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Abstract

Research related to alias protection and related concepts, such as, confined types and ownership types has
a long tradition and is a promising concept for the design and implementation of more reliable and secure
software. Unfortunately, the use of these concepts is not widespread as most implementations are proofs
of concept and fall short with respect to the integration with standard software development tools and
processes.
In this paper, we discuss an implementation of confined types based on Java 5 annotations. The contribution
of this paper is twofold: First, we discuss the incrementalization of the confined types analysis and second,
we present the integration of the analysis into Eclipse using the static analysis platform Magellan.
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1 Introduction

Unintended aliasing is causing many kinds of problems. For example aliasing makes

modular reasoning more difficult, as it is hard to reason about the effect of updating

an object o when it is unknown which other objects also keep a reference to o.

Besides being a source of programming errors that can be detected when testing

an application, unintended aliasing can also lead to security errors, which are hard to

detect using standard development techniques. For example, when a reference to an

object is passed to another object and, hence, an alias is created for the first object,

then the alias can later on be used to update the first object in an unanticipated

manner. In [19] a security breach caused by a reference leaking bug in the JDK 1.1

is discussed (shown in Listing 1). In the JDK’s implementation, each instance of a
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1 public class Class {
2 private Identity [] signers ;
3 public Identity [] getSigners() {
4 return signers;
5 } }

Listing 1: Class.getSigners() without Confined Types

Java Class object holds an array of signers (Line 2) that represents the principals

under which the class acts. The problem is that the getSigners method returns

a reference to the original signers array (Line 4). Hence, the attackers can then

freely update the signatures based on their needs.

To solve the problems related to the creation of unintended aliases, we need

means to enforce that important data structures can not escape the scope of a well

defined protection domain. For example, to assure that the reference to the original

signers array does not escape the declaring class. In [19], Vitek et Bokowski propose

the concept of Confined Types to solve issues related to object aliasing.

In this paper, we present an incremental analysis for the confined types concept

proposed in [19] and integrate this analysis into the incremental build process of

the Eclipse IDE [7]. One goal of our work was compatibility with the Java language

specification and existing tools. This was a major reason why we have chosen

Confined Types [19]; using Java annotations we were able to simulate the necessary

language extensions proposed by Vitek et Bokowski.

The main contribution of our work is to provide an implementation of the con-

fined type checking that is tightly integrated with a standard software development

environment and where the analysis exhibits a behavior that is indistinguishable

from other (standard) compile time analyses. This fits well in the development phi-

losophy supported by modern IDEs such as Eclipse, where the developer expects to

see e.g., typing problems as soon as they emerge as the project evolves.

In general, we argue that — whenever possible — checking various program

properties should be done by IDEs. This avoids bloated compilers and ensures that

application-specific checkers can be introduced when needed. However, (re)checking

the entire project after a change is prohibitively expensive w. r. t. the time required

for the analysis. Hence, violations of the typing rules for confined types should be

checked for incrementally.

In vein of these considerations, we have implemented the confinement rules de-

fined in [19] using the open, extensible static analysis platform Magellan [9], which

is tightly integrated into the Eclipse IDE [7]. By choosing Magellan and Eclipse as

the underlying frameworks many issues related to tool adoption [1,10] are already

solved. By building on top of Magellan, our analysis is automatically integrated

with the incremental build process. Hence, the user will — after activation — per-

ceive no difference between the checks carried out by the standard Java compiler

and our analysis. This flattens the learning curve, as it is not necessary to learn

how to use the tool, provided the developer is already familiar with Eclipse. Ad-

ditionally, since we (re)use the standard Eclipse views to visualize errors no user
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interface related issues arise.

This paper is structured as follows: In the following, we first give an overview

of confined types. After that, we introduce the static analysis platform Magellan

on top of which we have build our analysis. We continue with a presentation of the

implementation of the confined types analysis, and in particular, the issues related

to the incrementalization of the analysis. After that, we evaluate our approach by

using confined types in a large project. We conclude with a discussion of related

work and a summary.

2 Confined Types

Confined Types were proposed by Vitek and Bokowski [19] as a machine checkable

programming discipline that prevents leaks of sensitive object references. A moti-

vation for their work was the security breach mentioned in the indroduction (shown

in Listing 1).

A possible solution to avoid the breach is a programming style that encourages

the developers of classes with sensitive information to return a reference to a copy

of the sensitive data, in our case a copy of the signers array. While programming

styles cannot be enforced, using confined types ensures that none of the key data

structures used in code signing escape the scope of their defining package.

For this purpose, types whose instances should not leave their defining package

are marked as confined. Confinement ensures that objects of a confined type can

only be accessed within a certain protection domain. A type is confined to this

domain if all references to objects of that type originate from within the domain.

Code outside the protection domain is never allowed to manipulate confined objects

directly. In contrast to existing access control mechanisms in Java (such as the Java

private keyword), confinement constrains access to object references rather than

classes. It prevents class-based restrictions from being circumvented by casting the

protected object to one of its unrestricted super-types.

In this paper, we describe an incremental analysis for the proposal in [19], inte-

grated into the incremental build process of the Eclipse IDE. As proposed in [19],

we also use Java packages as protection domains. Instead of the new modifiers,

confined and anon, introduced in [19], we use the metadata facility (annotations)

introduced in Java 5.0 and define two annotation types: @confined and @anon.

Listing 2 shows, how the code from Listing 1 can be rewritten using confined

types. The annotation @confined is used with a class, whose objects should be

confined to the containing package. In Listing 2, annotating SecureIdentity

as @confined (Line 3) enforces references to SecureIdentity objects to be con-

fined to the package java.security. Thus, code outside this package can never

access instances of type SecureIdentity. Renaming the old Identity class to

SecureIdentity and introducing a new Identity class (Line 4 – 8) preserves the

functionality of the original interface.

The @anon annotation enables confined types to safely use methods from uncon-

fined types. Methods that do not reveal the current object’s identity are marked
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1 package java.security;
2 abstract class AbstractIdentity { @anon equals(){...}; }
3 @confined class SecureIdentity extends AbstractIdentity { ... }
4 public class Identity {
5 SecureIdentity target ;
6 Identity (SecureIdentity t) { target = t; }
7 ... // public operations on identities ;
8 }
9 public class Class {
10 private SecureIdentity[] signers ;
11 public Identity [] getSigners( ) {
12 Identity [] pub = new Identity[signers.length];
13 for (int i = 0; i < signers.length; i++)
14 pub[i] = new Identity(signers[i ]);
15 return pub;
16 }
17 }

Listing 2: Class.getSigners() using Confined Types

as anonymous by annotating them with @anon to show this intention and to make

this property checkable 6 . In Listing 2, the method equals in line 2 is marked with

@anon to show that it never reveals the current instance’s identity (this-reference).

Therefore, SecureIdentity can safely extend AbstractIdentity and call equals

on this, because no method marked @anon will breach the confinement.

The constraints in Table 1 and 2 are defined in [19] and define the semantics of

confined and anon. Constraints in Table 1 restrict class and interface declarations

(C1, C2), prevent widening (C3), hidden widening (C4, C5), and transfers from

inside (C6) and outside (C7, C8) the protection domain. The rules defined in Table

2 constrain the usage of the self-reference this in method implementations, so that

this is not revealed to code outside the method.

C1 A confined class or interface must not be declared public and must not belong to the unnamed
global package.

C2 Subtypes of a confined type must be confined as well.

C3 Widening of references from a confined type to an unconfined type is forbidden in assignments,
method call arguments, return statements, and explicit casts.

C4 Methods invoked on a confined object must either be non-native methods defined in a confined
class or be anonymous methods.

C5 Constructors called from the constructor of a confined class must either be defined by a confined
class or be anonymous constructors.

C6 Subtypes of java.lang.Throwable and java.lang.Thread may not be confined.

C7 The declared type of public and protected fields in unconfined types may not be confined.

C8 The return type of public and protected methods in unconfined types may not be confined.

Table 1
Constraints for confined types

Using confined types as an extension to the Java type system, the programming

style of returning only copies of sensitive data can be supported in such a way that

once a type is marked as @confined, the safety of the program with respect to

avoiding unintended reference leaking can be guaranteed.

6 Another possibility would be to infer the @anon property. But having it explicit as an annotation in the
code serves as a documented design decision.
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A1 The reference this can only be used for accessing fields and calling anonymous methods of the
current instance or for object reference comparisons.

A2 Anonymity of methods and constructors must be preserved in subtypes.

A3 Constructors called from an anonymous constructor must be anonymous.

A4 Native methods may not be declared anonymous.

Table 2
Constraints for anonymous methods

3 Magellan

In this section, we discuss the static analysis platform Magellan. Magellan is a

generic, extensible platform for static analyses, which is tightly integrated into the

Eclipse IDE. The part of the architecture of Magellan relevant for this paper is

depicted in Fig. 1. The types in the highlighted area (Checker, ProblemsViewRE

and Report) are extended or used by classes of our confined types analysis. In the

following, we briefly discuss the functionality of the central classes and interfaces

and the interaction between them.

Fig. 1. Diagram of the main classes and interfaces

3.1 Source Artifact Processors

Source artifact processors create representations of program elements defined in the

files of a project. The representations, which are appropriate for static analysis are

called source artifacts and are stored in the database that is part of Magellan’s core

module; the database is basically a map that associates an Eclipse resource with

artifacts generated by the processors.

The source artifact processor relevant for the confinement analysis uses the Java

Bytecode Analysis Toolkit BAT [8] to create a quadruples 7 based representation of

7 Please note, the term quadruple and 3-address instruction are used interchangeable [17, p. 479].
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Java class files. The representation is similar to the Jimple representation of the Soot

framework [18] and is essentially a register based representation of Java bytecode.

A quadruples based representation facilitates many analyses, in particular data-flow

analyses [17,18], when compared with a direct representation of Java bytecode as

generated by other bytecode toolkits, such as e. g., BCEL [2].

3.2 Linked Artifact Processors

A linked artifact processor creates representations of resources that are not directly

defined as part of the project, but which are relevant for the analysis of the project.

E. g., classes in the Java runtime library are not defined as part of the project, but

information about them is required by many analyses.

Representations generated by linked artifact processors are called linked artifacts

and are also stored in the database. The linked artifact processor used by the

confined types analysis processes the source artifacts generated from Java class

files. The algorithm that this processor uses to determine the set of linked artifacts

to add to the database is described next. The representations of all classes defined

in libraries that are directly used in the implementation of the classes of the project

are added. Next, the same process is recursively applied to each linked artifact

added previously until every class used by any other class is added.

In particular, this algorithm ensures, that representations of the super types of

every used type are made available. For illustration, assume that the only class in

our project is the following:

class A { java.lang. Iterable l ; }

In the first step, the algorithm adds a representation of the interface Iterable to

the database — the type of the declared field. Further, the class java.lang.Object

is added, since every class inherits from it. In the second step, the representations

of Object and Iterable are analyzed. Since Object is the top-most type and

Iterable does not extend any interfaces, no further classes need to be added. To

reduce the size of the database, private methods and fields, as well as the methods’

implementations are omitted.

3.3 Base Analyses

The program model generated by the source and linked artifact processors is en-

riched and rendered more precise by applying base analyses that exploit general-

purpose program analysis techniques, e.g., class hierarchy, control-flow or data-flow

analysis. Our confinement analysis uses the following two base analyses provided by

Magellan: (a) the hierarchy analysis to make information about the super-/subtypes

of a class directly available, and (b) an analysis to bring the quadruples representa-

tion in SSA form [6]. When the representation is in SSA form, the local variables’

definition-use and use-definition information is directly available. This enables a

straightforward implementation of the check that the this reference of a confined

type is not passed to another object. For each value passed to another object or re-

turned by the method, we have to check if the this reference is potentially assigned
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to it. To do so, we analyze the explicitly available use-definition information.

3.4 Evaluation Engines

Conceptually, an evaluation engine is a mediator between the Magellan core and

a set of so-called checker modules. A checker module analyzes the models about

the program, generated by the processors and base analyses, to derive higher-level

information about the “correctness” of the program. The result of a checker is

directly presented to the end user of a Magellan enabled IDE. For example, a result

could be that a confinement rule [19] of a class is violated. The evaluation engine we

are using for the confinement analysis enables to write checkers that directly work on

the quadruples based representation. This evaluation engine provides a lightweight

plug-in interface: Each checker must implement a small Checker interface to enable

the evaluation engine (a) to determine the analyses and processors required by the

checker and (b) to start the evaluation process.

3.5 Reporting Engines

A reporting engine displays the results of an analysis. During the evaluation of the

database, reports that describe findings of the checkers are generated and passed to

the reporting engines. Each reporting engine supports a specific reporting format.

In our case, we use the simplest form of a report: a short descriptive text such as

“this must not be passed to another class” associated with a particular arti-

fact element. The reporting engine for this simple format uses the Problems View

of Eclipse to display the generated reports. These reports consist of a short mes-

sage, a severity level, a reference to the underlying resource and the specification of

a source range to which the message refers.

3.6 The Magellan Core

The Magellan core is responsible for controlling the analysis process. The analysis

process is triggered by an incremental or a full build. We will first describe the

incremental build process. A high-level overview of the analysis process triggered

by an incremental build is depicted in Fig. 2.

First, a BuildReport is created and used to record all changes to the database.

The core uses the information passed to it (by Eclipse) to remove all artifacts from

the database whose underlying resource has changed or was removed. The removed

artifacts are added to the build report and are available until the end of the analysis

process. The core passes each resource that has changed or which was added to all

processors to obtain respective artifacts. When an artifact is returned, the core

adds it to the database and to the build report. Second, the core passes the build

report to the first linked artifact processor. The processor uses the information

stored in the database and in the build report to determine the set of resources for

which it needs to create linked artifacts. Third, the base analyses are executed.

After performing all analyses, the build report also records the information about
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Fig. 2. Activity diagram of the build process

the artifacts where the analysis information has changed. Finally, the core calls the

evaluation engines which then execute the registered checkers.

In case of a full build, the process is basically the same as described above,

except that first the entire database is cleared and the source artifact processors are

called for all files of the project. After that, the same steps are executed as in case

of an incremental build.

4 Incremental Analysis

As stated in [19], checking the confinement rules is modular in the sense that each

class can be analyzed separately. However, in addition to modularity and dynamic

loading [19], our aim is to also support (a) continuous checking of confinement

constraints during a programming task, and (b) IDE-Integration of the checking

process with an integrated error reporting and source code navigation, as illustrated

by the screenshot in Fig. 3.

In such a setting, checking all constraints on all classes after every change is

obviously prohibitive in terms of incremental build performance. However, deter-

mining which classes have to be reanalyzed after a set of arbitrary changes to the

project’s source code is non-trivial. For an example of how a small change can

impact the confinement rules at a seemingly unrelated location, consider Listing 3.

1 package x;
2 public class X1 {
3 @anon public void m() { /∗ ... ∗/ }
4 }
5 public class X2 {
6 public void m() { /∗ ... ∗/ }
7 }
8

9 package y;
10 public class Y extends X1 { } /∗ change: ... extends X2 ∗/
11

12 package z;
13 @confined class Z extends Y { /∗ ... ∗/ }
14 class W {
15 public void foo() {
16 Z z = new Z();
17 z.m(); /∗ will violate C4 after change ∗/
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Fig. 3. Screenshot of Eclipse when using Confined Types

18 } }

Listing 3: Indirect violation of confinement constraints

The example consists of Java classes in three different packages. Class W calls a

method m on a confined class Z. C4 is satisfied because Z inherits m from class X1

where it is declared anonymous. Now, let us assume that Y is changed to inherit

from X2 instead of X1. Since X2 does not declare m as anonymous, the method call

in Line 17 now violates constraint C4. Hence, a change in package y (which does

not contain any confined or anonymous declarations) yields a confinement error in

a class in package z that is neither a subtype nor a supertype of the changed class

Y.

The example shows that when a class changes, it is not sufficient to only check

classes in the same package / protection domain or all super-types and subtypes of

the changed class. We therefore employ a more systematic approach to develop an

incremental algorithm for checking the confinement rules.

Our checking algorithm is designed in two steps. First, given a list of classes that

have been changed a set of classes is identified that must be reanalyzed to discover

any new constraint violation and to remove any error message for constraints that

are no longer violated. Next, the constraint rules are checked for all classes returned

by the first step. Whenever a check fails an error report for the Eclipse problems

view is created and presented to the user (see Fig. 3). Hence, after editing a source

file the developer is immediately informed about constraint violations.

We regard all the constraints from Table 1 and Table 2 as predicates over classes,
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respectively over methods. For any class c, Ci(c) is true, if and only if c satisfies Ci

for any method m, Ai(m) is true only if m satisfies the constraint Ai. Each predicate

can be evaluated on its own, since the definitions of the constraints do not depend

on each other. For example, for a class c to satisfy constraint C4 it suffices that

methods called on confined types within c are declared as anonymous. Whether

these methods, in turn, satisfy the constraints for anonymous methods is irrelevant

for C4, though. The reason is that error messages are directly related to predicates

that are not fulfilled. Violations of the constraints for anonymous methods will be

displayed as separate errors when analyzing the respective methods.

Now we can state our problem as follows: Given a program, the predicate values

for all its classes and methods, and a set of classes changed in the process of an

incremental build, update the predicate values so that they reflect the program

changes. This update process should be correct in the sense that it produces the

same results as a whole-program analysis.

Since a constraint must only be reevaluated if some information it depends on

has been invalidated by a program change we determine for each constraint the set

of information it depends on.

Before doing so, we slightly modify the constraints C2 to C2′: “If a direct super-

type of a type t is confined, t must be confined as well.”, and A2 to A2′: “If a method

m directly overrides an anonymous method, m must be anonymous as well.” These

modifications, while reducing the information on which the values of C2 and A2

predicates depend on, do not affect the semantics of the confined types: A program

satisfies all the constraints from Table 1 and Table 2 if and only if it satisfies them

with C2 and A2 replaced by C2′ and A2′.

We start our analysis by investigating the rules for anonymous methods, as

defined in Table 2.

• A1(m) depends on the anonymous attribute of all methods called on this inside

m. These methods have been declared either in m’s class or in a super-type of

the latter. Hence, for any changed class c, A1(m) must be reevaluated for any m

in c or any of its subtypes.

• A2′(m) depends on the anonymous attribute of the method overridden by m.

Since such a method must be declared in a super-type of m’s class, the same

invalidation strategy as for A1 applies.

• Since calls to constructors from within a constructor can be seen as a special kind

of method calls on this, we can treat A3 in the same way as A1.

• A4 does not depend on any non-local information. Thus, it suffices to reevaluate

A4 on all methods of a changed class.

This leads to the following incremental algorithm for checking the constraints

from Table 2. Whenever a type t changes, we have to reevaluate constraints A1–A3

on all subtypes of t (including t itself). Constraint A4 only has to be reevaluated

for types that have been changed.

Next, the constraints in Table 1 are analyzed in the same way.
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• C1(c) only depends on information from the class c. Thus, for every c, which has

changed, C1(c) must be reevaluated.

• C2′(c) depends on the confined attribute of all direct super-types of c. Thus, we

have to reevalute C2′(c) for any c that is a direct subtype of a changed class c′.

• C3(c) depends on the confined attribute of the types used in widenings inside one

of c’s methods. The value of C3(c) can change only if either c is changed (so that

the list of widenings performed inside c has changed) or if the confined attribute

of a type t that is used in a widening changes. For each such t, the following

holds: t has been confined at some point (i. e., before or after the change), hence,

t is defined within the same package as c. Therefore, for each class c whose

confined attribute has changed C3 needs to be reevaluated for any class in the

same package as a class c.

• C4(c) depends on method calls in c where the static type of the receiver is con-

fined. More specifically, it depends on the confined attribute of the method’s

declaring type and the method’s anonymous attribute.

Since the static receiver type is confined, it must be in the same package as the

class that contains the method call. Thus, whenever the confined attribute of a

type t changes, C4(c) must be reevaluated for any class c in the same package as

t to recheck all relevant method calls on t.

Additionally, we have to reevaluate C4 when the anonymous attribute of the

called method changes. This can happen indirectly as we have seen in the example

from Listing 3. Thus, whenever a type t is changed we have to determine all classes

that call a method on a confined subtype t′ of t. Since a confined type can only

be package visible, such a class must be in the same package as t′. For every

confined subclass t′ of t we check C4(c) for all classes c in t′’s package.

• The constraint C5(c) considers constructor calls in constructors of confined classes.

Since constructors are not inherited in Java, they have to be in the same class

or in the direct superclass (can be called via super(...)). This implies that C5

depends only on the class itself and its superclass. When a class c is changed, we

reevaluate C5 for c and all direct subtypes.

• C6(c) depends on all super-classes of c. Thus, it suffices to reevaluate C6 for all

subclasses of c whenever c is changed. As an optimization, we can ignore changes

to c that do not change c’s super-types.

• C7(c) can change whenever the confined attribute of a type used in a public or

protected field declaration of c changes. Since such a field type either was confined

before the change or has become confined after the change, it has to be in the

same package as c. Thus, whenever a type t changes C7 needs to be reevaluated

for all classes in the same package as t.

• The constraint C8(c) checks return types of methods that are declared as public

or protected. The strategy for evaluating C8 is the same as for C7.

Given a set of files that have been changed, we process every constraint sep-

arately. For every changed class we compute the set of classes that have to be
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reanalyzed and then reevaluate the constraint against all classes in this set 8 . This

process is correct even if multiple changes have been performed, because it analyzes

the same classes that would have been analyzed if an incremental analysis had been

performed after every change.

By definition, the rules for computing the set of classes to be checked after a

change guarantee that a constraint is reevaluated if any information it depends on

has been invalidated. Hence, the value of all predicates is the same as if they had

been evaluated by performing a whole-program analysis. Thus, our incremental

algorithm is correct. Regarding its efficiency, with the current rules we often have

to reevaluate a constraint for all subtypes of some type. Obviously, this may be a

very big set. Suppose, for example, that the class Object is changed somehow. Now,

constraints A1–A3 for example have to be reevaluated for all subtypes of Object

which essentially is every type.

A possible optimization is to use a call-graph analysis to reduce the reevaluations

of constraints A1 and C4. This is because, we could determine all method call

statements that are affected by a given change. For the change from Listing 3, for

example, the call-graph analysis would tell us that the method called in Line 17 has

changed and we could reevaluate C4 for this location. This avoids having to check

constraints A1 and C4 for all classes in a package. The challenge, of course, is to

make call-graph analysis incremental as the cost would be prohibitive otherwise and

to make it fast enough to pay off compared to our current algorithm.

5 Performance Evaluation

The runtime complexity of static analyses is an important obstacle for their widespread

adoption; performance is especially crucial for an integration into the build process.

To assess our analysis in this respect, we measured its runtime while refactoring

the Java runtime library to implement the suggestions made in [12]. The experi-

ment was conducted on a dual Xeon 3.0Ghz workstation with 2GB RAM running

Windows XP and the Sun Java 5 JDK.

We edited the “public” part of the Java 5 runtime library (rt.jar) delivered

with the Sun JDK, which consists of 4992 classes in java.*, javax.* and org.*.

Furthermore, 441 classes were added to the database by the linked artifact processor

for classes in sun* and com.sun*; these classes are used in the implementation of

the public classes.

To keep the artifacts, the hierarchy information and the results of the confine-

ment analysis in memory ≈ 85MB are required. The overall time for the first analysis

process (full build, without confinement annotations) of the project is 46.5 seconds;

the supporting analyses require 45.7 seconds and the analysis of the confined types

(Confinement Analysis) 0.7 seconds.

The time required to perform the analysis during incremental builds is shown

on the y-axis in Fig. 4. The numbers on the x-axis are identifiers for different

8 For simplicity, we just compute the union of all these sets and check all constraints against every class in
this set.
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Fig. 4. Incremental build times (msecs)

refactorings that we performed:

(i) A complex class (1578 LOC) is changed; the change does not affect confined

types.

(ii) The implementation of an anonymous method is changed, whose declaring class

does not have confined subclasses.

(iii) A method in a confined class is changed; the change does not violate any

confinement constraints.

(iv) A method is annotated as anonymous which is inherited and used by a confined

subclass.

(v) The annotation added in the previous case is removed to force the creation of

an error message.

(vi) A class is annotated as confined in a package that previously did not define

any confined types.

(vii) The confined annotation of the most recently annotated class in a package is

removed.

The results show that in case of an incremental build the time required to per-

form the necessary analyses is in general less than 200 milliseconds 9 . Further, the

additional amount of memory required is at most 85MB. These results indicate

that it is feasible to run the confinement analysis along with the incremental build

process.

9 Please note that the automatic parallelization of the artifact processors reduces the required time for
processing the source files by ≈ 35% − 40% when compared to a single CPU configuration.
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6 Related Work

When dealing with aliasing, four categories of work are considered [14]: detection,

prevention, control and advertisement of aliasing. The works we are interested in,

mostly fall under the category of prevention and control.

The notion of alias protection for object-oriented languages was introduced by

Hogg [13] in order to enable modular reasoning for groups of classes. These groups

are called islands and ensure the restriction of aliasing to classes on the island.

Hogg differentiates between static and dynamic aliases. Static aliases are aliases via

instance variables and dynamic aliases are those via parameters or local variables.

Static aliasing can lead to undesired side effects in later invocations of the aliased

object. Dynamic aliases were seen as unproblematic, because they disappear at the

end of the execution of the method in which they are defined. Means to control

static aliasing were introduced with islands. Islands are the transitive closure of a

set of objects accessible from a bridge object. A bridge object is the sole access

point to a set of instances that make up an island.

To ensure that no static aliases are created from outside the island to objects

on the island, the methods of the bridge object are restricted. Only methods with

parameters and return values that either do not modify the state of the system,

or have only parameters and return values that have at most one static alias are

allowed. This avoids the creation of unwanted aliases. For example, a return value of

a method can be tagged with unique to state that exactly one reference to its value

exists. The value can only be assigned to other variables, if the original reference is

released.

The full encapsulation of aliases of this approach is too restrictive for many

common design idioms used in OO programming. E. g., no object could be a member

of two collections simultaneously if either collection was fully protected against

aliases. In this case, one collection would be an island, prohibiting that references

to its members show up outside the island.

In [15], Noble et al. present a more flexible approach to control aliasing when

compared with islands. The approach taken by Noble et al. is to enable aliasing

by introducing explicit aliasing modes. The authors differentiate between the rep-

resentation of an object, which corresponds to its fields, and arguments, which are

parameters to methods of the object. The representation of objects should only be

accessible via the object’s interface, e. g., in Java fields would have to be marked as

private and aliases to them should not be returned via getter methods. The state

of the object should only depend on arguments with an immutable state. If the

state of the object was dependent on the mutable part of arguments to its methods,

the state of the object could be changed by changing the state of the arguments

long after the call, bypassing the objects interface. The approach uses tags to an-

notate types and enables the compiler to enforce the restrictions mentioned on the

creation of aliases. A formalization of this model is discussed by Clarke et al. [5].

Even though both approaches enable flexible alias control, they are designed for a

language without inheritance or subtyping.
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A variant of ownership types is used by Boyapati et al. [3] to prevent data races

and deadlocks by partitioning locks into a fixed number of equivalence classes and

specifying a partial order among these equivalence classes. The type checker then

statically verifies that whenever a thread holds more than one lock, the thread

acquires the locks in descending order. Ownership types are used to ensure that

that the locks that protect an object also protect its encapsulated objects.

The approach of Clarke et al. [4] implements a confinement checker for Java to

solve the domain specific problem of passing a this reference from one Enterprise

Java Bean component to another component. In EJB access to the internal objects

implementing each Bean must be prevented, and access to the Bean is permitted

only through the container generated wrapper. While confined types are a generic

solution to control aliasing, Clarke et al.’s approach solves an EJB specific problem.

The work of Fong [11] describes how to translate the notion of confinement,

which is formulated for static analysis of Java source code, to dynamic analysis

of Java Bytecode. The approach retains the confinement annotations made in the

source code at bytecode level. This enables link time checks of confinement rules.

It also describes a form of secure cooperation between mutually suspicious code

units, where, for example, a resource object can be shared between two untrusting

modules while ensuring its confinement to a given domain. The implementation

extends the runtime of the Pluggable Verification Modules of the Aegis Research

JVM. Our approach uses static analysis to ensure the confinement properties at

compile time and to immediately inform the user of confinement violations.

In [20], the notion of confined types is formalized in the context of Featherweight

Java (FJ). In FJ, confined types are extended to confined instantiations of generic

classes.

Reverse engineering approaches to the detection of aliasing are described in

[12,16]. Kacheck/J [12] is a tool to infer confinement in Java code and was used to

test the thesis that all package-scoped classes in Java programs should be confined.

About 25% of the classes of their benchmark suite were confined anyway and 45%

could be refactored to be confined just by changing visibility modifiers. These

numbers are supported by the findings of Potanin et al. [16]. They presented metrics

of uniqueness, ownership and confinement by analysing snapshots of Java program’s

object graphs and found that a third of all objects were strongly confined.

7 Summary & Future Work

In future work, we will extend the analysis to implement confined types with sup-

port for generic data types. This would relax the restrictions now posed on the

use of confined types as it enables putting confined types in containers, which are

parameterized using the confined type. Further, we will add support for a more

flexible definition of protection domains to broaden the range of use of the confine-

ment analysis; e. g., to check Enterprise Java Beans for correctly confining this to

the scope of the bean.

In this paper we have discussed an implementation of an incremental confinement
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analysis realized as an Eclipse plug-in that makes use of the static analysis platform

Magellan. As the performance figures show, the overhead when always executing

the analysis along with the incremental build process is low enough to be able

to use confined types in day-to-day usage. Further, using Magellan we were able

to overcome the identified tool adoption barriers while being able to focus on the

implementation of the analysis.

The confined types analysis plug-in is freely available at:

www.st.informatik.tu-darmstadt.de/Magellan
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