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a b s t r a c t 

Software has become an indispensable part of industrial production and thus influences the life cycle 

of manufacturing systems, as many of these systems have to be replaced or evolved due to changing 

requirements. Software adaptation through continuous evolution extends the service time of these sys- 

tems and thus saves valuable resources. In this paper we present an interdisciplinary methodology for 

reengineering legacy software to increase the productive lifetime. Our proposed approach systematically 

reuses implicit domain knowledge to evolve, validate and commission new software from legacy code. 

The approach is evaluated on a CNC machine as a special type of industrial system. 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Software has an end of life. Among others, this aging process 

is a result of transformations of the environment ( Grottke et al., 

2008; Parnas, 1994 ). In industry this change is induced by new 

technologies, business models and changing requirements (i.e. In- 

dustrie 4.0) ( Anderl, 2015 ). 

However, since existing systems often do not meet the require- 

ments, an acquisition of new systems or an adaptation of the soft- 

ware is usually necessary. New acquisition causes financial ex- 

penses in addition to ecological costs, as manufacturing new sys- 

tems requires considerable resources. Furthermore, new systems 

must be integrated into production. This can lead to compatibil- 

ity problems and a long production downtime. An alternative is 

reengineering existing software, which enables recycling of sys- 

tems but causes major challenges. First, existing software must 

be analyzed efficiently and knowledge only implicitly present in 

the source code must be obtained. Second, the modified software 

needs to be functionally verified and validated. Finally, it must be 

configured and commissioned on the production system. 

In order to meet the introduced challenges and utilize the 

full potential for continuous improvement of existing software, we 

∗ Corresponding author. Tel.: +49 6151 16-21868; fax: +49 6151 16-21793. 
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Fig. 1. Recycling of legacy software (a) in evolved (b) and similar systems (c) 

present an interdisciplinary concept. Fig. 1 shows legacy software 

of a laser plotter (a) recycled not only within an evolved system 

(b), but also used for other systems with comparable functionality, 

e.g., a milling machine (c). 

Paper structure First, a running example is presented. Subse- 

quently, the required multidisciplinary knowledge is covered in 

Sect. 3 . Based on this, Sect. 4 presents the concept, which is vali- 

dated in a use case ( Sect. 5 ). Finally, the conclusion and outlook on 

future work is given in Sect. 6 . 
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Fig. 2. CNC laser plotter 

2. Running Example 

Figure 2 depicts a computerized numerical control (CNC) ma- 

chine which can cut or plot paper. This system is used as a run- 

ning example to motivate and illustrate the approach presented 

in this paper. The mechanics of the CNC machine consist of an 

x- and y-axis which are controlled by stepper motors. A laser- 

or pen-holder can be moved along both axes. Limit switches de- 

tect the limitations of the working area. The machine is operated 

by numerical control (NC) software which interprets G-code , the 

machine commands standardized in DIN ISO 2806 (1996) . Exem- 

plary G-codes are: H which triggers the homing procedure and 

G0 X-100 Y-50 F1000 which defines movement mode ( G0 ), a 

target location ( X , Y ) and a feed rate ( F ). 
An exemplary source code (C language) for a simplified NC soft- 

ware is given in Fig. 3 . Using the input of the introduced G-code 

instructions ( G or H ), the corresponding source code is designed 

as follows. The NC control interprets incoming machine com- 

mands in the function parse_command . The transmitted com- 

mands are then processed in different {in} -statements. If the in- 

put starts with G , the configured engineering unit is set ( unit ) 
and the remaining instruction is parsed and stored in the value 

axis_command . The extracted coordinates are then processed 

( move_x, move_y ). The Z coordinate is only handled if it was 

previously activated ( move_z is inside an #ifdef macro). For ex- 

ample, the Z-axis is deactivated in the laser mode of the presented 

machine ( Fig. 2 ). If the incoming command line is an H , a homing 

procedure ( home_axes ) is activated and the axes move to their 

home position defined by the limit switches. If the input starts 

with neither G nor H , a failure ( UNSUPPORTED_COMMAND ) will be 

triggered in the else -branch. Subsequently, further interpretation 

of the transmitted command takes place. The used NC software 

is multi-functional and can be deployed on various manufacturing 

systems. This legacy software can therefore serve as the basis for 

different software products. 

3. Background 

The reengineering of a system is characterized by interdisci- 

plinarity, which is an essential aspect of this project. In this sec- 

tion the state of the art for each individual discipline involved 

is explained independently, before we unify them in Sect. 4 . We 

start by describing Industrie 4.0, which motivates the necessary 

software adaptation of industrial systems. The virtual commission- 

ing and the aspect of the digital twin as an important part of 

reengineering is described next. Subsequently, the methodology of 

knowledge extraction is described, with which the existing soft- 

ware is analyzed and extended. Lastly, we will describe quality as- 

surance measures to validate software changes. 

3.1. Industrie 4.0 

Industrie 4.0 , the fourth industrial revolution currently taking 

place, is transforming the industrial world ( Anderl, 2015 ) based 

on intelligent cyber-physical systems (CPS) that enable new appli- 

cations and business models ( Kagermann et al., 2013 ). Since many 

machines, especially older production systems, do not meet CPS re- 

quirements, these systems must be replaced or upgraded before 

they can participate in the Industrie 4.0 world. 

Virtual Commissioning A modified system needs to be put back 

into operation. Configuration and debugging of the software oc- 

cupies a large part of the commissioning ( Reinhart and Wünsch, 

2007 ). Using our running example ( Sect. 2 ), the behavior of the 

CNC plotter must be validated if the NC software is modified. In or- 

der to reduce the load on the physical machine, methods and tools 

have already been developed which are summarized under the 

term virtual commissioning ( Lee and Park, 2014 ). However, the fo- 

cus of virtual commissioning is usually on automation software ac- 

cording to IEC 61131 IEC 61131-1 (2014) which is executed on pro- 

grammable logic controllers (PLC). Holistic virtualization of simple 

systems has already been performed ( Beghi et al., 2017 ), whereby 

the simulation of machine software that is not part of the PLC is 

still limited. 

Digital Twin In order to virtually test and commission software 

of a machine, a digital twin ( Anderl et al., 2018 ) (a detailed vir- 

tual representation of the machine) is necessary. Since the first 

description of a digital twin ( Grieves and Vickers, 2017 ) the pos- 

sible use-cases in different domains were investigated ( Kritzinger 

et al., 2018; Negri et al., 2017 ). A holistic, executable model is com- 

plex, but the combination of different domains enables novel ap- 

plications ( Wagner et al., 2019 ). In our use case the digital twin is 

utilized to virtually commission software which is not part of the 

control according to IEC 61131. 

3.2. Knowledge Extraction 

Our running example represents a legacy system whose soft- 

ware has to be recycled. As legacy software often has limited doc- 

umentation, most information is implicitly inside the source code. 

Therefore, techniques to extract this knowledge and make it ex- 

plicit are highly relevant for evolving legacy software, enabling de- 

velopers to easily integrate new functionality. The two most rel- 

evant pieces of information in the software are software mod- 

ules and module interaction as explained in the following. Soft- 

ware Modules Software can be split into multiple modules, each 

containing functionality highly relevant to other functionality in- 

side the same module. In our running example one module is the 

axis-control executed by calling the functions move_x , move_y or 

move_z . While software modules can be distributed over many 

parts of the source code, the closer they are the easier it is to inte- 

grate new modules or change specific functionality. To further fa- 

cilitate reuse and reduce maintenance effort s, software can be en- 

gineered as a Software Product Line (SPL) ( Clements and Northrop, 

2002; Weiss and Tau, 1999 ). This means that modules can be 

(de)selected by configuration, making it possible to create several 

different software products from a single code base (e.g., imple- 

menting separate control modules for pen and laser, leading to 

source code that can control a CNC plotter with either). A single 

configuration specifying the (de)selected modules is called a prod- 

uct. 

Module Interaction and Software Product Line Models Software 

modules often interact with each other. This leads to dependen- 

cies and even incompatibilities between modules. To specify this 

kind of interaction for SPLs, a so called feature model is often used. 

Fig. 4 shows a small feature model matching our running exam- 

ple. There is an optional feature Z \ _ENABLED and another optional 
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Fig. 4. SPL Feature Model 

feature called RAMPS , which when activated signifies the presence 

of a specific hardware variant. In addition there is a cross-tree con- 

straint, which symbolizes that the CNC machine cannot operate 

with a z-axis without the RAMPS hardware (and enabling the cor- 

responding feature). This example shows that a feature model can 

convey information about the source code, as well as the surround- 

ing build environment. 

3.3. Quality Assurance 

Quality assurance (QA) is imperative during the creation and 

modification of source code. QA has many different goals during 

development. However, in this paper we focus on backwards com- 

patibility and correctness of changes. For both goals there are two 

main techniques to reach them, namely testing and verification . In 

the case of our running example, QA is intended to ensure that the 

NC software can continue to run on the original machine and that 

the changes are error-free. Testing Testing tries to cover a large set 

of possible program runs by executing the program with specific 

input (and optional output) values. A test is successful if the pro- 

gram executes without error and provides the correct output. Dif- 

ferent coverage criteria exist for testing, specifying which parts of 

the program need to be covered. For industrial software the cho- 

sen criterion is often branch-coverage , which is often mandatory 

for safety-relevant source code (e.g., RTCA/DO-178B standard). This 

means that for each branch in the software there exists at least 

one test traversing the branch during execution 

(e.g., for our running example 3 test cases are needed with in- 

puts starting with G , H and an arbitrary character such as Z ). Since 

this is usually infeasible for non-trivial software, the coverage cri- 

terion is often accompanied by a coverage-value specifying the per- 

centage of branches the test cases have to cover. Verification Veri- 

fication is often used in addition to testing and tries to prove cer- 

tain program behaviors or properties. While quite powerful, verifi- 

cation tends to be much slower and more costly than testing, of- 

ten requiring manual inputs from highly trained users; for this rea- 

son verification is often most useful only for smaller parts of the 

program which have already been established to be hotspots. Cer- 

tain types of verification also allow automating much of the pro- 

cess, e.g., LLRêve ( Felsing et al., 2015 ) uses symbolic execution to 

automate regression verification , a technique to prove equivalence 

of two program fragments (potentially with constraints on the in- 

puts). 

4. Industrial Software Recycling 

We now present our interdisciplinary methodology for reengi- 

neering legacy software. The focus is on evolution of software by 

recycling implicit knowledge contained in source code of legacy 

systems. This way functionality and therefore sustainability of pro- 

duction machines can be increased. The concept consists of the 

reengineering process in Fig. 5 , with source code of an existing 

machine as initial input. This code is then 1 © analyzed and bro- 

ken down into software modules that are 2 © linked by a feature 

model. The resulting modules are then 3 © validated and verified 

and subsequently 4 © virtually commissioned using a simulation- 

based digital twin. After virtual commissioning, the evolved soft- 

ware can be 5 © used in production or 6 © adapted to additional re- 

Fig. 5. Software Reengineering Process 

Fig. 6. Sliced version of Fig. 3 

quirements. Additional adaptions require QA and virtual commis- 

sioning as well, to ensure validity of the changes made. Obviously, 

after using the evolved software in production it can be further 

adapted to meet upcoming requirements. In the following we de- 

scribe the steps and methodologies needed to perform steps 1 ©
- 6 ©. Retrofitting by upgrading the hardware and electronics and 

connecting new technologies to existing systems is out of scope in 

this paper but considered in other works, e.g., ( Guerreiro et al., 

2018; Lins et al., 2018; Moctezuma et al., 2012 ). 

1 © Module Extraction. We first extract modules that are present 

in the source code but are not clearly separated from code that has 

other functionalities. The modules are extracted via slicing. Pro- 

gram slicing ( Weiser, 1981 ) in general is the reduction of a pro- 

gram to the parts that are relevant for the value of a given vari- 

able at a given location. This location and the variables we are 

concerned with is called slicing criterion (or criteria). Then the 

given program is reduced to the parts that may have an effect 

on the slicing criterion. As an example consider Fig. 3 : choosing 

axis_command in line 14 as our slicing criterion, the resulting 

slice consists of the code in Figure 6 . All code that has no effect 

on the value axis_command is removed, but all instructions that 

can have an effect are retained. Note that control flow constructs 
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Fig. 3. Exemplary CNC machine source code 

Fig. 7. Visualization of executing the sliced function parse_command 

(such as the if-else-statements and the FAIL function call) are re- 

tained as well. In order to find relevant slicing criteria, we uti- 

lize information retrieval techniques ( Marcus et al., 2004; Shao and 

Smith, 2009 ) to decide on program locations to slice. This means 

we pre-process the source code — including comments — to cre- 

ate a corpus that maps terms to locations. We then make queries 

to this corpus, resulting in locations that correspond to the given 

search term, which is supplied by a domain expert. We use the 

locations retrieved from the corpus as slicing criteria for a slicing 

approach crafted for the extraction of modules. Program visualiza- 

tion , e.g., using CSED, a modification of the symbolic execution de- 

bugger (SED) ( Hentschel et al., 2019 ) we developed for C code, can 

also be used to help understand the source code, find features and 

locate hotspots for regression analysis. Fig. 7 shows a visualization 

of executing the sliced function in Fig. 6 . Nodes (other than start 

and end) correspond to program statements with outgoing edges 

to the next statement to be executed. If-statements usually have 

two labeled outgoing edges, as the next statement depends on the 

evaluation of the condition. However, unreachable nodes and their 

attached edges are removed, resulting in the two if-nodes with 

only one edge (labeled false ). This analysis can lead to dead code 

elimination and program simplification. 

2 © Reverse Engineering of Feature Models. In order to retrieve 

the feature model that is already implicitly present in the legacy 

source code, we need to analyse both the build system and the 

source code itself. Using configuration options from both sources 

we automatically create an initial feature model. However, this ini- 

tal feature model may contain configurations that will not pro- 

duce correct code (as incompatible modules might be selected). 

We therefore prune it in several ways. We first evaluate the pre- 

processor for any errors. In the second step, we check the source 

code in all possible configurations for possible syntax errors, using 

a special variability aware parser. Building on that parser, we em- 

ploy a variability aware type checker. Finally, possible linker errors 

are evaluated. Using information from all these checks we remove 

invalid configurations from the intermediate feature model ( Nadi 

et al., 2014 ). Up to this point all tasks are fully automated and re- 

sult in a feature model which is subject to optional improvements, 

some of which can be manual. By obtaining both feature model 

and extracted modules, a fully fledged SPL has been extracted from 

the legacy software. 

3 © Quality Assurance. After extracting and reorganizing the soft- 

ware modules of the legacy software (or after enhancing its func- 

tionality), QA is the next step to validate correctness of the 

changes. There are dependencies and incompatibilities between 

modules, as described by the extracted feature model. Therefore, 

testing the modules based on that information is necessary. To 

this end modules need to be (de)selected to build a single prod- 

uct for a test run. However, testing individual products is usually 

infeasible because of the sheer number of products. For this rea- 

son we utilize tools that have already been developed to gener- 

ate test-cases on SPLs ( Bürdek et al., 2015 ). During transformation 

of software (e.g., module extraction or adaptation), faults might be 

introduced. These faults can be new (e.g., incorrectly implemented 

new functionality) or reemerging faults (e.g., faults that have been 

fixed but reappear due to copy&paste or incorrect merges during 

version control) ( Simpson, 2010 ). To generate test-cases revealing 

differences in program versions, a methodology called differential 

testing can be utilized ( McKeeman, 1998 ). Differential testing gen- 

erates test-cases that guarantee different output values if executed 

on the different versions used to generate the differential test. In 

case of transforming legacy software to an SPL no behavior of the 

program should be changed. This can either be proven by utilizing 

regression verification to prove functional equivalence or using dif- 

ferential testing to validate that no faults have been introduced, if 

no differential test could be generated. In case of behavior modi- 

fying changes (e.g., new functionality), differential testing can also 

be used, however differential testing is often restricted to gener- 

ating one test-case revealing a difference. This is also due to the 

fact that generation of differential test-cases is often very time- 

consuming. Another strategy is to define a specific coverage cri- 

teria for the program under test. For example, NC software often 

contains specific error messages, resulting from non-valid inputs 

(e.g., for G-code in our running example inputs with no leading 

G or H result in an error). Generating test-cases to reach all error 

messages can be used to check the error handling of following ver- 

sions, which is especially important for safety reasons. 

4 © Commissioning using Digital Twins. After QA the software is 

principally ready for operation. However, commissioning on a ma- 

chine is very time-consuming and involves risks, as errors not 

found during testing and therefore still present in the software 

now also affect the physical world. In addition, the productive ma- 

chine may not be available for extensive downtime while commis- 

sioning. An alternative way is to use a digital twin to virtually 

commission the software. This enables a assessment of the soft- 

ware behavior, which meets the requirements of industrial soft- 

ware in terms of correctness, reliability and security. The applica- 

tion of a digital twin of a system to investigate the effects of the 

control software requires combination of the electronics and the 

mechanics of a system. For this purpose, a simulation chain is used 

which includes the simulation of a micro controller ( Kutscher et al., 

2019 ) and a multi-body simulation of the system. The modified 

and tested software is installed in the micro controller simulation 

environment and coupled with a multi-body simulation ( Anderl 

and Binde, 2018 ). The control signals coming from the micro con- 

troller simulation form the boundary conditions for the multi-body 

simulation and therefore enable mapping of the effects of a control 
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Fig. 8. Evolved version of Fig. 3 

software on the physical behavior of a system. This combination 

can now be used to visually test the behavior of the software with 

the mechanics of a machine and to configure the software. Once 

the software has been tested and configured using the digital twin, 

it can be installed onto the physical twin, which can be the orig- 

inal, the modified or another system that recycles functionality of 

the initial system. 

5 © Software in Operation. After QA and virtual commissioning of 

the software, it can either be directly used in production or further 

adapted. Obviously, after using the software in production for some 

time, it can also be further adapted later. 

6 © Adaptation. The extracted modules and the feature model 

then enable developers to create and extend the source code more 

easily. As an example consider the code in Figure 8 . The code from 

our running example has been extended to enable an A axis in 

addition to the X,Y,Z axes using a generic method move_axis 
that belongs to an extracted axis module instead of axis specific 

ones ( move_x,move_y,move_z ). Using this additional A_AXIS 
is entirely optional and becomes an additional new feature in the 

model. Visualization of the original and adapted code with CSED 

allows easy comparison and helps localize hotspots for regression 

verification in the next QA cycle. 

During each of these steps it is possible to restart our approach 

if feature extraction should be improved (e.g., new search terms 

have been identified). Software that already passed steps 1 © and 

2 © is reused as input upon restarting. 

5. Evaluation 

Our reengineering approach allows to evolve legacy software by 

recycling implicit knowledge already contained within the system. 

However, to use this methodology in practice there are two key 

aspects that need to be answered. The first research question is 

if the approach is applicable to real systems, while the second is 

if the approach scales . As proof of concept, we demonstrated our 

approach on a concrete application case, which is presented be- 

low. The use case is based on the running example introduced in 

Sect. 2 . The software and hardware of the machine are extended by 

a new function, which enables automated paper conveying, while 

the paper had to be inserted manually in the initial system. The 

use case is shown in Fig. 9 . 

The initial situation is a legacy system with legacy software and 

hardware. As described in Sect. 4 , the software is analyzed and 

broken down into modules. Afterwards, the changes are validated. 

Fig. 9. Enhancement of a CNC plotter by a paper conveyor 

Subsequently, functions for controlling existing axes are reused for 

adding a degree of motion to drive the paper feed. Modification 

and validation are carried out iteratively until the desired function 

has been implemented without errors. The modified and validated 

software is configured and put into operation using a digital twin 

of the modified physical twin. Once this step has been successfully 

completed, the finished software is loaded onto the physical ma- 

chine. The result is a machine with extended software by recycling 

the implicit knowledge of the legacy system. During these steps 

we noticed that there still exists a gap in requirements and avail- 

ability of fully automated tool support for the whole process. Dur- 

ing feature extraction there are still tasks which have to be man- 

ually executed, while for testing and generation of digital twins 

the system needs to be abstracted as the full system is often hard 

to handle. Nonetheless, we managed to reengineer the legacy sys- 

tem and evolved it to handle an additional axis for paper convey- 

ing. Therefore, we managed to demonstrate the applicability of our 

approach to real systems. To achieve scalability it will be neces- 

sary to align our approach with general modularization principles 

in Software Design. These are increasingly used in industrial soft- 

ware as witnessed, for example, by the AUTOSAR 

1 standard. The- 

oretically one can process large software systems using the same 

input, e.g. extract all modules for given search terms from the 

whole source code of an automobile. The question whether there 

are search terms that are relevant for a whole system remains to 

be answered. 

6. Conclusion and Future Work 

The presented concept shows an interdisciplinary and method- 

ical approach, which enables the extension of existing produc- 

tion machines with new functions by using the implicit knowl- 

edge contained in the existing software. With the help of this 

software reengineering process, the efficient recycling of software 

becomes an attractive alternative to implementing new software 

from scratch. As future work, we plan to extend our approach in 

multiple directions. First, we want to apply our approach to dif- 

ferent domains, such as additive manufacturing and milling ma- 

chines. Second, we want to extend our QA approach by means of 

non-functional QA, to validate that non-functional properties (e.g., 

energy consumption) do not deteriorate during reengineering. Ad- 

ditionally, we want to fully integrate testing into the virtual com- 

missioning to further automize the validation step. Lastly, we want 

to further incorporate tools into our approach to further improve 

automatism and scalability. 
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