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Abstract: Carbon dioxide CO2 is one of the major gases of concern in ethane feeder pipeline since it presence will induce 

corrosion which then damage the pipeline. The purpose of this study is to determine the corrosion rate using NORSOK M-506 

commercial software prior to comparing corrosion rate with international standard, identify optimum level to control corrosion 

rate, and analyse the relationship of moisture content towards H2CO3 impact and its pH level for variety of CO2 concentration, 

temperature, pH and moisture content in the ethane feeder pipeline. Evaluation impact was done for CO2, temperature and pH 

value using average value and is categorised as moderate between 0.025 to 0.12 mm/year as per an International Standard – 

National Association of Corrosion Engineer (NACE). Corrosion rate for CO2 is 0.055 mm/year while for temperature and pH 

are 0.054 mm/year and 0.055 mm/year respectively. Based on the average corrosion rate of 0.05 mm/year, the simulation 

results produce the optimum corrosion control level when CO2 concentration is 1.40 mole percent at temperature of 21.5 °C 

and pH of 4.7. Since NORSOK M-506 software has the limitation of pH coverage within 3.5 – 6.5, moisture effect is analysed 

using chemistry equation approach. It was found that the concentration of H2CO3 increases with moisture content. More H2CO3 

formation in pipeline will definitely promote a more serious internal corrosion. 
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1. INTRODUCTION 

Corrosion causes metal wear due to the chemical reaction between a metal body and environments, particularly in a dynamic 

situation such as pipeline [1]. Carbon dioxide (CO2) gas is one of the significant contributing factors that causes corrosion and 

degradation of pipelines in the oil and gas industry [2-6]. Huge costs are directed annually to alleviate and manage corrosion 

[7-9]. Predictive tools for material loss prediction or material selection can be derived from empirical and mechanistic 

equations based on environmental condition. In an ethylene processing line, the presence of other factors such as moisture, 

temperature, and pH level are known to induce corrosion but the actual mechanism in CO2 environment is still not fully 

understood while corrosion is generally poorly understood. CO2 can dissolve in water to form carbonic acid (H2CO3) and will 

lower the pH. Sufficient quantities of H2CO3 can promote general corrosion and/or pitting corrosion of carbon steel [2, 10-11]. 

In order to evaluate these interactions, corrosion rate prediction in ethane feed pipeline should be studied.  

Carbon dioxide related corrosion is one of the major challenges in oil and gas industry since produced formation fluids 

contain corrosive gases including CO2 [8, 12-13]. Moreover, applications of various modern production enhancement 

technologies such as Enhanced Oil Recovery (EOR) require injection of CO2 gas into reservoirs. The presence of CO2 with 

other gas impurities such as hydrogen sulphide (H2S), carbon monoxide (CO), sulphur dioxide (SO2), and oxygen (O2) in 

production stream can result in corrosion of well casing and production tubing [14]. Dry CO2 gas is considered less corrosive 

than wet CO2, which reacts with free or condensate water to form carbonic acid [10, 15]. Consequently, damage can occur in 

the form of uniform or localised corrosion [14]. CO2 corrosion is a complex process, which is affected by CO2 partial pressure, 

temperature, water chemistry, and pH [1, 16-18]. A number of theoretical and experimental studies has been conducted to have 

better understanding on CO2 corrosion [19-21]. Various CO2 corrosion models have been developed and used in the industry 

to mitigate the said corrosion problem. However, most of these models are suitable for low-pressure applications [22]. 
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This study is aimed to determine corrosion rate using NORSOK M-506 [23] commercial software prior to comparing 

corrosion rate with international standard, identify optimum level to control corrosion rate, and analyse the relationship of 

moisture content towards H2CO3 impact and its pH level for variety of CO2 concentration, temperature, pH and moisture 

content in the ethane feeder pipeline.  

2. METHODOLOGY 

The first part basically discussed the simulation which was undertaken in order to simulate corrosion rate using NORSOK 

software for each of three factors which were CO2 concentration, pH and temperature based on their true data. This followed 

by analysis where the findings were being described in a numerical value. The second part was to calculate H2CO3  

concentration based on moisture content level in ethane feeder pipeline using chemistry equation approach.  

 

2.1  CO2 Corrosion Rate Calculation Modelling  

The model is an empirical corrosion rate model for carbon steel in water containing CO2 at different temperatures, pH, CO2  

fugacities, and wall shear stresses as shown in general Equation (1). It is based on flow-loop experiments at temperatures of 5 

°C as in Equation (2), 15 °C in Equation (3) until 160 °C. A large amount of data at various temperatures, CO2 fugacities, pH, 

and wall shear stresses were used. 

The main bulk of the flow-loop tests used in developing the calculation model was taken from the research programs by 

Institute for Energy Technology (IFE) in Norway. The main principles for the testing were described by [18].   

 

𝐶𝑅 = 𝐾𝑡 × 𝑓𝐶𝑂2
0.62 × (

𝑠

19
)

0.146+0.324 log 𝑓𝐶𝑂2
× 𝑓(𝑃𝐻)𝑡   

 

(1) 

  

The following equation is used at temperature 5 °C: 

 

𝐶𝑅𝑡 =  𝐾𝑡 × 𝑓𝐶𝑂2
0.36  ×  𝑓(𝑃𝐻)𝑡   (2) 

 

The following equation is used at temperature 15 °C: 

 

𝐶𝑅𝑡 =  𝐾𝑡 × 𝑓𝑐𝑜2
0.36 𝑥 (

𝑠

19
)

0.146+0.324 log 𝑓𝐶𝑂2
×  𝑓(𝑃𝐻)𝑡     

 

(3) 

 

where 𝐶𝑅𝑡  is the corrosion rate at temperature 𝑡 in mm/year, 𝐾𝑡 is the constant for the temperature 𝑡 used in corrosion rate 

calculations, 𝑓𝐶𝑂2  is the fugacity of CO2 in bar, S is the wall shear stress in Pa, and 𝑓(𝑃𝐻)𝑡 is a pH factor at temperature 𝑡. The 

corrosion rate between temperatures where constant 𝐾𝑡 has been generated [23] is found by a linear extrapolation between the 

calculated corrosion rate at the temperature above and below the desired temperature. In this study, the input parameters used 

to calculate the corrosion rate was obtained from true data (measured at site) which consists of CO2 concentration and 

temperature. Meanwhile for the pH value, it was calculated using NORSOK simulation which then verified with true data. On 

top of that, several assumptions were also established for the other parameters such as shear stress at 1 bar, glycol concentration 

of 0%, and inhibitor efficiency of 95%. In order to simulate the corrosion rate due to CO2 effect, variable parameters such as 

pH and temperature were calculated based on their average value and taken as constant. A similar approach was also applied 

for the temperature and pH effects. The details of the procedures applied to determine the input parameters are as follows: 

 

a) Ethane Feeder Pipeline Content Determination  
CO2 concentration is determined by Gas Chromatograph (GC) as shown in Figure 1. A sample is injected into the GC and 

travels down a flowing carrier gas (usually nitrogen or helium). The light components travel down the tube more quickly and 

are the first detected.  Over the next few minutes, all of the components exit the column and are measured by the detector. A 

diagram of the key components of a gas chromatograph generated is shown in Figure 2. The area under each of the peaks is 

proportional to the concentration of the compound presents in the sample. Like most analytical techniques, calibration gas 

sample must be measured so that the process gas concentrations can be properly calculated. 

This test method covers the determination of carbon dioxide, methane, ethane, acetylene, and other hydrocarbons in high-

purity ethylene. Hydrogen, nitrogen, oxygen, and carbon monoxide are determined in accordance with ASTM D2504-88 [24]. 

The percent of ethylene is obtained by subtracting the sum of the percentages of the hydrocarbon and non-hydrocarbon 

impurities from 100. The method is applicable over the range of impurities from 1 to 500 parts per million volume (ppmV). 

The sample is separated in a gas chromatograph system utilising four different packed chromatographic columns with 

helium as the carrier gas [25]. Methane and ethane are determined using a silica gel, while propylene and heavier hydrocarbons 

are determined using a hexamethyl phosphoramide (HMPA) column. Acetylene is determined using, in series, a hexadecane 

column and asqualane column. Carbon dioxide is determined using a column packed with activated charcoal impregnated with 

a solution of silver nitrate in β,β`oxydipropionitrile.  
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Figure 1. Schematic diagram of gas chromatography 

 

 
 

    Figure 2. Chromatogram for CO2 by gas chromatography 

 

Columns other than those mentioned above may be satisfactory. Calibration data are obtained using standard samples 

containing the impurities, carbon dioxide, methane, and ethane in the range expected to be encountered. Calibration data for 

acetylene is obtained by assuming that acetylene has the same peak area response on a weight basis as methane. The acetylene 

content in a sample is calculated on the basis of the ratio of peak area of the acetylene peak to the peak area of a known amount 

of methane. Calculations for carbon dioxide, methane, and ethane are carried out by the peak-height measurement method. 

 

b) Ethane Feeder Pipeline Temperature Measurement 

The temperature is measured by a thermocouple at site and recorded in a distributed control system. A thermocouple comprises 

at least two metals joined together to form two junctions [26]. One is connected to the body whose temperature is to be 

measured; this is the hot or measuring junction. The other junction is connected to a body of known temperature; this is the 

cold or reference junction. Therefore, the thermocouple measures unknown temperature of the body with reference to the 

known temperature of the other body.  

 

c) Determination of pH 

The calculated pH was obtained from simulation while verification of pH could be done experimentally by passing through 

ethane gas in a gas scrubber as shown in Figure 3. New pH papers were placed on scrubber internal wall and let the sample 

gas passing through for 10 minutes.  
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Figure 3. Schematic diagram of pH paper in a glass scrubber 

 

If there was any change in colour experienced by the pH paper, it should be recorded and compared with the standard Colour 

pH Strip. Safety precaution should be taken especially safety glass is mandatory to be worn. Gas flow should be regulated 

accordingly. 

The pH paper is used to determine if a solution is acidic, basic, or neutral. This is determined by dipping part of the paper 

into a solution of interest and watching the color change. If the paper turns a dark greenish-blue, the pH may likely be around 

11 to 14. The term stands for potential hydrogen and is a measurement of how many hydrogen ions, symbolized as H+, are in 

a solution. The more hydrogen ions present in a substance, the more acidic it is. A high number of hydroxide ions, symbolized 

as OH−, characterize basic or alkaline substances. If a substance has the same amount of H+ and OH−, then it is said to be 

neutral. Water is a common example of this sort of solution. In this study, even though the sample itself is in a gas form, 

however, the moisture content in the said gas sample may good enough to give an opportunity for pH detection. 

 

2.2  𝑯𝟐𝑪𝑶𝟑 Concentration Determination  

Moisture in gas sample is measured by a shaw meter. The sample is introduced to the shaw meter direct from the sampling 

point outlet at site. The water or moisture content is conducted by in-situ measurement using shaw automatic dew point meter 

(SADP) as shown in Figure 4. 

According to Acid-based Chemistry, Bronsted/Lowry Acid theory [27], an acid is a substance which can donate a 

hydrogen ion (H+) or a proton while a base is a substance that accepts a proton. Acids are usually referred to as donating 

protons, or H+, while bases donate OH−, or hydroxyls. The proton is strongly bound to water forming the basic unit of H3O+, 

the hydronium ion. The usage of H3O+ is usually reserved to reactions involving water. The reaction for water is shown in 

Equation (4). The dissociation (equilibrium) constant, 𝐾𝑎 is referred to the reaction when an acid donates a proton to water and 

its formula is shown in Equation (5). 

 

H2O <=> H+  +  OH−                    (4) 

 

𝐾𝑎 = [H+] [OH−]/[H2O]                                                                           (5) 

 

H2CO3 dissociates in a stepwise manner, furnishing one proton at a time. For this reason, pH is determined using [H3O+] 

for the first dissociation as Equation (6). For H2CO3, 𝐾𝑎 is normally referred to 4.3 × 10−7 which is under first dissociation as 

shown in Equation (7). Concentration of H2CO3 should be calculated before determining the pH value. When CO2 gas is in 

contact with H2O, the chemical reaction as illustrated in Figure 5 will take place to produce H2CO3. 

 

 
 

Figure 4. A shaw automatic dew point meter 
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Figure 5. Chemical reaction of carbonic acid formation 

 

 

H2CO3 +  H2O <=> H3O+  +  HCO3−                  (6) 

 

𝐾𝑎 = [H3O+ ] [HCO3−]/[H2CO3 ]                      (7) 

 

The chemical equation of two reactants combine to produce a single product is balanced. One mole of CO2 will react with 

one mole of moisture to produce one mole of H2CO3 [28-29]. However, by considering concentration unit of moisture with 

part per million (ppm) volumes is much lower than CO2 in percent [30], a complete chemical reaction tended CO2 becomes 

excess. In this chemical reaction, reactants (CO2) which are not used up when the reaction has completed is shown as excess 

reagents. The reagent (H2O) which has been completely used up or reacted is shown as the limiting reagent, because its quantity 

limits the amount of products formed. Since H2O is a limiting reagent, the concentration of H2CO3 is mainly affected by 

moisture content. Generally, corrosion rate increases with moisture content because more H2CO3 is generated through 

electrochemical reaction in the pipeline system.  

3. RESULTS AND DISCUSSION 

3.1 CO2 Corossion Rate Calculation Modelling  

a) The Effect of 𝐂𝐎𝟐 Concentration on Corrosion Rate 

A total of 50 CO2 concentration data were collected for a duration of 50 days and the trend was tabulated as shown in Figure 

6. Based on the trending itself, the highest concentration recorded was 2.13 mole % and the lowest was 1.24 mole %. The 

fluctuation of CO2 concentration level could promote corrosion activity if the control mechanism was not supported. In order 

to understand the effect of CO2 level towards corrosion impact, corrosion rate can be simulated using commercial software 

NORSOK M-506, a recommended practice for calculation of corrosion rate in hydrocarbon production and process systems 

where the corrosive agent is CO2. The corrosion rate trending for various CO2 concentrations is illustrated in Figure 7. Figures 

6-8 show that corrosion rate is directly proportional to CO2 concentration and CO2 partial pressure (PCO2).  

As seen in Figure 8, an increase of CO2 partial pressure could promote an increase in corrosion rate. This is due to the 

increase in H2CO3 concentration which accelerates the cathodic reaction, and ultimately the corrosion rate [31]. However, 

when other conditions are favourable for formation of iron carbonate scales, an increase in PCO2 concentration can produce a 

favourable effect. At a high pH, higher PCO2 would increase bicarbonate and carbonate ion concentrations and subsequently 

produces a higher super saturation, which accelerates precipitation process and scale formation. If there was no corrosion film 

formed on the metal surface during the corrosion process, increasing further the partial pressure of CO2 will cause an increase 

in corrosion rate. 

According to National Association of Corrosion Engineers (NACE) [32], a worldwide corrosion authority, the qualitative 

categorisation of carbon steel corrosion rate for oil production system is as shown in Table 1. Referring to corrosion rate 

prediction on CO2 concentration, it is concluded that CO2 level at ethane feeder line was quantitatively categorised under 

moderate condition where the corrosion rate was between 0.025–0.12 mm/year as shown in Figure 9. By average, the corrosion 

rate was 0.055 mm/year which could be considered as moderate. 

The corrosion rate for CO2 was categorised as moderate and should be controlled so that it will fall between 0.025–0.12 

mm/year with suggested value of 0.05 mm/year. Based on NORSOK simulation study, the level of CO2 concentration that 

giving corrosion rate of 0.05 mm/year is 1.40 mole % as shown in Figure 10. The optimum CO2 concentration of 1.40% could 

be a setting to control the corrosion rate which shall not exceed 0.05 mm/year. Even though it is still within the moderate zone 

but by referring to the moderate range of 0.025–0.12 mm/year, 0.05 mm/year is representing mid-point from this control range. 
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Figure 6. CO2  concentration trend 

 

 

 
 

Figure 7. Corrosion rate trend 

 

 
 

Figure 8. CO2 partial pressure and corrosion rate trend 

 

Table 1. Qualitative categorisation of carbon steel corrosion rates for oil production system [32] 

 

 

 

 

 

 

 
 

Figure 9. CO2 corrosion rate as compared with NACE standard 

 

Category Average corrosion rate, mm/year 

Low < 0.025 

Moderate 0.025 – 0.12 

High 0.13 – 0.25 

Severe > 0.25 



Z. ZAKARIA ET AL., APPLICATIONS OF MODELLING AND SIMULATION, 3(2), 2019, 74-84 

80 

 
 

Figure 10. NORSOK M-506 simulations for max CO2–corrosion rate of 0.05 mm/yr 

 

b) The Effect of Temperature on Corrosion Rate 

Based on simulation, the lowest temperature is 21.1 °C and the highest is 25.4 °C from 50 recorded data and trending as 

illustrated in Figure 11. The trending shows that the fluctuation of temperature is relatively stable within 21.0 °C – 26.0 °C 

and most of the temperature recorded at higher side which is above 23 °C.  

Corrosion rate due to temperature effect at ethane feeder pipeline was simulated as illustrated in Figure 12. The highest 

temperature of 25.4 °C and the lowest temperature of 21.1 °C had been recorded during the data collection period and both 

temperatures were promoting corrosion rate between 0.051 – 0.059 mm/year. Conclusively, the corrosion rate is found to be 

directly proportional with temperature.  

Based on the international standard of temperature effect on corrosion rate, it can be seen that temperature effect on ethane 

feeder line is quantitatively categorised under moderate condition where corrosion rate is between 0.025–0.12 mm/year or an 

average of 0.054 mm/year as shown in Figure 13. Based on NORSOK simulation study, corrosion rate of 0.05 mm/year can 

be controlled with temperature at 21.5 °C. 

 

 

 
 

Figure 11. Temperature at ethane feeder pipeline 

 

 
 

Figure 12. Corrosion rate at ethane feeder line 
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Figure 13. Comparison corrosion rate due to temperature effect with NACE standard 

 

 
 

Figure 14. pH reading at ethane feeder line 

 
 

Figure 15. Corrosion rate at ethane feeder line 

 

c) The Effect of pH on Corrosion Rate 

The effect of pH on corrosion rate as given by NORSOK model is dependent on temperature. Based on simulated study at 

shear stress of 1 bar; 0% glycol concentration, and inhibitor efficiency of 95%, pH reading of the ethane feeder line is illustrated 

in Figure 14 while Figure 15 shows a contrasting profile between the corrosion rate increases while pH decreases over the 

duration of study (i.e., corrosion rate increases as pH decreases). Lower pH is an indicator of higher acidity of the fluid.   

Figure 16 shows that the average corrosion rate due to pH is in the range of 0.025–0.12 mm/year with an average of 0.055 

mm/year. Therefore, quantitatively corrosion rate at ethane feeder line due to pH can be categorised as moderate and should 

be controlled within 0.05 mm/year. And based on NORSOK simulation study, that rate can be achieved at pH of 4.7. 

3.2  𝑯𝟐𝑪𝑶𝟑 Concentration  

a) The Effect of Moisture Content on Corrosion Rate 

Testing was conducted at site using the shaw meter and the apparatus arrangement is as illustrated in Figure 17. The measured 

moisture content and calculated concentration of H2CO3 and pH (due to moisture content) at the ethane feeder line are shown 

in Table 2. Based on data in Table 2, H2CO3 concentration at ethane feeder line are found to be directly proportional to moisture 

content. In addition, increased in H2CO3 concentration will lower the pH value. 

One of the most influential parameters which affects CO2 corrosion is water chemistry. When CO2 dissolved in water, it 

is partly hydrated and forms carbonic acid. The speciation can vary from very simple, with only a few carbonic species present, 

as in the case with condensed water in gas pipelines. The research findings show that the water content has significant impact 

on concentration of H2CO3 as shown in Table 2. When the moisture content is high, the concentration of H2CO3 increases. 

Increase in H2CO3 formation in pipeline will definitely promotes more internal corrosion. 
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Figure 16. Categorisation of corrosion rate due to pH at ethane feeder line 

 

 

 
 

Figure 17. Apparatus arrangement for moisture and pH measurement at site 

 

Table 2. Moisture effects towards H2CO3 concentration and pH level 

 

No. of Days ppm of H2O mg of H2CO3 pH 

1 4.4 15.4 2.86 

2 3.4 11.9 2.92 

3 8 28.0 2.73 

4 8 28.0 2.73 

5 10 35.0 2.68 

6 8.5 29.8 2.72 

7 3.4 11.9 2.92 

8 8.5 29.8 2.72 

9 10 35.0 2.68 

10 9.2 32.2 2.70 

 

 

4. CONCLUSION 

Corrosion rate at ethane feeder line is directly propositional to the CO2 content and temperature. The higher the CO2 

concentration, the higher corrosion rate will be. CO2 is a corrosive reactant and it will generate carbonic acid when combined 

with water. Higher temperature accelerates all the processes involve in corrosion and as a result, corrosion rate will increase. 

However, corrosion rate produces a contrasting profile as compared to pH. Generally lower pH level promotes higher corrosion 

rate. This phenomenon is valid because lower pH level generates more H+ and promotes more chemical reactions. 

According to NACE, corrosion rate prediction based on CO2 concentration, temperature, and pH level can be 

quantitatively categorised under moderate condition if corrosion rate is between 0.025–0.12 mm/year. By average, the 

corrosion rate due to CO2 effect is 0.055 mm/year, temperature effect is 0.054 mm/year, and pH level effect is 0.055 mm/year. 
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Based on the average corrosion rate, it is around 0.05 mm/year and these research findings provide an opportunity to identify 

the optimum control level (mole % of CO2: 1.40; temperature: 21.5 °C, pH: 4.7) for these three contributing factors.   

Based on simulation work using NORSOK M-506 software and acid-base theory to calculate H2CO3 concentration when 

CO2 dissolves in water (condensed), it is partly hydrated and forms carbonic acid. The results show that the water content has 

significant impact on the concentration of H2CO3. When the moisture content is high, the concentration of H2CO3 increases. 

Generally, an increase in the formation of H2CO3 in pipelines will definitely promote a more severe internal corrosion. 
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