for two dimensional integrals.
Thus, the approximation of the convergence rate is computed analogously to (8.15).
To study the convergence of Gamma in Heston’s model, we proceed as described for
the Black-Scholes model. For Heston’s model the free boundary at a fixed time is a
line depending on the variance v. Thus, the error for the approximation of Gamma is
approximated by the following formula

ẼΓ
h (0) := ‖K exp(x)(Γref(0, ·, ·)− Γh(0, ·, ·))‖L2(Ω\S

xH
f

), (8.18)

where SxH
f

denotes the union of the supports of B-spline basis functions whose support
intersects xHf (0, v) on the coarsest grid with grid size H. The formula for the approxi-
mation of Γh in Heston’s model can be found in (6.9)

8.2.1. Choice of the boundary conditions for Heston’s model

In this section, we briefly discuss the choice of the boundary condition for an American
put option in Heston’s model on

Υ3 := {x ∈ (xmin, xmax) : v = vmin}.

We distinguish between the boundary conditions in (2.110) with a Dirichlet boundary
condition on Υ3 and (2.111) with the Neumann boundary data on Υ3. A graphical
illustration of the approximation of Vega for the different boundary data on Υ3 is
presented in Figure 8.3 (above). As you can see imposing a Dirichlet boundary condition
on Υ3 results in an unstable approximation of Vega while the approximation of Vega for
a Neumann boundary condition is stable. This is due to the fact that for v → vmin the
Heston equation becomes increasingly hyperbolic and imposing a Dirichlet boundary
condition is not appropriate, as pointed out by [CP99]. The option price becomes clearly
flat in this region that is why the authors in [CP99] recommend a Neumann boundary
condition on Υ3.
The approximation of Gamma for different boundary conditions on Υ3 is depicted in
Figure 8.3 (below). Since the Dirichlet boundary condition is given by the non-smooth
payoff function, the approximation of Gamma is also unstable on Υ3. Thus, for further

123



8. Numerical results for variational inequalities

numerical computations a Neumann boundary condition on Υ3 is imposed to stabilize
the approximation of the partial derivatives Vega and Gamma.
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Figure 8.3.: Cubic spline approximation of Vega (above) and Gamma (below) for an
American option in Heston’s model at S = K with the set of boundary
conditions from (2.111) (left) and (2.110) (right) for different levels `x, `v.
The parameters for Heston’s model are chosen as in Example (8.5)

8.2.2. Influence of coinciding knots on the approximated option value
and Greeks

In this section, we analyze the influence of coinciding knots on the Greeks for American
options in the Black-Scholes and Heston’s model. Therefore, we consider the approxi-
mation of today’s American option price Vh(0, ·) and its sensitivities at t = 0.
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First, we study the influence of repeating knots on the approximated American op-
tion value and Greeks in the Black-Scholes model for different payoffs as described in
Example 8.2, Example 8.3 and 8.4. The right plots in Figure 8.4, Figure 8.5 and Figure
8.6 show that using a spatial cubic B-spline discretization with no repeating knots (no
rep.) at the critical points S = K for a put and call option or S = K1,K,K2 for a
butterfly option being the locations of the discontinuities in the first derivatives of the
terminal conditions, causes significant oscillations near these points.
The right plots in the figures named above confirm that using a cubic B-spline dis-
cretization with k− 1 = 3 repeating knots (rep.) at S = K for a put and call option or
at S = K1,K,K2 for a butterfly-spread option facilitates a pointwise accurate approx-
imation of the partial derivatives up to order two. As expected, the second derivatives
Γh are discontinuous at the free boundary S = Shf for a put or call option and at
S = Shf1

, Shf2
for a butterfly-spread option.

Furthermore, Delta for a butterfly-spread option value, the first partial derivative, is
discontinuous at S = Sf2 . This is due to the fact that the butterfly-spread option value
is given by the payoff function (obstacle) at S = Shf2

(0) = 10, where the first derivative
of the payoff is discontinuous.
Similar considerations apply to the approximation of today’s American put option price
and its partial derivatives with respect to the underlying price S in Heston’s model.
A graphical illustration of the approximation of today’s put option price in Heston’s
model, its first derivative Delta and its second derivative Gamma using a spatial cubic
tensor product B-spline discretization are presented in Figure 8.7. The right plots show
the numerical approximation with no coinciding knots at S = K, which is the location
of the discontinuity in the first derivative of the terminal condition HP(S). It can be
observed here, that a cubic spline approximation with no repeating knots at S = K
causes significant oscillations along the points (K, v), v ∈ (vmin, vmax). The left plots
confirm that a cubic B-spline discretization with coinciding knots at S = K facilitates a
pointwise accurate approximation of the partial derivatives up to order two. Moreover,
it can also be seen that the approximation of Gamma, the second derivative of today’s
American put option price, is discontinuous along the approximated free boundary
Shf (0, v).
Since the terminal condition is constant in v, this concept of coinciding knots has no
visible influences on Vega, the first partial derivative with respect to the variance v. A
graphical illustration of the approximation of Vega is presented in Figure 8.8. From the
approximation of Vega it can be seen, that the Neumann boundary conditions on Υv

are clearly satisfied. This verifies the derived bilinear form in (2.128) in some sense.
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Figure 8.4.: Numerical approximation of today’s American put option price in Black-
Scholes model, its first derivative Delta and its second derivative Gamma
for cubic B-splines (k = 4) with repeating knots (rep.) at S = K = 5
and no repeating knots (no rep.) on level ` = 9. The parameters for the
Black-Scholes model are chosen as in Example 8.2.
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Figure 8.5.: Numerical approximation of today’s American call option price in the
Black-Scholes model, its first derivative Delta and its second derivative
Gamma for cubic B-splines (k = 4) with repeating knots (rep.) at S =
K = 7.5 and no repeating knots (no rep.) on level ` = 9. The parameters
for the Black-Scholes model are chosen as in Example 8.3.
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Figure 8.6.: Numerical approximation of today’s American butterfly-spread option
price in the Black-Scholes model, its first derivative Delta and its second
derivative Gamma for cubic B-splines (k = 4) with repeating knots (rep.)
at S = K1,K,K2 with K1 = 5, K = 10, K2 = 15 and no repeating knots
(no rep.) on level ` = 9. The parameters for the Black-Scholes model are
chosen as in Example 8.4.
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Figure 8.7.: Numerical approximation of today’s American put option price in Hes-
ton’s model, its first partial derivative Delta and its second partial deriva-
tive Gamma for cubic tensor product B-splines (k = 4) with repeating
knots (rep.) at S = K = 10 and no repeating knots (no rep.) on level
`x = 7 and `v = 6. The parameters for the Heston model are chosen as
in Example 8.5.
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8. Numerical results for variational inequalities

Figure 8.8.: Numerical approximation of Vega in Heston’s model, the first partial
derivative with respect to the variance v with cubic B-splines on level
`x = 7 and `v = 6. The parameters for the Heston model are chosen as
in Example 8.5.

Now, we study the spatial discretization error for American options in the H1-norm
at t = 0 as stated in (8.14) for the Black-Scholes or (8.17) for Heston’s model. We
distinguish between a cubic spline approximation with and without repeating knots at
the locations where the partial derivative of the terminal condition are discontinuous.
When determining the spatial discretization error, the number of time steps #T are
chosen sufficiently large to minimize the approximation error in the time variable, and
calculations are performed using a sequence of grids with doubling the number of knots
(degree of freedom) for the spatial B-spline discretization.
The corresponding results are depicted in Figure 8.9. As one can see, the error is
significantly reduced for a cubic spline discretization with coinciding knots (rep.) in
comparison to the discretization with no coinciding knots (no rep.). The convergence
rates (≈ 1.5) for a spatial discretization with coinciding knots are in agreement with
the theoretical results for elliptic variational inequalities. Thus, it can be reasonably
assumed that the semi-discrete solution of the Black-Scholes variational inequality for
a put or call option and of the Heston variational inequality for a put option satisfies
the maximal smoothness for variational inequalities W s,p(I) or W s,p(Ω) for all s < 2+ 1

p
and 1 < p <∞ for which a theoretical result is still outstanding.
A remarkable result is that for the American butterfly-spread option with coinciding
knots at S = K1,K,K2 in Figure 8.9 (below, left). Although the solution in t = 0 is
not smooth enough at S = K, the error is of order ≈ 1.5. This is due to the fact that
in S = K the knots are repeated k − 1 times and this point is identical to a nodal
point for finite elements. Thus, the cubic spline approximation is well defined and it is
sufficient that the solution is smooth enough in (0,K) and (K,Smax). It should be also
mentioned that a convergence rate of O(h1/2) is also obtained for a linear or quadratic
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B-spline approximation, when S = K are not aligned with k − 1 knot/s.
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Figure 8.9.: Convergence of the error of today’s American option price in theH1-norm
as stated in (8.14) or (8.17) for Example 8.2 (put option B-S, above left),
Example 8.3 (call option B-S, above right), Example 8.4 (butterfly-spread
option B-S, below left) and Example 8.5 (put option Heston, below right)
with a cubic (k = 4) B-spline discretization with k − 1 repeating knots
at S = K or S = K1,K,K2 (rep.) and no repeating knots (no rep.)
applying an implicit Euler method with fixed sufficiently large number
of time steps #T.

8.2.3. Influence of the time discretization

The experiments in the next subsection are dedicated to clarify the temporal conver-
gence of today’s American option price and its first partial derivatives. In particular, we
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concentrate on the convergence of the Euler, Crank-Nicholson and Rannachner time-
stepping method for an American call option in the Black-Scholes model. To study
the temporal discretization error, we consider Example 8.6 with a greater time interval
[0, T ] with T = 2.
When determining the temporal discretization error, the number of knots in the spatial
variable is chosen sufficiently large to minimize the spatial discretization error, and
calculations are performed using a sequence of meshes with doubling the number of
time steps #T. The corresponding results can be found in Figure 8.10. It can be seen
that the Crank-Nicolson method for a smaller number of time steps converges with a
rate of ≈ 0.5 and for a higher number of time steps it starts to converge with a rate
of ≈ 1.2. For the Rannacher timestepping scheme the rate of convergence for a lower
number of time steps is of order≈ 1 and for a higher number of time steps of order≈ 1.2.
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Figure 8.10.: H1(I)-convergence of today’s call option price (t = 0) for Example 8.6
(B-S) with a cubic (k = 4) B-spline discretization with k − 1 repeating
knots at S = K and fixed sufficiently large N applying different time
stepping schemes with time steps #T.

The results for the Crank-Nicolson scheme and the Rannacher timestepping method
seem to be confusing, see also Remark 4.7 for a detailed explanation. The reason for
the poor convergence for a smaller number of time steps can be explained by the plots
of the approximation of Delta in Figure 8.11 and Figure 8.12. The first top plots in
Figure 8.11 present the approximations of the first partial derivative with respect to
the underlying price, ∆h(S, 0), for a Crank-Nicolson and Euler method. The plots show
that in the approximation of Delta oscillations appear when using a Crank-Nicolson
method with a low number of time steps #T and the oscillations vanish for a very
high number of time steps. Note, that the oscillations also occur at S = K, where the
derivative of the terminal condition is discontinuous. Oscillations at S = K for the
Crank-Nicolson method can also be observed for simple partial differential equations
with non-smooth data (see [GC06, FV02]).
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Figure 8.11.: Numerical approximation of the first derivative Delta of today’s call
option price and its second derivative Gamma for Example 8.6 (B-S)
with cubic B-splines (k = 4), k − 1 repeating knots at S = K and
N = 515 applying the Crank-Nicolson (C-N) and Euler method (Euler).

An extensive analysis of the Crank-Nicolson and Rannacher method with a spatial finite
difference discretization for the valuation of European options with the Black-Scholes
partial differential equation can be found in [GC06]. To damp the errors in the ini-
tial data caused by the irregularity of the terminal condition, the authors recommend
the Rannacher timestepping method for European options. Corresponding results for
American options with the Rannacher method and a spatial cubic B-spline discretiza-
tion can be found in Figure 8.12. As one can see the error for the approximation of
Gamma for a small number of time steps at S = K is significantly reduced but Gamma
is still oscillating along Shf (t) for t < T . Choosing a higher number of time steps for
the Rannacher timestepping method (but lower as necessary for the Crank-Nicolson
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method) eliminates the oscillations in the partial derivatives. To this end, this different
behavior of the Crank-Nicolson or Rannacher method for small or higher number of
time steps can explain the steep descent of the error in Figure 8.10.
The low order of the convergence rate for the Rannacher or Crank-Nicolson method in
Figure 8.10 can be explained as follows: These methods are second order schemes and
are appropriate for problems whose solution are Lipschitz continuous in time. Since
solutions of parabolic variational inequalities do not satisfy this regularity assumption
(see Remark 3.15), due to the free boundary, a second order convergence for parabolic
variational inequalities cannot be expected.
Since the partial derivatives of the solution regarding S are of particular importance
from the financial point of view and the implicit Euler method provides stable (non
oscillating) results for the partial derivatives up to order two regardless of the number
of time steps, all subsequent runs will use the implicit Euler method.
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Figure 8.12.: Numerical approximation of the first derivative Delta of today’s call
option price and its second derivative Gamma for Example 8.6 (B-S)
with cubic B-splines (k = 4), repeating knots at S = K and N = 515
applying the Rannacher timestepping (Ran) and Euler method (Euler).
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8.2.4. Influence of the B-spline order

The next experiments are dedicated to clarifying the convergence bahavior for the semi-
discrete Black-Scholes or Heston variational inequality, when the order of B-spline basis
functions k is increased. To study the spatial discretization error for today’s American
option price in the Black-Scholes or Heston’s model, we proceed as described in Section
8.2.2. We choose the number of time steps sufficiently large to minimize the error in
the time variable, and calculations are performed by doubling the number of knots for
the spatial B-spline discretization on uniform grids with k−1 repeated knots at S = K
for a put or call option, or at S = K1,K,K2 for a butterfly-spread option.
The results for the discretization error in the H1(I)-norm (or H1(Ω)-norm) are pre-
sented in Figure 8.13. From the financial point of view this error corresponds to the
error of Vh and ∆h in the Black-Scholes model and to the error of Vh,∆h and νh in
Heston’s model. As one can see, for all problems considered, the error for quadratic and
cubic (tensor product) B-splines is significantly reduced in comparison to linear basis
functions, but is not improved for k > 3.
It can be also observed that for the one-dimensional Black-Scholes variational inequal-
ity the error for quadratic and cubic basis functions varies slightly. This behavior can
be explained as follows: In the one dimensional case the free boundary for fixed time
is only a point and the discretization error strongly depends on the position of the
knots next to the free boundary (see Section 8.1). Thus, the discretization error is
reduced rapidly, if |Shf − Sref

f | is decreased. However, the convergence rates for linear
basis functions are of order O(h) and O(h3/2) for quadratic and cubic basis functions.
The approximated convergence rates are in agreement with the theoretical results for
variational inequalities.
Now, we are interested in the error of Gamma for American options. As pointed out
before, Gamma, the second derivative of today’s American option price with respect to
S, is discontinuous at the free boundary. Moreover, for a cubic B-spline discretization
of the Black-Scholes variational inequality the approximation Γh is a piecewise linear
function in S and the point of discontinuity in Gamma is approximated by a linear
polynomial. Thus, in this neighbourhood the rate of convergence is of order O(h1/2). In
fact, the approximation could be improved by using a knot series with k − 2 repeating
knots at the free boundary, but in practice this is difficult to realize, since the free
boundary is a priori unknown.
Similar considerations can be applied for Gamma in Heston’s model. Note, that due
to the transformation x = log(S/K) for Heston’s model the approximation of Gamma
is a product of (1/K exp(x))2 and the first and second derivative of uh (see (6.9)). It’s
clear that in this case the error of Γh in the L2-norm is dominated by the error of
the second derivative of uh. However, Gamma is a smooth function except at the free
boundary. Therefore, we consider the error of Γh in the L2-norm ignoring the error in a
neighbourhood of the approximated free boundary as stated in (8.16) for Black-Scholes
model or (8.18) for Heston’s model. Figure 8.14 contains the results of computation. As
one can see, the error of Γh for cubic B-splines is significantly reduced in comparison
to quadratic B-splines.
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Figure 8.13.: H1-convergence at t = 0 for Example 8.2 (put option (B-S), above left),
Example 8.3 (call option (B-S), above right), Example 8.4 (butterfly-
spread option (B-S), below left) and for Example 8.5 (put option (He-
ston), below right) with different orders of B-spline basis functions k
applying an implicit Euler method for fixed time steps #T.
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Figure 8.14.: Convergence of Gamma, the second derivative of today’s American op-
tion price in the L2-norm, ignoring the error in a neighbourhood of the
free boundary as stated in (8.16) or (8.18) for Example 8.2 (put option
B-S, above left), Example 8.3 (call option B-S, above right), Example
8.4 (butterfly-spread option B-S, below left) and Example 8.5 (put op-
tion Heston, below right) with different orders of B-splines k and k − 1
repeating knots at S = K or S = K1,K,K2 applying an implicit Euler
method with fixed sufficiently large time steps #T.
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8. Numerical results for variational inequalities

8.2.5. Convergence of the monotone Multigrid method

The experiments in this subsection are dedicated to study the convergence behavior
of the monotone Multigrid-method with respect to the refinement levels #`, mesh size
h, B-spline order k and number of a priori smoothing steps η1. Therefore the stopping
criteria in time step z is coupled on the spatial discretization error as follows

‖u(z)
∗ −u(z)

ς ‖`2 ≤ 10−6h3/2 (B-S) and ‖u(z)
∗ −u(z)

ς ‖`2 ≤ 10−3h3/2 (Heston), (8.19)

where u(z)
ς denotes the iterate after ς iterations in time step z. Due to the log-transfor-

mation for Heston’s problem the constant in the stopping criteria is chosen smaller as
for the Black-Scholes Problem. In order to study the mesh dependence of the iterative
methods we introduce the algebraic convergence rate for the linear complementarity
problem (c.f. Problem for the B-S model and Problem for Heston’s model) in one time
step z as follows

ρ(z) :=
(
‖res(z)

ς∗ ‖`2
‖res(z)

ς0 ‖`2

)1/ς∗

, (8.20)

where res(z)
ς∗ denotes the residual in one time step z after ς iterations of the MMG-

method. Due to the projection step in the MMG- or PGS-method after each iteration,
the constraint u(z) ≥ 0 is maintained for all iteration steps, thus it is useful to consider
the following residual

res(z)
ς :=





0 if u(z)
i = 0,

Cu(z)
ς − f (z−1) if u(z)

i > 0,
(8.21)

see e.g. [Rei04]. In order to measure the algebraic convergence rate over all time steps,
we calculate the averaged convergence rate

ρ :=
∑#T
z=1 ρ

(z)

#T
. (8.22)

Furthermore, the corresponding averaged iteration step per time step is specified as
follows

#it :=
∑#T
z=1 #it(z)

#T
, (8.23)

where #it(z) denotes the number of iterations in one time step z.
For demonstrating the robustness in the number of levels, we fix the order of the B-
spline basis function, the number of time steps #T, mesh size h and vary the number
of refinement levels #`. Table 8.4 contains the results for B-spline orders k = 2, 3, 4.
We observe that the algebraic convergence rates and number of iterations are robust
with respect to refinement levels #`. The next experiments are dedicated to study the
robustness of the MMG-method with respect to the mesh size. Therefore, we vary the
mesh size h and fix the B-spline order k and time steps #T. Corresponding results
for Heston’s problem can be found in Table 8.3. The results show, that the algebraic
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8.2. Pricing American options with Black-Scholes and Heston’s model

convergence rates and number of iterations steps for the MMG-method are robust with
respect to the mesh size while the convergence rates for the PGS-method tend to 1.
Moreover, we present results comparing the MMG-method to the PGS-method, where
the mesh and time step size are chosen proportional to the discretization error. Corre-
sponding results for the Black-Scholes and Heston’s model with initial iterate obtained
by Nested-iteration can be found in Table 8.5 and Table 8.6. It can be observed that a
time step size s = O(h3/2) yields optimal convergence in the H1-norm for the stopping
criteria in (8.19). In comparison to the PGS-method the number of iterations and alge-
braic convergence rates are substantially reduced in the MMG-scheme. Table 8.6 also
shows CPU-times in seconds required for the PGS-method in comparison to the MMG-
method. For coarser grids the CPU-times for the PGS- and MMG-method are quite
similar, while for finer grids the MMG-method is much faster than the PGS-method.
Figure 8.15 and Figure 8.16 present some results for the MMG-method on a fixed
level for polynomial order k = 2, 3, 4 when the number of a priori-smoothing steps is
increased. The results show that the number of iterations inversely depends on the num-
ber of smoothing steps. Moreover, we see that for roughly up to 4 a priori-smoothing
steps the CPU-times are significantly reduced.
Lastly, it should be noted from Table 8.3, Table 8.6 and Figure 8.16, that the num-
ber of iteration steps, the algebraic convergence rates and CPU-times increases with
the B-spline order k. This behavior is clearly evident for the two dimensional Heston
Problem.

Table 8.3.: V (2, 1)-cycle convergence with initial iterate obtained by Nested-iteration
applied to Example 8.5 with B-spline discretization of order k = 2, 3, 4,
mesh sizes hx = 4/2`x , hv = 0.925/2`v and an implicit Euler method with
#T = 128 time steps.

k = 2
(`x, `v) (4, 3) (5, 4) (6, 5) (7, 6) (8, 7) (9, 8)
method #it ρ #it ρ #it ρ #it ρ #it ρ #it ρ

MMG 4 0.03 4 0.01 4 0.01 4 0.03 5 0.06 6 0.08
PGS 9 0.22 8 0.13 10 0.22 38 0.68 150 0.91 614 0.98

k = 3
(`x, `v) (4, 3) (5, 4) (6, 5) (7, 6) (8, 7) (9, 8)
method #it ρ #it ρ #it ρ #it ρ #it ρ #it ρ

MMG 7 0.18 7 0.17 6 0.11 6 0.07 7 0.08 8 0.09
PGS 15 0.43 17 0.43 18 0.41 22 0.50 74 0.81 282 0.95

k = 4
(`x, `v) (4, 3) (5, 4) (6, 5) (7, 6) (8, 7) (9, 8)
method #it ρ #it ρ #it ρ #it ρ #it ρ #it ρ

MMG 11 0.37 14 0.40 13 0.36 13 0.32 14 0.33 15 0.34
PGS 31 0.64 46 0.72 46 0.71 51 0.74 63 0.78 194 0.92

139



8. Numerical results for variational inequalities

Table 8.4.: V (3, 1)-cycle convergence with initial iterate on the obstacle with a linear
(k = 2), quadratic (k = 3) and cubic (k = 4) B-spline discretization and
an implicit Euler method.

Put option (B-S) with h = 20/29 and #T = 1024

refinement levels k = 2 k = 3 k = 4
#` #it ρ #it ρ #it ρ

2 4.0 3e−4 5.0 8e−4 9.4 0.038
3 4.0 3e−4 5.0 8e−4 9.4 0.038
4 4.0 3e−4 5.0 8e−4 9.4 0.038
5 4.0 3e−4 5.0 8e−4 9.4 0.038
6 4.0 3e−4 5.0 8e−4 9.4 0.038

Butterfly-spread option (B-S) with h = 40/29 and #T = 1024

refinement levels k = 2 k = 3 k = 4
#` #it ρ #it ρ #it ρ

2 4.0 2e−4 4.2 2e−4 5.3 0.001
3 4.0 2e−4 4.3 2e−4 5.3 0.001
4 4.0 2e−4 4.3 2e−4 5.3 0.001
5 4.0 2e−4 4.3 2e−4 5.3 0.001
6 4.0 2e−4 4.3 2e−4 5.3 0.001

Put option (Heston) with hx = 4/28, hv = 0.925/27, #T = 64

refinement levels k = 2 k = 3 k = 4
#` #it ρ #it ρ #it ρ

2 6 0.044 7 0.061 15 0.315
3 6 0.044 7 0.060 15 0.308
4 6 0.044 7 0.060 15 0.309
5 6 0.044 7 0.060 15 0.309
6 6 0.044 7 0.060 15 0.309
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Table 8.5.: V (1, 1)-cycle convergence with initial iterate obtained by Nested-iteration
in comparison to the PGS-scheme applied to Example 8.2 (put option
(B-S), above), Example 8.3 (call option (B-S), middle), Example 8.4
(butterfly-spread option (B-S), below) with cubic (k = 4) B-spline dis-
cretization and an implicit Euler method with s = O(h3/2).

Put option (B-S)

h = 20/2` PGS MMG
` #T #it ρ #it ρ EV,∆h (0) rate
6 16 33 0.56 5 0.024 1.6e−2 −
7 46 49 0.65 4 0.015 5.6e−3 1.48
8 128 75 0.73 3 0.008 2.1e−3 1.45
9 363 115 0.79 3 0.005 7.4e−4 1.48

10 1,024 179 0.85 3 0.004 2.6e−4 1.49
11 2,897 277 0.89 3 0.004 9.3e−5 1.50
12 8,192 428 0.92 3 0.004 3.2e−5 1.53

Call option (B-S)

h = 20/2` PGS MMG
` #T #it ρ #it ρ EV,∆h (0) rate
6 16 26 0.54 6 0.03 1.6e−2 −
7 46 35 0.61 5 0.04 5.9e−3 1.43
8 128 47 0.68 6 0.07 2.2e−3 1.41
9 363 62 0.73 6 0.12 8.2e−4 1.45

10 1,024 82 0.78 7 0.17 3.0e−4 1.46
11 2,897 109 0.82 8 0.22 1.1e−4 1.48
12 8,192 146 0.86 9 0.27 3.8e−5 1.49

Butterfly-spread option (B-S)

h = 40/2` PGS MMG
` #T #it ρ #it ρ EV,∆h (0) rate
6 16 26 0.55 8 0.10 5.5e−2 −
7 46 35 0.62 8 0.12 1.9e−2 1.51
8 128 48 0.69 8 0.11 7.0e−3 1.47
9 363 69 0.75 6 0.07 2.5e−3 1.48

10 1,024 101 0.80 5 0.04 8.9e−4 1.50
11 2,897 149 0.85 4 0.02 3.1e−4 1.51
12 8,192 222 0.88 4 0.01 1.1e−4 1.55
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Table 8.6.: V (4, 1)-cycle convergence with initial iterate obtained by Nested-iteration
in comparison to the PGS-scheme applied to Example 8.5 (put option,
Heston), with B-spline discretization of order k = 2, 3, 4 and an implicit
Euler method with s = O(h3/2).

k = 2
hx := 4

2`x , hv := 0.925
2`v PGS MMG

`x `v #T #it cpu (s) ρ #it cpu (s) ρ EV,∆,νh (0) rate
5 4 3 32 0.02 0.70 3.3 0.003 0.01 1.9e−1 −
6 5 8 77 0.01 0.85 4.0 0.004 0.01 8.9e−2 1.06
7 6 23 150 0.03 0.92 4.1 0.022 0.02 4.1e−2 1.13
8 7 64 271 0.27 0.95 4.1 0.115 0.02 1.9e−2 1.09
9 8 182 450 1.72 0.97 4.1 0.226 0.02 9.2e−3 1.06
10 9 512 727 11.25 0.98 5.0 1.119 0.03 4.5e−3 1.04

k = 3
hx := 4

2`x , hv := 0.925
2`v PGS MMG

`x `v #T #it cpu (s) ρ #it cpu (s) ρ EV,∆,νh (0) rate
5 4 3 17 0.00 0.46 4.0 0.01 0.02 1.3e−1 −
6 5 8 38 0.01 0.71 4.0 0.01 0.02 5.5e−2 1.28
7 6 23 73 0.03 0.83 4.0 0.03 0.02 2.0e−2 1.45
8 7 64 129 0.18 0.89 5.0 0.15 0.02 7.4e−3 1.44
9 8 182 209 1.17 0.93 5.0 0.44 0.02 2.7e−3 1.48

10 9 512 331 7.43 0.95 5.9 2.06 0.02 9.6e−4 1.47

k = 4
hx := 4

2`x , hv := 0.925
2`v PGS MMG

`x `v #T #it cpu (s) ρ #it cpu (s) ρ EV,∆,νh (0) rate
5 4 3 35 0.00 0.70 6.3 0.03 0.15 1.2e−1 −
6 5 8 46 0.01 0.75 6.8 0.04 0.14 4.8e−2 1.27
7 6 23 58 0.04 0.79 8.1 0.10 0.16 1.8e−2 1.45
8 7 64 95 0.26 0.86 9.3 0.41 0.17 6.5e−3 1.43
9 8 182 148 1.54 0.90 10.5 1.32 0.18 2.3e−3 1.48
10 9 512 225 8.67 0.93 11.6 5.70 0.19 8.4e−4 1.48
11 10 1,449 336 50.68 0.95 12.7 24.77 0.20 − −
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Figure 8.15.: V (η1, 1)-cycle convergence with initial iterate obtained by Nested-
iteration applied to Example 8.4 (butterfly-spread option, B-S), with
B-spline discretization of order k on level ` = 9 and an implicit Euler
method with T = 1024.
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Figure 8.16.: V (η1, 1)-cycle convergence with initial iterate obtained by Nested-
iteration applied to Example 8.5 (put option, Heston) with B-spline
discretization of order k on level `x = 9, `v = 8 and an implicit Euler
method with #T = 182.
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9. Pricing European option with the
Black-Scholes-Barenblatt equation

9.1. Uncertain volatility model

In this chapter we focus on the non-linear Black-Scholes model, which was derived in-
dependently by Lyons and Avellaneda et al. in 1995 [ALP95, Lyo95]. In comparison
with the Heston model where the volatility can explain the volatility smile or skewness
effects observed from option implied volatilities in the Black-Scholes model (see Section
2.1.3), the volatility in the uncertain volatility model is assumed to lie within a range
of extreme values. With these extreme values the option price can be computed in a
worst or best case scenario. As pointed out by [ALP95] the bounds can be inferred
from high-low peaks of implied volatilities and be considered as defining a confidence
interval for future volatilities.
Since also in the simple case of an European option with a non-convex payoff function
no closed form solution for the Black-Scholes-Barenblatt equation is available, we con-
centrate on a European option. In particular we consider a European butterfly-spread
option, since for this type of option the volatilities varies significantly. Note that all
analytical or numerical considerations of the Black-Scholes-Barenblatt equation in this
chapter can be also applied to other once weakly differentiable payoff functions in a
similar manner. Restricting our considerations to a butterfly-spread option only offers
a more simple notation. In the following we denote by σ ∈ Σ the volatility in the
worst case scenario where an infimum is taken and by σ ∈ Σ the volatility in the best
case scenario where a supremum is taken. Recall the non-linear Black-Scholes equation
from (2.34) and (2.35), then the valuation of a European butterfly-spread option in the
worst- and best case scenario can be formulated as follows:

Problem 9.1. (Black-Scholes-Barenblatt equation – worst case)
Find V (t, S) such that

Vt+ inf
σ∈Σ

(LσV ) := Vt+ inf
σ∈Σ

(1
2S

2σ2VSS

)
+(r−D0)SVS−rV = 0 in [0, T )×R+ (9.1)

with Σ := [σmin, σmax] and boundary conditions

lim
S→0

V (t, S) = lim
S→0
HBS(S), lim

S→∞
V (t, S) = lim

S→∞
HBS(S)

and end condition V (T, S) = HBS(S).
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Problem 9.2. (Black-Scholes-Barenblatt equation – best case)
Find V (t, S) such that

Vt+sup
σ∈Σ

(
LσV

)
:= Vt+sup

σ∈Σ

(1
2σ

2S2VSS

)
+(r−D0)SVS−rV = 0 in [0, T )×R+ (9.2)

with Σ := [σmin, σmax] and boundary conditions

lim
S→0

V (t, S) = lim
S→0
HBS(S) = 0, lim

S→∞
V (t, S) = lim

S→∞
HBS(S) = 0

and end condition V (T, S) = HBS(S).

This model studies uncertain volatility models, in which the volatility σ is not known
precisely but is assumed to lie between extreme values σmin and σmax.
The Black-Scholes-Barenblatt equation is a special type of a Hamilton-Jacobi Bellman
equation. One advantage of this special setting is that the infimum or supremum can be
expressed analytically as pointed out in (2.37) and (2.38) (otherwise minimizing pro-
cedures should be considered). Considering the non-linear spatial term in (9.1) or (9.2)
one of the main difficulties in comparison to linear elliptic partial differential equations
arises from the fact that the spatial term of the non-linear Black-Scholes-Barenblatt
equation does not admit a weak H1(I)-formulation in the continuous setting. This is
due to the fact that the non-linearity or analytic expression of the volatility function
depends on the pointwise evaluation of the a-priori unknown second derivative of the
option price. Hence no integration by parts is possible to pass the partial derivative
onto a test function. This fact is nothing new and has already been established in [JS13]
or [Sme15, Chapter 1.2] for a Hamilton-Jacobi-Bellman equation in a more general set-
ting. To apply some known analysis from [Sme15] in the next section, it is convenient to
introduce a time transformation τ := T − t. Moreover, we truncate the spatial domain
R+ to a bounded domain I := (0, Smax), where Smax is chosen large enough such that
the boundary conditions are satisfied. Hence the time transformed option price

y(τ, S) := V (T − t, S)

for a butterfly-spread option satisfies the following time transformed Black-Scholes-
Barenblatt equation (BSB equation) in the worst case scenario

∂y

∂τ
− inf
σ∈Σ

(Lσy) = 0 in (0, T ]× I (9.3)

and in the best case scenario with

∂y

∂τ
− sup
σ∈Σ

(
Lσy

)
= 0 in (0, T ]× I (9.4)

with initial condition y(0, S) = HBS(S) and boundary conditions y(τ, 0) = 0 and
y(τ, Smax) = 0.
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9. Pricing European option with the Black-Scholes-Barenblatt equation

9.2. Well-posedness

To prove well-posedness for classical elliptic or parabolic equations in Sobolev spaces
usually a weak formulation is introduced and the well-posedness of the solution in
H1

0 (I) is then derived by showing that the bilinear form is bounded and coercive. As
pointed out before the non-linear spatial term of the BSB equation does not admit a
weak H1(I)-formulation in general, thus the classical theory for Sobolev spaces is not
applicable.
A well-known theory for non-linear partial differential equations is that of a viscosity
solution. The uniqueness, existence and smoothness for viscosity solutions in the special
case of the Black-Scholes-Barenblatt equation is analyzed in [Var01]. The author has
shown, that if the payoff is locally Lipschitz, then the BSB equation has a unique
solution with the first derivative defined almost everywhere. Moreover, he has proven
that the solution has also Hölder continuous second derivatives for the log-transformed
BSB equation.
In this thesis, we prove the well-posedness of the BSB equation by a novel theory,
developed for elliptic and parabolic Hamilton-Jacobi-Bellman equations in the PhD
thesis [Sme15] or in the later published article [SS16]. For this theory the notion of
viscosity solution is not required. The authors prove well-posedness for a HJB equation
in a second order Sobolev space or Bochner space within a second order Sobolev space
assuming that the coefficients in the differential operator satisfy the Cordes condition.
The Cordes condition arises from the literature on nondivergence form PDE, i.e. a : D2u
with a ∈ L∞(Ω)d×d, where d denotes the space dimension. Although the theory for
HJB equations with Cordes coefficients has been introduced for higher space dimensions
d ≥ 2, it is straightforward to employ the theory for the one dimensional BSB equation.
Thus, all results in this subsection are simple applications of the theory developed in
[Sme15, Chapter 4.1].
But, since this theory has been developed for non-degenerate HJB equations on bounded
domains, we introduce a log-transformation x = log(S/K) for the BSB equation, and
the spatial domain I := (0, Smax) is truncated to Ĩ := (Smin, Smax) in S-coordinates
or Ix := (xmin, xmax) in x-coordinates. In order to avoid some significant truncation
effects on the solution, the parameter xmin should be chosen small enough such that
−∞ < xmin < 0 < xmax < ∞ is satisfied. To avoid repetitions we concentrate on
the BSB equation in the best case scenario. Thus, by setting y(τ, S) := ỹ(τ, x) in
(9.4) the corresponding problem in log-coordinates x reads as follows: Find ỹ(τ, x) with
(τ, x) ∈ (0, T ]× Ix such that

F [ỹ] := ∂ỹ

∂τ
− sup

σ

(
L̃σỹ

)
= 0 in (0, T ]× Ix, (9.5)

with the log-transformed operator L̃σ : H2(Ix)→ L2(Ix) defined as

L̃σỹ := 1
2σ

2ỹxx +
(
r −D0 −

1
2σ

2
)
ỹx − rỹ. (9.6)
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The boundary condition on the degenerate boundary is set to ỹ(τ, xmin) = 0 and
the boundary condition for Smax transforms into ỹ(τ, xmax) = 0. Moreover, the initial
condition is given by ỹ(0, x) := HBS(K exp(x)).
Let us define the Sobolev-space

W := H2(Ix) ∩H1
0 (Ix). (9.7)

Note that the fully non-linear operator F [ỹ] is well defined as a mapping from the
Bochner space H(0, T ; Ix) into the space L2(0, T ; Ix), where H(0, T ; Ix) is defined as

H(0, T ; Ix) := L2(0, T ;W) ∩H1(Ix;L2(Ix)). (9.8)

For Smin > 0 we can see that ỹ(τ, x) is a solution of (9.5) if and only if y(τ, S) is
a solution of (9.4). Although we assume that the initial data are given by the payoff
function of a butterfly-spread option, it should be clear that the results in this subsection
can also be applied for any initial data given by a non-convex function in H1

0 (Ix). As
mentioned earlier for convex initial data the BSB equation reduces to the linear BS-
equation with one of the extreme values σmin or σmax. Thus, for this special case,
standard theory for linear parabolic variational equations can be applied. For the ana-
lysis, the volatility is assumed to be strictly positive and bounded and the interest rate
is assumed to be strictly positive, i.e.

0 < σmin ≤ σ ≤ σmax <∞ and r > 0. (9.9)

Moreover, we assume that the coefficients σ, r and D0 satisfy the Cordes condition, i.e.
there exists λ > 0, ω > 0 and ε ∈ (0, 1] such that

1
4σ

4 + |r −D0 − 1
2σ

2|2/(2λ) + (r/λ)2 + (1/ω)2

(1
2σ

2 + r/λ+ 1/ω)2 ≤ 1
2 + ε

for each σ ∈ Σ. (9.10)

Let us further define a strictly positive function γ : Σ→ R>0 by

γ(σ) :=
1
2σ

2 + r/λ+ 1/ω
1
4σ

4 + |r −D0 − 1
2σ

2|2/(2λ) + (r/λ)2 + (1/ω)2 . (9.11)

For each σ ∈ Σ define γσ : (x, τ) 7→ γ(σ). Moreover, for the analysis we introduce the
operator Fγ : H(0, T ; Ix)→ L2(0, T ;L2(Ix)) defined by

Fγ [ϕ] := inf
σ∈Σ

(
γσ(∂τϕ− L̃σϕ)

)
. (9.12)
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9. Pricing European option with the Black-Scholes-Barenblatt equation

Now, the remainder of this subsection is devoted to prove that there exists a unique
strong solution ỹ(τ, x) ∈ H(0, T ; Ix) to the following problem:
Find ỹ(τ, x) with (τ, x) ∈ (0, T ]× Ix such that

Fγ [ỹ] = 0 (9.13)

with boundary conditions ỹ(τ, xmin) = 0 and ỹ(τ, xmax) = 0; and initial condition
y(0, x) = HBS(K exp(x)).
Then, by proving that the solution of (9.13) is also the unique solution of (9.5) it can
be concluded that there exists a unique strong solution ỹ(τ, x) ∈ H(0, T ; Ix) to the
log-transformed BSB equation.
For ω > 0 and λ > 0 we introduce the operators

Lλϕ := ϕxx − λϕ, Lωϕ := ω∂τ − Lλϕ. (9.14)

From [Sme15, Lemma 4.2] it is known that W ⊂ H1
0 (Ix) ⊂ L2(Ix) is a Gelfand triple

under the inner product 〈·, ·〉H1
0

and the duality pairing

〈f, ϕ〉L2×W :=
∫

Ix
f(−Lλϕ) for f ∈ L2(Ix)dx, ϕ ∈ W. (9.15)

Moreover, the space H(0, T ; Ix) is continuously embedded in C([0, T ];H1
0 (Ix)). Let us

further define the norm on H(0, T, Ix) by

‖ϕ‖2H(0,T,Ix) :=
∫ T

0
ω2‖∂τϕ‖2L2(Ix) + |ϕ|2H2(Ix),λdτ (9.16)

with
|ϕ|H2(Ix),λ := |ϕ|2H2(Ix) + 2λ|ϕ|2H1(Ix) + λ2‖ϕ‖2L2(Ix), ω, λ > 0. (9.17)

The following theorem is strongly based on [Sme15, Lemma 4.1]. In particular, we
provide an analogous proof for the log-transformed BSB equation.

Lemma 9.3. Suppose that the data σ ∈ Σ, r and D0 satisfy (9.9) and the Cordes
condition in (9.10) with λ > 0 and ω > 0. Let U ⊂ Ix and J ⊂ (0, T ) be open intervals,
and let the function ỹ, ϕ ∈ L2(J ;H2(U))∩H1(J ;L2(U)); and set w := ỹ−ϕ. Then the
following inequality holds a.e. in U , for a.e. τ ∈ J

|Fγ [ỹ]− Fγ [ϕ]− Lωw| ≤
√

1− ε
√
ω2|∂tw|2 + |wxx|2 + 2λ|wx|2 + λ2|w|2 (9.18)

with the non-linear operator for the log-transformed BSB equation defined in (9.12).

Proof. The definition of Fγ [ỹ] in (9.12) and Lω in (9.14) implies the identity

Fγ [ỹ]− Lωỹ = inf
σ∈Σ

(
γσ(∂τ ỹ − L̃σỹ)− Lωỹ

)

= − sup
σ∈Σ

(
γσ(L̃σỹ − ∂τ ỹ) + Lωỹ

)
.
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9.2. Well-posedness

Now, | supσ(xσ)− supσ(yσ)| ≤ supσ |yσ − xσ| leads to

|Fγ [ỹ]− Fγ [ϕ]− Lωw| ≤ sup
σ∈Σ
|γσ(L̃w − ∂τw + Lωw)|

≤ sup
σ∈Σ

(∣∣∣∣
1
2γ

σσ2 − 1
∣∣∣∣ |wxx|+ |γσ|

∣∣∣∣r −D0 −
1
2σ

2
∣∣∣∣ |wx|+ |λ− γσr||w|+ |ω − γσ||∂τw|

)
.

Applying Cauchy-Schwarz inequality results in

|Fγ [ỹ]− Fγ [ϕ]− Lωw| ≤ sup
σ∈Σ

(√
Cσ
)√

ω2|∂tw|2 + |wxx|2 + 2λ|wx|2 + λ2|w|2 (9.19)

with

Cσ :=
∣∣∣∣
1
2γ

σσ2 − 1
∣∣∣∣
2

+

∣∣∣r −D0 − 1
2σ

2
∣∣∣
2

2λ + |λ− γ
σr|2

λ2 + |ω − γ
σ|2

ω2 . (9.20)

Finally, expanding the terms in Cσ and the definition of γσ in (9.11) implies

Cσ = 3− 2γσ
(1

2σ
2 + r

λ
+ 1
ω

)
+ (γσ)2

(
1
4σ

4 +
|r −D0 − 1

2σ
2|2

2λ + r2

λ2 + 1
ω2

)

= 3− 2
(

(1
2σ

2 + r/λ+ 1/ω)2

1
4σ

4 + |r −D0 − 1
2σ

2|2/(2λ) + (r/λ)2 + (1/ω)2

)

+
(

(1
2σ

2 + r/λ+ 1/ω)2

1
4σ

4 + |r −D0 − 1
2σ

2|2/(2λ) + (r/λ)2 + (1/ω)2

)
,

which proves Cσ ≤ 1− ε by applying the cordes condition in (9.10).

Finally, by the same proof as in [Sme15, Theorem 4.4] one can prove the existence
and uniqueness of a strong solution for the log-transformed BSB equation. For a better
understanding we provide a short sketch of this proof. Note, that the author considers
the more general case where the coefficients are assumed to be continuous functions
depending on (x, τ), while for the log-transformed BSB equation the coefficients σ, r,D0
are constant.

Theorem 9.4. (Strong solution for the log-transformed BSB equation)
Let the data σ ∈ Σ, r and D0 satisfy (9.9) and the cordes condition in (9.10) with
λ > 0 and ω > 0. Then there exists a unique strong solution ỹ(τ, x) ∈ H(0, T ; Ix) of the
log-transformed BSB equation in (9.5) with boundary conditions ỹ(τ, x) = 0 for x ∈ ∂Ix
and initial data ỹ(0, x) = HBS(K exp(x)). Moreover, ỹ(τ, x) is also the unique solution
of (9.13).

Proof. [Sme15, Theorem 4.3] implies that (9.13) is equivalent to the following varia-
tional formulation: Find ỹ ∈ H(0, T ; Ix) such that

〈A(ỹ), ϕ〉 = 0 for all ϕ ∈ H(0, T ; Ix) (9.21)
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9. Pricing European option with the Black-Scholes-Barenblatt equation

with operator A : H(0, T ; Ix)→ H(0, T ; Ix)∗ defined as

〈A(ỹ), ϕ〉 :=
∫ T

0

∫

I
Fγ [ỹ]Lωϕdxdτ + ω〈ỹ(0)−HBS, ϕ(0)〉H1

0 (Ix) (9.22)

with inner product 〈ỹ, ϕ〉H1
0 (Ix) :=

∫
Ix
ỹxϕx+λỹϕdx associated with the norm ‖·‖H1

0 (Ix).
Now, the Browder-Minty Theorem, which can be seen as a non-linear generalization
of the Lax-Milgram Theorem, provides the existence and uniqueness of the solution
with a strongly monotonicity, boundedness, continuity and coercivity assumption on
the operator. To show that A is Lipschitz continuous, let ỹ, ϕ, z ∈ H(0, T ; Ix), then the
compactness of Σ, assumption (9.9) and the Cauchy-Schwarz inequality implies

|〈A(ỹ)−A(ϕ), z〉| ≤ ‖Fγ [ỹ]− Fγ [ϕ]‖L2(0,T ;L2(Ix))‖z‖L2(0,T ;L2(Ix))

+ω‖ỹ(0)− ϕ(0)‖H1
0 (Ix)‖z(0)‖H1

0 (Ix) ≤ C‖ỹ − ϕ‖H(0,T ;Ix)‖z‖H(0,T ;Ix)
(9.23)

with constant C depending on T, ω, the strictly positive coefficients σ, r > 0 andD0 ≥ 0.
Moreover, applying Lemma 9.3, the bound in [Sme15, Theorem 4.3] and the Cauchy-
Schwarz inequality results in

〈A(ỹ)−A(ϕ), ỹ − ϕ〉 ≥ ε

2‖ỹ − ϕ‖
2
H(0,T ;Ix) + ω

2 ‖ỹ(T )− ϕ(T )‖2H1
0 (Ix)

+ ω

2 ‖ỹ(0)− ϕ(0)‖2H1
0 (Ix). (9.24)

Thus, due to (9.23) and (9.24) the operator A is bounded, continuous, coercive and
strongly monotone and the Browder-Minty Theorem implies that there exists a unique
solution ỹ ∈ H(0, T ; Ix) to (9.21). Moreover, ỹ is also the unique solution to Fγ(ỹ) = 0
with initial data ỹ(0) = HBS(K exp(x)).
Finally, the author in [Sme15] shows that ỹ ∈ H(0, T ; Ix) solves Fγ(ỹ) = 0 with initial
data ỹ(0) = HBS(K exp(x)) if and only if ỹ solves (9.5).

The next Corollary provides the well-posedness of the BSB equation in the original
variable S.

Corollary 9.5. Let the data σ ∈ Σ, r and D0 satisfy (9.9) and the cordes condition in
(9.10) with λ > 0 and ω > 0. Let us further assume that 0 < Smin < Smax <∞.
Then there exists a unique strong solution y(τ, S) ∈ H(0, T ; Ĩ) of the BSB equation in
(9.4) with initial data y(0, S) = HBS(S).

Proof. Working out the solution in the original variables ỹ(τ, x) = y(τ, S) with the
transformation S = K exp(x) for x ∈ (xmin, xmax) and S ∈ (Smin, Smax), the result is a
direct consequence of Theorem 9.4.
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9.3. Time semi-discretization and spatial B-spline
discretization

In this section, we specify the discretization scheme for Problem 9.1 of Hamilton-Jacobi-
Bellman type with B-splines of higher order in space and an implicit scheme for the time
discretization. A former approach for the multidimensional Hamilton-Jacobi-Bellman
equation is based on a finite-element discretization with piecewise linear hat functions
on unstructured meshes with possibly degenerate, isotropic diffusion in [JS13].
First, we derive a time semi-discretization of time transformed problem in (9.3) with
backward differentiation formulas (BDF), which approximate the time derivative with
Lagrange interpolation polynomials. To avoid repetitions, we concentrate on the BSB
equation in the worst case scenario as defined in (9.3). Let 0 = τ (0) < τ (1) < · · · <
τ (#T) = T be a partition of the time interval [0, T ] with time increment s := τ (z+1)−τ (z).
We denote the semi-discrete solution in time step z by y(τ (z), S) := y(z). Let us consider
(9.3) with the bounded linear operator defined as

Lσy := 1
2S

2σ2ySS + (r −D0)SyS − ry, (9.25)

which leads to the following time semi-discretization.

• BDF1/implicit Euler scheme (BDF of order one):
(
y(z+1) − y(z)

s

)
− inf
σ∈Σ

(
Lσy(z+1)

)
= 0 for 0 ≤ z ≤ #T− 1,

y(0) = H(S); (9.26)

• BDF2 scheme (BDF of order two):
(

3y(z+2) − 4y(z+1) + y(z)

2s

)
− inf
σ∈Σ

(
Lσy(z+2)

)
= 0 for 0 ≤ z ≤ #T− 2,

y(z) = ỹ(z) for 0 ≤ z ≤ 1. (9.27)

BDF2 is a three level scheme, therefore in order to start the algorithm we need initial
data y(z) = ỹ(z) for 0 ≤ z ≤ z0, where ỹ(0) is given by the initial condition and other
values are obtained by the implicit Euler method (BDF1). Since the non-smooth initial
condition is given by the piecewise linear continuous payoff function an implicit Euler
method for the initial time steps should be used to avoid oscillations in the numeri-
cal solution and its partial derivatives, see Remark 4.7. Moreover, the BDF2 scheme
provides second order convergence rates for the time discretization if the solution is
smooth enough. In the context of HJB equations the advantage of the BDF2 method
in comparison to the Rannacher-timestepping method is that we only need to evaluate
the volatility function once per time step.
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The next step is the space discretization of the semi-discrete Black-Scholes-Barenblatt
equation. Traditionally, with Galerkin schemes the space discretization is achieved by
establishing a weak formulation of the partial differential equation with test functions
and then by approximating the solution space with B-splines. As already mentioned,
the non-linear spatial term of the HJB equation does not admit a weak formulation. But
in the discrete setting multiplication with B-splines can be seen as the regularization of
the residual. This idea has been established by [JS13] in the context of finite element
methods with hat functions.
Let VΘ ⊂ Sk,Θ, ` ∈ N, be a subspace of finite dimensional B-spline spaces of order
k ∈ N, k ≥ 2 with knot series Θ := {θi}i=1,...,nΘ , which satisfy homogeneous Dirichlet
boundary conditions on ∂I. The knot series for the B-spline space is defined as follows

θ1 = . . . = θk < θk+1 < . . . < θ℘ = . . . = θ℘+k−2 < . . . ≤ . . . < θnΘ+1 = . . . = θnΘ+k
(9.28)

with θ1 := Smin, θnΘ+1 := Smax and θ℘ = K, where the maximum multiplicity of the
knots we allow is k − 1. Thus, the finite dimensional B-spline space is given by

VΘ := span {Ni,k(S) : I := {i = 2, . . . , nΘ − 1}} ⊂ Sk,Θ, (9.29)

where N1,k(S), NnΘ,k(S) are omitted to depict the homogeneous Dirichlet boundary
conditions. The grid size of the B-spline basis is referred to h` := max{θi+1 − θi}.
Set Ñi,k(S) := Ni,k(S)/‖Ni,k(S)‖L1(I). Thus, the Ni,k(S) are normalized in the L∞(I)-
norm and Ñi,k(S) in the L1(I)-norm. Moreover, the support of a normalized B-spline
Ñi,k is Q̃ := supp(Ñi,k(S)) ⊆ [θi, θi+k] and due to the non-negativity of B-splines
Ni,k(S) ≥ 0 one has Ñi,k(S) ≥ 0 for all i ∈ I.
Let us consider the non-linear spatial term in (9.26) and (9.27) for a fixed time step z.
By multiplying with test functions Ñi,k(S) ≥ 0 and integrating over Q̃, if x ∈ Q̃ on a
fine grid one has

inf
σ∈Σ



∫

˜̃Q

1
2σ

2x2 y
(z)
SS(x)Ñi,k(S)dS




= inf
σ∈Σ




1
2σ

2
∫

˜̃Q

x2 y
(z)
SS(x)Ñi,k(S)dS




≈ inf
σ∈Σ




1
2σ

2
∫

˜̃Q

S2 y
(z)
SS(S)Ñi,k(S)dS




= inf
σ∈Σ


−

1
2σ

2
∫

˜̃Q

y
(z)
S (S)

(
S2Ñ ′i,k(S) + 2SÑi,k(S)

)
dS


 , (9.30)

since Ñi,k approximates a Dirac-Delta as the element size is decreased.

152



9.3. Time semi-discretization and spatial B-spline discretization

Let us further denote by σ−(τ (z)) the exact volatility function and by σθ(τ (z)) the
approximated volatility function for a fixed time level. The above approximation in
(9.30) leads to an error in the volatility function, one has

‖σ−(τ (z))− σθ(τ (z))‖L∞ ≤ C(θi+1 − θi) (9.31)

with C depending also on k. For a linear finite element discretization this estimate can
also be found in ([Sme15, Chapter 1.3]).
For further considerations we denote by H := L2(I) the space of square integrable
functions and define the weighted Sobolev space with homogeneous Dirichlet boundary
conditions as follows

V0 :=
{
ϕ ∈ H : S ∂ϕ

∂S
∈ H,ϕ = 0 on ∂I

}
. (9.32)

Setting u(z) := y(z)−HBS ∈ V0 leads to the following discretization of the BSB equation
for the schemes (9.26) and (9.27) in a weak form with homogeneous Dirichlet boundary
condition:

Problem 9.6. (BDF1 scheme)
Find u(z+1) ∈ V0 for each z ∈ {0, . . . ,#T− 1} such that

(
u(z+1) − u(z)

s
, Ñi,k

)
− inf
σ∈Σ

〈
Aσ(u(z+1) +H), Ñi,k

〉
= 0 for all i ∈ I,

u(0) = 0, (9.33)

with Aσ : V0 → RnΘ defined as
〈
Aσu(z), Ñi,k

〉
:=− 1

2σ
2
∫
u

(z)
S (S2Ñ ′i,k + 2SÑi,k)dS

+
∫ (

(r −D0)Su(z)
S − ru(z)

)
Ñi,kdS. (9.34)

Problem 9.7. (BDF2 scheme)
Find u(z+2) ∈ V0 for each z ∈ {0, . . . ,#T− 2} such that
(

3u(z+2) − 4u(z+1) + u(z)

2s , Ñi,k

)
− inf
σ∈Σ

〈
Aσ(u(z+2) +H), Ñi,k

〉
= 0 for all i ∈ I,

u(z) = ũ(z) for z ∈ {0, 1}, (9.35)

with
〈
Aσu(z), Ñi,k

〉
as defined in (9.34).

Now, we define the fully discrete form for the BDF1 and BDF2 scheme. Let u(z)
Θ ∈ VΘ

the spline solution with

u
(z)
Θ := u

(z)
Θ (S) :=

∑

j∈I
u(z)
j Nj,k(S). (9.36)
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Inserting the numerical solution in Problem 9.6 and Problem 9.7 leads to the following
numerical schemes:

• BDF1 scheme: Find u
(z+1)
Θ ∈ VΘ ⊂ Sk,Θ for each z ∈ {0, . . . ,#T− 1} such that

〈
u

(z+1)
Θ − u(z)

Θ
s

, Ñi,k

〉
− inf
σ∈Σ

〈
Aσ(u(z+1)

Θ +H), Ñi,k

〉
= 0 for all i ∈ I,

u
(0)
Θ = 0. (9.37)

• BDF2 scheme: Find u
(z+2)
Θ ∈ VΘ ⊂ Sk,Θ for each z ∈ {0, . . . ,#T− 2} such that

〈
3u(z+2)

Θ − 4u(z+1)
Θ + u

(z)
Θ

2s , Ñi,k

〉
− inf
σ∈Σ

〈
Aσ(u(z+2)

Θ +H), Ñi,k

〉
= 0 for all i ∈ I,

u
(z)
Θ = ũ

(z)
Θ for z ∈ {0, 1}. (9.38)

As already mentioned, one advantage of the BSB equation is that the infimum can be
expressed as an easy formula otherwise numerical optimization algorithms are needed.
Let us consider (9.37) or (9.38) then the infimum in time step z̃ is attained for

(
σ̂Θ(u(z̃)

Θ )
)
i

:=





σ2
min, if −

∫

Q̃

(
∂u

(z̃)
Θ +H(S)
∂S

(
S2Ñ ′i,k + 2SÑi,k

))
dS ≥ 0

σ2
max, if −

∫

Q̃

(
∂u

(z̃)
Θ +H(S)
∂S

(
S2Ñ ′i,k + 2SÑi,k

))
dS < 0,

(9.39)

which corresponds to the volatility in the worst case scenario. Moreover, in the case of a
cubic B-spline discretization the volatility can be found by an pointwise approximation
of the second derivative. Therefore, let u(z̃)

Θ the cubic spline solution in time step z̃.
Integration by parts and a similar approximation as in (9.30) for x ∈ Q̃ leads to

−
∫

Q̃

(
∂u

(z)
Θ +H(S)
∂S

(
S2Ñ ′i,k + 2SÑi,k

))
dS ≈ S2

∂2
(
u

(z̃)
Θ

)

∂S2

∣∣∣
S=x

. (9.40)

Hence the volatility in the worst case scenario for a cubic B-spline discretization can
be approximated as follows for x ∈ Q̃

(
σ̂Θ(u(z̃)

Θ )
)
i
≈ σ̂opt

Θ

(
u

(z̃)
Θ (x)

)
:=





σ2
min if S2 ∂2u(z̃)

Θ
∂S2

∣∣∣
S=x
≥ 0,

σ2
max if S2 ∂2u(z̃)

Θ
∂S2

∣∣∣
S=x

< 0.
(9.41)

Comparing the approximation of the volatility function in (9.41) and (9.39) one can see
that the approximation of the volatility function differs in its regularity requirements.
The approximation in (9.41) needs a stable approximation of the second derivative
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while the approximation in (9.39) only needs a stable approximation in H1(I).
We now specify the numerical scheme in matrix vector notation. The formula for the
volatility in (9.39) or (9.41) allows us to express the infimum in (9.37) or (9.38) as
follows

inf
σ∈Σ

〈
Aσ(u(z+1)

Θ +H), Ñi,k

〉
= −

(
(Aσ̂

(z̃)
Θ

Θ + B
σ̂

(z̃)
Θ

Θ + rGΘ)uΘ

)

i
for all i ∈ I, (9.42)

with B-spline coefficient vector uΘ ∈ RnΘ and discretization matrices A
σ̂

(z̃)
Θ

Θ ,B
σ̂

(z̃)
Θ

Θ ,G ∈
RnΘ×nΘ defined as

(
A
σ̂

(z̃)
Θ

Θ

)

i,j
:=

(
σ̂

(z̃)
Θ

)
i

2

∫

Q
(S2N ′j,k(S)Ñ ′i,k(S))dS, (9.43)

(
B
σ̂

(z̃)
Θ

Θ

)

i,j
:=
((
σ̂

(z̃)
Θ

)
i
+D0 − r

) ∫

Q
(SN ′j,k(S)Ñi,k(S))dS, (9.44)

Gi,j :=
∫

Q
Nj,k(S)Ñi,k(S)dS. (9.45)

For the right hand side we also define the vector d
σ̂

(z̃)
Θ

Θ ∈ RnΘ as follows

(
d
σ̂

(z̃)
Θ

Θ

)

i
:=
∫ (

σ̂
(z̃)
Θ
2 S2H′(S)Ñ ′i,k(S)

)
+ rH(S)Ñi,k(S)dS

+
∫ (

σ̂
(z̃)
Θ +D0 − r

)
SH′(S)Ñi,k(S)dS.

Note that the discretization matrices are very similar to the matrices for the standard
Black-Scholes model in (4.37). Finally, we can rewrite (9.37) and (9.38) to the following
problem in matrix vector notation:

• BDF1: Find u(z+1)
Θ ∈ RnΘ for each z ∈ {0, . . . ,#T− 1} such that u(0)

Θ = 0,

F 1(u(z+1)
Θ ) := C1

Θ
(
σ̂

(z+1)
Θ

)
u(z+1)

Θ − f1
Θ
(
σ̂

(z+1)
Θ

)
= 0, (9.46)

where C1
Θ

(
σ̂

(z+1)
Θ

)
∈ RnΘ×nΘ , and f1

Θ

(
σ̂

(z+1)
Θ

)
∈ RnΘ are defined as

C1
Θ
(
σ̂

(z+1)
Θ

)
:=
(
A
σ̂

(z+1)
Θ

Θ + B
σ̂

(z+1)
Θ

Θ + (r + s−1)GΘ

)
,

f1
Θ
(
σ̂

(z+1)
Θ

)
:= s−1GΘu(z)

Θ − d
σ̂

(z+1)
Θ

Θ . (9.47)

• BDF2: Find u(z+2)
Θ ∈ RnΘ for each z ∈ {0, . . . ,#T− 2} such that u(z0)

Θ = ũ(z0)
Θ ,

F 2(u(z+1)
Θ ) := C2

Θ
(
σ̂

(z+2)
Θ

)
u(z+2)

Θ − f2
Θ
(
σ̂

(z+2)
Θ

)
= 0, (9.48)
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where C2
Θ

(
σ̂

(z+2)
Θ

)
∈ RnΘ×nΘ , f2

Θ

(
σ̂

(z+2)
Θ

)
∈ RnΘ are defined as

C2
Θ
(
σ̂

(z+2)
Θ

)
:=
(
A
σ̂

(z+2)
Θ

Θ + B
σ̂

(z+2)
Θ

Θ +
(
r + 3

2s
−1
)
GΘ

)
,

f2
Θ
(
σ̂

(z+2)
Θ

)
:= 1

2s
−1GΘ(4u(z+1)

Θ − u(z)
Θ )− d

σ̂
(z+2)
Θ

Θ . (9.49)

For various reasons, there are some difficulties associated with the numerical solution
of the non-linear Black-Scholes-Barenblatt equation. In order to obtain a Newton like
method for solving the discrete BSB equation, we need an analogous formulation of the
Jacobian since the non-linear operator with jumping volatility is not differentiable in
the classical sense. This problem has already been solved by [BMZ09, Sme12, Sme15].
The principal requirement of the operator which fits into the framework of HJB equa-
tions is slant differentiability. This concept is introduced in Subsection 9.4.1.
Another problem arises in the numerical approximation of the solution and its partial
derivatives with cubic B-splines since a numerical approximation can result in oscilla-
tions in the partial derivatives. To explain this fact let us first consider the volatility
function in (9.41) together with a cubic B-spline discretization. The volatility jumps
at those knots θ℘∗ , where the sign of the second derivative in one time step changes.
It should be clear that these knots θ℘∗ are only an approximation of the zeros of the
second derivative and the approximation of the second derivative are not exactly zero
at these zero points. Thus, this inaccurate approximation of the zeros has a direct con-
sequence on the volatility function and leads to discontinuities in the partial derivatives
of the numerical solution. In order to stabilize these approximations for cubic B-splines,
when the volatility function in (9.41) is used, the following two aspects are necessary
to obtain an accurate discretization:

i) The knots, where the volatility jumps from σ2
min to σ2

max or vice versa are repeated
k − 1 times.

ii) Moreover, one has to repeat those knots k − 1 times, where the initial condition
is not differentiable.

As mentioned before, the volatility function in (9.39) only needs a stable approxima-
tion of the solution in the H1(I)-norm. Thus, an unstable approximation of the second
derivatives has no direct influence of the approximation of the volatility function. There-
fore, it is possible to find a numerical solution of the BSB equation without inserting
new knots. But due to the approximation of the volatility function optimal convergence
rates for higher order B-splines cannot be expected.
In order to compute an accurate numerical solution of the BSB equation with optimal
convergence, we develop a semismooth Newton algorithm within a knot insertion step
at the zeros of the second derivative in Subsection 9.4.2.
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9.4. Semismooth Newton method

In this section we introduce a semismooth Newton method within a knot insertion
step to improve the approximation of the solution and its derivatives with higher order
B-splines. To simplify the notation we omit the time steps and make no distinction
between the BDF1 and BDF2 scheme. Thus, we consider the following discrete BSB
equation in the worst case scenario: Find uΘ ∈ RnΘ such that

F (uΘ) := CΘ(σ̂)uΘ − fΘ(σ̂) = 0 (9.50)

with CΘ(σ̂), fΘ(σ̂) as defined in (9.47) for the BDF1 scheme or (9.49) for the BDF2
scheme. In the literature, the following equivalent formulation can frequently be found

F (uΘ) := max
σ∈ΣnΘ

{CΘ(σ)uΘ − fΘ(σ)} = 0. (9.51)

The change from a minimum to a maximum results from comparing the sign change in
(9.38) and (9.48).
In order to obtain a Newton like method for solving the discrete BSB equation, we need
a analog formulation of the Jacobian, since the operators from (9.46) and (9.48) are
not differentiable in the classical sense. Semismoothness of real valued functions in the
context of nonsmooth nonconvex constrained optimization was introduced in [Mif77].
Moreover, the authors in [Qi93, QS93] established the concept of semismoothness for
mappings between finite dimensional spaces and generalized the Newton method to
semismooth equations. In the context of HJB-equations with a finite difference or a lin-
ear finite element discretization, the concept of a semismooth Newton method was used
in [BMZ09, Hei10, Sme12]. In particular, assuming some monotonicity properties on
the discretization matrix, that is CΘ(σ)−1 ≥ 0 componentwise, the authors in [BMZ09]
have proved that the HJB equation in the discrete setting is slantly differentiable. This
monotonicity assumption has been used with success for a finite difference discretization
or a discretization with linear basis function (see [JS13, BMZ09]), but is not applicable
in general for our derived discrete BSB equation. Another result for HJB equations in
the discrete setting can be found in [Sme12]. There, the author constructs a general
method to find a slant derivative by not requiring any monotonicity properties of the
operator. We will use the last-mentioned result in the next subsection.

9.4.1. Slant derivative

First, we introduce the definition of a slant derivative.

Definition 9.8. (Slant derivative)
Let U ⊂ RN be open. A function F : U 7→ RN is slantly differentiable in U if there
exists G(·) : U 7→M(N,R) such that for every x ∈ U

lim
h→0

1
‖h‖ ‖F (x + h)− F (x)−G(x + h)h‖ = 0. (9.52)

G is called a slant derivative of F in U .
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Consider the definition of classical derivatives lim
h→0

1/|h| |F (x+ h)− F (x)−G(x)h| = 0
for x ∈ R, we see that all classical differentiable function are slant differentiable. A
difference to classical derivatives is that a slant differentiable function is not necessarily
unique. As a result, there is no general method to find a slant derivative. In the context
of discrete HJB equations the author in [Sme12] has introduced a general method to
find a slant derivative for a linear and continuous map σ 7→ CΘ(σ) and compact space
Σ. The next Corollary provides a slant derivative for the discrete BSB equation.

Corollary 9.9. (Slant derivative for the discrete BSB equation)
Let CΘ(σ) ∈ RnΘ×nΘ and fΘ(σ) ∈ RnΘ with σ ∈ ΣnΘ as defined in (9.47) for the BDF1
scheme or (9.49) for the BDF2 scheme. Then

(G(uΘ))i,j := (CΘ(σ̂i))i,j with σ̂i choosen from (9.39) (9.53)

is a slant derivative of F (uΘ) defined in (9.51).

Proof. Since σ 7→ CΘ(σ) and σ 7→ fΘ(σ) are continuous and CΘ(σ) is linear, the result
follows directly from [Sme12, p.46, Corollary 3.7].

9.4.2. Semismooth Newton method within a knot insertion step

Within the framework of HJB equations a well-known method to solve (9.50) is the
so called Howard’s algorithm. It can be shown that Howard’s algorithm is equivalent
to a semismooth Newton method. The algorithm has been developed by [Bel57] and
[How60] to solve steady infinite-horizon Markovian dynamic programming problems.
The algorithm can be found in the context of discrete HJB equations for example in
[BMZ09, Sme12, JS13] and in the context of the BSB equation with a finite difference
discretization in [Hei10] as well. The semismooth Newton method to solve F (uΘ) = 0
with F (uΘ) : RnΘ → RnΘ and invertible slant derivative GΘ ∈ RnΘ×nΘ is as follows:

Algorithm 9.1 Semismooth Newton method
1) Initialize u0

Θ and ς := 0.
2) Compute σ̂ςΘ := σ̂Θ(uςΘ) (9.39).
3) Compute F (uςΘ) and it’s slant derivative GΘ(σ̂ςΘ).
4) Solve GΘ(σ̂ςΘ)

(
uς+1

Θ − uςΘ
)

= −F p(uςΘ)

5) If ‖uς+1
Θ − uςΘ‖ ≤tol stop otherwise return to step 2).

Note, that this algorithm only works for the volatility function in (9.39), where no
stable approximation of the second derivatives is needed.
From [BMZ09, Sme12] it is known that if F (·) is slantly differentiable, the slant deriva-
tive is invertible and its inverse is bounded so the semismooth Newton method converges
superlinearly.
As mentioned in Subsection 9.3 the approximation of the volatility function for the dis-
crete BSB equation leads to discontinuities in the partial derivatives of the numerical
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solution. In order to stabilize the B-spline approximation, we reduce the smoothness
of the approximation by repeating knots at those points. Therefore, let uςΘ ∈ RnΘ the
given Newton iterate or B-spline coefficient vector in the ςth iteration step of the New-
ton method. Let further uςΘ ∈ VΘ ⊂ Sk,Θ the corresponding spline solution of the BSB
equation in the worst case scenario. We define

I+
η :=




θi ∈ Θ| −

∫

Q̃

(
∂uςΘ +H(S)

∂S

(
S2Ñ ′i,k + 2SÑi,k

))
dS ≥ 0 for all i = iη, iη + 1, . . .





(9.54)
and

I−η :=




θi ∈ Θ| −

∫

Q̃

(
∂uςΘ +H(S)

∂S

(
S2Ñ ′i,k + 2SÑi,k

))
dS < 0 for all i = iη, iη + 1, . . .




.

(9.55)
Thus, I+

η corresponds to the knots, where the volatility function in (9.39) is given by
σ̂(uςΘ(θi)) = σ2

min, and I−η corresponds to the knots, where σ̂(uςΘ(θi)) = σ2
max . In order

to find the knots, where the volatility functions jumps from σ2
min to σ2

max or vice versa,
compute all θ℘ ∈ Θ such that

θ℘ ∈ I+
η and θ℘+1 ∈ I−η+1 or θ℘ ∈ I−η and θ℘+1 ∈ I+

η+1. (9.56)

Now, we construct a knot series Θ̃, where the knots θ℘ have multiplicity k−1. Therefore,
let the set Θ℘ ← {θ℘, . . . , θ℘} consists of k − 2 knots θ℘. If Θ℘ /∈ Θ set

Θ̃← Θ ∪Θ℘, (9.57)

otherwise in the knot series Θ the knot θ℘ has already multiplicity k − 1. Finally, the
Newton iterate regarding the new knots series Θ̃ is computed as follows

uςΘ̃ = KΘ̃uςΘ, (9.58)

where KΘ̃ ∈ RnΘ̃×nΘ describes a knot insertion matrix. The construction of a knot
insertion matrix is discussed in Appendix A.
In summary, the Newton algorithm for solving the discrete BSB equation in one time
step within a knot insertion step to stabilize the spline approximation of the partial
derivatives can be found in Algorithm 9.2.
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Algorithm 9.2 Newton algorithm with knot repetition of existing knots in Θ
Input: Order of the B-spline basis k, uniform knot series Θ with possible repeating

knots, initial guess u0
Θ ∈ RnΘ .

Output: Solution uΘ regarding a new knot series Θ.
1) Initialize u0

Θ and ς := 0.
2a) For all η = 1, 2, . . . compute all θ℘ ∈ Θ such that

θ℘ ∈ I+
η and θ℘+1 ∈ I−η+1 or θ℘ ∈ I−η and θ℘+1 ∈ I+

η+1.

2b) Repeat each knot θ℘ as defined above k − 2 times and set Θ℘ ← {θ℘, . . . , θ℘}. If
Θ℘ /∈ Θ set

Θ̃← Θ ∪Θ℘,

otherwise set Θ̃← Θ.
2c) Compute the Newton iterate regarding the new knot series Θ̃ by

uςΘ̃ = KΘ̃uςΘ and set uςΘ ← uςΘ̃, Θ← Θ̃,

where KΘ̃ is the knot insertion matrix from (A.7).
3) Compute σ̂ςΘ := σ̂Θ(uςΘ) from equation (9.39).
4) Compute F (uςΘ) and its slant derivative GΘ(σ̂ςΘ).
5) Solve GΘ(σ̂ςΘ)

(
uς+1

Θ − uςΘ
)

= −F (uςΘ).
6) If ‖uς+1

Θ − uςΘ‖ ≤tol stop otherwise return to step 2).
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In order to improve the approximation of the optimal controls σ̂Θ and also the ap-
proximation of the solution and its partial derivatives for cubic B-splines, we are going
to present another approach now. We compute zeros of the second derivative with a
certain accuracy and add these zeros to the existing knot series Θ. In this context, it is
important that the knots are not to close to each other since in this case the discretiza-
tion matrix becomes singular. Therefore, a certain tolerance is specified. Let us define
the zeros of the second derivative ∂2uςΘ

∂S2 in the ςth Newton step as Sη. Moreover, let

Iopt,+
η :=

{
x ∈ R

∣∣∣
∂2uςΘ
∂S2

∣∣∣
S=x
≥ 0

}
(9.59)

define the corresponding knots where the volatility function in (9.41) is given by
σ̂opt(uςΘ(θi)) = σ2

min and let

Iopt,−
η :=

{
x ∈ R

∣∣∣
∂2uςΘ
∂S2

∣∣∣
S=x

< 0
}

(9.60)

define the corresponding knots where the volatility function in (9.41) is given by
σ̂opt(uςΘ(θi)) = σ2

max. Algorithm 9.3 presents a semismooth Newton method for solving
the discrete BSB equation with cubic B-splines in the worst case scenario, where the
zeros Sη of the second derivative ∂2uςΘ

∂S2 are inserted k − 1 times.
In general, the algorithm is applicable for B-splines of order k ≥ 4, since this enables a
pointwise approximation of the second derivatives.
In order to remove unnecessary knots we apply a knot removal algorithm in each time
step. A detailed description of the algorithm can be found in [PT97, Chapter 5.4] or
Appendix A.
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Algorithm 9.3 Newton algorithm with knot insertion of nonexisting knots in Θ
Input: Order of the B-spline basis k ≥ 4, knot series Θ with possible repeating knots,

initial guess u0
Θ ∈ RnΘ .

Output: Solution uΘ regarding a new knot series Θ.
1) Initialize u0

Θ and ς := 0.
2a) Compute all zeros Sη ∈ I, η = 1, 2, . . . of the second derivative ∂2uςΘ

∂S2 to a certain
accuracy.

For all η = 1, 2, . . .
2b) If Sη /∈ Θ insert Sη with multiplicity k − 1. Set Θ̃η ← {Sη, . . . , Sη}.

If Sη ∈ Θ with multiplicity one repeat Sη with multiplicity k − 2. Set
Θ̃η ← {Sη, . . . , Sη}.
Else there are knots Sη ∈ Θ with multiplicity k − 1, set Θ̃η ← ∅.

End For
Insert all knots Θ̃η to the existing knot series Θ: Set

Θ̃← Θ ∪ Θ̃1 ∪ Θ̃2 ∪ . . . .
2c) Compute the Newton iterate regarding the new knot series Θ̃ by

uςΘ̃ = KΘ̃uςΘ and set uςΘ ← uςΘ̃, Θ← Θ̃

with the knot insertion matrix KΘ̃ from (A.7).
3) Compute σ̂opt

Θ := σ̂opt
Θ (uςΘ) from equation (9.41).

4) Compute F (uςΘ) and its slant derivative GΘ(σ̂opt
Θ ).

5) Solve GΘ(σ̂opt
Θ )

(
uς+1

Θ − uςΘ
)

= −F (uςΘ).

6) If ‖uς+1
Θ − uςΘ‖ ≤tol stop otherwise return to step 2).
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9.5. Numerical results

This section presents the numerical experiments for the BSB equation with a B-spline
semi-discretization. The code developed for this problem is implemented in Matlab
R2018b. The aim in this chapter is to analyze the discretization error and the con-
vergence of the algorithm described in Section 9.4.2. In the following we consider a
European butterfly-spread option with parameters choosen as in Example 9.10.

Example 9.10. (European butterfly-spread option)
Consider a European butterfly-spread option as defined in (2.3) with strike prices
K1 = 9, K2 = 11 and K = (K1 + K2)/2 = 10 and expire date T = 0.25 on the
domain (Smin, Smax) = (4, 20). The risk-free interest rate is r = 0.1 and the dividend
yields is D0 = 0. As not stated otherwise, the volatility is chosen as σmin = 0.15 and
σmax = 0.25.

To analyze the discretization error we compute a reference solution by applying Al-
gorithm 9.3 with #T = 212 number of time steps and N = 1056 degrees of freedom.
The numerical computations are obtained by Algorithm 9.1, Algorithm 9.2, and Al-
gorithm 9.3. For all numerical computations we require a residual below 10−11 and
the algorithms are stopped after maximal 12 iterations. Moreover, to study the spatial
discretization error the number of time steps #T are chosen sufficiently large (or time
step sizes s are chosen sufficiently small) for all considered examples.
In Figure 9.1 we illustrate the approximation of Gamma with a cubic B-spline dis-
cretization applying Algorithm 9.1, Algorithm 9.2 and Algorithm 9.3. We note that
Algorithm 9.1 provides an approximation of Gamma with small oscillations at these
points where the volatility changes, while the approximation of Gamma is stabilized
for Algorithm 9.2. Algorithm 9.3 enables an approximation of Gamma without discon-
tinuities.
In order to analyze the convergence behavior, numerical computations are performed on
a sequence of meshes with s ≈ O(h2). Figure 9.2 contains the results of computations
for a cubic B-spline discretization. It can be observed, that the discretization error is
significantly reduced when an algorithm with knot insertion is used. In particular, using
Algorithm 9.3 where knots are inserted at the zeros of the second derivatives provides
nearly optimal convergence rates in the L2(I)-norm as in the case of variational equa-
tions.
The corresponding number of iteration steps for the semismooth Newton or semismooth
Newton like method are presented in Table 9.1. It can be observed that Algorithm 9.3
needs more Newton iterations until convergence than Algorithm 9.1 and Algorithm 9.2.
For each algorithm the number of iterations required for convergence varies slightly un-
der refinement.
In Figure 9.3 and Figure 9.4 we compare the L2(I)-error for today’s butterfly-spread
option and its first derivative Delta with cubic B-splines to a discretization with linear
basis functions. As one can see, the error for cubic B-splines is significantly reduced
in comparison to linear basis functions. Moreover, we observe in Figure 9.3, Figure 9.4
and Figure 9.5 that the convergence rates for the option price, Delta and Gamma are
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optimal for linear basis function and nearly optimal for cubic basis functions.
A graphical illustration of today’s approximated volatility in the worst case scenario is
presented in Figure 9.6 (left). The results in Figure 9.6 (right) confirm that the volatil-
ity converges to the volatility obtained by the reference solution for increasing number
of unknowns.
A plot of the butterfly-spread option in the worst and best case scenario in comparison
to the Black-Scholes equation with constant volatility is shown in Figure 9.7. Let V −Θ
and V +

Θ the approximated option price in the worst case and best case scenario; let
further VΘ the approximated option price in the standard Black-Scholes model with
constant volatility σ = (σmin + σmax)/2. One clearly observes V −Θ ≤ VΘ ≤ V +

Θ as ex-
pected in the uncertain volatility model.
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Figure 9.1.: Gamma ΓΘ(τ, S) in the worst case scenario with τ ≈ 0.055, Σ =
[0.15, 0.65] and cubic B-splines computed with Algorithm 9.1 (left above),
Algorithm 9.2 (right above), and Algorithm 9.3 (below).
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Figure 9.2.: L2(I)-norm convergence of today’s butterfly-spread option price in the
worst case scenario computed with Algorithm 9.1 (Newton), Algorithm
9.2 (NewKnotIns) and Algorithm 9.3 (NewKnotInsImpr) for a cubic B-
spline discretization and a BDF2 scheme with s ≈ O(h2).

Newton NewKnotIns NewKnotInsImpr
#T N #it N #it N #it
4 33 3.0 33 3.0 33 8.5
16 65 2.5 64 2.9 65 5.3
64 129 2.2 124 2.5 128 6.7
256 257 2.3 245 2.6 248 7.6

1,024 513 2.3 474 3.2 500 7.9

Table 9.1.: Number of Newton iterations for Algorithm 9.1 (Newton), Algorithm 9.2
(NewKnotIns) and Algorithm 9.3 (NewKnotInsImpr) with a cubic B-spline
discretization and a BDF2 scheme for a butterfly-spread option in the
worst case scenario.
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Figure 9.3.: Today’s butterfly spread option price VΘ(0, S) in the worst case scenario
for cubic B-splines (left) and L2(I)-error convergence for the BSB equa-
tion (right) with linear and cubic B-splines applying a BDF2-scheme with
time step size s ≈ O(h2)
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Figure 9.4.: First derivative of today’s butterfly spread option price ∆Θ(0, S) in the
worst case scenario, for cubic B-splines (left) and L2(I)-error convergence
of ∆Θ(0, S) for the BSB equation (right) with linear and cubic B-splines
applying a BDF2-scheme with time step size s ≈ O(h3/2).
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Figure 9.5.: Second derivative of today’s butterfly spread option price ΓΘ(0, S) in the
worst case scenario, for cubic B-splines (left) and L2(I)-error convergence
of ΓΘ(0, S) for the BSB equation (right) with linear and cubic B-splines
applying a BDF2-scheme with time step size s ≈ O(h).
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Figure 9.7.: Approximation of today’s butterfly-spread option price VΘ(0, S) with cu-
bic B-splines in the Black-Scholes-Barenblatt model in the best and worst
case scenario with σmin = 0.15 and σmax = 0.25. The dashed line cor-
responds to the standard Black-Scholes model with constant volatility
σ = 0.2.
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10.1. Conclusion

We have provided several numerical methods with (tensor product) B-splines for the
pointwise highly accurate approximation of the Greeks, the partial derivatives up to
order two, for the more challenging case of American option pricing problems. In partic-
ular, we have considered the American option price in Heston’s and the Black-Scholes
model formulated as a parabolic variational inequality. In this context we have proved
the well-posedness of the Heston variational inequality derived in this thesis. One main
feature of this thesis is the finding that due to the initial condition typically given
as continuous piecewise linear payoff function a B-spline discretization with coinciding
knots is preferable. More precisely, a cubic B-spline discretization with three coinciding
knots at the points where the payoff function is not differentiable enables a point-
wise highly accurate approximation of the Greeks up to order two. Several numerical
experiments for linear, quadratic and cubic B-splines confirm that the optimal conver-
gence rates, as expected for variational inequalities, are attained. Moreover, we have
established a monotone multigrid method for (tensor product) B-splines with possi-
ble coinciding knots. In order to ensure the global convergence of the scheme we have
constructed monotone coarse grid approximation for (tensor product) B-splines with
possible coinciding knots. Corresponding numerical results have shown that the alge-
braic convergence rates of the MMG method are independent of the refinement level
and mesh size. Moreover, it was shown that our provided MMG method facilitates a
fast and highly accurate approximation of the American option price and its Greeks.

Furthermore, we have considered the pricing of an European option price with the
Black-Scholes-Barenblatt equation. Based on the Cordes coefficients we have proved its
well-posedness. In order to obtain a pointwise approximation of the European option
price and its Greeks under the worst and best case volatility path we have discretized
the BSB equation with higher order B-splines. Since a classical weak formulation in H1

does not exist, the non-linear BSB equation is approximated in H1 by L1-normalized
B-splines. It has turned out that the approximation of the volatility function leads to
discontinuities in the partial derivatives of the numerical solution. In order to improve
the approximation of the solution and its partial derivatives a semismooth Newton
method within a knot insertion step was developed. Corresponding numerical results
have shown that the convergence of the solution and its partial derivatives up to order
two are nearly optimal in the L2-norm as for variational equations when the volatility
is approximated with desired accuracy.
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10.2. Outlook

Numerical experiments for the constructed test problem for elliptic variational inequal-
ities (see Test problem 8.1) have shown that a refinement in the neighborhood of the
free boundary reduces the discretization error significantly. This clearly motivates the
use of adaptive methods with hierarchical B-splines to improve the efficiency of the
approach. To my knowledge adaptive methods were applied to variational inequalities
in the context of option pricing problems with a linear finite element discretization
(see e.g. [ZW09]) or to the Signorini problem (a special case of an elliptic variational
inequality) for quadratic finite elements as well (see e.g. [Woh11]).
In this thesis we have noticed that the convergence rates of the monotone multigrid
method depends on the B-spline order k. In current research, there are ideas for k-robust
multigrid methods for variational equations, see e.g. [HT17]. This method is based on
a stable splitting of the spline space into a subspace of interior splines which satisfy a
robust inverse inequality, as well as one or several smaller subspaces which capture the
boundary effects responsible for spectral outliers. Therefore they use an L2-orthogonal
B-spline splitting, which leads to the use of non positive L2-orthogonal B-spline basis
functions at the boundaries. For our constructed monotone multigrid method, which
relies on the positivity of the B-spline basis functions, such L2-orthogonal basis func-
tions are not suitable due to the non positive basis functions. In particular, preserving
the positivity for L2-orthogonal basis function would destroy the optimal complexity
of the monotone multigrid method. Thus, constructing a k-robust monotone multigrid
method for obstacle problems would be interesting for future work.
A convergence theory for the Black-Scholes-Barenblatt equation for the proposed ap-
proach with a cubic B-spline discretization is still outstanding. The classical convergence
analysis of Barles and Sougandis provides convergence of the solution to the viscos-
ity solution if the method is stable, consistent and monotone. In particular, proving
monotonicity for a higher order discretization is a challenging task. Another idea is to
apply the discontinuous Galerkin approach for HJB equations of [Sme15] to the Black-
Scholes-Barenblatt equation. This approach provides a convergence analysis, which is
also applicable for higher order basis functions. To the best of my knowledge another
convergence theory for HJB equation with a higher order discretization is not avail-
able. Moreover, it would be interesting to consider a cubic B-spline discretization of
the Black-Scholes-Barenblatt equation in the multi-asset case introduced in [Lyo95].
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A. Appendix

Knot insertion

In the following, we present an algorithm for computing the B-spline coefficients for a
refined knot series from a given spline. This algorithm is needed for the knot insertion
step in Algorithm 9.2 and Algorithm 9.3. It is important to note that knot insertion is
only a change of the corresponding basis but the spline does not change. The results
presented here are based on [LM08, PT97].
Let S(x) := ∑n

i=1 ciNi,k(x) define a spline of order k regarding a knot series Θ in
the spline space Sk,Θ. Let further Θ̃ a refined knot series of Θ, i.e. any real number
occurs at least as many times in Θ̃ as in Θ. Therefore one clearly has Sk,Θ ⊆ SΘ̃,k (c.f.
[LM08, Chapter 4.1, Lemma 4.2]). Thus, the spline S(x) also has a representation in
the spline space SΘ̃,k, i.e. there exist B-spline coefficients c̃ := (c̃j)ñj=1 such that S(x) =
∑ñ
j=1 c̃jNi,k,Θ̃(x). Moreover, each B-spline Ni,k,Θ(x) ∈ Sk,Θ can also be represented in

the spline space SΘ̃,k, that means

Ni,k,Θ(x) =
ñ∑

j=1
αi,j,kNj,k,Θ̃(x) for i = 1, . . . , n. (A.1)

In matrix vector notation we can write

NT
k,Θ = NT

k,Θ̃KΘ̃, (A.2)

with NT
k,Θ and basis transformation matrix KΘ̃ ∈ Rñ×n. The basis transformation

matrix KΘ̃ is also called knot insertion matrix of order k from Θ to Θ̃. Due to equation
(A.2) the spline S(x) can be represented as

S(x) = NT
k,Θ̃c̃ = NT

k,Θc = NT
k,Θ̃KΘ̃c. (A.3)

Therefore, the linear independency of B-splines implies that the coefficient vectors must
be related by c̃ = KΘ̃c.
A powerful tool to add one knot to an existing knot series is the so called Böhm’s
method, which was developed by [Boe80]. This concept is provided in the next theorem.
A proof using divided differences to determine the B-spline coefficients of the splines
can be found in [LM08, Chapter 4.8, Lemma 4.19 ].
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Theorem A.1. (Böhm’s method)
Let Θ := (θi)n+k

i=1 be a given knot vector and let Θ̃ := (θ̃j)n+k+1
j=1 be the knot vector

obtained by inserting a knot x̃ in Θ in the interval [θ℘, θ℘+1). If

S(x) =
n∑

i=1
ciNi,k,Θ(x) =

ñ∑

j=1
c̃jNi,k,Θ̃(x) (A.4)

then c̃j can be expressed in terms of ci by the formulas

c̃j =





bj if 1 ≤ j ≤ ℘− k + 1,
x̃−θj

θj+k−1−θj cj + θj+k−1−x̃
θj+k−1−θj cj−1 if ℘− k + 2 ≤ j ≤ ℘,

cj−1 if ℘+ 1 ≤ j ≤ n+ 1.
(A.5)

For implementation, it is useful to rewrite (A.5) in matrix vector notation. Let us
consider c̃ = KΘ̃c where KΘ̃ is the knot insertion matrix for inserting one knot, then
(A.5) can be expressed in matrix vector notation with the matrix KΘ̃ ∈ R(n+1)×n given
by

KΘ̃ :=




1 0
. . . . . .

1 0
1− λ℘−k+2 λ℘−k+2

. . . . . .
1− λ℘ λ℘

0 1
. . . . . .

0 1




, (A.6)

where λj := (x̃ − θj)/(θj+k−1−θj ) for ℘ − k + 2 ≤ j ≤ ℘. The knot insertion matrix is
bi-diagonal and all entries are positive since x̃ lies in the interval [θ℘, θ℘+1).

The following corollary generalizes the knot insertion matrix to insert several knots.
This result can be obtained by applying Böhm’s method ñ− n times. A detailed proof
can be found in [LM08, Chapter 4.5, Lemma 4.20].

Corollary A.2. Let Θ := (θi)n+k
i=1 and Θ̃ := (θ̃j)ñ+k

j=1 be two knot vector for splines of
order k with Θ ⊆ Θ̃. Then all the entries of the knot insertion matrix KΘ̃ from Sk,Θ to
SΘ̃,k are nonnegative and KΘ̃ can be factored as

KΘ̃ := KΘ̃,ñ−nKΘ̃,ñ−n−1 · · ·KΘ̃,1, (A.7)

where KΘ̃,j ∈ R(n+j)×(n+j−1) is a bi-diagonal matrix with nonnegative entries.
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Knot removal

Knot removal means exactly what the name suggests, namely removing knots from an
existing knot series. One particular difficulty arises from the fact that not all knots
are removable since the spline can change geometrically when knots are removed. Thus
it is necessary to construct a method, which determines if a knot is removable and if
so, how many times. Moreover, this method must compute the new spline coefficient
vector from the existing coefficient vector. The subsequent method presented here are
from [PT97, Chapter 5.4], where the authors discuss knot removal in the context of
Nurbs. Since Nurbs are only a generalization of B-splines, the results and methods can
be easily transferred to B-splines.
Let us consider the spline associated with the given knot series Θ

S(x) :=
n∑

i=1
ciNi,k,Θ(x). (A.8)

Let further Θ̃ denote the knot series obtained by removing the knot θ℘ b times from Θ.
Then θ℘ is called b times removable if

S(x) =
n−b∑

i=1
c̃iNi,k,Θ̃(x). (A.9)

Considering the properties of B-splines in Properties 3.16 it is known that a spline at
the knot θ℘ with multiplicity q has k − q − 1 continuous derivatives at this knot. But
for some positions of the coefficients even higher continuous derivatives are possible.
Thus a knot with multiplicity q is b times removable if the spline has k − q − 1 + b
continuous derivatives for 1 ≤ q ≤ k − 1. Hence, by exploiting the formula in (3.70)
for the derivatives of splines at the knot θ℘ and its neighbouring knots the following
formula is derived for removing one knot x = θ℘ 6= θ℘+1 with multiplicity q. Let us
assume that c̃(0)

i := ci then the formulas for the new coefficients are

c̃
(1)
i =

c̃
(0)
i − (1− αi)c̃(1)

i−1
αi

for ℘− k + 1 ≤ i ≤ 1
2(2℘− k − q) (A.10)

c̃
(1)
j =

c̃
(0)
j − αj c̃

(1)
j+1

(1− αj)
for 1

2(2℘− k − q + 3) ≤ j ≤ ℘− q (A.11)

with
αs = x− θs

θs+k − θs
for s = i, j. (A.12)

A detailed derivation of the formulas can be found in [PT97, Chapter 5.4]. For the im-
plementation in Matlab we have modified the Nurbs-code from [SCdFV] for B-splines.
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B. Code documentation

This chapter provides a brief overview of the Matlab package, which was implemented
in connection with this thesis. As not stated otherwise the functions are implemented
by myself.
We start by presenting the code developed for the numerical solution for the Black-
Scholes and Heston variational inequality with a B-spline discretization of order k. The
implementation allows to discretize the Black-Scholes or Heston-Variational inequality
for arbitrary (tensor product) B-spline order k. Due to the low regularity of the solution
at the free boundary, a linear (k = 2), quadratic (k = 3) or cubic (k = 4) B-spline dis-
cretization is recommended. In particular in the context of option pricing problems the
most relevant discretization is the cubic B-spline discretization to facilitate a pointwise
approximation of the Greeks up to order two.
Although we concentrate on specific payoff functions in this thesis, the Black-Scholes or
Heston variational inequality can be discretized for any once weak differentiable payoff
function by simple changing the function in Matlab to another payoff function. Clearly,
in this context the user has to take into account the truncation effects in the respective
model.
The implementation of the B-splines relies on its recursive definition, the Neville-like
scheme in Theorem 3.18 for its point evaluation and its expression as derivatives from
Corollary 3.17. This functions were implemented by [Mol16]. In order to compute the
Greeks, the derivatives of the spline solution are implemented in this thesis according
to Corollary 3.19. All these functions works for arbitrary B-spline order k and possible
non-uniform sequences of knots with coinciding internal knots as well.
Since B-splines are piecewise polynomials of order k on [θr, θr+1] the entries of the
discretization matrices can be computed exactly with the Gauss-Legendre quadrature
rule for sufficiently high order. Thus, the computation of the integrals over the diff’th
derivative of the B-splines and some polynomial a(x) are performed as follows

Bi,j =
∫

Q
a(x)N (diff1)

j,k (x)N (diff2)
i,k (x)dx (B.1)

=
min(i,j)+k−1∑

r=max(i,j)

θr+1∫

θr

a(x)N (diff1)
j,k (x)N (diff2)

i,k (x)dx. (B.2)
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Moreover, the Gauss points are given as the roots of the Legendre polynomials on the
interval [−1, 1]. As a consequence transformation from [θr, θr+1] to the interval [−1, 1]
with the variable x̃r := (θr+1 + θr)/2 + (θr+1 − θr)/2x̃ and cr := (θr+1 − θr)/2 yields

Bi,j =
min(i,j)+k−1∑

r=max(i,j)

1∫

−1

a(x̃r)N (diff1)
j,k (x̃r)N (diff2)

i,k (x̃r)cr dx̃

=
min(i,j)+k−1∑

r=max(i,j)

ñ∑

l=1
w̃r
l a(x̃rl)N

(diff1)
j,k (x̃rl)N

(diff2)
i,k (x̃rl), (B.3)

where w̃r
l := wlc

r are the Gauss-Legendre weights and x̃rl the corresponding Gauss-
Legendre points on the interval [θr, θr+1]. For computing N Gauss-Legendre points and
weights on an interval [a, b] the Matlab function lgwt[N,a,b] from [vW] is used.
Due to the tensor product structure, the discretization of the bilinear forms in higher
dimensions can be expressed by the Kronecker product of the one dimensional dis-
cretization matrices. In this thesis, the discretization matrices and right hand side for
the Heston variational inequality are implemented in terms of Kronecker products ac-
cording to the formulas in (5.43) and (5.45).
In order to solve the discrete variational inequalities arising from a (tensor product)
B-spline discretization an implementation of the MMG method in Matlab is proposed.
This function works for arbitrary B-spline order k = 2, 3, 4 and a uniform knot series
with possible internal coinciding knots as well. The corresponding restriction and pro-
longation operators are build up automatically for a uniform knot series with k − 1
coinciding knots at θ℘. Since for option pricing problems payoff functions are typically
given as piecewise continuous functions with discontinuity in the partial derivative at
the strike price K, this facilitates the numerical computation of the American option
price and its Greeks in the Black-Scholes or Heston model for payoff functions with
one strike price K. Moreover, restriction and prolongation operators are proposed for a
payoff function with three discontinuities at θ℘1 , θ℘2 and θ℘3 , this, for example, enables
the numerical computation of the American butterfly-spread option price.
For the a priori smoothing steps in the MMG method an implementation of the PSOR
method from Section 7.1 is needed. Due to the projection step in the PSOR approach,
the iteration procedure can not be vectorized, thus the execution in Matlab is very
slow. As a consequence the PSOR method is implemented as a C Mex-function, which
provides a gateway to Matlab. This code implemented in C runs much faster than the
corresponding code in Matlab.
Now, the functionality of the most relevant functions are specified. To simplify the
handling, the code for the Black-Scholes and Heston variational are located in sepa-
rate directories. Note, that the specific implementation for the respected problem also
optimized the run time of several operations. We start by the documentation of the
B-spline code for the Black-Scholes variational inequality.

175



B. Code documentation

B-spline code for the Black-Scholes variational inequality:

• BS_main: In this script Example 8.2, Example 8.3, Example 8.6 and Example 8.4
are implemented. The user can specify the following input parameters:

– Refinement level j, lowest level of the MMG method lev_end-1,

– B-spline order k, only the parameters k=2,3,4 make sense,

– number of time steps timestep,

– number of a priori and a posteriori smoothing steps eta as 2× 1 array,

– type of the payoff function payoff; possible choices are ’put’ with param-
eters as in Example 8.2, ’butterfly’ with parameters as in Example 8.4,
’call1’ with parameters as in Example 8.3, ’call2’ with parameters as in
Example 8.6,

– choice of the solution algorithm method; possible choices are ’MMG’ (mono-
tone multigrid method), ’MMG_Nest’ (monotone Multigrid with initial value
obtained by Nested iteration) and ’PGS’ (projective Gauss-Seidel method),

– type of the time stepping method choice, possible choices are ’euler’ (im-
plicit Euler method), ’ran’ (Rannacher timestepping method), ’crank’
(Crank-Nicolson method)

– repetition of knots repetition, ’yes’ corresponds to a uniform knot series
where k − 1 knots are repeated at the strike price/s, ’no’ corresponds to a
uniform knot series without internal coinciding knots,

– tolerance tol_f for the stopping criteria as anonymous function (@ function).

Output: L2(I)-error of today’s American option price, its first derivative Delta and
its second derivative Gamma, number of iteration steps needed until convergence
with the PGS or MMG method, averaged algebraic convergence rate and averaged
cpu time needed to solve the complementarity problem in one time step, plot of
today’s approximated American option price, its Delta and Gamma.
It is also possible for the user to change the parameters from the Black-Scholes
model, but then the error regarding the reference solution is no longer valid.

• produces_system: Function to assemble the discretization matrices and right
hand side for the Black-Scholes model. The integrals in (4.37) are computed
exactly by applying the Gauss-Legendre quadrature rule according to (B.3). The
integrals for the right hand side in (4.38) are obtained by a simple modification
of (B.3).
Input:

– number of B-spline basis functions within the first and last B-spline N, B-
spline order k and knot series theta,
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– strike price K for put and call options or strike prices [K1,K,K2] for a
butterfly-spread option, volatility sigma, interest rate r, dividend yields d,
payoff function and it’s first derivative as anonymous functions,

– time step size s and weighted average for the time stepping method varpi,
possible choices are 0.5 (Crank-Nicolson method) and 1.0 (implicit Euler
method).

Output: discretization matrices and ride hand side for the implicit Euler and
Crank-Nicolson method.

• psor_euler_crank, psor_ran: In this functions the PSOR method is used to
solve the fully discrete complementarity problem applying an implicit Euler,
Crank-Nicolson or Rannacher timestepping method.

• MMG_ran, MMG_euler_crank: In this functions the implicit Euler, Crank-Nicolson
or Rannacher timestepping method is applied to solve the linear complementarity
problem with the MMG algorithm in each time step.

• produce_restriction: Helpfunction to initialize the restriction operator for lin-
ear, quadratic and cubic B-splines with coinciding knot/s at the strike prices.
The restriction operators are saved in a cell-array for each level. In order to
accelerate calculations the restricted discretization matrices C_cell (RC`P) are
also saved in a cell array for each level.

• MMG: Monotone multigrid algorithm to solve the linear complementarity problem
in one time step.
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Input: C_cell restricted discretization matrices for each level implemented as cell-
array and its diagonal part for each level D_cell. In order to accelerate the matrix
vector multiplication in C one needs also the transposed restricted discretization
matrices implemented as cell-array C_cellt, right hand side f on the highest level,
initial value u0, highest level lev, lowest level lev_end , B-spline coefficient vector
for the obstacle on the highest level obst, a priori and a posteriori smoothing
steps eta1 and eta2, B-spline order k, maximum number of iteration steps max,
tolerance for the stopping criteria tol and inter number of coinciding knots.
Output: B-spline expansion coefficients vector u for the approximated solution in
one time step, number of iteration steps iter needed until convergence according
the stopping criteria ‖u− u0‖`2 < tol.

• upper_coarse_grid: In this function the monotone upper coarse grid approxi-
mation in one dimension out of Corollary 7.4 is implemented.
Input: obstacle obst, level lev, B-spline order k, number of coinciding knots
inter.
Output: coefficient vector q for the monotone upper coarse grid approximation.

• L_2: Helpfunction to compute the L2(I)-error on the interval I. The integrals are
computed with the Gauss-Legendre-quadrature rule on [θi, θi+1].
Input: Approximated B-spline Galerkin solution in one time step as anonymous
function or its derivatives, B-spline order k, knot series theta, order of differen-
tiation diff.
Output: Error in the L2-norm on the interval I.

• Hedge_plot: Routine for plotting the spline solution (approximated option price)
and its derivatives (Greeks) in one time step. Moreover, the free boundary in one
time step is approximated.
Input: expansion coefficient vector, B-spline order k, knot series theta, strike price
K for put and call options or strike prices [K1,K,K2] for a butterfly-spread option,
refinement level j, payoff function and its derivatives as anonymous function, type
of the payoff function payoff (string).
Output: Plot of the American option price in one time step, its Delta and Gamma
and corresponding data saved in a dat-file, approximated free boundary Sf_h in
one time step.

Tensor product B-spline code for the Heston variational inequality:

• Heston_main: In this script Example 8.5 is implemented. The user can specify
the following input parameters:

– B-spline order k,

– refinement level j with multiindices [jx,jv] in the x- and v-direction,

– number of time steps,

– type of the time stepping method t_choice, possible choices are ’euler’
(implicit Euler method), ’ran’ (Rannacher timestepping method), ’crank’
(Crank-Nicolson method),
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– choice of the solution algorithm method; possible choices are ’MMG’ (mono-
tone multigrid method), ’MMG_Nest’ (monotone Multigrid with initial value
obtained by Nested iteration) and ’PGS’ (projective Gauss-Seidel method),

– lowest level of the MMG method lev_end-1,

– number of a priori and a posteriori smoothing steps eta as 2× 1 array,

– repetition of knots repetition, ’yes’ corresponds to a uniform knot series
where k − 1 knots are repeated at the strike price, ’no’ corresponds to a
uniform knot series without internal coinciding knots,

– tolerance tol_f of the stopping criteria as anonymous function.

Output: L2(Ω)-error of today’s American put option price, its Delta, Vega and
Gamma, averaged algebraic convergence rate and averaged cpu time needed to
solve the complementarity problem in one time step, plot of today’s approximated
option price, its Delta, Vega and Gamma.
It is also possible for the user to change the parameters from the Heston model,
but then the error regarding the reference solution is no longer valid.

• produces_system: Function to assemble the discretization matrices and right
hand side for the Heston model in terms of Kronecker products of the discretiza-
tion matrices in the x- and v-direction according to the formulas in (5.43) and
(5.45).
Input:

– Number of B-spline basis function N and M in the x- and v-direction within
the first and last B-spline,

– B-spline order k and the corresponding uniform knot series theta_x and
theta_v with possible internal coinciding knots,

– choice of the boundary condition bound_v0; bound_v0=0 corresponds to the
set of boundary conditions in (2.93) (not recommended since it leads to
unstable approximation of Vega, see Section 8.2.1) and bound_v0=1 corre-
sponds to the set of boundary conditions in (2.94),

– parameters for the Heston model rho,xi,gamma,r and kappa,

– payoff function and its derivative as anonymous function,

– time step size s and weighted average varpi for the time discretization.

Output: Discretization matrix and discrete right hand side for the implicit Euler
and Crank-Nicolson method.

• produces_matrices_x, produces_matrices_v, produces_vector_x and
produces_vector_v: Helpfunctions to assemble the discretization matrices in the
x- and v-direction from (5.49). The entries are calculated according to (B.3). The
integrals for the right hand side in (5.51) are computed by a simple modification
of (B.3).
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• psor_euler_crank, psor_ran: In this functions the PSOR method is used to
solve the fully discrete complementarity problem applying an implicit Euler,
Crank-Nicolson or Rannacher timestepping method.

• MMG_ran, MMG_euler_crank: In this functions the implicit Euler, Crank-Nicolson
or Rannacher timestepping method is applied to solve the linear complementarity
problem with the MMG algorithm in each time step.

• produce_restriction: Helpfunction to initialize the restriction operator for lin-
ear, quadratic and cubic tensor product B-splines with possible coinciding knots
at the strike price. The restriction operators are implemented as Kronecker prod-
ucts and are saved in a cell-array for each level. In order to accelerate calculations
the restricted discretization matrices C_cell (RC`P) are also saved in a cell array
for each level.

• MMG: Monotone multigrid algorithm to solve the linear complementarity problem
in one time step.
Input:

– restricted discretization matrices C_cell for each level implemented as cell-
array and its diagonal part for each level D_cell, in order to accelerate the
matrix vector multiplication in C one needs also the transposed restricted
discretization matrices implemented as cell-array C_cellt,

– right hand side f on the highest level,

– lowest level lev_end-1, B-spline order k and number of coinciding knots
inter,

– tensor product B-spline coefficient vector for the obstacle obst on the highest
level in lexicographical order obstix,iv , initial value u0,

– a priori and a posteriori smoothing steps eta1 and eta2,

– maximum number of iteration steps max, stopping criteria tol,

– choice of the boundary condition bound_v0.

Output: Tensor product B-spline expansion coefficients vector u for the approx-
imated solution (in lexicographical order) in one time step, number of iteration
steps needed until convergence according the stopping criteria ‖u− u0‖`2 < tol.

• coarse_grid2d: In this function the monotone upper coarse grid approximation
in two dimensions for a uniform knot series with possible coinciding knots in the
x-direction is implemented, see Corollary 7.4.
Input: expansion coefficients of the obstacle function obst in lexicographical or-
der, level in the x- and v-direction lev_x and lev_v, B-spline order k, number of
coinciding knots inter, choice of the boundary condition bound_v0.
Output: coefficient vector q in lexicographical order for the monotone upper coarse
grid approximation.
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• L_2_2d: Helpfunction to compute the L2(Ω)-error on the two dimensional domain
Ω. The integrals are computed with the Gauss-Legendre-quadrature.
Input: Approximated tensor product B-spline solution in one time step or its
derivatives as anonymous function, B-spline order k, knot series theta_x and
theta_v, order of differentiation in the x-direction diff_x and in the v-direction
diff_v.
Output: Error in the L2(Ω)-norm.

• Hedge_plot: Routine for plotting the tensor product spline solution (approxi-
mated option price) and its derivatives (Delta, Vega and Gamma). Moreover, the
free boundary in one time step is approximated.
Input: expansion coefficient vector u in lexicographical order, knot series theta_x
and theta_v, B-spline order k, strike price K, payoff function and its derivative
as anonymous function.
Output: Plot of the approximated option price, Delta, Vega, Gamma and the
approximated free boundary in one time step saved in a pdf-file.

Now, a short overview of the B-spline code for the Black-Scholes-Barenblatt equation
is given. In particular, the implementations of Algorithm 9.1, Algorithm 9.2 and Algo-
rithm 9.3 are described. The standard semismooth Newton method is implemented for
arbitrary B-spline order k = 2, 3, 4 but due to the poor approximation of the volatility
function defined in (9.39) increasing the order of the B-spline basis functions does not
improve the global discretization error. The semismooth Newton method with knot rep-
etition of existing knots works also for B-splines of order k = 2, 3, 4. But, for the same
reason as before increasing the order improves only (very) slightly the global discretiza-
tion error. In Algorithm 9.3 the strong form of the approximated volatility function is
needed, to compute the roots of the second derivative. Thus, the corresponding im-
plementation in Matlab is restricted to a cubic (k = 4) B-spline discretization. In the
following, the functionality of the most relevant functions are specified. The code is im-
plemented for the Black-Scholes-Barenblatt equation for an European butterfly-spread
option in the worst case scenario. The corresponding option price in the best case sce-
nario can be obtained by changing the minimal value for the volatility sigma_min to
the maximal value for the volatility sigma_max and vice versa.

B-spline Code for the Black-Scholes-Barenblatt equation

• BSB_Algo1: Standard semismooth Newton algorithm as stated in Algorithm 9.1
to solve the BSB equation with the approximated volatility function in (9.39). In
this script Example 9.10 is implemented.
Input: refinement level j, B-spline order k (for reasonable choices see the descrip-
tion above).
Output: L2(I)-error of today’s option price, its Delta and Gamma, averaged num-
ber of Newton iteration steps per time step, plot of today’s option price, its Delta
and Gamma.

• volatility1: Function to assemble the volatility function (weak form) in (9.39).
This function also computes the locations of volatility changes for a butterfly-
spread option.
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• BSB_Algo2: Semismooth Newton Algorithm with knot repetition of existing knots
as stated in Algorithm 9.2.
Input: refinement level j, B-spline order k (for reasonable choices see the descrip-
tion above) to solve the BSB equation with the approximated volatility function
in (9.39).
Output: L2(I)-error of today’s butterfly-spread option price, its Delta and Gamma,
averaged number of Newton iteration steps per time step, plot of today’s option
price, its Delta and Gamma.

• BSB_Algo3: Semismooth Newton Algorithm with knot insertion at the roots of
the second derivative as stated in Algorithm 9.3.
Input: refinement level j.
Output: L2(I)-error of today’s butterfly-spread option price, its Delta and Gamma,
averaged number of Newton iteration steps per time step, plot of today’s option
price, its Delta and Gamma.

• volatility2: Function to assemble the volatility function (strong form) in (9.41).
This function also returns the roots of the second derivative for a butterfly-spread
option.

• roots_sec: Helpfunction to approximate the roots of the second derivative by
the Matlab function fzero. For this function an initial interval for the bisection
method has to be specified. To find the two roots for the butterfly spread op-
tion in the middle the initial interval has to be taken carefully. Therefore, the
matlab function fmin_search is used to find the two maxima and the minimum
of Gamma, which serve as good initial values to find the two relevant roots of
the second derivative. Note, that also fminsearch needs reasonable initial values,
which vary for different model parameters.

• prepare_ref: Helpfunction to compute the corresponding knot insertion matrix
with Böhm’s method. In particular, this function checks if there are k-1 knots
z1 or z2 at the mue1+1’th or mue2+1’th position. If there are no knots the func-
tion returns the identity matrix, otherwise it computes the corresponding knot
insertion matrix to insert so many knots z1 and z2 as necessary for having k-1
coinciding knots z1 and z2 in the knot series. This function works for quadratic
and cubic B-splines. It also returns the corresponding new knot series and the
new approximated volatility function.

• RemoveCurveKnot: Helpunction to remove unnecessary knots from the existing
knot series for B-splines. A detailed explanation can be found in [PT97, Chapter
5.4] or Appendix A. For the implementation in Matlab we have slightly modified
the Nurbs-code from [SCdFV] for B-splines.

General functions

• Nev: Evaluates a d-dimensional spline at the point x=[x1,..,xd] according to a
multidimensional version of the Neville-like scheme in Theorem 3.18. This func-
tion was implemented by [Mol16].
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Input: Multidimensional vectorized expansion coefficient c in lexicographical or-
der, extended sequence of knots in each direction in a cell array, B-spline order
k=[k1,..,kd] in each direction, evaluation point x=[x1,..,xd].
Output: Point evaluation Val of the corresponding multidimensional spline at the
point x=[x1,..,xd].

• Ndiff: Helpfunction to evaluate the diff’th derivative of the B-spline Nij ,k(xj)
in one coordinate at the point xj , implemented by [Mol16].
Input: knot series in each direction in a cell array, B-spline order k, evaluation
point, order of differentiation diff.
Output: Point evaluation Val of the diff’th derivative of the B-spline Nij ,k(xj).

• psor.c: The function can be compiled in Matlab2018b by the command
mex -largeArrayDims psor.c. This function solves a linear complementarity
problem via the PSOR method described in Section 7.1. In order to speed up the
matrix vector multiplication and to permit the transposition of the discretization
matrix in each time step of the time stepping method the user has to specify the
discretization matrix in transposed form. Moreover, the function works only for
matrices in sparse format. Note, that this algorithm is a standard method to
solve LCP’s and many versions of implementations are available.
Input:

– transposed matrix Ct of the discretization matrix C in sparse format,

– diagonal part of the N×N discretization matrix in a N×1 double array and
the discrete right hand side in a N×1 double array,

– (tensor product) B-spline expansion coefficients of the obstacle in lexico-
graphical order, initial iterate u0 in a N×1 double array,

– relaxation parameter om for the PSOR method, om=1 corresponds to the
projective Gauss-Seidel method,

– maximal number of iteration steps iter_max as integer number, tolerance
for the stopping criteria tol as double number.

Output: B-spline expansion coefficients for the approximated solution u in one
time step (or solution of the LCP), number of iteration steps needed until con-
vergence according the stopping criteria ‖u− u0‖`2 < tol.
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Notations for (tensor-product) B-splines:

Θ := {θi}n+k
i=1 . . . . . . . . ordered sequence of knots

Ni,k(x) . . . . . . . . . . . . . . B-spline of order k ∈ N
Sk,Θ . . . . . . . . . . . . . . . . space of splines spanned by the basis functions Ni,k(x)
S(x) . . . . . . . . . . . . . . . . spline
Sdk,Θ . . . . . . . . . . . . . . . . d-dimensional tensor-product spline space of order k
S(x) := S(x1, . . . , xd) d-dimensional tensor-product spline
h . . . . . . . . . . . . . . . . . . . . uniform grid size

General Notations for elliptic and parabolic variational inequalities:

<∼ , >∼ . . . . . . . . . . . . less/greater or equal to except for a positive constant inde-
pendent of all parameters, i.e., u <∼ v ⇔ there exist a con-
stant c > 0 such that u ≤ cv and analogous for >∼

∂u
∂x or ∂xu . . . . . . . . . . partial derivative of u with respect to x
Ω ⊂ Rd, d = 1, 2 . . . . spatial domain
∂Ω . . . . . . . . . . . . . . . . boundary of the spatial domain
Cm(Ω). . . . . . . . . . . . . . space of m’th continuously differentiable function on Ω
‖ · ‖X . . . . . . . . . . . . . . norm on X

(·, ·)X inner product on X

H := L2(Ω) . . . . . . . . space of square integrable functions on Ω
(·, ·) inner product on L2(Ω)
Wm,p(Ω) . . . . . . . . . . . Sobolev space of order m ∈ N on Ω in the Lebesgue space

Lp(Ω) with p ∈ N
Hm(Ω) . . . . . . . . . . . . . Sobolev space of order m ∈ N on Ω in the Lebesgue space

L2(Ω)
V . . . . . . . . . . . . . . . . . . Sobolev space of order one on Ω
Hm

0 (Ω) . . . . . . . . . . . . . Sobolev space of order m ∈ N on domain Ω with zero bound-
ary condition on ∂Ω

V0 ⊂ V . . . . . . . . . . . . Sobolev space of order one on domain Ω with zero boundary
condition on Υ ⊆ ∂Ω

184



V∗ . . . . . . . . . . . . . . . . . Dual space of V0

〈·, ·〉V∗,V . . . . . . . . . . . Duality pairing between V∗ and V
W s,p(Ω) . . . . . . . . . . . Sobolev-Slobodeckij space with non-integer s > 0 on Ω in

the Lebesgue space Lp(Ω)
Hs(Ω) . . . . . . . . . . . . . Sobolev-Slobodeckij space with non-integer s > 0 on Ω in

the Lebesgue space L2(Ω)
W (0, T,X) . . . . . . . . Bochner space of real vector-valued functions with

y(t) : (0, T )→ X

A : V → V∗ . . . . . . . . spatial linear operator
a(·, ·) : V × V → R . spatial bilinear form on V × V
y(x) or y(τ, x) . . . . . solution y(x) ∈ V of an elliptic variational inequality or so-

lution y(τ, x) : (0, T ) → V of a parabolic variational in-
equality with inhomogeneous Dirichlet boundary condition
on Υ ⊆ ∂Ω

ψ := ψ(x) : Ω→ R . Obstacle function, and also the initial condition for parabolic
problems, depending only on spatial parameter x ∈ Ω

K ⊂ V . . . . . . . . . . . . . closed convex set of functions in V with inhomogeneous
Dirichlet boundary condition on Υ ⊆ ∂Ω (see (3.8))

K0 ⊂ V0 . . . . . . . . . . . closed convex set of functions in V0 with homogeneous
Dirichlet boundary condition on Υ ⊆ ∂Ω (see (3.10))

u(x) or u(τ, x) . . . . . solution u(x) ∈ K0 ⊂ V0 of an elliptic variational inequality
or solution u(τ, x) : (0, T ) → V0 with u(τ, x) ∈ K0 for a.e.
τ ∈ (0, T ) of a parabolic variational inequality with homo-
geneous Dirichlet boundary condition on Υ ⊆ ∂Ω

ψ̃(x) : Ω→ R . . . . . . obstacle function, and also the initial condition for parabolic
problems after transformation to homogeneous Dirichlet
boundary condition on Υ ⊆ ∂Ω

ε > 0 . . . . . . . . . . . . . . penalty parameter
uε(τ) . . . . . . . . . . . . . . solution uε(τ) ∈ V0 of the penalty problem as stated in

(3.27)
Quε(τ) . . . . . . . . . . . . penalty function Quε(τ) := min(uε(τ)− ψ̃, 0)
û(τ) . . . . . . . . . . . . . . . integral û(τ) :=

∫ τ
0 u(r)dr

δs(u(τ)) . . . . . . . . . . . . finite difference quotient for ∂τu(τ) with time step size s > 0

General notations for options:

T . . . . . . . . . . . . . . . . . . expiration date
t . . . . . . . . . . . . . . . . . . . time
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τ := T − t . . . . . . . . . . time until expiry
S . . . . . . . . . . . . . . . . . . underlying price
K,K1,K2 . . . . . . . . . . strike prices
x = log(S/K) . . . . . . log-transformed underlying price
HC(S) . . . . . . . . . . . . . payoff for a call option
HP(S) . . . . . . . . . . . . . payoff for a put option
HBS(S) . . . . . . . . . . . . payoff for a butterfly-spread option
g(x) . . . . . . . . . . . . . . . log-transformed payoff for a put option
W (t) . . . . . . . . . . . . . . Wiener process
r . . . . . . . . . . . . . . . . . . risk free interest rate

Notations for option pricing with the Black-Scholes model
Continuous Problem:
σ > 0 . . . . . . . . . . . . . . . . . . . . constant volatility
µ . . . . . . . . . . . . . . . . . . . . . . . . constant drift
D0 > 0 . . . . . . . . . . . . . . . . . . . constant dividend yields
V (t, S) . . . . . . . . . . . . . . . . . . American option price
LBV (t, S) . . . . . . . . . . . . . . . spatial operator of the Black-Scholes equation in strong form

as defined in (2.11)
I := (0, Smax) . . . . . . . . . . . . spatial interval
Sf (t) : [0, T ]→ R+ . . . . . . . early exercise price or free boundary
V . . . . . . . . . . . . . . . . . . . . . . . . weighted Sobolev space of once weak differentiable function

on I ⊂ R as defined in (2.70)
K ⊂ V . . . . . . . . . . . . . . . . . . . . convex set in V
V0 ⊂ V . . . . . . . . . . . . . . . . . . weighted Sobolev space on I ⊂ R with homogeneous Dirich-

let condition on ∂I as defined in (2.72)
K0 ⊂ V0 . . . . . . . . . . . . . . . . . . convex set in V0

aB(·, ·) : V × V → R . . . . . . bilinear form/weak form of the spatial Black-Scholes opera-
tor as defined in (2.78)

y(τ) := V (T − t, S) . . . . . . . time reversed American option price (=̂ solution of the vari-
ational inequality in (2.77))

yε(τ) . . . . . . . . . . . . . . . . . . . . . solution of the penalty problem in (4.16)
Qyε(τ) . . . . . . . . . . . . . . . . . . penalty function
u(τ) := y(τ)−H . . . . . . . . solution of the variational inequality with homogeneous

boundary condition in (2.82)
ũH . . . . . . . . . . . . . . . . . . . . . . linear extension of H(0) and H(Smax) as defined in (4.17)
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ũε(τ) := yε(τ)− ũH . . . . . . solution of the penalty problem in (4.18) with homogeneous
boundary condition on ∂I

B-spline Galerkin semi-discretization:

0 < s < 1 . . . . . . . . . . . . . . . . . time step size
τ (z) ∈ [0, T ] . . . . . . . . . . . . . . . mesh point
#T . . . . . . . . . . . . . . . . . . . . . . number of mesh points on [0, T ]
u(z) := u(τ (z), S) . . . . . . . . . semi-discrete solution in time step z with homogeneous

boundary condition on ∂I

$ ∈ {0, 0.5, 1} . . . . . . . . . . . weighted average: $ = 0 explicit Euler method, $ = 0.5
Crank-Nicolson method and $ = 1 implicit Euler method

ãB(·, ·) : V × V → R . . . . . . bilinear form after semi-discretization as defined in (4.30)
f̃ (z−1) . . . . . . . . . . . . . . . . . . . . right hand side after semi-discretization as defined in (4.31)
Θ := {θi}n+k

i=1 . . . . . . . . . . . . extended sequence of knots for the B-spline basis functions
θ℘ := K . . . . . . . . . . . . . . . . . . k − 1 times repeated knot at strike price K
0 < h < 1 . . . . . . . . . . . . . . . . uniform grid size
n ∈ N . . . . . . . . . . . . . . . . . . . . number of the B-spline basis function
V0
h ⊂ V0 . . . . . . . . . . . . . . . . . . finite dimensional spline space with homogeneous boundary

condition on ∂I

I . . . . . . . . . . . . . . . . . . . . . . . . . Index set for the B-spline basis function in V0
h

K0
h ⊂ K0 . . . . . . . . . . . . . . . . . discrete convex set

u
(z)
h ∈ K0

h . . . . . . . . . . . . . . . . . fully discrete spline solution in time step z

u(z) ∈ R#I coefficients vector for the spline solution in time step z

A,B,G ∈ R#I×#I . . . . . . . . B-spline discretization matrices
C ∈ R#I×#I . . . . . . . . . . . . . final B-spline discretization matrix for the Black-Scholes op-

erator
f (z−1) ∈ R#I . . . . . . . . . . . . . fully discrete right hand side in vector notation
K . . . . . . . . . . . . . . . . . . . . . . . fully discrete convex set, which ensures that the coefficients

of the spline solution are non negative.
S

(z)
Sh
f

. . . . . . . . . . . . . . . . . . . . . union of the supports of B-spline basis functions whose sup-
port intersects Shf (t(z))

∆h(t(z), S) . . . . . . . . . . . . . . . approximation of the Greek Delta at time t(z)

Γh(t(z), S) . . . . . . . . . . . . . . . approximation of the Greek Gamma at time t(z)

Notations for option pricing with Heston’s model:
Continuous Problem:
v ∈ R+ . . . . . . . . . . . . . . . . . . . variance
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C. Symbols

W1(t),W2(t) . . . . . . . . . . . . . two different Wiener processes correlated by constant corre-
lation |ρ| < 1

µ . . . . . . . . . . . . . . . . . . . . . . . . . constant drift
|ρ| < 1 . . . . . . . . . . . . . . . . . . . constant correlation
κ > 0 . . . . . . . . . . . . . . . . . . . . mean reversion rate
γ > 0. . . . . . . . . . . . . . . . . . . . . mean reversion level
ξ > 0 . . . . . . . . . . . . . . . . . . . . . volatility of the CIR-process
λ ≥ 0. . . . . . . . . . . . . . . . . . . . . market price of volatility risk
ΩL ⊂ R+ × R+ . . . . . . . . . . spatial domain Ω := (Smin, Smax)× (vmin, vmax)
V (t, S, v) . . . . . . . . . . . . . . . . . American option price
Sf (t, v) : [0, T ]×R+ → R+ optimal exercise price or free boundary
LHV (t, S, v) . . . . . . . . . . . . . spatial operator of the Heston equation in strong form as

defined in (2.23)
Ω ⊂ R× R+ . . . . . . . . . . . . . . spatial domain Ω := (xmin, xmax) × (vmin, vmax) with log-

transformed underlying x := log(S/K)
∂Ω := ∪4

i=1Υi . . . . . . . . . . . . boundary of the spatial domain
Υv ⊂ ∂Ω . . . . . . . . . . . . . . . . . parts of the boundary, where the Neumann-boundary con-

ditions hold, see (2.110) or (2.111)
Υ := ∂Ω \Υv . . . . . . . . . . . . parts of the boundary, where the Dirichlet boundary condi-

tions hold
y(τ) := y(τ, x, v) . . . . . . . . . time reversed and log-transformed American option price as

defined in (2.101) (=̂ solution of the variational inequality)
u(τ) := y(τ)− g . . . . . . . . . solution of the variational inequality with homogeneous

boundary condition on Υ
A ∈ R2×2 . . . . . . . . . . . . . . . . coefficients matrix for the diffusion term as defined in (2.103)
b ∈ R2 . . . . . . . . . . . . . . . . . . coefficients vector for the convection term as defined in

(2.103)
ZHy(τ) . . . . . . . . . . . . . . . . . . time reversed and log-transformed spatial operator in strong

form
xf (τ, v) : [0, T ]× R+ → R . log-transformed and time reversed free boundary
V . . . . . . . . . . . . . . . . . . . . . . . . Sobolev space of once weak differentiable function as defined

in (2.113)
V0 ⊂ V . . . . . . . . . . . . . . . . . . . Sobolev space of once weak differentiable function with ho-

mogeneous Dirichlet boundary condition on Υ, see (2.115)
K ⊂ V . . . . . . . . . . . . . . . . . . . closed convex set in V as defined in (2.117)
K0 ⊂ V0 . . . . . . . . . . . . . . . . . closed convex set in V0 as defined in (2.130)
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Ã ∈ R2×2 . . . . . . . . . . . . . . . . . coefficients matrix for the diffusion term after integration by
parts, see (2.124)

b̃ ∈ R2 . . . . . . . . . . . . . . . . . . coefficients vector for the convection term after integration
by parts, see (2.126)

aH(·, ·) : V × V . . . . . . . . . . . bilinear form for the Heston operator ZH , see (2.128)
f . . . . . . . . . . . . . . . . . . . . . . . . . right hand side after homogenization, see (2.131)
yε(τ) := yε(τ, x, v) . . . . . . . . solution of the penalty problem in (5.17)
Qyε(τ) . . . . . . . . . . . . . . . . . . penalty function

B-spline Galerkin semi-discretization:

y(z) := y(τ (z), x, v) . . . . . . . . semi-discrete solution in time step z

ãH(·, ·) : V × V . . . . . . . . . . . bilinear form after semi-discretization, see (5.22)
ÃH : V → V∗ . . . . . . . . . . . . . linear operator associated with the bilinear form ãH(w,ϕ)
f

(z−1)
inh . . . . . . . . . . . . . . . . . . . right hand side after semi-discretization for the problem with

inhomogeneous Dirichlet boundary condition, see (5.23)
u(z) := u(τ (z), x, v). . . . . . . . semi-discrete solution in time step z with homogeneous

boundary condition on Υ
f (z−1) . . . . . . . . . . . . . . . . . . . right hand side after semi-discretization for the problem with

homogeneous Dirichlet boundary condition, see (5.33)
Θx := {θ(x)

i }n+k
i=1 . . . . . . . . . extended sequence of knots in the x−direction

Θv := {θ(v)
i }n+k

i=1 . . . . . . . . . . extended sequence of knots in the v−direction
Θ := Θx ⊗Θv . . . . . . . . . . . two dimensional extended sequence of knots
h`x . . . . . . . . . . . . . . . . . . . . . . uniform grid size for the knot series Θx

h`v . . . . . . . . . . . . . . . . . . . . . . uniform grid size for the knot series Θv

V0
h ⊂ V0 . . . . . . . . . . . . . . . . . finite dimensional tensor-product spline space
ID . . . . . . . . . . . . . . . . . . . . . . index set for the tensor-product B-spline basis function for

the set of boundary conditions in (2.110)
IN . . . . . . . . . . . . . . . . . . . . . . index set for the tensor-product B-spline basis function for

the set of boundary conditions in (2.111)
I . . . . . . . . . . . . . . . . . . . . . . . . general index set, which is given by ID or IN
#I := NM . . . . . . . . . . . . . . . number of the tensor-product B-spline basis function in V0

h

K0
h ⊂ K0 . . . . . . . . . . . . . . . . . discrete convex set

u
(z)
h ∈ K0

h . . . . . . . . . . . . . . . . . fully discrete tensor-product spline solution in time step z

u(z) ∈ R#I . . . . . . . . . . . . . . coefficients vector for the spline solution in timestep z

C ∈ RNM×NM . . . . . . . . . . . tensor-product B-spline discretization matrix for the Heston
operator, see (5.43)

f (z−1) ∈ RNM . . . . . . . . . . . . fully discrete right side in vector notation
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C. Symbols

∆h(t(z), S, v) . . . . . . . . . . . . . approximation of the Greek Delta at time t(z)

Γh(t(z), S) . . . . . . . . . . . . . . . approximation of the Greek Gamma at time t(z)

νh(t(z), S, v) . . . . . . . . . . . . . . approximation of the Greek Vega at time t(z)

Notations for monotone multigrid method:

` . . . . . . . . . . . . . . . . . . . . . . level
L := `max . . . . . . . . . . . . . . highest level
V` . . . . . . . . . . . . . . . . . . . . . (tensor-product) spline space on level `
K0
` . . . . . . . . . . . . . . . . . . . . convex set on level `
A` . . . . . . . . . . . . . . . . . . . . discrete form of the linear operator A on level `
f` . . . . . . . . . . . . . . . . . . . . discrete from of the right side on level `
u` . . . . . . . . . . . . . . . . . . . . discrete solution on level `
ψ̃` . . . . . . . . . . . . . . . . . . . . discrete obstacle function on level `
dim(V`) := #I` . . . . . . . number of B-spline basis function on level `
C` ∈ R#I`×#I` . . . . . . . . discretization matrix on level `
f` ∈ R#I` . . . . . . . . . . . . . right side in vector notation on level `
u` . . . . . . . . . . . . . . . . . . . . B-spline coefficient vector for the solution u`

ψ̃` ∈ R#I` . . . . . . . . . . . . B-spline coefficients vector for the obstacle function ψ̃`

R, r̃ : V` → V`−1 . . . . . . . restriction operator
P : V`−1 → V` . . . . . . . . . prolongation operator
Sdk,Θ . . . . . . . . . . . . . . . . . . d-dimensional tensor-product spline space of order k regarding

the knot sequence Θ
Θ = {⊗dj=1Θ(j)} d-dimensional open knot sequences with uniform grid size hj
Θ̃ = {⊗dj=1Θ̃(j)} . . . . . . d-dimensional open knot sequences with uniform grid size Hj

hj . . . . . . . . . . . . . . . . . . . . uniform grid size on a finer grid Θ(j)

Hj := 2hj . . . . . . . . . . . . . uniform grid size on a coarser grid Θ̃(j)

nj ∈ N . . . . . . . . . . . . . . . . number of B-splines on a finer grid
ñj ∈ N . . . . . . . . . . . . . . . . number of B-splines on a coarser grid
Jrep index set for the dimensions, where internal knots are repeated
Jrep . . . . . . . . . . . . . . . . . . . index set for the dimensions, where no internal knots are re-

peated
Nij ,k(xj) . . . . . . . . . . . . . . B-spline regarding the knot sequence Θ(j)

Ñij ,k(xj) . . . . . . . . . . . . . . B-spline regarding the knot sequence Θ̃(j)

aq . . . . . . . . . . . . . . . . . . . . refinement coefficients as defined in (7.24)
ΦL,ΦR . . . . . . . . . . . . . . . matrices containing the boundary adapted refinement coeffi-

cients, see (7.25) and (7.26)
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ΦI . . . . . . . . . . . . . . . . . . . . matrices containing the refinement coefficients regarding the
B-splines where internal knots are repeated k − 1 times, see
(7.31)

R(j)
k ∈ Rñj×nj . . . . . . . . restriction operator in the j’th dimension in matrix notation

for B-splines of order k
P(j)
k ∈ Rnj×ñj . . . . . . . . prolongation operator in the j’th dimension in matrix notation

for B-splines of order k
Lk = r̃T Ñk ∈ Sd

k,Θ̃ . . . . quasioptimal monotone coarse grid approximation to the lower
obstacle S := cTNk ∈ Sdk,Θ, see (7.45)

Notations for the Black-Scholes-Barenblatt equation:

V (t, S) . . . . . . . . . . . . . . option price under the worst or best-case volatility path
σ ∈ Σ . . . . . . . . . . . . . . . volatility in the range Σ := [σmin, σmax]
Lσ . . . . . . . . . . . . . . . . . . spatial differential operator for the BSB-equation
σ−[VSS ] . . . . . . . . . . . . . volatility function under the worst-case volatility path
σ+[VSS ] . . . . . . . . . . . . . volatility function under the best-case volatility path
y(τ, S) := V (T − t, S) time reversed option price

I := (0, Smax) . . . . . . . spatial interval
I := (Smin, Smax) . . . . truncated spatial interval
Ix := (xmin, xmax) . . . truncated spatial interval for the log-transformed option price
W . . . . . . . . . . . . . . . . . . Sobolev space W := H2(Ix) ∩H1

0 (Ix)
H(0, T ; Ix) . . . . . . . . . . Bochner space H(0, T ; Ix) := L2(0, T ;W) ∩H1(Ix;L2(Ix))
F [·] . . . . . . . . . . . . . . . . . fully non-linear operator F : H(0, T ; Ix)→ L2(0, T ; Ix)
λ > 0, ω > 0 . . . . . . . . parameter for the Cordes condition
γ(·) . . . . . . . . . . . . . . . . . strictly positive function γ(·) : Σ→ R>0

Lλ, Lω . . . . . . . . . . . . . . operators needed to establish well-posedness as defined in (9.14)
〈·, ·〉L2×W . . . . . . . . . . . duality pairing as defined in (9.15)
| · |H2(Ix),λ . . . . . . . . . . . norm in H2(Ix) as defined in (9.17)
A . . . . . . . . . . . . . . . . . . . operator for the BSB equation formulated as a mapping from

H(0, T, Ix)→ H(0, T, Ix)∗, see (9.22)
y(τ (z), S) . . . . . . . . . . . semi-discrete solution in time step z

VΘ . . . . . . . . . . . . . . . . . . spatial discrete solution space with B-splines regarding the knot
series Θ

nΘ . . . . . . . . . . . . . . . . . . number of B-spline basis function
Aσ . . . . . . . . . . . . . . . . . . discrete operator for the BSB-equation that maps from V0 to RnΘ ,

see (9.34)
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C. Symbols

u
(z)
Θ . . . . . . . . . . . . . . . . . fully discrete solution with homogeneous Dirichlet-boundary

condition
σ̂Θ(u(z̃)

Θ ) . . . . . . . . . . . . fully discrete volatility function in weak form as defined in (9.39)
σ̂opt

Θ

(
u

(z̃)
Θ

)
fully discrete volatility function in strong form as defined in (9.41)

F 1(·), F 2(·) . . . . . . . . . fully discrete non-linear operator for the BDF1 or BDF2 scheme
C1

Θ, C
2
Θ ∈ RnΘ×nΘ . . . discretization matrices for the BDF1 or BDF2 scheme

f1
Θ, f2

Θ ∈ RnΘ discrete right side for the BDF1 or BDF2 scheme
GΘ ∈ RnΘ×nΘ slant derivative of the fully discrete non-linear operator F (·)
I+
η , I

−
η intervals for volatility changes depending on the discrete weak

derivatives, see (9.54) and (9.55)
KΘ̃ ∈ RnΘ̃×nΘ knot insertion matrix as defined in (A.6)
Iopt,+
η , Iopt,−

η intervals for volatility changes depending on the approximated sec-
ond derivatives, see (9.59) and (9.60)
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2015.
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