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MicroRNAs (miRNAs) are a family of small non-coding RNAs with potent 
regulatory roles in metabolism, neurodevelopment, neuroplasticity, apoptosis, 
and other neurobiological processes. MiRNAs function through partial 
complementary base-pairing with specific target mRNAs, resulting in the 
repression of translational processes or the promotion of mRNA deadenylation 
leading to degradation. In 2011, miR-3099 was found to be expressed as early as 
in the blastocyst stage, in which the expression was maintained until the 
developing E11.5 mouse brain. The expression of miR-3099 was further 
restricted to the cortical plate of the developing mouse brain between E13.5 
and E17.5, coinciding with the time that the majority of the cells are committed 
to neuronal cell lineage. Moreover, the miR-3099 was also found to be highly 
expressed in differentiating P19 cell (2-fold upregulation) when comparing to 
the proliferating P19 cell. Therefore, this study aims to understand the role of 
miR-3099 during neuro-differentiation and corticogenesis in the mouse model. 
The expression of miR-3099 was found elevated by 2-3 folds in 46C mouse 
embryonic stem (mES) cell upon neural induction. Then, predicted target gene 
of miR-3099 was further analysed by using four different prediction algorithms 
(miRDB, miRanda, TargetScan and DIANA-micro-T-CDS) and DAVID 
bioinformatics analysis with emphasis on target genes related to brain 
development and function. Based on the prediction, nearly 70% of the 
predicted target genes were expressed in the nervous system. Of these 
predicted target genes, Gfap was chosen as a candidate for downstream 
validation because it had been implicated in an important pathway in the brain 
known as the JAK-STAT signalling pathway, which controls the onset of 
astrocyte formation. By using the luciferase reporter gene system, Gfap was 
negatively inhibited by miR-3099. Furthermore, overexpression of miR-3099 
was performed in vitro and in vivo for better understanding of the role of miR-
3099 during neuro-differentiation and brain development. In vitro, a transgenic 
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mES cell that carried miR-3099 was overexpressed and differentiated for 17 
days. The gene expression profile was carried out by using stem-loop RT-qPCR 
for different marker analysis such as proliferative, neural progenitor, neuron, 
astrocyte and oligodendrocyte markers. The analysis revealed that the 
overexpression of miR-3099 promoted neuronal differentiation and suppressed 
the astrogliogenesis in the in vitro system. In the in vivo system, the 
overexpression of miR-3099 caused disorganised neuronal migration 
potentially due to downregulation of Gfap. Heretofore, the human homologue 
of miR-3099 has not been found or reported. In silico analysis via seed sequence 
similarity search in GEO database found that mds21 to be novel miRNA that 
has 100% identical at seed region and 64% closed to miR-3099 mature sequence. 
Interestingly, the expression of mds21 was found to be expressed in various 
human cell line and tissue, including the brain suggesting that mds21 might be 
a potential miR-3099 homologue in the human genome. Collectively, this study 
has shown that miR-3099 plays an essential role in modulating and regulating 
key markers involved in neuronal differentiation and neural cell function. The 
degree of functional conservation between miR-3099 and mds21 is not clear, 
and further validations are needed to characterise them further. 
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RNA mikro (miRNAs) adalah keluarga kecil RNA bukan pengekod yang 
mempunyai peranan yang penting dalam mengawal metabolisme, 
perkembangan saraf, neuroplastisitas, apoptosis dan pelbagai proses 
neurobiologikal. MiRNA berfungsi melalui padanan bes komplimentari separa 
dengan sasaran spesifik mRNAs yang menyebabkan penindasan proses 
translasi atau membawa kepada proses penyahadenilatan mRNA lalu 
mengakibatkan degradasi. Pada tahun 2011, miR-3099 didapati telah 
diekspreskan seawal peringkat blastosis, yang mana ekspresi ini kekal 
sehingga perkembangan E11.5 dalam otak mencit. Ekspresi miR-3099 juga 
tertumpu pada plet kortikal dalam otak mencit yang sedang berkembang di 
antara E13.5 and E17, serentak dengan waktu di mana majoriti sel komited 
kearah nasabah neuron. Tambahan pula, ekpresi miR-3099 didapati tinggi di 
dalam sel P19 yang sedang mengalami proses pembezaan, (sebanyak 2 kali 
ganda) berbanding dengan sel P19 yang sedang mengalami proses proliferasi. 
Oleh itu, kajian ini dijalankan bagi memahami peranan miR-3099 semasa 
pembezaan sel neuron dan perkembangan korteks di dalam model mencit. 
Ekspresi miR-3099 didapati meningkat sebanyak 2-3 kali ganda dalam sel 46C 
sel stem embrionik mencit (mES) sewaktu aruhan neural. Kemudian, gen 
sasaran miR-3099 diramal dengan menggunakan empat algoritma ramalan 
yang berbeza (miRDB, miRanda, TargetScan and DIANA-micro-T-CDS) serta 
analisis bioinformatik DAVID telah menekankan gen sasaran yang berkait 
dengan perkembangan otak dan fungsinya. Berdasarkan ramalan tersebut, 
hampir 70% daripada gen sasaran mempunyai ekspresi di dalam sistem saraf. 
Di antara gen-gen ramalan tersebut, Gfap telah dipilih untuk pengesahan 
kerana gen ini terlibat dalam laluan penting dalam otak yang dikenali sebagai 
laluan pengisyaratan JAK-STAT, yang mengawal permulaan pembentukan 
astrosit. Dengan menggunakan sistem gen pelapor luciferase, ekspresi Gfap 
telah dihalang secara negatif oleh miR-3099. Tambahan pula, ekspresi-lampau 
miR-3099 telah dilakukan secara in vitro dan in vivo bagi memahami dengan 



© C
OPYRIG

HT U
PM

 
 

iv 
 

lebih baik peranan miR-3099 sewaktu pembezaan neuron sel dan 
perkembangan otak. Dalam sistem in vitro, mES transgenik yang membawa 
miR-3099 telah diekspresi-lampau serta dibezakan selama 17 hari. Profil 
ekspresi gen telah dijalankan melalui kaedah RT-qPCR stemloop bagi 
menganalisa penanda yang berbeza seperti penanda proliferatif, penanda 
leluhur neural, penanda neuron, penanda astrosit dan penanda oligodendrosit. 
Analisis menunjukkan ekspresi-lampau miR-3099 menggalakkan pembezaan 
neuron dan merencat pembentukan sel astroglia secara in vitro. Di dalam 
system in vivo, ekspresi-lampau miR-3099 telah menyebabkan ketidakaturan 
penghijrahan neuron yang mungkin disebabkan oleh kemerosotan Gfap. 
Sehingga kini, homolog miR-3099 bagi manusia belum dijumpai atau 
dilaporkan. Berdasarkan analisis in silico melalui persamaan jujukan benih 
dalam pangkalan data GEO mendapati mds21 sebagai miRNA terbaharu yang 
mempunyai persamaan 100% pada kawasan benih dan 64% kesamaan dengan 
jujukan-matang miR-3099. Menariknya, ekspresi mds21 telah didapati 
dipelbagai titisan sel manusia dan tisu termasuk otak. Penemuan gen mds21 
melalui analisa bioinformatik menunjukkan bahawa mds21 adalah homolog 
miR-3099 dalam genom manusia. Secara kolektifnya, miR-3099 memainkan 
peranan yang penting dalam modulasi dan kawalatur penanda utama yang 
terlibat dalam pembezaan neuron. Walaubagaimanapun, darjah pemeliharan 
fungsi miR-3099 dan mds21 dalam manusia masih kurang jelas dan 
memerlukan pengesahan serta pencirian yang selanjutnya. 
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1 
 

CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1.  Background of study 
 

MicroRNA (miRNA) is a small non-coding RNA that is approximately 22 
nucleotide (nt) in length. The miRNA is involved in gene silencing, and it was 
first described in Caenorhabditis elegans (C.elegans) (Lee, Feinbaum, & Ambros, 
1993; Wightman, Ha, & Ruvkun, 1993). In the genome, miRNA is transcribed 
either at the coding region or within the introns of coding genes (Baskerville & 
Bartel, 2005). Some of the miRNAs shared similar promoters and are transcribed 
as a single primary transcript, also known as polycistronic primary transcripts 
(Baskerville & Bartel, 2005). Majority of miRNAs are transcribed by RNA 
polymerase II, subsequently, give rise to primary miRNAs (pri-miRNAs) that 
contain poly-A tails.  
 
 
In the canonical pathway, the pri-miRNA is further processed in the nucleus by 
Drosha and DiGeorge Syndrome Critical Region Gene 8 (DGCR8) protein to 
generate ~70 nt precursor miRNA (pre-miRNA). The pre-miRNA is transported 
into the cytoplasm by exportin-5 (XPO5)/RanGTP complex. In the cytoplasm, 
the pre-miRNA is further processed by RNase III endonuclease DICER and form 
~20 bp miRNA duplex. The miRNA duplex is unwound and one of the strands 
is incorporated into the RNA-induced silencing complex (RISC). Generally, the 
other strand known as passenger strand will be released and degraded, 
however, in rare instances, both strands can be loaded into different RISC. The 
activated RISC containing a miRNA is recruited to bind complementarily at the 
3’untranslated region (UTR) of messenger RNAs (mRNAs). As a result, the 
complex suppresses the translation process and lead to degradation of the 
targeted transcript (Krol, Loedige, & Filipowicz, 2010).  
 
 
Mammalian brain development requires meticulous spatiotemporal regulation 
of gene/protein expression, from the transcription of DNA within the nucleus 
to translation of mRNA in the cytoplasm (Gunnersen et al., 2002; Ling et al., 
2009). Throughout development, the brain undergoes rapid cellular and 
anatomical changes involving neuronal migration, the proliferation of neural 
progenitor cell, cell fate determination, gliogenesis, axonogenesis and rostro-
lateral to caudo-medial structure patterning (Gupta, Tsai, Wynshaw-Boris, & 
Medical, 2002; Smart, 1984). The process requires millions of different cell to 
generate and organise into specific tissues or organs. This mechanism requires 
cell fate determination throughout the development. In neurogenesis, the 
diversity of the neuronal population is achieved by asymmetrical cell division of 
neural stem cell, subsequently produced two daughter cells.  
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One of the daughter cells will differentiate into the neurone, and the other will 
remain as the stem cell. The miRNAs play a regulatory role in determining the 
fate of the neurons and glia.Both cells are derived from the neural progenitor 
cells, and the neuronal cell differentiation normally occurs in the early stage of 
embryonic development prior to glia differentiation in the early postnatal 
nervous system. Interestingly, the previous study found that a different set of 
miRNAs is specifically involved in neuronal differentiation as well as glial 
differentiation (Jovičić et al., 2013). In this study, the gene expression profile that 
extracted from rat cortical differentiated stem cell for 14 days followed by 
microarray analysis indicated that the expression of miRNAs is remarkable 
distinct across four cell types, neurone, astrocytes, oligodendrocytes and 
microglia.  
 
 
The analysis revealed that multiple miRNAs are enriched and diminished for 
neurone are relatively fewer found in astrocytes, microglia and oligodendrocyte, 
vice versa. For example, miR-124, miR-127, miR-129, miR-129*, miR-136, miR-136*, 
miR-137, miR-154, miR-300-3p and miR-551b are found restricted in neurone 
while miR-143 and miR-449a are specifically expressed in astrocytes. Another 
miRNA such as miR-219-2-3p is expressed particularly in oligodendrocytes. 
Moreover, the miRNAs are expressed restricted in microglia are miR-126, miR-
126*, miR-141, miR-142-3p, miR-142-5p, miR-146a, miR-150, miR-200c and miR-223 
(Jovičić et al., 2013).       
 
 
Among brain-enriched miRNAs, miR-124 is well-characterised, and it is highly 
expressed in the brain during development. The miR-124 has been proposed to 
promote neuronal cell differentiation through the suppression of small C-
terminal domain phosphatase 1 (SCP1), polypyrimidine tract binding protein 1 
(PTBP1) and Sox9, which is involved in anti-neuronal differentiation pathway 
(Cheng, Pastrana, Tavazoie, & Doetsch, 2009a; Makeyev, Zhang, Carrasco, & 
Maniatis, 2007; Visvanathan, Lee, Lee, Lee, & Lee, 2007). The Let-7 family is 
known to express throughout the cortical development. The Let-7 encoded for 
Lethal-7 (Let-7) which plays a significant role in the proliferation of neural stem 
cell as well as neural progenitor cell (Roush & Slack, 2008). Both Let-7 and miR-
9 are involved in cell proliferation and commitment by converging on a common 
target, TLX protein.  
 
 
The convergent action of Let-7 and miR-9  reduces the levels TLX, thereby 
inhibits self-renewal of neural stem cell/neural progenitor cell thus accelerating 
neuronal differentiation (Sun, Yu, Evans, & Shi, 2007; Zhao et al., 2010a; Zhao, 
Sun, Li, & Shi, 2009). Another miRNA that plays an essential role in promoting 
neurogenesis is miR-137. The miR-137 targets ubiquitin ligase mind bomb 1 
(Mib1), which is known to activate the Notch signalling pathway by promoting 
ubiquitination and internalisation of Notch ligand Delta (Smrt et al., 2010).  
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In addition, miR-137 regulates neuronal maturation via the inhibition of dendrite 
morphogenesis by binding to the 3’UTR of Mib1 (Smrt et al., 2010). Knockdown 
miR-124a and miR-9 elevated the expression of STAT3, thus leading to 
astrogliogenesis (Li & Jin, 2010; Wen, Li, & Liu, 2009). Besides, the expression of 
miR-23 is involved in astrocyte specification and promote glial cell commitment 
by suppressing HES1 gene (Hiroaki Kawasaki & Taira, 2003; Smirnova et al., 
2005). In different studies, gain- and loss- of function studying in in vitro and in 
vivo have demonstrated that miR-219 and miR-338 controlled the 
oligodendrocytes differentiation by suppressing Hes5 and Sox6 (Galloway & 
Moore, 2016; Zhao et al., 2010b).  
 
 
Furthermore, one of the miRNAs that potentially plays an important role during 
brain development is miR-3099. The miR-3099 was discovered through deep 
sequencing of small RNAs extracted from E15.5 developing mouse brain (Ling 
et al., 2011). The expression profile of miR-3099 showed that it is highly 
expressed in the blastocyst stage and throughout the developing mouse embryos 
(Ling et al., 2011). Later at E13.5 until E18.5, the expression of miR-3099 is 
restricted at the central nervous system (CNS) (Ling et al., 2011). Interestingly, 
the expression level of miR-3099 is higher in differentiating P19 mouse embryo 
teratocarcinoma cell when compared to proliferative P19 cell (Ling et al., 2011) 
suggesting a prominent role in CNS development particularly neuronal 
differentiation. MiR-3099 was shown to negatively regulate Vcan and Nap1l1 
genes that are involved in cell growth, division and proliferation (Vesely et al., 
2014).  
 
 
Based on the pathway analysis of miR-3099 predicted target genes by using 
KEGG (Kyoto Encyclopedia of Genes and Genome) database, miR-3099 was 
proposed to regulate glutamatergic synapse, axon guidance and Notch 
signalling pathway (Vesely et al., 2014). Again, these findings suggest that miR-
3099 has a significant role in regulating brain development, particularly in 
neuronal differentiation and function. The functional role of miR-3099 during 
neuro-differentiation and development is understudied. Therefore, in this study, 
molecular characterisation of miR-3099 was performed using in vivo and in vitro 
systems via gain-of-function approach to provide a better understanding of its 
role during neuronal cell development and function.  
 
 
The in vitro characterisation was carried out based on a mouse embryonic stem 
(mES) cell culture system with a stable and regulatable expression for miR-3099. 
To understand the role of miR-3099 during neurogenesis, the miR-3099 was 
overexpressed at different time-point upon neural induction. The expression of 
neural lineage markers was further evaluated. While in in vivo study, the 
precursor miR-3099 was introduced and electroporated into the lateral ventricle 
of the E15.5 mouse embryo brain.  
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Later, the brain was harvested on E18.5 and further analysed by using 
immunohistochemistry. The immunolabelling between immature neurone 
(Tuj1)/astrocyte (Gfap) markers with miR-3099 were quantified. The in utero 
electroporation is a technique that used electrical pulse to create a small pore 
and allow nucleic acid to pass through the cell membrane. This condition allows 
to deliver gene of interest into developing mouse brain to access the role of 
transgene. Besides that, the technique also temporary creation a transgenic 
model and provide rapid investigation as well as direct examination of the 
function of delivered gene.  
  
 
Moreover, this study also adopted an in silico approach based on miR-3099 seed 
sequence similarity search and evolutionary analysis of across the human 
genome. The miR-3099 sequence is only found conserved in the rat genomes 
(Ling et al., 2011). To date, the human homologue of miR-3099 has not been 
reported. The structural conservation of miRNA gene can be very different from 
the conservation of regular protein-coding gene among vertebrate genomes. 
Since the affinity of a miRNA is determined mainly by the seed region of the 
miRNA (the 2nd – 7th bases of the 5’-phosphate terminal), searching for miR-3099 
homologues in other organisms should not be based on the conventional criteria 
adapted for gene conservation analysis.  
 
 
Screening of miR-3099 homologues in the human genome may suggest the 
evolutionarily conserved role of miR-3099 in the development of the human 
nervous system. Thus, the present study provides a fundamental understanding 
of miR-3099 role during neurogenesis, neuronal differentiation and function. It 
also establishes the miRNA as a possible regulator of an associated molecular 
pathway involved in neuronal development, particularly in the mammalian 
brain. Moreover, identification of a homologue of miR-3099 in the human will 
give a new insight into the novel miRNA in the development of the human brain.  
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1.2.  Hypothesis  
 

miR-3099 plays a crucial role during neural differentiation and neuronal cell 
function. 
 
 
1.3.  Objectives 
 

This study consists of one general objective and four specific objectives. 
 

 General objective 

To elucidate the functional role of miR-3099 during neuro-differentiation in vivo 
and in vitro. 
 

 Specific objectives 

i. To determine the expression of miR-3099 during cellular differentiation 
of 46C mouse embryonic stem cells upon neural induction. 
 

ii. To predict the target genes of miR-3099 via in silico analysis using four 
independent prediction algorithms (miRDB, miRanda, TargetScan and DIANA-
micro-T-CDS) with emphasis on target genes related to brain development and 
function. 

 

iii. To construct and validate an expression vector of miR-3099 for future 
gain-of-function and loss-of-function studies. 
 

iv. To elucidate the functional role of miR-3099 at the cellular level during 
neuro-differentiation by using ‘gain-of-function` approach and identification of 
miR-3099 homologue in the human genome.  
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