
Towards a Circular Economy of Industrial Software
Kutscher, Vladimir; Ruland, Sebastian; Müller, Patrick et al.

(2020)

DOI (TUprints): https://doi.org/10.25534/tuprints-00014563

License:

CC-BY-NC-ND 4.0 International - Creative Commons, Attribution Non-commerical,
No-derivatives

Publication type: Article

Division: 16 Department of Mechanical Engineering

Original source: https://tuprints.ulb.tu-darmstadt.de/14563

https://doi.org/10.25534/tuprints-00014563
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://tuprints.ulb.tu-darmstadt.de/14563

Procedia CIRP 90 (2020) 37–42

Contents lists available at ScienceDirect

Procedia CIRP

journal homepage: www.elsevier.com/locate/procir

27th CIRP Life Cycle Engineering (LCE) Conference

Towards a Circular Economy of Industrial Software

Vladimir Kutscher a , ∗, Sebastian Ruland

b , Patrick Müller c , Nathan Wasser d , Malte Lochau

b ,
Reiner Anderl a , Andy Schürr b , Mira Mezini c , Reiner Hähnle

d

a Department of Computer Integrated Design, TU Darmstadt, Otto-Berndt-Str. 2, Darmstadt 64287, Germany
b Real-Time Systems Lab, TU Darmstadt, Magdalenenstr. 4, 64289 Darmstadt, Germany
c Software Technology Group, TU Darmstadt, Hochschulstr. 10, Darmstadt 64287, Germany
d Software Engineering Group, TU Darmstadt, Hochschulstr. 10, Darmstadt 64287, Germany

a r t i c l e i n f o

Article history:

Received 30 June 2019

Revised 17 January 2020

Accepted 28 January 2020

Keywords:

Software reengineering

Industrial software

Digital twin

Industry 4.0

Legacy system

Computerized numerical control

Circular economy

a b s t r a c t

Software has become an indispensable part of industrial production and thus influences the life cycle

of manufacturing systems, as many of these systems have to be replaced or evolved due to changing

requirements. Software adaptation through continuous evolution extends the service time of these sys-

tems and thus saves valuable resources. In this paper we present an interdisciplinary methodology for

reengineering legacy software to increase the productive lifetime. Our proposed approach systematically

reuses implicit domain knowledge to evolve, validate and commission new software from legacy code.

The approach is evaluated on a CNC machine as a special type of industrial system.

© 2020 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Software has an end of life. Among others, this aging process

is a result of transformations of the environment (Grottke et al.,

2008; Parnas, 1994). In industry this change is induced by new

technologies, business models and changing requirements (i.e. In-

dustrie 4.0) (Anderl, 2015).

However, since existing systems often do not meet the require-

ments, an acquisition of new systems or an adaptation of the soft-

ware is usually necessary. New acquisition causes financial ex-

penses in addition to ecological costs, as manufacturing new sys-

tems requires considerable resources. Furthermore, new systems

must be integrated into production. This can lead to compatibil-

ity problems and a long production downtime. An alternative is

reengineering existing software, which enables recycling of sys-

tems but causes major challenges. First, existing software must

be analyzed efficiently and knowledge only implicitly present in

the source code must be obtained. Second, the modified software

needs to be functionally verified and validated. Finally, it must be

configured and commissioned on the production system.

In order to meet the introduced challenges and utilize the

full potential for continuous improvement of existing software, we

∗ Corresponding author. Tel.: +49 6151 16-21868; fax: +49 6151 16-21793.

E-mail address: kutscher@dik.tu-darmstadt.de (V. Kutscher).

Fig. 1. Recycling of legacy software (a) in evolved (b) and similar systems (c)

present an interdisciplinary concept. Fig. 1 shows legacy software

of a laser plotter (a) recycled not only within an evolved system

(b), but also used for other systems with comparable functionality,

e.g., a milling machine (c).

Paper structure First, a running example is presented. Subse-

quently, the required multidisciplinary knowledge is covered in

Sect. 3 . Based on this, Sect. 4 presents the concept, which is vali-

dated in a use case (Sect. 5). Finally, the conclusion and outlook on

future work is given in Sect. 6 .

https://doi.org/10.1016/j.procir.2020.01.133

2212-8271/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.procir.2020.01.133
http://www.ScienceDirect.com
http://www.elsevier.com/locate/procir
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:kutscher@dik.tu-darmstadt.de
https://doi.org/10.1016/j.procir.2020.01.133
http://creativecommons.org/licenses/by-nc-nd/4.0/

38 V. Kutscher, S. Ruland and P. Müller et al. / Procedia CIRP 90 (2020) 37–42

Fig. 2. CNC laser plotter

2. Running Example

Figure 2 depicts a computerized numerical control (CNC) ma-

chine which can cut or plot paper. This system is used as a run-

ning example to motivate and illustrate the approach presented

in this paper. The mechanics of the CNC machine consist of an

x- and y-axis which are controlled by stepper motors. A laser-

or pen-holder can be moved along both axes. Limit switches de-

tect the limitations of the working area. The machine is operated

by numerical control (NC) software which interprets G-code , the

machine commands standardized in DIN ISO 2806 (1996) . Exem-

plary G-codes are: H which triggers the homing procedure and

G0 X-100 Y-50 F1000 which defines movement mode (G0), a

target location (X , Y) and a feed rate (F).
An exemplary source code (C language) for a simplified NC soft-

ware is given in Fig. 3 . Using the input of the introduced G-code

instructions (G or H), the corresponding source code is designed

as follows. The NC control interprets incoming machine com-

mands in the function parse_command . The transmitted com-

mands are then processed in different {in} -statements. If the in-

put starts with G , the configured engineering unit is set (unit)
and the remaining instruction is parsed and stored in the value

axis_command . The extracted coordinates are then processed

(move_x, move_y). The Z coordinate is only handled if it was

previously activated (move_z is inside an #ifdef macro). For ex-

ample, the Z-axis is deactivated in the laser mode of the presented

machine (Fig. 2). If the incoming command line is an H , a homing

procedure (home_axes) is activated and the axes move to their

home position defined by the limit switches. If the input starts

with neither G nor H , a failure (UNSUPPORTED_COMMAND) will be

triggered in the else -branch. Subsequently, further interpretation

of the transmitted command takes place. The used NC software

is multi-functional and can be deployed on various manufacturing

systems. This legacy software can therefore serve as the basis for

different software products.

3. Background

The reengineering of a system is characterized by interdisci-

plinarity, which is an essential aspect of this project. In this sec-

tion the state of the art for each individual discipline involved

is explained independently, before we unify them in Sect. 4 . We

start by describing Industrie 4.0, which motivates the necessary

software adaptation of industrial systems. The virtual commission-

ing and the aspect of the digital twin as an important part of

reengineering is described next. Subsequently, the methodology of

knowledge extraction is described, with which the existing soft-

ware is analyzed and extended. Lastly, we will describe quality as-

surance measures to validate software changes.

3.1. Industrie 4.0

Industrie 4.0 , the fourth industrial revolution currently taking

place, is transforming the industrial world (Anderl, 2015) based

on intelligent cyber-physical systems (CPS) that enable new appli-

cations and business models (Kagermann et al., 2013). Since many

machines, especially older production systems, do not meet CPS re-

quirements, these systems must be replaced or upgraded before

they can participate in the Industrie 4.0 world.

Virtual Commissioning A modified system needs to be put back

into operation. Configuration and debugging of the software oc-

cupies a large part of the commissioning (Reinhart and Wünsch,

2007). Using our running example (Sect. 2), the behavior of the

CNC plotter must be validated if the NC software is modified. In or-

der to reduce the load on the physical machine, methods and tools

have already been developed which are summarized under the

term virtual commissioning (Lee and Park, 2014). However, the fo-

cus of virtual commissioning is usually on automation software ac-

cording to IEC 61131 IEC 61131-1 (2014) which is executed on pro-

grammable logic controllers (PLC). Holistic virtualization of simple

systems has already been performed (Beghi et al., 2017), whereby

the simulation of machine software that is not part of the PLC is

still limited.

Digital Twin In order to virtually test and commission software

of a machine, a digital twin (Anderl et al., 2018) (a detailed vir-

tual representation of the machine) is necessary. Since the first

description of a digital twin (Grieves and Vickers, 2017) the pos-

sible use-cases in different domains were investigated (Kritzinger

et al., 2018; Negri et al., 2017). A holistic, executable model is com-

plex, but the combination of different domains enables novel ap-

plications (Wagner et al., 2019). In our use case the digital twin is

utilized to virtually commission software which is not part of the

control according to IEC 61131.

3.2. Knowledge Extraction

Our running example represents a legacy system whose soft-

ware has to be recycled. As legacy software often has limited doc-

umentation, most information is implicitly inside the source code.

Therefore, techniques to extract this knowledge and make it ex-

plicit are highly relevant for evolving legacy software, enabling de-

velopers to easily integrate new functionality. The two most rel-

evant pieces of information in the software are software mod-

ules and module interaction as explained in the following. Soft-

ware Modules Software can be split into multiple modules, each

containing functionality highly relevant to other functionality in-

side the same module. In our running example one module is the

axis-control executed by calling the functions move_x , move_y or

move_z . While software modules can be distributed over many

parts of the source code, the closer they are the easier it is to inte-

grate new modules or change specific functionality. To further fa-

cilitate reuse and reduce maintenance effort s, software can be en-

gineered as a Software Product Line (SPL) (Clements and Northrop,

2002; Weiss and Tau, 1999). This means that modules can be

(de)selected by configuration, making it possible to create several

different software products from a single code base (e.g., imple-

menting separate control modules for pen and laser, leading to

source code that can control a CNC plotter with either). A single

configuration specifying the (de)selected modules is called a prod-

uct.

Module Interaction and Software Product Line Models Software

modules often interact with each other. This leads to dependen-

cies and even incompatibilities between modules. To specify this

kind of interaction for SPLs, a so called feature model is often used.

Fig. 4 shows a small feature model matching our running exam-

ple. There is an optional feature Z \ _ENABLED and another optional

V. Kutscher, S. Ruland and P. Müller et al. / Procedia CIRP 90 (2020) 37–42 39

Fig. 4. SPL Feature Model

feature called RAMPS , which when activated signifies the presence

of a specific hardware variant. In addition there is a cross-tree con-

straint, which symbolizes that the CNC machine cannot operate

with a z-axis without the RAMPS hardware (and enabling the cor-

responding feature). This example shows that a feature model can

convey information about the source code, as well as the surround-

ing build environment.

3.3. Quality Assurance

Quality assurance (QA) is imperative during the creation and

modification of source code. QA has many different goals during

development. However, in this paper we focus on backwards com-

patibility and correctness of changes. For both goals there are two

main techniques to reach them, namely testing and verification . In

the case of our running example, QA is intended to ensure that the

NC software can continue to run on the original machine and that

the changes are error-free. Testing Testing tries to cover a large set

of possible program runs by executing the program with specific

input (and optional output) values. A test is successful if the pro-

gram executes without error and provides the correct output. Dif-

ferent coverage criteria exist for testing, specifying which parts of

the program need to be covered. For industrial software the cho-

sen criterion is often branch-coverage , which is often mandatory

for safety-relevant source code (e.g., RTCA/DO-178B standard). This

means that for each branch in the software there exists at least

one test traversing the branch during execution

(e.g., for our running example 3 test cases are needed with in-

puts starting with G , H and an arbitrary character such as Z). Since

this is usually infeasible for non-trivial software, the coverage cri-

terion is often accompanied by a coverage-value specifying the per-

centage of branches the test cases have to cover. Verification Veri-

fication is often used in addition to testing and tries to prove cer-

tain program behaviors or properties. While quite powerful, verifi-

cation tends to be much slower and more costly than testing, of-

ten requiring manual inputs from highly trained users; for this rea-

son verification is often most useful only for smaller parts of the

program which have already been established to be hotspots. Cer-

tain types of verification also allow automating much of the pro-

cess, e.g., LLRêve (Felsing et al., 2015) uses symbolic execution to

automate regression verification , a technique to prove equivalence

of two program fragments (potentially with constraints on the in-

puts).

4. Industrial Software Recycling

We now present our interdisciplinary methodology for reengi-

neering legacy software. The focus is on evolution of software by

recycling implicit knowledge contained in source code of legacy

systems. This way functionality and therefore sustainability of pro-

duction machines can be increased. The concept consists of the

reengineering process in Fig. 5 , with source code of an existing

machine as initial input. This code is then 1 © analyzed and bro-

ken down into software modules that are 2 © linked by a feature

model. The resulting modules are then 3 © validated and verified

and subsequently 4 © virtually commissioned using a simulation-

based digital twin. After virtual commissioning, the evolved soft-

ware can be 5 © used in production or 6 © adapted to additional re-

Fig. 5. Software Reengineering Process

Fig. 6. Sliced version of Fig. 3

quirements. Additional adaptions require QA and virtual commis-

sioning as well, to ensure validity of the changes made. Obviously,

after using the evolved software in production it can be further

adapted to meet upcoming requirements. In the following we de-

scribe the steps and methodologies needed to perform steps 1 ©
- 6 ©. Retrofitting by upgrading the hardware and electronics and

connecting new technologies to existing systems is out of scope in

this paper but considered in other works, e.g., (Guerreiro et al.,

2018; Lins et al., 2018; Moctezuma et al., 2012).

1 © Module Extraction. We first extract modules that are present

in the source code but are not clearly separated from code that has

other functionalities. The modules are extracted via slicing. Pro-

gram slicing (Weiser, 1981) in general is the reduction of a pro-

gram to the parts that are relevant for the value of a given vari-

able at a given location. This location and the variables we are

concerned with is called slicing criterion (or criteria). Then the

given program is reduced to the parts that may have an effect

on the slicing criterion. As an example consider Fig. 3 : choosing

axis_command in line 14 as our slicing criterion, the resulting

slice consists of the code in Figure 6 . All code that has no effect

on the value axis_command is removed, but all instructions that

can have an effect are retained. Note that control flow constructs

40 V. Kutscher, S. Ruland and P. Müller et al. / Procedia CIRP 90 (2020) 37–42

Fig. 3. Exemplary CNC machine source code

Fig. 7. Visualization of executing the sliced function parse_command

(such as the if-else-statements and the FAIL function call) are re-

tained as well. In order to find relevant slicing criteria, we uti-

lize information retrieval techniques (Marcus et al., 2004; Shao and

Smith, 2009) to decide on program locations to slice. This means

we pre-process the source code — including comments — to cre-

ate a corpus that maps terms to locations. We then make queries

to this corpus, resulting in locations that correspond to the given

search term, which is supplied by a domain expert. We use the

locations retrieved from the corpus as slicing criteria for a slicing

approach crafted for the extraction of modules. Program visualiza-

tion , e.g., using CSED, a modification of the symbolic execution de-

bugger (SED) (Hentschel et al., 2019) we developed for C code, can

also be used to help understand the source code, find features and

locate hotspots for regression analysis. Fig. 7 shows a visualization

of executing the sliced function in Fig. 6 . Nodes (other than start

and end) correspond to program statements with outgoing edges

to the next statement to be executed. If-statements usually have

two labeled outgoing edges, as the next statement depends on the

evaluation of the condition. However, unreachable nodes and their

attached edges are removed, resulting in the two if-nodes with

only one edge (labeled false). This analysis can lead to dead code

elimination and program simplification.

2 © Reverse Engineering of Feature Models. In order to retrieve

the feature model that is already implicitly present in the legacy

source code, we need to analyse both the build system and the

source code itself. Using configuration options from both sources

we automatically create an initial feature model. However, this ini-

tal feature model may contain configurations that will not pro-

duce correct code (as incompatible modules might be selected).

We therefore prune it in several ways. We first evaluate the pre-

processor for any errors. In the second step, we check the source

code in all possible configurations for possible syntax errors, using

a special variability aware parser. Building on that parser, we em-

ploy a variability aware type checker. Finally, possible linker errors

are evaluated. Using information from all these checks we remove

invalid configurations from the intermediate feature model (Nadi

et al., 2014). Up to this point all tasks are fully automated and re-

sult in a feature model which is subject to optional improvements,

some of which can be manual. By obtaining both feature model

and extracted modules, a fully fledged SPL has been extracted from

the legacy software.

3 © Quality Assurance. After extracting and reorganizing the soft-

ware modules of the legacy software (or after enhancing its func-

tionality), QA is the next step to validate correctness of the

changes. There are dependencies and incompatibilities between

modules, as described by the extracted feature model. Therefore,

testing the modules based on that information is necessary. To

this end modules need to be (de)selected to build a single prod-

uct for a test run. However, testing individual products is usually

infeasible because of the sheer number of products. For this rea-

son we utilize tools that have already been developed to gener-

ate test-cases on SPLs (Bürdek et al., 2015). During transformation

of software (e.g., module extraction or adaptation), faults might be

introduced. These faults can be new (e.g., incorrectly implemented

new functionality) or reemerging faults (e.g., faults that have been

fixed but reappear due to copy&paste or incorrect merges during

version control) (Simpson, 2010). To generate test-cases revealing

differences in program versions, a methodology called differential

testing can be utilized (McKeeman, 1998). Differential testing gen-

erates test-cases that guarantee different output values if executed

on the different versions used to generate the differential test. In

case of transforming legacy software to an SPL no behavior of the

program should be changed. This can either be proven by utilizing

regression verification to prove functional equivalence or using dif-

ferential testing to validate that no faults have been introduced, if

no differential test could be generated. In case of behavior modi-

fying changes (e.g., new functionality), differential testing can also

be used, however differential testing is often restricted to gener-

ating one test-case revealing a difference. This is also due to the

fact that generation of differential test-cases is often very time-

consuming. Another strategy is to define a specific coverage cri-

teria for the program under test. For example, NC software often

contains specific error messages, resulting from non-valid inputs

(e.g., for G-code in our running example inputs with no leading

G or H result in an error). Generating test-cases to reach all error

messages can be used to check the error handling of following ver-

sions, which is especially important for safety reasons.

4 © Commissioning using Digital Twins. After QA the software is

principally ready for operation. However, commissioning on a ma-

chine is very time-consuming and involves risks, as errors not

found during testing and therefore still present in the software

now also affect the physical world. In addition, the productive ma-

chine may not be available for extensive downtime while commis-

sioning. An alternative way is to use a digital twin to virtually

commission the software. This enables a assessment of the soft-

ware behavior, which meets the requirements of industrial soft-

ware in terms of correctness, reliability and security. The applica-

tion of a digital twin of a system to investigate the effects of the

control software requires combination of the electronics and the

mechanics of a system. For this purpose, a simulation chain is used

which includes the simulation of a micro controller (Kutscher et al.,

2019) and a multi-body simulation of the system. The modified

and tested software is installed in the micro controller simulation

environment and coupled with a multi-body simulation (Anderl

and Binde, 2018). The control signals coming from the micro con-

troller simulation form the boundary conditions for the multi-body

simulation and therefore enable mapping of the effects of a control

V. Kutscher, S. Ruland and P. Müller et al. / Procedia CIRP 90 (2020) 37–42 41

Fig. 8. Evolved version of Fig. 3

software on the physical behavior of a system. This combination

can now be used to visually test the behavior of the software with

the mechanics of a machine and to configure the software. Once

the software has been tested and configured using the digital twin,

it can be installed onto the physical twin, which can be the orig-

inal, the modified or another system that recycles functionality of

the initial system.

5 © Software in Operation. After QA and virtual commissioning of

the software, it can either be directly used in production or further

adapted. Obviously, after using the software in production for some

time, it can also be further adapted later.

6 © Adaptation. The extracted modules and the feature model

then enable developers to create and extend the source code more

easily. As an example consider the code in Figure 8 . The code from

our running example has been extended to enable an A axis in

addition to the X,Y,Z axes using a generic method move_axis
that belongs to an extracted axis module instead of axis specific

ones (move_x,move_y,move_z). Using this additional A_AXIS
is entirely optional and becomes an additional new feature in the

model. Visualization of the original and adapted code with CSED

allows easy comparison and helps localize hotspots for regression

verification in the next QA cycle.

During each of these steps it is possible to restart our approach

if feature extraction should be improved (e.g., new search terms

have been identified). Software that already passed steps 1 © and

2 © is reused as input upon restarting.

5. Evaluation

Our reengineering approach allows to evolve legacy software by

recycling implicit knowledge already contained within the system.

However, to use this methodology in practice there are two key

aspects that need to be answered. The first research question is

if the approach is applicable to real systems, while the second is

if the approach scales . As proof of concept, we demonstrated our

approach on a concrete application case, which is presented be-

low. The use case is based on the running example introduced in

Sect. 2 . The software and hardware of the machine are extended by

a new function, which enables automated paper conveying, while

the paper had to be inserted manually in the initial system. The

use case is shown in Fig. 9 .

The initial situation is a legacy system with legacy software and

hardware. As described in Sect. 4 , the software is analyzed and

broken down into modules. Afterwards, the changes are validated.

Fig. 9. Enhancement of a CNC plotter by a paper conveyor

Subsequently, functions for controlling existing axes are reused for

adding a degree of motion to drive the paper feed. Modification

and validation are carried out iteratively until the desired function

has been implemented without errors. The modified and validated

software is configured and put into operation using a digital twin

of the modified physical twin. Once this step has been successfully

completed, the finished software is loaded onto the physical ma-

chine. The result is a machine with extended software by recycling

the implicit knowledge of the legacy system. During these steps

we noticed that there still exists a gap in requirements and avail-

ability of fully automated tool support for the whole process. Dur-

ing feature extraction there are still tasks which have to be man-

ually executed, while for testing and generation of digital twins

the system needs to be abstracted as the full system is often hard

to handle. Nonetheless, we managed to reengineer the legacy sys-

tem and evolved it to handle an additional axis for paper convey-

ing. Therefore, we managed to demonstrate the applicability of our

approach to real systems. To achieve scalability it will be neces-

sary to align our approach with general modularization principles

in Software Design. These are increasingly used in industrial soft-

ware as witnessed, for example, by the AUTOSAR

1 standard. The-

oretically one can process large software systems using the same

input, e.g. extract all modules for given search terms from the

whole source code of an automobile. The question whether there

are search terms that are relevant for a whole system remains to

be answered.

6. Conclusion and Future Work

The presented concept shows an interdisciplinary and method-

ical approach, which enables the extension of existing produc-

tion machines with new functions by using the implicit knowl-

edge contained in the existing software. With the help of this

software reengineering process, the efficient recycling of software

becomes an attractive alternative to implementing new software

from scratch. As future work, we plan to extend our approach in

multiple directions. First, we want to apply our approach to dif-

ferent domains, such as additive manufacturing and milling ma-

chines. Second, we want to extend our QA approach by means of

non-functional QA, to validate that non-functional properties (e.g.,

energy consumption) do not deteriorate during reengineering. Ad-

ditionally, we want to fully integrate testing into the virtual com-

missioning to further automize the validation step. Lastly, we want

to further incorporate tools into our approach to further improve

automatism and scalability.

CRediT authorship contribution statement

Vladimir Kutscher: Conceptualization, Methodology, Software,

Resources, Writing - original draft, Writing - review & editing, Vi-

sualization, Project administration, Validation. Sebastian Ruland:

Conceptualization, Methodology, Software, Resources, Writing -

original draft, Writing - review & editing, Visualization, Valida-

tion. Patrick Müller: Conceptualization, Methodology, Software,

1 https://www.autosar.org/

https://www.autosar.org/

42 V. Kutscher, S. Ruland and P. Müller et al. / Procedia CIRP 90 (2020) 37–42

Resources, Writing - original draft, Writing - review & editing, Vali-

dation. Nathan Wasser: Conceptualization, Methodology, Software,

Resources, Writing - original draft, Writing - review & editing, Val-

idation. Malte Lochau: Conceptualization, Methodology, Writing -

original draft. Reiner Anderl: Supervision, Project administration,

Funding acquisition. Andy Schürr: Supervision, Project administra-

tion, Funding acquisition. Mira Mezini: Supervision, Project admin-

istration, Funding acquisition. Reiner Hähnle: Supervision, Project

administration, Funding acquisition.

Acknowledgements

This work was funded by the Hessian LOEWE initiative within

the Software-Factory 4.0 project.

References

Anderl, R. , 2015. Industrie 4.0 – technological approaches, use cases, and implemen-

tation. at-Automatisierungstechnik. De Gruyter Oldenbourg .
Anderl, R. , Binde, P. , 2018. Simulations with NX/Simcenter 3D: Kinematics, FEA, CFD,

EM and Data Management, 2nd Hanser .

Anderl, R. , Haag, S. , Schützer, K. , Zancul, E. , 2018. Digital twin technology – an ap-
proach for Industrie 4.0 vertical and horizontal lifecycle integration. it - Inf.

Technol., 60 .
Beghi, A. , Marcuzzi, F. , Martin, P. , Tinazzi, F. , Zigliotto, M. , 2017. Virtual prototyping

of embedded control software in mechatronic systems: A case study. J. Mecha-
tron., 43 .

Bürdek, J. , Lochau, M. , Bauregger, S. , Holzer, A. , von Rhein, A. , Apel, S. , Beyer, D. ,

2015. Facilitating Reuse in Multi-goal Test-Suite Generation for Software Product
Lines. FASE. Springer .

Clements, P. , Northrop, L. , 2002. Software product lines: practices and patterns, vol.
59. Reading: Addison-Wesley. IEEE .

DIN ISO 2806, 1996. Numerical control of machines.
Felsing, D. , Grebing, S. , Klebanov, V. , Rümmer, P. , Ulbrich, M. , 2015. Automating re-

gression verification. ASE. IEEE/ACM .

Grieves, M. , Vickers, J. , 2017. Digital twin: Mitigating unpredictable, undesirable
emergent behavior in complex systems. Transdisciplinary Perspectives on Com-

plex Systems, 89. Springer .
Grottke, M. , Matias, R. , Trivedi, K.S. , 2008. The fundamentals of software aging. IS-

SRE Workshops. IEEE .
Guerreiro, B.V. , Lins, R.G. , Sun, J. , Schmitt, R. , 2018. Definition of smart retrofitting:

First steps for a company to deploy aspects of Industry 4.0. Adv. in Manuf..
Springer .

Hentschel, M. , Bubel, R. , Hähnle, R. , 2019. The symbolic execution debugger (SED):

a platform for interactive symbolic execution, debugging, verification and more.
Int. J. on Softw. Tools for Technology Transfer 21 (5) .

IEC 61131-1, 2004. Programmable controllers-part 1: general information.
Kagermann, H., Wahlster, W., Helbig, J., 2013. Recommendations for implementing

the strategic initiative Industrie 4.0.
Kritzinger, W. , Karner, M. , Traar, G. , Henjes, J. , Sihn, W. , 2018. Digital twin in manu-

facturing: A categorical literature review and classification. IFAC, 51 .

Kutscher, V. , Anokhin, O. , Anderl, R. , 2019. Enhancing digital twin performance
through simulation of computerized numerical control firmware. To appear in:

Procedia Manuf. .
Lee, C.G. , Park, S.C. , 2014. Survey on the virtual commissioning of manufacturing

systems. JCDE, 1 .
Lins, T. , Augusto Rabelo Oliveira, R. , Correia, L.H.A. , Sa Silva, J. , 2018. Industry 4.0

retrofitting. SBESC. IEEE .

Marcus, A. , Sergeyev, A. , Rajlich, V. , Maletic, J.I. , 2004. An information retrieval ap-
proach to concept location in source code. WCRE .

McKeeman, W. M., 1998. Differential testing for software 10
Moctezuma, L.E.G. , Jokinen, J. , Postelnicu, C. , Lastra, J.L.M. , 2012. Retrofitting a fac-

tory automation system to address market needs and societal changes. INDIN.
IEEE .

Nadi, S. , Berger, T. , Kästner, C. , Czarnecki, K. , 2014. Mining configuration constraints:

Static analyses and empirical results. ICSE. ACM .
Negri, E. , Fumagalli, L. , Macchi, M. , 2017. A review of the roles of digital twin in

cps-based production systems. Procedia Manuf.. Elsevier .
Parnas, D.L. , 1994. Software aging. ICSE. IEEE .

Reinhart, G. , Wünsch, G. , 2007. Economic application of virtual commissioning to
mechatronic production systems. J. Prod. Eng., 1 .

Shao, P. , Smith, R.K. , 2009. Feature location by IR modules and call graph. ACM-SE.

ACM .
Simpson, P.A. , 2010. FPGA Design. Springer .

Wagner, R. , Schleich, B. , Haefner, B. , Kuhnle, A. , Wartzack, S. , Lanza, G. , 2019. Chal-
lenges and potentials of digital twins and industry 4.0 in product design and

production for high performance products. Procedia CIRP .
Weiser, M. , 1981. Program Slicing. ICSE. IEEE .

Weiss, D. , Tau, C. , 1999. Software Product-Line Engineering: A Family-Based Soft-
ware Development Process, 1. Addison-Wesley .

http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0001
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0001
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0002
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0002
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0002
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0003
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0003
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0003
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0003
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0003
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0004
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0004
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0004
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0004
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0004
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0004
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0005
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0005
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0005
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0005
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0005
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0005
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0005
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0005
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0006
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0006
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0006
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0007
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0007
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0007
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0007
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0007
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0007
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0008
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0008
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0008
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0009
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0009
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0009
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0009
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0010
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0010
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0010
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0010
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0010
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0011
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0011
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0011
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0011
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0012
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0012
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0012
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0012
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0012
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0012
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0013
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0013
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0013
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0013
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0014
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0014
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0014
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0015
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0015
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0015
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0015
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0015
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0016
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0016
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0016
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0016
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0016
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0017
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0017
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0017
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0017
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0017
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0018
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0018
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0018
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0018
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0018
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0019
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0019
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0019
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0019
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0020
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0020
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0021
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0021
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0021
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0022
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0022
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0022
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0023
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0023
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0024
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0024
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0024
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0024
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0024
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0024
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0024
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0025
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0025
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0026
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0026
http://refhub.elsevier.com/S2212-8271(20)30312-7/sbref0026

