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Abstract 

This paper employs a design of two sub-controllers based on a Linear Quadratic 

Regulator (LQR) for Two Rotor Aero-dynamical System (TRAS) in two Degree 

of Freedom (2-DOF) motion. TRAS is a nonlinear Multi-Input Multi-Output 

(MIMO) system that resembles the behaviour of a helicopter in certain aspects. 

The main focus of the research work is to control and stabilize the TRAS system 

in 2-DOF so that the desired trajectory is tracked quickly and accurately even in 

the presence of disturbances. However, this not always possible due to some 

reasons such as the strong cross couplings, poorly tuned control parameters and 

integral windup phenomena that significantly deteriorate the transient response. 

In this work, TRAS is decoupled into two subsystems (horizontal and vertical) 

with the cross couplings considered as disturbances. The derivation of the linear 

model of each subsystem is developed using Jacobean linearisation matrix. An 

optimal LQR controller is designed and tuned using Particle Swarm Optimisation 

(PSO) algorithm for each subsystem. To get full state information, provide 

asymptotic tracking for the reference signal and alleviate integral windup 

phenomena each sub-LQR controller has been combined with full state observer, 

integral action gain and anti-windup compensator based on back-calculation 

technique, respectively to ensure fast and reliable control of TRAS system 

without degrading the transient response. Experimental results show that the 

Decoupled Integral LQR Controller (DILQRC) exhibits a better performance in 

terms of transient and steady state responses with significant reduction of settling 

time, overshoot percentage and error index it also produces less aggressive and 

smooth control signals as compared to the Cross Coupled PID Controller 

(CCPIDC) tuned by the manufacturer. 

Keywords: Anti-windup, Back-calculation, Full state observer, Integral action, 

Linear Quadratic Regulator (LQR), Particle Swarm Optimisation 

(PSO), Two rotor aerodynamical system (TRAS). 
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1.  Introduction 

Control of Two Rotor Aerodynamical System (TRAS) has become one of the 

most challenging engineering tasks due to the complicated nonlinear interaction 

and significant cross-couplings between the horizontal and vertical planes. 

Furthermore, some state variables are not accessible for measurement. 

Since TRAS is considered as multi-input multi-output (MIMO) system with 

significant cross couplings, one of the early approaches to multivariable control is 

decoupling control [1]. The interaction in a MIMO system makes control and 

stability analysis of the system very complicated compared to that of a Single Input 

Single Output (SISO) system [2]. 

The feedback control systems are extensively used in automobile and military 

hardware applications to increase efficiency and reliability, as these control systems 

are being required to deliver more accurate and better overall performance in the 

face of difficult and complicated application conditions. However, to meet the 

demands of improved performance and robustness, control engineers will require 

new design techniques and better underlying theory [3]. 

Most of the controllers such as Proportional Integral Derivative (PID), Linear 

Quadratic Regulator (LQR) and Model Predictive Control (MPC) contain tuning 

parameters that define the behaviour of the controller. However, the tuning of these 

parameters using classical approaches such as trial and error is a tedious practice and 

does not guarantee the desired performance [4]. In order to have an optimal control 

system, the parameters of the controller should be tuned properly and carefully [5].  

From the above, we can conclude that the decoupling of TRAS is highly desired 

to simplify the control of such a complicated system .However, to achieve fast and 

reliable control of TRAS a feedback control system has to be designed and properly 

tuned with the addition of suitable techniques. 

Fractional order PID controller using Nelder-Mead optimisation technique was 

able to minimise the cross coupling between the system planes also it required less 

control effort to stabilise the system as compared to other classical PID controllers 

[6]. On the other side, the system had a settling time of 9 seconds for the horizontal 

and vertical angles of the system as well as a high percentage of overshoot above 

13% for both angles. Yang et al. [7] reported that a composite controller of active 

disturbance rejection and input shaping command has been investigated in 

simulation and real-time implementation. However, both angles of the system had 

a settling time of more than 6.3 seconds and 9.1 seconds in simulation and 

experimental results, respectively. Ahmad et al. [8] proposed the fixed structure 𝐻∞ 

controller with the static linear decoupling method, which is found to be capable of 

handling the system effectively because of its simple structure and robust nature. 

Al-Mahturi and Wahid [9] optimally tuned LQR controllers, which have 

shown good results to control and stabilise each plane of TRAS system with a 

magnificent reduction in settling time and overshoot percentage, but the controllers 

were only implemented in simulation for one degree of freedom (1-DOF) motion 

and the robustness of the system was not investigated. Optimal LQR controller with 

integral action gave better performance as compared to the sliding mode controller 

[10] and an optimal LQR controller is found to provide better performance with 

reduced control effort as compared to the classical PID controller [11]. 



1376       S. Al-Haddad and H. Wahid 

 
 
Journal of Engineering Science and Technology                 Jun 2019, Vol. 14(3) 

 

Nevertheless, both studies showed that the system had a settling time above 5 

seconds for both angles and no conclusions were drawn on the system robustness 

properties. Phillips and Sahin [10] explained that furthermore, the weight matrices 

of LQR were tuned manually, which do not give the optimal value. Similarly, 

Pandey and Laxmi [11] has chosen a random value of 𝑄 and 𝑅 and varied them 

until the desired performance is met.  

Wen and Lu [12] experimentally validated the use of robust deadbeat control 

technique for the twin rotor MIMO system (TRMS) in 2-DOF, however, the 

vertical angle took about 8 seconds to be settled with a small percentage of 

overshoot in the horizontal angle. Simulation and experimental results of multiple 

models with second level adaption controller showed improvement in transient and 

steady responses in comparison with single model adaptive controller [13]. 

However, the simulation results showed that the system settled in less than 7 

seconds for both angles, meanwhile, that performance significantly degraded in the 

real-time implementation as the system took more than 12 seconds to be settled for 

both angles with 35.6% of overshoot in the vertical angle. 

A multivariable integral sliding mode controller has been used to track both the 

azimuth and pitch angles of the system and it showed excellent tracking behaviour 

for both angles with small errors [14]. Detescu et al. [15] proposed that a nonlinear 

MPC with extended Kalman filter is validated experimentally to have superior 

performance as compared to multivariable PID controller, in spite of that, the tuning 

of a large number of MPC parameters was the most time-consuming problem in 

this study. Raghavan and Thomas [16] reported that the MIMO MPC is found to 

be capable of handling the cross coupling between the system parameters while 

rejecting disturbances and maintains robustness to the system. However, the system 

was able to track the reference trajectories with a settling time less than 20 seconds 

and a percentage of overshoot less than 7.5% for both angles. Moreover, the system 

was subjected to a number of oscillations due to the gravity effect. 

It can be summarised that the control of TRAS system is divided into two 

main categories: the linear and nonlinear controllers. According to Raptis and 

Valavanis [17], the linear controllers have a simple structure and lower 

computational cost but they are suffering from long settling time and a higher 

percentage of overshoot, moreover, some of the linear controllers, which involve 

integral action gain as stated by Phillips and Sahin [10] and Pandey, and Laxmi, 

[11] are designed without taking into account the nonlinearity of the actuators 

which causes integral windup phenomena that significantly deteriorate the 

transient response. On the other hand, the nonlinear controllers have superior 

performance and robust nature, but they involve a higher computational cost and 

difficulties in real time implementation [17], especially those who are involved 

adaption laws that significantly increase the computational load and deteriorate 

the transient response when the adaption is initiated [18]. 

In this work, TRAS is decoupled into two subsystems (horizontal and vertical) 

with the cross couplings considered as disturbances. The derivation of the linear 

model of each subsystem is developed using Jacobean linearisation matrix. 

Optimal state feedback LQR controller is designed and tuned using particle 

swarm optimisation (PSO) algorithm for each subsystem. In order to achieve fast 

and reliable control of TRAS system in 2-DOF even in the presence of 

disturbances and significant cross couplings, each sub-LQR controller has been 
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combined with full state observer, integral action gain and an anti-integral 

windup compensator to improve the performance of each sub-LQR controller. 

The full state observer is used to get full information of all the states of the system 

since two state variables are not accessible for measurement in the TRAS system, 

namely azimuth angular velocity and pitch angular velocity. The addition of 

integral action gain to each sub-LQR controller provides zero steady-state error 

in the output of the system [19]. However, an inherent drawback of the use of 

integral action gain is the integral windup phenomenon, which occurs when the 

controller generates a control signal that exceeds the limitation of the actuator, 

which significantly deteriorates the control system performance causing large, 

overshoot and slow settling time [20]. To alleviate integral windup phenomena 

effect, an anti-integral windup compensator based on back calculation technique 

has been added to each sub-LQR controller.  

The evaluation of the designed decoupled integral LQR controller (DILQRC) 

is based on set point tracking and disturbance rejection and in order to provide a 

point of comparison the performance of the DILQRC is compared to the existing 

cross-coupled PID controller (CCPIDC) tuned by the manufacturer.  

This paper tries to address that well designed and tuned optimal sub-LQR 

controllers combined with suitable techniques, namely integral action gain, full 

state observer and anti-integral windup compensator can be used to successfully 

control and stabilize a nonlinear and complicated system such as TRAS quickly 

and accurately providing fast settling time and small percentage of overshoot as 

compared to other controller design techniques presented in the literature. 

The remainder of this paper is organised as follows: Section 2 describes the 

linear and nonlinear models of TRAS system. In Section 3, an optimal LQR 

controller with integral action is presented. The principles of the PSO algorithm 

are illustrated in Section 4, followed by the design of the full state observer in 

Section 5. Section 6 shows the design of an anti-integral windup technique based 

on back-calculation. Stability analysis of closed loop subsystems is carried out in 

Section 7. Experimental results are deliberated in Sections 8, followed by the 

conclusions in Section 9. 

2.  TRAS Description and Modelling 

TRAS is a multivariable system that has two inputs and two outputs with significant 

interaction between its parameters. TRAS is a laboratory setup that is used to test 

and validate various flight control methods, as it resembles the behaviour of a 

helicopter in certain aspects as shown in Fig. 1.  

An approximate Newtonian mathematical model of the TRAS is obtained 

by using Newton’s second law of motion with the description and values of the 

physical parameters provided in Table 1 [21]. However, numerous previous 

works intensively debated on the mathematical modelling of TRMS (a variant 

of the TRAS). Based on studies by Rahideh and Shaheed [22] and Rahideh et 

al. [23], the Newtonian and Lagrangian methods for TRMS modelling has been 

discussed in which, dynamic modelling of TRMS using analytical and 

empirical approaches has been addressed. Tastemiro et al. [24] investigated 

recently, in a more complete dynamic modelling of TRMS using Euler–

Lagrange method with experimental validation. 
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Table 1. Parameters definition of TRAS by INTECO [21]. 

Symbol Description Value 

𝑨𝟏 Mechanical constant 0.0947 

𝒂𝟏 Mechanical constant 3.3 × 10−6 

𝒂𝟐 Mechanical constant 9.28 × 10−6 

𝑩𝟏 Mechanical constant 0.04465 

𝑪𝟏 Mechanical constant 9.54136 × 10−3 

𝒈 Gravitational acceleration 9.81 ms-2 

𝑰𝒉 Moment of inertia for the tail rotor 2.7027 × 10−5 kgm2 

𝑰𝒗 Moment of inertia for the main rotor 1.64 × 10−4 kgm2 

𝑱𝒉 Moment of inertia with respect to vertical axis 0.02683 kgm2 

𝑱𝒗 Moment of inertia with respect to horizontal axis 0.0300571 kgm2 

𝒌𝒉 Friction constant of the tail propeller 0.00589 

𝒌𝒗 Friction constant of the main propeller 0.01271 

𝒍𝒎 Length of the main rotor 0.202 m 

𝒍𝒕 Length of the tail rotor 0.216 m 

 

 

Fig. 1. TRAS system [21]. 

In a typical helicopter, the aerodynamic force is controlled by changing the 

angle of attack of the blades while in a laboratory setup, it is constructed such that 

the angle of attack of the blades is fixed and the controlling is done by varying the 

rotational speed of the rotors.  

The TRAS consists of two rotors, which are the main and tail rotors. Both rotors 

are driven by two direct current motors, the main rotor is used to control the vertical 

motion (pitch angle) and the tail rotor is used to control the horizontal motion 

(azimuth angle). Two counterbalance levers attached with a weight at their ends are 

fixed to the beam at the pivot that determines the steady-state pitch angle [21]. 
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2.1.  Nonlinear models 

The mathematical modelling of the decoupled horizontal plane can be written as in 

Eqs. (1) to (3) [21]: 

�̇�1 =
1

𝐽ℎ
𝑥2                  (1) 

�̇�2 =
𝑙𝑡𝐹ℎ(𝑥3)

𝐼ℎ
−

𝑘ℎ

𝐽ℎ
𝑥2 +

𝑎1

𝐽ℎ×𝐼ℎ
𝑥2 ∣ 𝑥3 ∣               (2) 

�̇�3 = 𝑢ℎ −
𝑢ℎ(𝑥3)

𝐼ℎ
                  (3) 

where: 

𝐹ℎ(𝑥3) ≅ −4.869 × 10−20𝑥3
5 − 5.035 × 10−17𝑥3

4 + 4.64 × 10−12𝑥3
3

+7.562 × 10−9𝑥3
2 + 2.435 × 10−5𝑥3 − 0.003716

               (4) 

𝑢ℎ(𝑥3) ≅ −1.08 × 10−20𝑥3
5 + 5.25 × 10−18𝑥3

4 + 1.43 × 10−12𝑥3
3

−8.13 × 10−10𝑥3
2 + 0.0001534𝑥3 + 0.002067

                  (5) 

where: 𝑥1 is the azimuth angle, 𝑥2 is the azimuth angular velocity, 𝑥3 is the 

rotational speed of the tail rotor, 𝑢ℎ is the control input to the tail rotor, 𝐹ℎ(𝑥3) is a 

nonlinear relationship between the rotational speed of the tail rotor and horizontal 

thrust and 𝑢ℎ(𝑥3) is a nonlinear relationship between the rotational speed of the tail 

rotor and the control input to the tail rotor. 

The mathematical modelling of the decoupled vertical plane can be written as 

in Eqs. (6) to and (8) [21]: 

�̇�4 =
1

𝐽𝑣
𝑥5                   (6) 

�̇�5 =
𝑙𝑚𝐹𝑣(𝑥6)

𝐼𝑣
−

𝑘𝑣

𝐽𝑣
𝑥5 −

𝑎2𝑘𝑣

𝐽𝑣×𝐼𝑣
𝑥5 ∣ 𝑥6 ∣ +𝑔((𝐴1 − 𝐵1)cos𝑥4 + 𝐶1sin𝑥4             (7) 

�̇�6 = 𝑢𝑣 −
𝑢𝑣(𝑥6)

𝐼𝑣
                   (8) 

where: 

𝐹𝑣(𝑥6) ≅ −1.345 × 10−18𝑥6
5 − 5.221 × 10−16𝑥6

4 + 3.513 × 10−11𝑥6
3

+2.17 × 10−18𝑥6
2 + 0.0002012𝑥6 − 0.01453

             (9) 

𝑢𝑣(𝑥6) ≅ −1.1 × 10−18𝑥6
5 + 1.522 × 10−16𝑥6

4 − 8.796 × 10−12𝑥6
3

−1.46 × 10−9𝑥6
2 + 0.00021664𝑥6 − 0.003139

           (10) 

where: 𝑥4 is the pitch angle, 𝑥5 is the pitch angular velocity, 𝑥6 is the rotational 

speed of the main rotor, 𝑢𝑣 is the control input to the main rotor, 𝐹𝑣(𝑥6) is a 

nonlinear relationship between the rotational speed of the main rotor and vertical 

thrust and 𝑢𝑣(𝑥6) is a nonlinear relationship between the rotational speed of the 

main rotor and the control input to the main rotor. 

2.2.  Linear models 

The LQR controller is a linear state feedback controller, which requires a linear model 

to be implemented, thus, each nonlinear subsystem is linearised using Jacobean 

linearisation matrix around the equilibrium point (𝑥, 𝑢) at (0,0) [25]. Where 𝑥 is the 
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states of each subsystem and 𝑢 is the control input. The 𝐴 and 𝐵 Jacobean 

linearisation matrices for each subsystem can be evaluated as follows [25]: 

𝐴 =
𝜕𝑓

𝜕𝑥
|

𝑥=0,𝑢=0
; 𝐵 =

𝜕𝑓

𝜕𝑢
|

𝑥=0,𝑢=0
 

where: 𝑓 is the differential equation of each state. 

The linear model of each subsystem can be obtained by evaluating the Jacobean 

linearisation matrices, choosing the azimuth and pitch angles as the output states 

for the 𝐶 matrix of the horizontal and vertical subsystems, respectively and assumes 

zero feedforward 𝐷 matrix for each subsystem. 

The linear model of the decoupled horizontal plane can be written in state space 

form as in Eq. (11): 

[

�̇�1

�̇�2

�̇�3

] = [
0 37.27 0
0 −0.22 0.195
0 0 −5.68

] [

𝑥1

𝑥2

𝑥3

] + [
0
0
1

] [𝑢ℎ]

𝑦ℎ = [1 0 0] [

𝑥1

𝑥2

𝑥3

] + [0][𝑢ℎ]

             (11) 

The linear model of the decoupled vertical plane can be written in state space 

form as in Eq. (12): 

[

�̇�4

�̇�5

�̇�6

] = [
0 33.27 0

−0.10 −0.42 0.25
0 0 −1.42

] [

𝑥4

𝑥5

𝑥6

] + [
0
0
1

] [𝑢𝑣]

𝑦𝑣 = [1 0 0] [

𝑥4

𝑥5

𝑥6

] + [0][𝑢𝑣]

            (12) 

3.  LQR Controller with Integral Action 

By considering a linear time-invariant system, the state and output equations with 

control input can be written as in Eq. (13) [26]: 

�̇� = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥

                 (13) 

The conventional LQR design problem is to minimise the following quadratic 

performance index function as in Eq. (14) [27]: 

𝐽 = ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)
∞

0
𝑑𝑡               (14) 

The control input here is linear and the control penalty is given by (𝑢𝑇𝑅𝑢) where 

𝑅 ∈ ℜ𝑚×𝑚 is the square positive definite matrix. The state penalty is expressed as 

(𝑥𝑇𝑄𝑥) where 𝑄 ∈ ℜ𝑛×𝑛 is a positive semi-definite matrix. The control value 𝑢 is 

representing the optimal control input, which is given by Eq. (15) [27]: 

𝑢(𝑡) = −𝐾𝑥(𝑡) = −𝑅−1𝐵𝑇𝑃𝑥(𝑡)               (15) 

The matrix 𝐾 is determined to minimise the performance index. Here, 𝑃 is the 

solution of the Riccati equation, and 𝐾 is the linear optimal feedback matrix. Riccati 

equation can be solved by Eq. (16) [27]: 
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𝑃𝐴 + 𝐴𝑇𝑃 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0               (16) 

The 𝑄 and 𝑅 matrices plays an important role on the overall system 

performance, thus, they should be chosen appropriately. 

By adding an integral action, a new state that is multi-dimensional will be added 

to the original states of the system [26]. According to Nise [26], the system has the 

state vector [𝑥 𝑥𝑎]𝑇, where 𝑥𝑎 is the new integral state: 

�̇�𝑎 = 𝑟 − 𝑦 = 𝑟 − 𝐶𝑥                (17) 

= [−𝐾 𝐾𝑒] [
𝑥

𝑥𝑎
]                 (18) 

where: 𝑟 is the reference signal and 𝐾𝑒 is the integral action gain. 

By substituting Eqs. (17) and (18) in Eqs. (15) and (16) yields [26]: 

[
�̇�

�̇�𝑎
] = [

𝐴 − 𝐵𝐾 𝐵𝐾𝑒

−𝐶 0
] [

𝑥
𝑥𝑎

] + [
0
1

] 𝑟

𝑦 = [𝐶 0] [
𝑥

𝑥𝑎
]

              (19) 

The state space representation of the state feedback control with integral action 

is shown in Eq. (19). By choosing appropriate state feedback gain and integral 

action gain that makes the system asymptotically stable, the system output will 

accurately track the reference signal [25]. 

4.  Particle Swarm Optimisation (PSO) 

PSO optimisation technique was originally inspired by the behaviour of fish 

swarms, as well as bees and other species [28]. The concept in this technique is to 

look for the best solution among the whole swarm for a specific cost function. PSO 

was introduced by James Kennedy and Russell Eberhart in (1995) and it is used as 

a powerful optimisation algorithm in many applications for its satisfactory results. 

Implementing PSO is very simple as only two equations are required for the 

optimisation process: position equation and velocity equation. For each step in 

PSO, all particles will be initialised with a random position and velocity vectors 

and they will be evaluated to a cost function relevant to their position. Similar to 

most optimisation techniques finding Personal Best (𝑥𝑃𝐵) and Global Best (𝑥𝐺𝐵) 

for all particles in each iteration step will be calculated and the velocity and position 

vectors of each particle will be updated according to Eqs. (20) and (21), 

respectively [28]: 

𝑣𝑖(𝑡 + 1) = 𝑤 × 𝑣𝑖(𝑡) + 𝑐1 × 𝑟1 × (𝑥𝑃𝐵 − 𝑥𝑖(𝑡)) + 𝑐2 × 𝑟2 × (𝑥𝐺𝐵 − 𝑥𝑖(𝑡))  (20) 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)               (21) 

where 𝑤 is the inertia weight factor, 𝑐1 and 𝑐2 are the personal acceleration 

coefficient and social acceleration coefficient, respectively and 𝑟1 and 𝑟2 are 

randomly distributed numbers between (0,1). The parameter 𝑤 makes the particles 

converge to the global best solution rather than oscillating around it. The 

parameters of PSO algorithm are provided in Table 2. 

In this optimization technique, the value of the inertia weight factor is adjusted 

according to Eq. (22): 
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𝑤 = 𝑤 × 𝑤𝑑𝑎𝑚𝑝             (22) 

where 𝑤𝑑𝑎𝑚𝑝 is the damping ratio of the inertia coefficient. 

According to INTECO [21], the optimisation purpose, a nonlinear 2-DOF 

TRAS model given is considered for the tuning of the 𝑄 and 𝑅 matrices of each 

sub-LQR controller. Each optimisation process is carried out for 100 iterations. The 

cost function used in the tuning process is the minimisation of the settling time and 

the percentage of overshoot as in Eq. (23): 

𝐹 = ST+OV                 (23) 

where: ST is the settling time and OV is the percentage of overshoot. 

Based on the PSO algorithm, the complete parameters tuning steps for each sub-

LQR controller can be summarised as follows: 

 Step 1. Randomly generate an initial population of particles. 

 Step 2. Calculate the cost function value of each particle. 

 Step 3. For each particle, if the cost function value is better than 𝑥𝑃𝐵, then set 

the present position as the new particle best. And if the cost function value is 

better than 𝑥𝐺𝐵, then let this particle take the place of the 𝑥𝐺𝐵. Otherwise, the 

present particle best and global best still remain. 

 Step 4. Update the velocity and position of each particle according to Eq. (20) 

and Eq. (21). And then, update the inertia weight factor according to Eq. (22). 

 Step 5. If the total number of iterations is achieved, stop the algorithm. 

Otherwise, go back to step 2. 

Figure 2 shows the convergence of the cost function for each optimisation 

process. It can be noticed that the particles of PSO are able to find the best solution 

in almost forty number of iterations. Table 3 shows the results obtained from each 

optimisation process. 

Table 2. Parameters of PSO. 

Parameter Value 

Maximum number of iteration 100 

Population size 50 

Inertia weight coefficient (𝒘) 1 

Damping ratio of inertia weight coefficient (𝒘𝒅𝒂𝒎𝒑) 0.99 

Personal acceleration coefficient (𝒄𝟏) 2 

Social acceleration coefficient (𝒄𝟐) 2 

Table 3. Results of PSO for each sub-LQR controller parameter’s tuning. 

Sub-controller 𝑸 matrix 𝑹 matrix 

Horizontal [
538.933 0 0

0 0 0
0 0 0

] [0.94] 

Vertical [
6097.30 0 0

0 0 0
0 0 0

] [0.16] 
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Fig. 2. Convergence of PSO cost function: 

(a) Horizontal controller best cost, (b) Vertical controller best cost. 

5.  Full State Observer 

LQR controller requires that all states of the system are available for 

measurement [29]. For each subsystem, there are three state variables, whereas 

only two are accessible for measurement [21]. Thus, a full state observer is 

designed for each subsystem. 

The mathematical model of the observer for linear time-invariant system can be 

defined as in Eq. (24) [29]: 

�̇̂� = 𝐴 �̂� + 𝐵𝑢 + 𝐾𝑒(𝑦 − 𝐶 �̂�)               (24) 

Since the system is controlled by the estimated feedback, the control input can 

be written as in Eq. (25): 

𝑢 = −𝐾 �̂� + 𝐾𝑒𝑥𝑎                (25) 

The estimated states can be written as in Eq. (26): 

�̇̂� = 𝐴 �̂� + 𝐵(−𝐾 �̂� + 𝐾𝑒𝑥𝑎) + 𝐿(𝐶𝑥 − 𝐶 �̂�)              (26) 

and it can be arranged as in Eq. (27): 

�̇̂� = (𝐴 − 𝐿𝐶 − 𝐵𝐾) �̂� + 𝐿𝐶𝑥 + 𝐵𝐾𝑒𝑥𝑎               (27) 

The inputs to the observer are the output 𝑦 and the control input𝑢. The gain 𝐿 

is called the observer gain and it is used as a correction for the model. Chosen of 

appropriate observer gain value determines how fast the error between the actual 

and estimated states will converge to zero [26]. As a rule of thumb, the observer 

poles determined by the matrix (𝐴 − 𝐿𝐶 − 𝐵𝐾) should be chosen to be two to five 

times faster than the controller poles to make sure that the error of the observer 

converges to zero very fast. However, if the output signal is contaminated by 

disturbances and measurement noises then the observer poles should be chosen to 
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be slower than the controller poles so that the bandwidth of the system will become 

lower and smooth the noise [29]. 

The horizontal observer poles are chosen to be five times faster than the horizontal 

controller poles. On the other side, the vertical observer poles are chosen to be four 

times slower than the vertical controller poles due to the vibrations that occur to the 

presence of rotor load, motor torque [30] and measurement noise, which result in a 

number of oscillations in the system response with long settling time. 

To demonstrate the effect of the vertical observer poles selection on the overall 

vertical controller performance, the vertical plane is subjected to a sinusoidal signal 

with a measurement noise of a distributed random sequence with noise power of 

0.1 × 10−0 as shown in Fig. 3. It can be clearly observed that the output of the 

vertical plane deviates significantly from the reference signal when the observer 

poles are five times faster than the controller poles, while in the case when the 

observer poles are four times slower than the controller poles the controller is able 

to smooth the noise and track the reference signal. 

 

Fig. 3. Effect of observer poles selection on vertical controller performance: 

(a) Model output with five times faster observer poles, 

(b) Model output with four times slower observer poles. 

The closed loop of each subsystem with state feedback controller, integral 

action gain and full state observer can be written in state space form as in Eq. (28): 

[

�̇�
�̇�𝑎

�̇̂�

] = [

𝐴 𝐵𝐾𝑒 −𝐵𝐾
−𝐶 0 0
𝐿𝐶 𝐵𝐾𝑒 𝐴 − 𝐿𝐶 − 𝐵𝐾

] [

𝑥
𝑥𝑎

�̂�
]

𝑦 = [𝐶 0 0] [

𝑥
𝑥𝑎

�̂�
]

             (28) 
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The overall performance of each controller is influenced by the eigenvalues of 

the state space in Eq. (28), thus, they should be placed appropriately to ensure the 

stability of the whole system. 

6.  Anti-integral Windup Compensator 

In practice, all control loops and processes contain nonlinearities such as saturation 

in actuators. One of the most well-known phenomena in the control system is the 

integrator windup especially when the system starts up [31]. Back-calculation 

technique is based on recomputing the integral term when the controller reaches its 

limits. In particular, the integral value is increased or decreased by feeding the error 

signal produced from the difference between the saturated and unsaturated control 

signal to the integral action state [31]. 

Since the linear controller is designed to operate within a linear range, ignoring 

the actuator nonlinearities will cause the integrator to wind up, which will 

significantly deteriorate the closed loop performance. This performance 

deterioration is in the form of large overshoot and long settling time [32]. For the 

TRAS system the control signals of the main and tail motors are normalised and 

change in the range [-1,+1], which corresponds to a voltage range of [-24V,+24V]. 

In back-calculation technique, the difference between the saturated control 

signal and the unsaturated control signal is fed back to the integral action state, thus, 

the new integral action state can be written as follows: 

�̇�𝑎 = 𝑟 − 𝑦 + ( 𝑢 − 𝑢)                (29) 

�̇�𝑎 = 𝑒 + ( 𝑢 − 𝑢)                (30) 

where: 𝑒 is the difference between the reference signal and the measured output. 

The controller input for each subsystem with the addition of back-calculation is 

modified in the time domain as in Eq. (31): 

𝑢 = −𝐾�̂� + 𝐾𝑒 ∫ (𝑒 + (�̅� − 𝑢))𝑑𝑡
𝑡

0
               (31) 

Rewriting the control input equation in the Laplace domain as follows: 

𝑢 = −𝐾 �̂� +
𝐾𝑒

𝑠
𝑒 +

𝐾𝑒

𝑠
( 𝑢 − 𝑢)               (32) 

𝑢 = 𝑠𝑎𝑡(𝑢)                 (33) 

where the saturation function sat is defined as in Eqs. (33) and (34): 

𝑢 = {

𝑢𝑚𝑖𝑛 𝑖𝑓  𝑢 < 𝑢𝑚𝑖𝑛

𝑢 𝑖𝑓  𝑢𝑚𝑖𝑛 ≤ 𝑢

𝑢𝑚𝑎𝑥 𝑖𝑓  𝑢 > 𝑢𝑚𝑎𝑥

≤ 𝑢𝑚𝑎𝑥                  (34) 

When the actuator saturates, the feedback signal (𝑢 − 𝑢) attempts to drive the 

error between the saturated and unsaturated control signals to zero by recomputing 

the integral action state such that the controller output is exactly at the saturation 

limit. When there is no saturation, the difference between 𝑢 and 𝑢 will be equal to 

zero, which breaks the feedback loop of back-calculation, in this case, the controller 

performs as in the standard mode ( 𝑢 = 𝑢). 
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When the actuator saturates 𝑢 is different from 𝑢. Since the controller is not 

aware of the saturation in the actuator it computes the states as if the system input 

is 𝑢, therefore, state estimation errors can be further alleviated by feeding 𝑢 to each 

observer instead of 𝑢 [33]. The closed loop system under the proposed DILQRC 

with full state observer and back-calculation technique is depicted in Fig. 4. 

 

Fig. 4. TRAS with DILQRC combined with 

full state observer and back-calculation technique. 

7.  Stability Analysis of Closed Loop Subsystems 

After the designing of the sub-LQR controllers combined with integral action gain, 

full state observer and back-calculation anti-integral windup technique, the closed 

loop analysis is carried out before the implementation on real 2-DOF TRAS system. 

The frequency response of each closed loop subsystem with linear and 

nonlinear models is estimated using linear analysis tool in MATLAB/Simulink for 

the frequencies from 0.01 rad/s to 100 rad/s. Figure 5 shows the estimated 

frequency response of each closed loop subsystem. The average estimated 

bandwidths are approximately 1.43 rad/s and 1.35 rad/s for the horizontal and 

vertical closed loop subsystems, respectively. The vertical bandwidth is slightly 

lower than the horizontal bandwidth, this would yield the vertical sub-LQR 

controller to attenuate and smooth more exogenous disturbance or measurement 

noise signals that may enter the system. Both horizontal and vertical closed loop 

subsystems have a gain margin of approximately 14 dB and 15 dB, respectively 

and phase margin of roughly 175 and 151, respectively, which indicates that each 

closed loop subsystem is asymptotically stable. 
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Fig. 5. Estimated frequency response of each closed loop subsystem: 

(a) Horizontal subsystem, (b) Vertical subsystem. 

8.  Experimental Results 

The performance of the closed-loop system is depending on the transient response 

of the system, error, control and total variation indices. For assessing the transient 

response characteristic, the rise time (RT) is defined as the time it takes for the 

response to rise from 10% to 90% of the steady-state value, the settling time (ST) 

is defined as the time it takes for the response to fall within 5% of the steady-state 

value and the percentage of the overshoot (OV) as the maximum peak value of the 

response expressed as a percentage of the steady state value [29]. Error index is 

defined as the integrated absolute of error (IAE) between the reference signal and 

the controlled variable and is given as in Eq. (35) [34]: 

IAE = ∫ ∣
∞

0
𝑒(𝑡) ∣ 𝑑𝑡                (35) 

where: 𝑒(t) is the difference signal between the reference signal and the measured 

output signal. 

The control index is defined as the integrated absolute control signal (IAC) that 

determines the amount of the control effort produced by the controller and is given 

as in Eq. (36) [34]: 

IAC = ∫ ∣
∞

0
𝑢(𝑡) ∣ 𝑑𝑡                (36) 

where: 𝑢(𝑡) is the control signal. 

The Total Variation (TV) index characterise the smoothness of the control 

signal and input usage and is given as in Eq. (37) [13]: 

TV = ∑ ∣
𝑛𝑠
𝑚=1 𝑢𝑖(𝑚 + 1) − 𝑢𝑖(𝑚) ∣               (37) 

where: 𝑛𝑠 is the number of samples and 𝑢𝑖(1), 𝑢𝑖(2), . . . , 𝑢𝑖(𝑛𝑠) is the discretised 

sequence of the input signals. 

Lower error, control and total variation indices indicate accurate tracking for 

the reference signal, less control effort and less aggressive changes in the control 

signal, respectively. The closed-loop system is implemented in 

MATLAB/Simulink using ode5 solver with a fixed step size of 0.01 s.  
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The mechanical unit of TRAS is equipped with a dedicated I/O board and a 

power interface. The control computer communicates with the incremental sensors 

and motors interfaced by means of the dedicated I/O board. The I/O board is 

operated by real-time software within the MATLAB/Simulink environment [14, 

21]. The experimental setup of TRAS is shown in Fig. 6.  

 

Fig. 6. TRAS experimental setup. 

8.1. Setpoint tracking 

For the step set point, tracking the system is subjected to step input of 0.8 rad in the 

horizontal plane and 0.3 rad in the vertical plane. Figure 7 shows the response of 

the TRAS system due to step input with both DILQRC and CCPIDC. Table 4 

summaries the step reference performance characteristics of DILQRC and 

CCPIDC. For the horizontal plane, the DILQRC achieves better performance than 

the CCPIDC by reducing the rise time by 39.60% and the settling time by 46.49%. 

For the vertical plane, the CCPIDC has a better rise time than the DILQRC, but it 

takes 8.90 seconds to be settled, whereas the DILQRC takes only 2.60 seconds with 

a magnificent reduction in overshoot percentage from 62.09% to 1.24%. 

Figure 8 shows the input control signals of DILQRC and CCPIDC due to a step 

input. The error, control and total variation indices of DILQRC and CCPIDC due 

to step input are summarised in Table 5. It can be clearly observed that the DILQRC 

significantly reduces the error index by 54.59% and 46.39% for horizontal and 

vertical planes, respectively indicating accurate tracking for the reference signals 

with less control effort and less aggressive changes in the control signals as 

compared to the CCPIDC. 

Table 4. Step reference performance characteristics. 

Controller Plane RT (s) ST (s) OV (%) 

Pandey et al. [13] CCPIDC 
Horizontal 2.02 3.42 0.00 

Vertical 1.08 8.90 62.09 

DILQRC 
Horizontal 1.22 1.83 0.48 

Vertical 2.16 2.60 1.24 
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Table 5. Error, control and total variation indices 

of DILQRC and CCPIDC due to step input. 

Controller Plane IAE IAC TV 

Pandey et al. [13] CCPIDC 
Horizontal 1.96 7.29 201.52 

Vertical 0.97 10.86 87.58 

DILQRC 
Horizontal 0.89 6.34 145.52 

Vertical 0.52 10.81 16.93 

 

 

Fig. 7. Step input response of TRAS with DILQRC and CCPIDC. 

 

Fig. 8. Control signal of DILQRC and CCPIDC due to step input. 

Figure 9 shows the response of the TRAS system due to square wave input with 

amplitude of 0.8 rad and frequency of 0.025 Hz in the horizontal plane and square 

wave input with an amplitude of 0.3 rad and frequency of 0.03Hz in the vertical plane 

with both DILQRC and CCPIDC. It can be clearly observed that the DILQRC 

accurately tracks the reference signal in both planes with a reduced number of 

oscillations in the vertical plane as compared to the CCPIDC. The improvement in 
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the DILQRC response for the vertical plane is achieved by means of the slower 

vertical observer poles, which are placed to attenuate disturbances and measurement 

noise signals.  

Figure 10 shows the input control signals of DILQRC and CCPIDC due to the 

square wave input. Error, control and total variation indices for DILQRC and 

CCPIDC due to square wave input signal are summarised in Table 6. It can be 

observed that the DILQRC requires less control effort with less aggressive changes 

in the control signal to stabilise the horizontal plane as compared to CCPIDC. For the 

vertical plane, the DILQRC requires higher control effort to stabilise the system with 

less aggressive changes in the control signal as compared to CCPIDC. In terms of 

error index, the DILQRC achieves better performance by maintaining accurate 

tracking for the reference signals by reducing the error index by 28.57% and 24.40% 

for horizontal and vertical planes, respectively as compared to the CCPIDC.  

In addition, it can be noticed that the CCPIDC produces high-frequency control 

signals due to the presence of the derivative parts of the controller [21], which are 

well known to amplify the measurement noise signals that lead to more variations 

and aggressive changes in the control signals [19, 35]. Whilst, the DILQRC does 

not contain any derivative parts. This, however, as expected, provides less 

aggressive and smooth control signals.  

Table 6. Error, control and total variation indices of 

DILQR and CCPIDC due to square wave input. 

Controller Plane IAE IAC TV 

Pandey et al. [13] 

CCPIDC 

Horizontal 15.76 25.09 2050.10 

Vertical 10.49 24.64 725.29 

DILQRC 
Horizontal 11.25 22.66 756.96 

Vertical 7.93 25.15 66.44 

 

 

Fig. 9. Square-wave response of TRAS with DILQRC and CCPIDC. 
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Fig. 10. Control signal of DILQRC and CCPIDC due square wave input. 

8.2.  Disturbance rejection 

With the presence of environmental disturbances on real laboratory TRAS system, 

an external step input disturbance of 0.2 rad is injected in both planes of the system 

at a time (t = 25 s). The performance of DILQRC and CCPIDC is recorded and 

compared as shown in Fig. 11. It can be noticed that the DILQRC rejects the 

disturbances very fast and maintains accurate tracking for the set point in both 

planes as compared to the CCPIDC.  

Figure 12 shows the input control signals of DILQRC and CCPIDC due to step 

input subjected to external disturbance. Table 7 summaries the error, control and 

total variation indices of DILQRC and CCPIDC subjected to external disturbance. 

It can be observed that the DILQRC requires higher control effort to stabilise both 

planes of the system with less aggressive changes in the control signals as compared 

to CCPIDC. In terms of error index, the DILQRC achieves better performance by 

rejecting the disturbances very fast and maintains accurate tracking for the 

reference signals by minimising the error index by 47.27% and 34.35% for 

horizontal and vertical planes, respectively as compared to the CCPIDC. 

The fluctuations that happen in the response of the DILQRC (especially in the 

vertical plane) after the disturbances are injected at a time (t = 25 s), have 

occurred because the DILQRC reaches the limitations of the horizontal and 

vertical motors, as it can be clearly seen from the control signals in Fig. 12 at 

time (t = 25 s). However, this causes integral windup phenomena to happen, 

which directly activates the anti-integral windup compensators that quickly bring 

the control signals into the effective range before the performance of the DILQRC 

significantly degraded.  

After the elimination of the injected disturbances, the response of the DILQRC 

shows small fluctuations in the vertical plane this is, however, because of the 

vibrations, which occur due to the vertical rotor load and motor torque [30]. 
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Table 7. Error, control and total variation indices of DILQRC 

and CCPIDC due to step input subjected to external disturbance. 

Controller Plane IAE IAC TV 

Pandey et al. [13] CCPIDC 
Horizontal 2.20 7.49 416.03 

Vertical 1.31 8.22 126.60 

DILQRC Horizontal 1.16 8.60 199.71 

 Vertical 0.86 9.37 21.81 

 

 

Fig. 11. Step input response of TRAS with DILQRC 

and CCPIDC subjected to external disturbance. 

 

Fig. 12. Control signal of DILQRC and CCPIDC 

due to step input subjected to external disturbance. 
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9.  Conclusions 

In this work, control and stabilisation of real TRAS system in 2-DOF motion is 

successfully achieved. Decoupled integral LQR controller combined with full state 

observer and anti-integral windup compensator based on back-calculation 

technique has been described in this paper. Experimental results show that the 

DILQRC has a better transient and steady-state responses with magnificent 

reduction of settling time, overshoot percentage and error index. In all the 

experiments, the DILQRC produces smooth control signals with less aggressive 

changes as compared to the CCPIDC, furthermore, the settling time for the system 

is less than 2.61 seconds for both angles, which is considered as the fastest settling 

time as compared to the other controller design techniques presented in the 

literature. Overall, the DILQRC has the ability to maintain accurate tracking for the 

reference signals with fast disturbances rejection as compared to the existing 

CCPIDC tuned by the manufacturer. 
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Nomenclatures 
 

𝐴1 Mechanical constant 

𝐵1 Mechanical constant 

𝐶1 Mechanical constant 

𝑎1 Mechanical constant 

𝑎2 Mechanical constant 

𝑐1 Personal acceleration coefficient 

𝑐2 Social acceleration coefficient 

𝑒 Error signal 

𝑒ℎ Horizontal error signal 

𝑒𝑣 Vertical error signal 

𝐹 Particle swam optimisation cost function 

𝑓 Differential equation of each state 

𝐹ℎ(𝑥3) Nonlinear relationship between the rotational 

speed of tail rotor and horizontal thrust 

𝐹𝑣(𝑥6) Nonlinear relationship between the rotational speed 

of main rotor and vertical thrust 

𝑔 Gravitational acceleration, ms-2 

𝐼ℎ Moment of inertia for tail rotor, kgm2 

𝐼𝑣  Moment of inertia for main rotor, kgm2 

𝐽 Quadratic performance index function 

𝐽ℎ Moment of inertia with respect to vertical axis, kgm2 

𝐽𝑣 Moment of inertia with respect to horizontal axis, kgm2 

𝐾 Linear optimal feedback matrix 

𝐾𝑒  Integral action gain 

𝐾ℎ Linear optimal horizontal feedback matrix 

𝐾𝑣 Linear optimal vertical feedback matrix 
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𝐾𝑒ℎ Horizontal integral action gain 

𝐾𝑒𝑣  Vertical integral action gain 

𝑘ℎ Friction constant of tail propeller  

𝑘𝑣 Friction constant of main propeller 

𝐿 Observer gain 

𝑙𝑚 Length of the main rotor, m 

𝑙𝑡 Length of the tail rotor, m 

𝑛𝑠 Number of samples 

P Solution of Riccati equation 

Q Positive semi-definite matrix 

R Square positive definite matrix 

𝑟 Reference signal 

𝑟1 Randomly distributed number between 0 and 1 

𝑟2 Randomly distributed number between 0 and 1 

𝑟ℎ Horizontal reference signal 

𝑟𝑣  Vertical reference signal 

𝑢 Input vector 

𝑢 Saturated control signal 

𝑢ℎ Control input to tail rotor 

𝑢ℎ Saturated horizontal control signal 

𝑢ℎ(𝑥3) Nonlinear relationship between rotational speed of 

tail rotor and the control input to the tail rotor 

𝑢𝑚𝑎𝑥  Maximum control signal 

𝑢𝑚𝑖𝑛 Minimum control signal 

𝑢𝑣 Control input to the main rotor 

𝑢𝑣 Saturated vertical control signal 

𝑢𝑣(𝑥6) Nonlinear relationship between the rotational speed of 

main rotor and the control input to main rotor 

𝑣𝑖 Velocity vector 

𝑤 Inertia weight factor 

𝑤𝑑𝑎𝑚𝑝  Damping ratio of inertia coefficient 

𝑥 State vector 

�̂� Estimated state 

𝑥1 Azimuth angle, rad) 

𝑥2 Azimuth angular velocity, rad/s 

𝑥3 Rotational speed of the tail rotor, rad/s 

𝑥4 Pitch angle, rad 

𝑥5 Pitch angular velocity, rad/s 

𝑥6 Rotational speed of main rotor, rad/s 

𝑥𝑎  Integral action state 

𝑥𝑎ℎ Horizontal integral action state 

𝑥𝑎𝑣  Vertical integral action state 

𝑥𝐺𝐵 Global best  

𝑥𝑖  Position vector 

𝑥𝑃𝐵 Personal best  

𝑦 Output vector 

𝑦ℎ  Horizontal output vector 

𝑦𝑣 Vertical output vector 
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Abbreviations 

CCPIDC Cross Coupled PID Controller 

DILQRC Decoupled Integral LQR Controller 

DOF Degree of Freedom 

IAC Integrated Absolute Control 

IAE Integrated Absolute Error 

LQR Linear Quadratic Regulator 

MIMO Multi Input Multi Output 

MPC Model Predictive Control 

OV Overshoot 

PID Proportional Integral Derivative 

PSO Particle Swarm Optimization 

RT Rise Time  

SISO Single Input Single Output 

ST Settling Time 

TRAS Two Rotor Aero-dynamical System 

TRMS Twin Rotor MIMO System 

TV Total Variation 
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