
Complete and Platform-Independent Calling Context Profiling
for the Java Virtual Machine

Sarimbekov, Aibek; Moret, Philippe; Binder, Walter et al.
(2011)

DOI (TUprints): https://doi.org/10.25534/tuprints-00014564

Lizenz:

CC-BY-NC-ND 3.0 International - Creative Commons, Namensnennung, nicht kom-
merziell, keine Bearbeitung

Publikationstyp: Artikel

Fachbereich: 20 Fachbereich Informatik

LOEWE

Quelle des Originals: https://tuprints.ulb.tu-darmstadt.de/14564

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by tuprints

https://core.ac.uk/display/356665754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.25534/tuprints-00014564
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://tuprints.ulb.tu-darmstadt.de/14564

Complete and Platform-Independent

Calling Context Profiling

for the Java Virtual Machine

Aibek Sarimbekov Philippe Moret Walter Binder1

Faculty of Informatics
University of Lugano
Lugano, Switzerland

Andreas Sewe Mira Mezini2

Software Technology Group
Technische Universität Darmstadt

Darmstadt, Germany

Abstract

Calling context profiling collects statistics separately for each calling context. Complete calling context
profiles that faithfully represent overall program execution are important for a sound analysis of program
behavior, which in turn is important for program understanding, reverse engineering, and workload charac-
terization. Many existing calling context profilers for Java rely on sampling or on incomplete instrumentation
techniques, yielding incomplete profiles; others rely on Java Virtual Machine (JVM) modifications or work
only with one specific JVM, thus compromising portability. In this paper we present a new calling con-
text profiler for Java that reconciles completeness of the collected profiles and full compatibility with any
standard JVM. In order to reduce measurement perturbation, our profiler collects platform-independent
dynamic metrics, such as the number of method invocations and the number of executed bytecodes. In
contrast to prevailing calling context profilers, our tool is able to distinguish between multiple call sites in
a method and supports selective profiling of (the dynamic extent of) certain methods. We have evaluate
the overhead introduced by our profiler with standard Java and Scala benchmarks on a range of different
JVMs.

Keywords: Calling Context Profiling, JP2, Bytecode Instrumentation, Dynamic Metrics

1 Introduction

Calling context profiling is a common profiling technique that helps analyse the

dynamic inter-procedural control flow of applications. It is particularly important

for understanding and optimizing object-oriented software, where polymorphism

1 Email: firstname.lastname@usi.ch
2 Email: lastname@st.informatik.tu-darmstadt.de

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 279 (1) (2011) 61–74

1571-0661 © 2011 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2011.11.006
Open access under CC BY-NC-ND license.

mailto:aibek.sarimbekov@usi.ch
mailto:sewe@st.informatik.tu-darmstadt.de
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2011.11.006
http://dx.doi.org/10.1016/j.entcs.2011.11.006
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/

and dynamic binding hinder static analyses. Calling context profiling hereby col-

lects statistics separately for each calling context, such as the number of method

invocations or the CPU time spent in a calling context.

Both the dynamic call graph (DCG) and the Calling Context Tree (CCT) are

well-known data structures often used for performance characterization and op-

timization [1]. The nodes in the respective data structures are associated with

profiling information. Such a profile can include a wide range of dynamic metrics,

e.g., execution times or cache misses. Platform-independent dynamic metrics such

as the number of method invocations or executed bytecodes are of particular inter-

est in the area of performance characterization. These metrics are reproducible, 3

accurate, portable, and comparable [12,4].

Unlike a context-insensitive DCG, a CCT in principle is capable of capturing the

complete context of a call. Still, CCTs generated by state-of-the-art profilers [17]

are missing one key bit of information present in the well-known labelled variant

of DCGs: information about the individual site at which a call is made. In other

words, while keeping track of numerous methods in entire call chains, many calling

context profilers are unable to distinguish between multiple call sites within a single

method.

In this paper, we introduce JP2, a call-site-aware profiler for both platform-

independent and complete calling context profiling. The profiler is based on portable

bytecode instrumentation techniques for generating its profiling data structures at

runtime. Besides two counters for the number of method executions and number of

executed bytecodes, each calling context tracks the current bytecode position; this

enables JP to distinguish between the call sites within a single method.

While several of these features were already present in our earlier JP tool [6],

this paper makes several unique contributions:

• A detailed description of JP2, the first call-site aware profiler to capture complete

CCTs.

• A description of how JP2 can temporary disable profiling for the current thread

without breaking the CCT’s structure, hence collecting only appropriate profiles.

• A rigorous evaluation of JP2’s performance on 3 virtual machines and 22 Java

and Scala benchmarks [7,21].

This paper is structured as follows: Section 2 gives background information on

platform-independent dynamic metrics and CCTs. Section 3 describes the tool’s

design. Section 4 details our performance evaluation on a range of benchmarks and

virtual machines. Section 5 discusses related work, before Section 6 concludes.

2 Background

In the following we give a brief overview of both platform-independent dynamic

metrics and the Calling Context Tree data structure.

3 For deterministic programs with deterministic thread scheduling.

A. Sarimbekov et al. / Electronic Notes in Theoretical Computer Science 279 (1) (2011) 61–7462

2.1 Platform-independent Dynamic Metrics

Most state-of-the-art profilers rely on dynamic metrics that are highly platform-

dependent. In particular, elapsed CPU or wallclock time are metrics commonly

used by profilers. However, these metrics have several drawbacks: For the same

program and input, the time measured can differ significantly depending on the

hardware, operating system, and virtual machine implementation. Moreover, mea-

suring execution time accurately may require platform-specific features (such as

special operating system functions), which limits the portability of the profilers. In

addition, it is usually impossible to faithfully reproduce measurement results.

For these reasons, we follow a different approach that uses only platform-

independent dynamic metrics [12,4], namely the number of method invocations and

the number of executed bytecodes. The benefits of using such metrics are fourfold:

(i) Measurements are accurate; profiling itself does not affect the generated profile

and will not cause measurement perturbations.

(ii) Profilers can be implemented in a portable way; one can execute them on

different hardware, operating systems, and virtual machines.

(iii) The profiles made in different environments are comparable, as they rely on the

same set of platform-independent metrics.

(iv) For deterministic programs, measurements are reproducible.

Although information on the number of method invocations is a common met-

ric supported by many available profiling tools, some profilers do not differentiate

between different calling contexts or keep calling contexts only up to a pre-defined

depth. In contrast, our approach is able to associate both the number of method

invocations and the number of executed bytecodes with calling contexts of arbitrary

depth.

2.2 The Calling Context Tree (CCT)

The Calling Context Tree (CCT) [1] is a common data structure to represent calling

context profiles at runtime [1,2,25,22,26,9]. Each node in a CCT corresponds to a

calling context and keeps the dynamic metrics measured for that particular calling

context; it also refers to the method in which the metrics were collected. The parent

of a CCT node represents the caller’s context, while the children nodes correspond

to the callee methods. If the same method is invoked in distinct calling contexts,

the different invocations are thus represented by distinct nodes in the CCT. In

contrast, if the same method is invoked multiple times in the same calling context

and from the same call site, the dynamic metrics collected during the executions of

that method are kept in the same CCT node. The CCT thus makes it possible to

distinguish dynamic metrics by their calling context. This level of detail is useful in

many areas of software engineering such as profiling [1], debugging [3], testing [20],

and reverse engineering [15].

It should be noted that the data structure itself does not impose any restrictions

on the number and kind of dynamic metrics kept in the CCT nodes; in particular,

A. Sarimbekov et al. / Electronic Notes in Theoretical Computer Science 279 (1) (2011) 61–74 63

void main(String[] args) {
for (int j = 0; j < 20; j++) {
f(j);
g(j);
for (int k = 1; k < j/2; k++)
h(k);

}
}

void f(int n) {
int k = g(n);
k = h(k) ∗ k;

}

int g(int n) {
if (n % 2 == 0)
return h(n / 2);

else

return g(n + 1);
}

void i(int n) {
n = n ∗ n;

}

int h(int n) {
i(n);
return n − 1;

}

(a) Sample code

root

main(String[])1
1066

f(int)20
180

g(int)20
180

h(int)10
60

i(int)10
50

g(int)10
90

h(int)10
60

i(int)10
50

h(int)20
120

i(int)20
100

g(int)20
180

h(int)10
60

i(int)10
50

h(int)72
432

g(int)10
90

h(int)10
60

i(int)10
50

i(int)72
360

(b) Generate CCT (conceptual representation)

Fig. 1. Sample Java code and the CCT generated for one execution of method main(String[]). As dy-
namic metrics, each CCT node stores the number of method invocations (m) and the number of executed
bytecodes (n) in the corresponding calling context.

these metrics may be platform-dependent (CPU time, number of cache misses) or

platform-independent (number of method invocations 4 , number of executed byte-

codes, number of object allocations). In the following, we will restrict the discussion

to two platform-independent metrics: the number of method invocations and the

number of executed bytecodes. Fig. 1 exemplifies such a CCT data structure, which

stores both metrics.

CCTs are most useful if they faithfully represent overall program execution. We

thus require that a complete CCT contains all method invocations made after an

initial JVM bootstrapping phase 5 , where either the caller or the callee is a Java

method, i.e., a method not written in native code. The following method invocations

must therefore be present within the CCT:

(i) A Java method invoking another Java method.

(ii) A Java method invoking a native method.

(iii) Native code invoking a Java method (e.g., callback from native code into byte-

4 In this paper we do not distinguish between methods and constructors; ‘method’ denotes both ‘methods’
and ‘constructors’.
5 At the latest, this phase ends with the invocation of the program’s main(String[]) method.

A. Sarimbekov et al. / Electronic Notes in Theoretical Computer Science 279 (1) (2011) 61–7464

Java Virtual Machine

JP2 Agent JP2 Transformer
p
re
m
a
in

a
d
d
T
ra
n
sf
o
rm

er

re
tr
a
n
sf
o
rm

C
la
ss
es

tr
a
n
sf
o
rm

Fig. 2. The architecture of JP2.

code through the Java Native Interface (JNI), class loading, or class initializa-

tion)

Regarding method invocation through reflection, the above definition of com-

pleteness implies that any method called through reflection (Method.invoke(...),

Constructor.newInstance(...)) must be represented in the CCT.

There are several variations of the CCT supported by our tool. For instance,

calls to the same method from different call sites in a caller may be represented by

the same node or by different nodes in the CCT. Moreover, in the case of recursion,

the depth of the CCT may be unbounded, representing each recursive call to a

method by a separate CCT node, or alternatively recursive calls might be stored in

the same node, limiting the depth of the CCT and introducing back-edges into the

CCT [1].

3 Tool Design

In this section we describe the design and the architecture of our tool. First, Sec-

tion 3.1 discusses both the design and the weaknesses of a previous version of the

tool. Next, Section 3.2 presents our new design implemented in the JP2 profiler.

Finally, Section 3.3 explains how JP2 deals with native methods.

3.1 Old Design (JP)

Our previous profiler, JP [17,6], is based on the generic bytecode instrumentation

framework FERRARI [5], which allows us to statically instrument the Java class

library and apply load-time instrumentation to all other classes. JP extends method

signatures in order to pass a CCT node reference from the caller to the callee as an

argument. Therefore, each method invocation keeps a reference to its corresponding

CCT node in a local variable. Furthermore, for each method a static field is added

to hold the corresponding method identifier and the class initializer is instrumented

to allocate those method identifiers. For compatibility with native code, wrapper

methods with unmodified signatures are added to allow native code, which is not

A. Sarimbekov et al. / Electronic Notes in Theoretical Computer Science 279 (1) (2011) 61–74 65

aware of the additional argument, to invoke the instrumented method through the

JNI.

This approach introduces compatibility problems with recent JVMs because

some methods cannot be overloaded in this fashion. Moreover, the additional stack

frames introduced by wrapping methods can break stack introspection. Further-

more, static instrumentation of the Java class library is time consuming and incon-

venient to the user. Finally, JP is unable to distinguish between different call sites

and one cannot selectively enable or disable metrics collection for a certain calling

context, e.g., for a benchmark’s harness.

3.2 New Design (JP2)

Fig. 2 depicts the architecture of JP2, our revised design which addresses all of JP’s

weaknesses mentioned above. JP2 includes two main components with the following

responsibilities:

(i) The JP2 Agent is a Java programming language agent; it initializes JP2 upon

JVM startup.

(ii) The JP2 Transformer, which is based on the ASM bytecode engineering

libary 6 , is responsible for the necessary bytecode instrumentation.

Upon startup, the JVM invokes the premain() method of the JP2 Agent be-

fore any application code is executed. The agent registers the transformer using

the standard java.lang.instrument API. Through this API, the agent then triggers

retransformation of classes that have already been loaded during JVM startup. Dur-

ing retransformation, the JVM calls back the transformer, which instruments the

classes. The JP2 Transformer receives transform() requests both for classes to be

retransformed, as well as for newly loaded classes (see Fig. 2).

In contrast to JP, JP2 does not need to extend any method signatures in order to

pass a CCT node; instead, it uses thread-local variables to store references to them.

Moreover, instead of adding static fields storing the method identifiers, JP2 uses

string constants which simply reside in the class file’s constant pool; thus, there is

no need for extending the class initializer anymore. Fig. 3 illustrates the instrumen-

tation the JP2 Transformer applies. Depicted to the left is the method f() before

transformation; depicted to the right is the corresponding instrumented version. 7

The transformer inserts invocations to static methods in class JP2Runtime shown

in Fig. 4, which are explained below.

setBI(int callerBI), getBI() Store the caller’s bytecode position in a thread-

local variable, respectively load the stored bytecode position (BI) from the thread-

local variable.

setCurrentNode(CCTNode n), getCurrentNode() Store the current

thread’s current CCT node in a thread-local variable, respectively load the

6 See http://asm.ow2.org/.
7 To improve readability, all transformations are shown in Java-based pseudo code, although JP2 works at
the JVM bytecode level.

A. Sarimbekov et al. / Electronic Notes in Theoretical Computer Science 279 (1) (2011) 61–7466

http://asm.ow2.org/

BI

5:

7:

void f() {

while (true) {

if (i <= 10) {

h();

g(i);
++i;

} else {

return;
}

}

}

(a) Before Instrumentation

void f() {
int callerBI = JP2Runtime.getBI();
CCTNode caller = JP2Runtime.getCurrentNode();
CCTNode callee = caller.profileCall(”f()”, callerBI);
try {
callee.profileBytecodes(2);
while (true) {
callee.profileBytecodes(3);
if (i <= 10){
callee.profileBytecodes(5);
JP2Runtime.setBI(5);
h();
JP2Runtime.setBI(7);
g(i);
++i;

} else {
callee.profileBytecodes(1);
return;

}
}

} finally {
JP2Runtime.setCurrentNode(caller);
JP2Runtime.setBI(callerBI);

}
}

(b) After Instrumentation

Fig. 3. Example of Java code instrumented by JP2.

public class JP2Runtime {
public static int getBI() {...}
public static void setBI(int callerBI) {...}
public static CCTNode getCurrentNode() {...}
public static void setCurrentNode(CCTNode n) {...}

}

public interface CCTNode {
CCTNode profileCall(String methodID, int callerBI);
void profileBytecodes(int i);

}

Fig. 4. Runtime classes used by JP2.

current CCT node from a thread-local variable.

Hereby, CCTNode is an interface shown in Fig. 4, whose methods perform the

following functions:

profileCall(String methodID, int callerBI) Return the callee of the method

in the CCT; if there is no such node, register it.

profileBytecodes(int) Update the counter keeping the number of executed byte-

codes.

It is crucial to restore the caller’s bytecode position in the finally block because

class loading and class initialization may be triggered between a call to setBI(int) in

a caller and the subsequent method call, which may in turn update the thread-local

variable.

A. Sarimbekov et al. / Electronic Notes in Theoretical Computer Science 279 (1) (2011) 61–74 67

native boolean foo(int x);

(a) Before wrapping

boolean foo(int x) {
return wrapped foo(x);

}

native boolean wrapped foo(int x);

(b) After wrapping

Fig. 5. Example of a native method wrapped by JP2.

JP2 counts bytecodes per basic block using the same algorithm as JP [6]: only

bytecodes that may change the control flow non-sequentially (i.e., jumps, branches,

return of method or JVM subroutine, exception throwing) end a basic block. This

algorithm creates rather large basic blocks, such that the number of updates to the

bytecode counter is kept low. This reduces runtime overhead without significantly

affecting accuracy [6].

JP2 provides a mechanism to temporarily disable the execution of instrumenta-

tion code for each thread. Assume that instrumentation code itself uses methods

from the Java class library, which has already been instrumented. This will cause

infinite recursions. To sidestep this issue, JP2 uses code duplication within method

bodies in order to keep the non-instrumented bytecode version together with the

instrumented code, and inserts a conditional upon the method entry in order to

select the version to be executed. [16]

JP2 allows to selectively activate and deactivate the collection of dynamic met-

rics for each thread without breaking the structure of the CCT. In Section 4 we

use this feature to collect proper profiles only for the execution of the benchmarks,

excluding the execution in the harness and the JVM’s startup and shutdown se-

quences.

3.3 Native Methods

To gather complete profiles, JP2 has to keep track of all native method invocations

as well as callbacks from those native methods. Since native methods do not have

any bytecode representation, they cannot be instrumented directly. As illustrated

by Fig. 5, JP2 thus adds simple wrapper methods with unmodified signatures.

Native method prefixing [23], a functionality introduced in Java 6, is used to rename

native methods and introduce a bytecode implementation with the name of the

original native method. However, certain limitations prevent JP2 from applying

the transformation at runtime to classes loaded during JVM bootstrapping. While

class redefinition may change method bodies, the constant pool and attributes,

it cannot add, remove or rename fields or methods, and change the signatures of

methods. Therefore, JP2 is accompanied by a static tool, whose sole purpose is to

add those wrappers to the Java class library.

This is the only circumstance under which JP2 has to resort to static instru-

mentation, which should be done before any dynamic instrumentation. Later, the

wrapped Java class library is added at the beginning of the boot class path. Since

the JVM needs to invoke native methods upon bootstrapping, JP2 has to make it

A. Sarimbekov et al. / Electronic Notes in Theoretical Computer Science 279 (1) (2011) 61–7468

aware of the added prefix. Therefore, a JVMTI agent, which only informs the JVM

about the prefix, needs to be passed as a command line option to the JVM.

4 Evaluation

In order for a profiling tool to be universally useful, it has to be stable and portable.

Furthermore, it must not impose prohibitive measurement overhead, i.e., slow down

the application by orders of magnitude. In our evaluation we show that JP2 has

all three properties; when running a diverse selection of benchmarks on a set of

production JVMs it imposes acceptable runtime overhead.

To this end, we have evaluated the runtime overhead incurred by JP2 using

two different benchmark suites: the DaCapo 9.12-bach benchmark suite [7] and a

DaCapo-based benchmark suite consisting of Scala programs, which is under active

development by one of the authors [21]. In either case, the measurements exclude

the startup and shutdown of both JVM and benchmark harness. JP2 itself has also

been configured to collect dynamic metrics only for the benchmark proper, of whose

iterations it is notified using the callback mechanisms provided by the benchmark

harness (Callback).

To both show that JP2 is portable and to assess the effect a given JVM can have

on the runtime overhead incurred by JP2, we have performed all measurements

using three configurations representative of modern production JVMs: the HotSpot

Server VM 8 , the HotSpot Client VM, 8 and the JRockit VM 9 . All benchmarks

have been run on a 2.33 GHz Core 2 Duo dual core E6550 processor with 2 GB of

main memory, 32 KB L1 data and instruction caches, and 4096 KB L2 cache; its

entire main memory has been available to the JVM (-Xmx2G). During benchmarking,

the computer was operating in single-user mode under Ubuntu Linux 9.10 (kernel

2.6.31).

Fig. 6 depicts the overhead incurred by JP2 during the first iteration of the 14

DaCapo 9.12 benchmarks when using the three virtual machines mentioned above.

As can be seen, on most virtual machines the overhead is moderate; the slowdown

is less than one order of magnitude. The only exception from this is the HotSpot

Client VM. Here, JP2 incurs significantly higher overheads, as the VM’s client

compiler [13] copes less well than the server compiler [19] with the instrumentation

inserted by JP2. But as JP2 produces mostly platform-independent profiles, it is

often possible to reduce overheads to acceptable levels simply by choosing a different

virtual machine that copes better with JP2’s instrumentation; the resulting CCTs

will differ only within the platform-specific part of the given Java class library, not

within the application.

Also, part of the runtime overhead is incurred by JP2 only upon class-loading,

i.e., when newly loaded classes are instrumented. Fig. 7 illustrates this fact; the

absolute overhead diminishes over the course of several iterations of a benchmark or

during long-running applications. The relative overhead, however, increases, as the

8 JRE build 1.6.0 22-b04, JVM build 17.1-b03
9 JRE build 1.6.0 20-b02, JVM build R28.0.1-21-133393-1.6.0 20-20100512-2126-linux-ia32

A. Sarimbekov et al. / Electronic Notes in Theoretical Computer Science 279 (1) (2011) 61–74 69

av
ro
ra

ba
tik

ec
lip
se fo

p h2

jy
th
on

lu
in
de
x

lu
se
ar
ch

pm
d

su
nfl
ow

to
m
ca
t

tr
ad
eb
ea
ns

tr
ad
es
oa
p

xa
la
n

G
eo
.
m
ea
n

10

20

30

40

1

R
u
n
ti
m
e
(n
or
m
al
iz
ed

)

DaCapo 9.12 Benchmarks [7] (default input size)

HotSpot Server VM
HotSpot Client VM
JRockit VM

Fig. 6. Runtime overhead (5 invocations, arithmetic mean ± sample standard deviation) incurred by JP2
during the first iteration of 14 Java benchmarks on 3 different JVMs.

1 2 3 4 5
0

10

20

30

Iteration

R
u
n
ti
m
e
[s
]

avrora

1 2 3 4 5
0

100

200

Iteration

eclipse

1 2 3 4 5
0

10

20

Iteration

xalan

Fig. 7. Runtime (5 invocations, arithmetic mean ± sample standard deviation) with () and with-
out () JP2 over serveral iterations of three benchmarks on the HotSpot Server VM.

more advanced optimizations performed by the just-in-time compiler during later

iterations are hindered by the instrumentation inserted by JP2.

Fig. 8 depicts the overhead incurred by JP2 on a set of Scala benchmarks. As

the CCTs generated for several benchmarks (kiama, scalac, and scaladoc) exceed

the heap’s capacity of 2 GB, only the small input size has been used for those

benchmarks. But when compared to the Java benchmarks of Fig. 6, the overhead

incurred by JP2 on the Scala benchmarks is remarkably similar: For only two

benchmarks (scalaxb, tmt), the HotSpot Server VM, which performs best with JP2

on the Java benchmarks, experiences more than moderate performance degradation

on the Scala benchmarks.

Fig. 9 shows two key properties of the CCTs generated for various benchmark

programs: the number of unique methods called and the number of CCT nodes

A. Sarimbekov et al. / Electronic Notes in Theoretical Computer Science 279 (1) (2011) 61–7470

ac
to
rs

ki
am
a
†

sc
al
ac
†

sc
al
ad
oc
†

sc
al
ap

sc
al
ax
b

sp
ec
s

tm
t

G
eo
.
m
ea
n

10

20

30

40

1

R
u
n
ti
m
e
(n
or
m
al
iz
ed

)
Scala Benchmarks [21] (small† / default input sizes)

HotSpot Server VM
HotSpot Client VM
JRockit VM

Fig. 8. Runtime overhead (5 invocations, arithmetic mean ± sample standard deviation) incurred by JP2
during the first iteration of 8 Scala benchmarks on 3 different JVMs.

103 104

103

104

105

106

107

avrora

batik

eclipse

foph2

jython

luindex
lusearch

pmd

sunflow

tradebeanstradesoap

tomcat

xalan
actors

kiama†

scalac†

scaladoc†

scalap

scalaxb

specs
tmt

Methods

#
N
o
d
es

DaCapo 9.12 Benchmark
Scala Benchmark

Fig. 9. Number of called methods and number of generated CCT nodes for different benchmarks. (For some
Scala benchmarks, only the small† input size was measured.)

that result therefrom. As JP2 has to keep the CCT in memory, benchmarks with

millions of CCT nodes (the Java benchmarks eclipse, jython, and pmd; the Scala

benchmarks scalac, specs, and tmt) naturally put additional pressure on the JVM’s

garbage collector, which has to trace a large data structure that never dies till VM

shutdown. Nevertheless, as Fig. 9 shows, JP2 is able to deal with large programs

consisting of tens of thousands of methods.

A. Sarimbekov et al. / Electronic Notes in Theoretical Computer Science 279 (1) (2011) 61–74 71

5 Related Work

Calling context profiling has been explored by many researchers. Existing ap-

proaches that create accurate CCTs [22,1] suffer from considerable overhead.

Sampling-based profiles promise a seemingly simple solution to the problem of large

profiling overheads. However, as Mytkowicz et al. have recently shown [18], imple-

menting sampling-based profilers correctly such that the resulting profiles are at

least “actionable” if not accurate is an intricate problem which many implementa-

tions fail to solve. JP2 sidesteps this issue by focussing on machine-independent

metrics, which it measures both accurately and with moderate profiling overhead.

Dufour et al. [11] present a variety of dynamic metrics, including bytecode

metrics, for selected Java programs, such as the SPEC JVM98 benchmarks [24].

They introduce a tool called *J [12] for the metrics computation. *J relies on the

JVMPI [14], a profiling interface for the JVM, whose use is known to cause high

overhead when recording, e.g., method entry and exit events like JP2 does 10 . Fur-

thermore, JVMPI is an interface no longer supported as of the Java 6 release (late

2006).

The NetBeans Profiler 11 integrates Sun’s JFluid profiling technology [10] into

the NetBeans IDE. JFluid exploits dynamic bytecode instrumentation and code

hotswapping in order to turn profiling on and off dynamically, for the whole appli-

cation or just a subset of it. However, this tool needs a customized JVM and is

therefore only available for a limited set of environments. In contrast, JP2 works

with any standard JVM without customization.

The Probabilistic Calling Context (PCC) approach due to Bond et al. [9] con-

tinuously maintains a probabilistically unique value representing the current calling

context. As this value can be efficiently computed, the approach causes rather low

overhead, if supported by a customized virtual machine. But due to its probabilistic

nature PPC does not always produce completely accurate profiles. Recent research,

however, has shown that is often possible to reconstruct a significant amount of

context offline [8].

6 Conclusion

In this paper we presented JP2, a new tool for complete platform-independent

calling context profiling. JP2 relies on bytecode transformation technique in order

to create CCTs with platform-independent dynamic metrics, such as the number of

method invocations and the number of executed bytecodes. In contrast to prevailing

profilers, JP2 is able to distinguish between multiple call sites in a method and

supports selective profiling of certain methods. We have evaluated the overhead

caused by JP2 with standard Java and Scala benchmarks on a range of different

JVMs.

10For the fop Java benchmark, e.g., *J increases runtime by a factor of 33.
11See http://profiler.netbeans.org/ .

A. Sarimbekov et al. / Electronic Notes in Theoretical Computer Science 279 (1) (2011) 61–7472

http://profiler.netbeans.org/

Acknowledgement

This work has been supported by the Swiss National Science Foundation and by

CASED (http://www.cased.de/www.cased.de).

References

[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance counters with flow and context
sensitive profiling. In PLDI ’97: Proceedings of the ACM SIGPLAN 1997 conference on Programming
language design and implementation, pages 85–96. ACM Press, 1997.

[2] M. Arnold and B. G. Ryder. A framework for reducing the cost of instrumented code. In SIGPLAN
Conference on Programming Language Design and Implementation, pages 168–179, 2001.

[3] S. Artzi, S. Kim, and M. D. Ernst. ReCrash: Making Software Failures Reproducible by Preserving
Object States. In J. Vitek, editor, ECOOP ’08: Proceedings of the 22th European Conference on
Object-Oriented Programming, volume 5142 of Lecture Notes in Computer Science, pages 542–565,
Paphos, Cyprus, 2008. Springer-Verlag.

[4] W. Binder. A portable and customizable profiling framework for Java based on bytecode instruction
counting. In Third Asian Symposium on Programming Languages and Systems (APLAS 2005), volume
3780 of Lecture Notes in Computer Science, pages 178–194, Tsukuba, Japan, Nov. 2005. Springer Verlag.

[5] W. Binder, J. Hulaas, and P. Moret. Advanced java bytecode instrumentation. In PPPJ ’07:
Proceedings of the 5th international symposium on Principles and practice of programming in Java,
pages 135–144, New York, NY, USA, 2007. ACM.

[6] W. Binder, J. Hulaas, P. Moret, and A. Villazón. Platform-independent profiling in a virtual execution
environment. Software: Practice and Experience, 39(1):47–79, 2009.

[7] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley, R. Bentzur, A. Diwan,
D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann. The
dacapo benchmarks: java benchmarking development and analysis. In Proceedings of the 21st annual
ACM SIGPLAN conference on Object-oriented programming systems, languages, and applications,
OOPSLA ’06, pages 169–190, New York, NY, USA, 2006. ACM.

[8] M. D. Bond, G. Z. Baker, and S. Z. Guyer. Breadcrumbs: efficient context sensitivity for dynamic bug
detection analyses. In Proceedings of the 2010 ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’10, pages 13–24, New York, NY, USA, 2010. ACM.

[9] M. D. Bond and K. S. McKinley. Probabilistic calling context. In OOPSLA ’07: Proceedings of the
22nd annual ACM SIGPLAN conference on Object oriented programming, systems and applications,
pages 97–112, New York, NY, USA, 2007. ACM.

[10] M. Dmitriev. Profiling Java applications using code hotswapping and dynamic call graph revelation.
In WOSP ’04: Proceedings of the Fourth International Workshop on Software and Performance, pages
139–150. ACM Press, 2004.

[11] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dynamic metrics for Java. ACM SIGPLAN
Notices, 38(11):149–168, Nov. 2003.

[12] B. Dufour, L. Hendren, and C. Verbrugge. *J: A tool for dynamic analysis of Java programs.
In OOPSLA ’03: Companion of the 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 306–307, New York, NY, USA, 2003. ACM
Press.

[13] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell, and D. Cox. Design of the Java
HotSpotTM client compiler for Java 6. ACM Trans. Archit. Code Optim., 5:7:1–7:32, May 2008.

[14] S. Liang and D. Viswanathan. Comprehensive profiling support in the Java virtual machine. In
Proceedings of the 5th USENIX Conference on Object-Oriented Technologies and Systems (COOTS-
99), pages 229–240, Berkeley, CA, May 3–7 1999. USENIX Association.

[15] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic protocol format reverse engineering through context-
aware monitored execution. In Proceedings of the 15th Annual Network and Distributed System Security
Symposium, San Diego, CA, February 2008.

[16] P. Moret, W. Binder, and E. Tanter. Polymorphic bytecode instrumentation. In International
Conference on Aspect-Oriented Software Development ’11, Porto de Galinhas, Pernambuco, Brasil,
March 21-25 2011. Publication forthcoming.

A. Sarimbekov et al. / Electronic Notes in Theoretical Computer Science 279 (1) (2011) 61–74 73

http://www.cased.de/

[17] P. Moret, W. Binder, and A. Villazón. CCCP: Complete calling context profiling in virtual execution
environments. In PEPM ’09: Proceedings of the 2009 ACM SIGPLAN Workshop on Partial Evaluation
and Program Manipulation, pages 151–160, Savannah, GA, USA, 2009. ACM.

[18] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Evaluating the accuracy of Java
profilers. In Proceedings of the 2010 ACM SIGPLAN conference on Programming language design
and implementation, PLDI ’10, pages 187–197, New York, NY, USA, 2010. ACM.

[19] M. Paleczny, C. Vick, and C. Click. The Java HotSpotTM server compiler. In Proceedings of the 2001
Symposium on JavaTM Virtual Machine Research and Technology Symposium - Volume 1, JVM’01,
pages 1–1, Berkeley, CA, USA, 2001. USENIX Association.

[20] A. Rountev, S. Kagan, and J. Sawin. Coverage criteria for testing of object interactions in sequence
diagrams. In FASE ’05: Fundamental Approaches to Software Engineering, volume 3442 of Lecture
Notes in Computer Science (LNCS), pages 282–297, April 2005.

[21] A. Sewe. Scala
?

≡ Java mod JVM. In Proceedings of the Work-in-Progress Session at the 8th
International Conference on the Principles and Practice of Programming in Java (PPPJ 2010), volume
692 of CEUR Workshop Proceedings, 2010.

[22] J. M. Spivey. Fast, accurate call graph profiling. Software: Practice and Experience, 34(3):249–264,
2004.

[23] Sun Microsystems, Inc. JVM Tool Interface (JVMTI), Version 1.0. Web pages at
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/ , 2004.

[24] The Standard Performance Evaluation Corporation. SPEC JVM98 Benchmarks. Web pages at
http://www.spec.org/osg/jvm98/, 1998.

[25] J. Whaley. A portable sampling-based profiler for Java Virtual Machines. In Proceedings of the ACM
2000 Conference on Java Grande, pages 78–87. ACM Press, June 2000.

[26] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi. Accurate, efficient, and adaptive calling context
profiling. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on Programming language
design and implementation, pages 263–271, New York, NY, USA, 2006. ACM.

A. Sarimbekov et al. / Electronic Notes in Theoretical Computer Science 279 (1) (2011) 61–7474

http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
http://www.spec.org/osg/jvm98/

