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Ubiquitous connectivity of web, mobile, and IoT computing platforms has fostered a variety of distributed

applications with decentralized state. These applications execute across multiple devices with varying reliability

and connectivity. Unfortunately, there is no declarative fault-tolerant programming model for distributed

interactive applications with an inherently decentralized system model.

We present a novel approach to automating fault tolerance using high-level programming abstractions

tailored to the needs of distributed interactive applications. Specifically, we propose a calculus that enables

formal reasoning about applications’ dataflow within and across individual devices. Our calculus reinterprets

the functional reactive programmingmodel to seamlessly integrate its automated state change propagationwith

automated crash recovery of device-local dataflow and disconnection-tolerant distribution with guaranteed

automated eventual consistency semantics based on conflict-free replicated datatypes. As a result, programmers

are relieved of handling intricate details of distributing change propagation and coping with distribution

failures in the presence of interactivity. We also provides proofs of our claims, an implementation of our

calculus, and an empirical evaluation using a common interactive application.

CCS Concepts: · Theory of computation → Distributed computing models; · Software and its engi-

neering→ Software fault tolerance; Data flow languages.

Additional Key Words and Phrases: distributed systems, interactive applications, fault tolerance
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1 INTRODUCTION

Ubiquitous connectivity of web, cloud, mobile, and IoT computing platforms has fostered a variety
of distributed interactive applications [Zhang et al. 2014]. Examples of such software systems
include collaborative applications (e.g., Trello, Google docs) with real-time aspects (e.g., Uber,
Sli.do), remote monitoring and control software (e.g., automated home software, personal health
apps), remote processing worksheets (e.g., Jupyter), multi-player gaming, etc.
Such applications often have a decentralized architecture with some components running on

cloud platforms and others running on the connected (end-user) devices [Kleppmann et al. 2019].
A decentralized architecture reduces network traffic, improves latency, enhances privacy, and
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enables offline usage [Yu et al. 2018], while at the same time supporting collaboration and access to
remote resources. In turn, however, a decentralized architecture introduces several failure modes
that need to be addressed. First, individual devices may fail (e.g., due to mobiles running out of
battery), websites can be reloaded by clients, cloud servers may crash and recover again by restoring
persisted state. Second, communication between devices may be temporarily disrupted, causing
messages to get lost or be duplicated.
Reasoning about high-level properties of applications running in distributed environments is

generally challenging [Gilbert and Lynch 2002]. Significant progress is made in this respect for data-
centric applications thanks to specialized programming models offering fault-tolerant abstractions.
First, there are approaches targeting big data processing on controlled server clusters [Alexandrov
et al. 2014; Kreps et al. 2011; Zaharia et al. 2012] that provide high-level programming abstractions
with built-in support for recovery of computation’s state after crashes. Second, there are approaches
targeting computations structured around specialized data structures [Conway et al. 2012; Kuper
and Newton 2013; Meiklejohn and Van Roy 2015b], which restrict the programming model in order
to tolerate unreliable network conditions [Hellerstein and Alvaro 2019].

Unfortunately, there is no similarly declarative fault-tolerant programming model for distributed
interactive applications with an inherently decentralized system model. The above approaches do
not target applications, where (a) external events and user inputs determine how computations
unfold (inversion of control) and (b) individual application components own and operate on data
independently. Actor-based approaches [Agha 1986; Akka 2019b; Armstrong 2010] are the state-
of-the-art in programming distributed interactive applications. However, they only ensure fault
tolerance of individual actors [Bernstein et al. 2014]. Communication failures and crashes affecting
multiple actors are left to be handled by the application logic using only low-level message passing.

To recap, for distributed interactive applications, we lack declarative fault-tolerant programming
models with easy-to-reason high-level guarantees akin those available for data-centric applications.
This is the gap, this work aims to fill.We present a novel approach to automating fault tolerance using
high-level programming abstractions tailored to the needs of distributed interactive applications.
Specifically, we propose FR , a formal calculus that enables formal reasoning about applications’
dataflow within and across individual devices. FR reinterprets the functional reactive programming
model [Elliott and Hudak 1997] to seamlessly integrate its automated state change propagation with
automated crash recovery of device-local dataflow and disconnection-tolerant distribution with
guaranteed automated eventual consistency semantics based on conflict-free replicated datatypes.
As a result, FR relieves programmers of handling intricate details of distributing change propagation
and coping with distribution failures in the presence of interactivity.
In detail, our contributions are as follows:

· We present FR , a formal model for fault-tolerant interactive applications based on the untyped
λ-calculus (Section 3). FR , which is also informally introduced by examples (Section 2), covers
user-defined dynamically reconfigurable dataflow and eventually consistent distribution.

· We prove that the programming model features desirable properties for correctness, deter-
minism, and efficiency in a local setting (Section 4).

· We characterize and prove the fault tolerance properties of our system (Section 4). Devices
are restored after a crash and distributed state eventually converges in the presence of both
disconnects and crashes.

· We present an implementation of FR integrated with the REScala language [Salvaneschi
et al. 2014] (Section 5) and demonstrate that our programming model is suitable for typical
distributed interactive applications by conducting a case study. We show that our implemen-
tation of the case study exhibits similar performance as existing implementations.
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1 val name = Source("")

2 val text = Source("")

3 val message = (name, text).Map{n => i => append(n, ": ", i)}

4 val room1 = message.Fold(nilCRDT("topic1")){state => m => consCRDT(state, m)}

5 val room2 = Source(nilCRDT("topic2"))

6 val roomList = Source(room1, room2)

7 val index = Source(0)

8 val selectedRoom = (roomList, index).Map{l => n => lookup(l, n)}

9 val roomContent = selectedRoom.Flatten

10 val contentWidget = roomContent.Map{content => listWidget(content)}

11 displayUI(name, text, contentWidget)

Fig. 1. Complete chat example code for a single device.

Fig. 2. Dataflow Graph.

2 PROGRAMMING FAULT-TOLERANT INTERACTIVE APPLICATIONS

In this section, we give an informal introduction to the programming model of FR . We use an
example peer-to-peer chat application to illustrate FR ’s abstractions. We use this application as
a running example throughout the paper. In general, FR supports arbitrary topologies, but, in
our example, all devices execute the same application code resulting in a classical peer-to-peer
application. Application parts running on different devices communicate via named distributed
state, and the language runtime ensures eventual consistency of that state.

2.1 Reactives

In FR , the basic abstractions are called reactives and come in two flavors: source and derived
reactives. Sources are discrete time changing values, representing a variety of externally changing
values of the device they run on, e.g., user input or sensor data. Derived reactives use operators
to compute their value from their inputs. In most cases, an operator is a user-defined stateless
function, but FR also supports a stateful fold and a dynamic flatten reactive. Derived reactives
reevaluate their value when their inputs change, forming a dataflow graph.
Figure 1 shows the complete code of our running example, which is introduced in this section.

Figure 2 shows the dataflow graph of the running example, with each box representing a reactive
with their name taken from the variable they are stored in. Arrows point in the direction of dataflow,
i.e., the inputs are at the tail of an arrow and the derived reactives are at the tip. Reactives with no
incoming arrows are sources. The dashed lines represent dynamic edges, and dashed lines with
diamonds represent nesting of reactives in other reactives. In the following, we will incrementally
introduce and discuss the application code that builds that graph.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 144. Publication date: October 2019.
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Example 2.1. The code snippet below combines a name and text (source reactives) into a derived
chat message. In this case we derive a map reactive that appends value of the name and text.

12 val text = Source("Hello")

13 val name = Source("Alice")

14 val message = (name, text).Map{n => i => append (n, ": ", i)}

15

16 message.value // ==> "Alice: Hello"

17 text.fire("How are you?")

18 message.value // ==> "Alice: How are you?"

The Source (Line 12, 13) and Map (Line 14) define new reactives. The value of a source is given
during creation, and the value of map reactives depends on the current value of its inputs. The
current value of reactives is accessible using .value (Line 16). The .fire (Line 17) is an actionwhich
changes the value of the source. When an action changes a source, then the derived reactive changes
accordingly (Line 18) ś a process called propagation. Actions are propagated to all transitively
derived reactives in the dataflow graph. Thus, fire and value bridge between the dataflow graph
and the surrounding imperative computations expressed in the host language. The host language,
used for operators and to create the dataflow graph, is the untyped λ-calculus (with syntactic sugar
for the presentation).

Example 2.2. The code extract below models a chat room by collecting all messages into a list
using a fold reactive. The operator of fold has access to the current value of the fold, thus enabling
stateful applications. In this case, whenever message changes, then its value m is added to the state
of the fold.

19 val room1 = message.Fold(nil){state => m => cons(state, m)}

20

21 room1.value // ==> nil

22 text.fire("1")

23 text.fire("2")

24 room1.value // ==> ("Alice: 1", "Alice: 2")

In contrast to map reactives, each time the input of a fold changes, the fold accumulates the
value of its input one more time into its current state. Thus, the state of fold must be managed
carefully when considering crashes and unreliable networks.

Example 2.3. Next, we introduce Flatten, which allows to change edges in the dataflow graph
at runtime. We extend our example such that we can use an index to select one of multiple chat
rooms to be displayed.

25 val roomList = Source((room1, room2)) // list of two rooms

26 val index = Source(0)

27 val selectedRoom = (roomList, index).Map{l => n => lookup(l, n)}

28 selectedRoom.value // ==> 'room1' (a reactive)

29 val roomContent = selectedRoom.Flatten

30 roomContent.value // ==> ("Alice: 1", "Alice: 2"), same as above

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 144. Publication date: October 2019.
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The roomList reactive contains a list of two nested reactives and selectedRoom selects the
one at the position denoted by index (Line 27). In Line 29, roomContent is defined by flattening
selectedRoom. This creates a dynamically changing dependency between roomContent and either
room1 or room2; the dependency changes at runtime as the value of index changes.
In Figure 2 the dynamic edge is shown with a dashed arrow and nested reactives are shown

as dashed diamonds. In general, flatten reactives enable one layer of indirection when defining
dependencies. The flatten reactive (roomContent) depends on its input (selectedRoom) to select
which nested reactive to depend on (e.g., room1) and accesses the value of that nested reactive.

2.2 Propagation

A combination of map, fold, and flatten may be used to build stateful and dynamic dataflow graphs
for interactive applications. Until now, we have given an intuition that the values in the dataflow
graph can be changed, based on external actions (e.g., an explicit fire). The set of active reactives ś
those directly or indirectly derived from the source of the action ś change their values to reflect
the action. We say that active reactives reevaluate to compute new values in response to an action.
The process of reevaluating all active reactives is called propagation of the action. Conceptually
all reevaluations in a single propagation occur at the same time, which defines the semantics
of propagation to be synchronous. Synchronous semantics simplifies reasoning about program
behavior [Berry and Gonthier 1992; Salvaneschi et al. 2017]. However, in a real implementation,
the process of propagating new values to all derived reactives is not instantaneous and external
actions or faults may occur in between. Thus, FR explicitly models propagation as individual
steps and is conceptually very close to actual implementations of propagations algorithms such as
SID-UP [Drechsler et al. 2014] and FElm [Czaplicki and Chong 2013]. We formally show that the
stepwise propagation behaves equivalently to a synchronous system (Section 4).

2.3 Distribution

FR has distributed reactives to enable remote communication. Distributed reactives are sources and
fold reactives, which replicate their state to other devices. Distributed reactives behave like sources
and folds locally. Changes due to remote replication cause actions and start propagation in the
same way as local actions.

Example 2.4. Wemodify our running example to create a distributed chat room, named "topic1".
Messages are accumulated into distributedRoom as before but using a special list data type for
synchronization. The state of this fold will be synchronized with all other devices that also have a
distributed fold with the name "topic1".

31 val distributedRoom = message.Fold(nilCRDT("topic1")){

32 state => m => consCRDT(state, m) }

FR uses eventually consistent replicated data types (state-based CRDTs [Shapiro et al. 2011a])
for distributed reactives. CRDTs ensure that the state of distributed reactives can always be syn-
chronized, even if connections to other devices are unreliable or changes are made while offline.
CRDTs are data types, whose state domain together with a merge operation defines a lattice, and
operations on the state must always produce a state that is larger according to that lattice (c.f.
[Shapiro et al. 2011b] for a formal discussion). Existing research shows that many common data
types can be expressed as CRDTs [Shapiro et al. 2011a]. Their wide-spread usage confirms the
practicality of CRDTs, to replicate data over unreliable connections [Bernstein et al. 2017; Shapiro
et al. 2018].
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lookup(r , Σ,v) =

{

Σ(r ) r ∈ Σ

v r < Σ

ready(P, µ) = {r ∈ µ |r < P ∧ inputs(r , µ) ⊆ P ∪ {r }}

outdated(A, µ) = {r ∈ µ |ri ∈ A ∧ ri ∈ inputs(r , µ)}

reevexp(r , µ) = µ(r ).op inputs(r , µ).val

update(µ, r ,v) = (µ, r 7→ (µ(r ).in,v, µ(r ).op))

inputs(r , µ) =

{

{r0, µ(r0).val} µ(r ).in = dynamic(ro)

µ(r ).in otherwise

location(µ) = fresh location in µ, consistent between restarts

Fig. 3. Auxiliary functions for the operational semantics.

Conceptually, any local fold operation is expressible as a distributed reactive by representing all
changes to fold as an ordered list and distributing that list (i.e., as in Example 2.4), and then folding
that list independently on each device. However, because finding efficient CRDT implementations
remains and active field of research [Almeida et al. 2018; Enes et al. 2019], FR allows arbitrary
(state-based) CRDTs for distributed reactives, which have different trade-offs concerning supported
operations and synchronization performance. The implementation of FR comes with a library of
CRDTs for the developer to select from. In Section 3, we show that the composition of distributed
reactives is still eventually consistent, a result that is not always true for the composition of plain
CRDTs [Meiklejohn and Van Roy 2015b; Wang et al. 2019].

2.4 Restoration

Each device in FR has its own application code together with its own storage for state. When
a crash occurs, the runtime representation of the dataflow graph is lost including all values of
reactives. The dataflow graph itself can be reconstructed from the application code, but values
of reactives include user data that cannot be reconstructed. FR stores snapshots of the values of
reactives on permanent storage of the device. Using the application code and the snapshot, the
dataflow graph and all values are fully restored after a crash.
To minimize lost state, FR updates the snapshot after every processed action, thus losing at

most the latest interaction with the user (i.e., a single press of a button). To ensure efficiency of
interactions, FR minimizes the work for each snapshot. First, snapshots are stored incrementally,
only including values changed by the action. Second, there is no need to store the values of map
and flatten reactives, as they can be recomputed. Thus, only values which cannot be recomputed ś
sources and folds ś are included in the snapshot. All other values are lazily recomputed during
restoration, trading efficient frequent snapshots for more expensive but rare restorations. Section 4
elaborates on further details and proves the correctness of restoration from minimal snapshots.

Example 2.5. For illustrating the restoration semantics, assume the user had sent some messages
while offline (i.e., submitting text from the UI), which are now stored in room1.value = ("msg1",

"msg2", ...). Every time the user generates a new message, the runtime updates the snapshot
of room1 to the new value. After a crash, instead of initializing room1 with an empty list CRDT as
defined by the application code, FR loads the value from the snapshot, restoring room1 to contain all
messages (including those sent while offline). Once the runtime reconnects, the restored messages
are sent to the network, thus no state is lost, and consistency is ensured by the CRDT semantics.
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C ::= (M ; S ;D |...|D) Communication

D ::= ΣL Devices

L ::= ⟨µ⟩ t | ▷(U ⟨µ⟩ t) Processes

U ::= t · r · (A; P) | (A; P) Updates

v ::= x => t | r | unit Values

t ::= x | x => t | t t | unit | λ Terms

r | Source(t) | (t, t).Map{t} | t . Fold(t){t} | t . Flatten | Reactives

t .value | t .fire(t) Actions

M : r 7→ ((v ×v) → v) Merge functions

S : r ×v Messages

Σ : r 7→ v Snapshots

µ : r 7→ (in ∈ P(r ), val ∈ v, op ∈ v) Local stores

Fig. 4. Syntax of FR .

2.5 Summary

FR seamlessly integrates eventually consistent data types and crash tolerance into the synchronous
semantics of dataflow programming models. The integration is achieved by basing all abstractions
on a single notion of reactives with state. Moreover, through the integration crashes and disconnects
are automatically tolerated in a programming model that is easier to reason about for programmers.
The following sections elaborate on how FR achieves this using an operational semantics to give a
precise definition.

3 SYNTAX AND SEMANTICS

Syntax. Figure 4 shows the syntax of FR . The model for communication of interactive application
(M ; S ;D1 |...|Dn) consists of a mapping M assigning distributed reactives a merge function r 7→

merдer to model CRDTs, a set of in-flight messages S containing pairs of reactives and values (r ,v),
and a set of devices D1 |...|Dn executing concurrently. Devices D have volatile state in the form of
processes L, and durable state in the form of snapshots Σ. The current process is lost when the
device crashes, but the snapshot is persisted. Each Di starts with an initial process Li and an empty
snapshot.

The evaluation of processes L models either (a) the execution of application code ⟨µ⟩ t with term
t and store µ or (b) the propagation of actions ▷(U ⟨µ⟩ t). The evaluation of processes is based
on λ-calculus. Values v include functions x => t , the unit value, and reactives r . Terms t include
function definitions and application, creating new reactives, and reading and firing reactives. In FR
all terms creating new reactives are capitalized. Reactives that are used as inputs or for activation
are left of a dot, and user-defined operators for reevaluation are in braces. We use a standard, left
to right, call by value, evaluation context E [Felleisen and Hieb 1992]. The store µ maps reactives r
to a 3-tuple with named values containing the set of input reactives (in ∈ P(r )), the current value
(val ∈ v), and the operator used for reevaluation (op ∈ v). We write µ(r ).val to access the value
val of reactive r in store µ. The current updateU is used by the runtime for bookkeeping during
propagation of actions. U contains the sets of active A and processed P reactives, and optionally a
reactive operator t for reactive r .

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 144. Publication date: October 2019.
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→D⊂ D × D µ(r ).in = ∅

Σ ⟨µ⟩ r .fire(v) →D Σ ▷ (({r }; {r }) ⟨update(µ, r ,v)⟩ r )
(fire)

P = dom(µ) Σ
′
= Σ, {µ(r ).val | r ∈ A ∧ (r ∈ µ(r ).in ∨ µ(r ).in = ∅)}

Σ ▷ ((A; P) ⟨µ⟩ tl ) →D Σ
′ ⟨µ⟩ tl

(commit)

v = µ(r ).val

Σ ⟨µ⟩ r .value→D Σ ⟨µ⟩v
(access)

t →λ t
′

Σ ⟨µ⟩ t →D Σ ⟨µ⟩ t ′
(outer)

Σ ⟨µ⟩ t →D Σ ⟨µ ′⟩ t ′

Σ ⟨µ⟩ E[t] →D Σ ⟨µ ′⟩ E[t ′]
(context)

Fig. 5. Operational semantics for process behavior of devices.

Compared to the syntax presented in this section, the syntax used in Section 2 has the following
variations, adopted for readability. (a) A flexible number of input reactives for Map, (b) val x = t

for binding x to t in the rest of the block, (c) use of literals like numbers (10), Strings ("string"),
and lists (t, t, t), (d) predefined functions (append, cons), (e) parenthesis to clarify associations,
(f) line comments (//), and (g) sequencing multiple terms separated by newlines.

Semantics overview. We define a small step operational semantics for FR . Figure 3 contains
auxiliary functions used throughout the semantics. Small step semantics allows modeling of
message receives and crashes to nondeterministically occur between any two steps of a device. We
first look at the stepping rules for individual devices (Section 3.1). Evaluation of a single device
depends on the current process, and is separated into two differently labeled stepping relations,
→D and →p , for presentation purposes. When evaluating application code (→D⊂ D × D) the
dataflow graph is created (Section 3.2) and actions are received. An action starts a propagation
(→p⊂ D × D) (Section 3.3). Propagation processes all reactives before normal execution of the
application continues. A crash of the device during a propagation causes the triggering action to be
lost. We extend the system to many communicating devices in Section 3.4. Communication has its
own stepping relation (→C⊂ C ×C), which nondeterministically chooses to further evaluate one
of the devices, to send messages, or to receive messages. We make the usual fairness assumptions,
that eventually all devices get the chance to evaluate and communicate.

3.1 Devices

A device D = ΣL consists of a currently executing process L, and a snapshot Σ. A snapshot Σ is
a mapping (r 7→ v) from reactives to their value. Figure 5 shows the device evaluation relation
except creating reactives.

Processes have two syntactic forms: (1) ⟨µ⟩ t executes the application code t with store µ to create
and modify the dataflow graph, and (2) ▷(U ⟨µ⟩ t) executes the runtime propagation of changes
caused by actions, where ⟨µ⟩ t is the application level code to continue with after the update, andU
contains the state of the runtime update propagation. The fire and commit rules switch between
the two forms of processes.
The fire rule evaluates the term r .fire(v) to create a new action on source r with value v and

activates r , i.e., marks it as having changed. The precondition ensures that r has no inputs, i.e., it
is a source. The device switches to propagation by adding the runtime state ({r }; {r }), which is

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 144. Publication date: October 2019.



A Fault-Tolerant Programming Model for Distributed Interactive Applications 144:9

→D⊂ D × D
r = location(µ) vs = lookup(r , Σ,v)

Σ ⟨µ⟩ Source(v) →D (Σ, r 7→ vs ) ⟨µ, r 7→ (∅,vs , unit)⟩ r
(source)

r = location(µ) µ ′ = µ, r 7→ ({r1, r2}, unit,vop ) t = reevexp(µ ′, r )

Σ ⟨µ⟩ (r1, r2).Map{vop } →D Σ ▷ (t · r · ({r }; {r }) ⟨µ ′⟩ r )
(map)

r = location(µ) vs = lookup(r , Σ,v)

Σ ⟨µ⟩ r1 . Fold(v){vop } →D (Σ, r 7→ vs )
〈

µ, r 7→ ({r , r1},vs ,vop )
〉

r
(fold)

r = location(µ) µ ′ = (µ, r 7→ (dynamic(r0), µ(µ(r0).val).val, xr => xv => xv ))

Σ ⟨µ⟩ r0. Flatten→D Σ ⟨µ ′⟩ r
(flatten)

Fig. 6. Operational semantics for creating reactives.

read as r is active (it has changed its values) and r was processed (it will not change anymore in the
current propagation). Section 3.3 explains how these sets are used for propagation. The current
term of the process r .fire(v) evaluates to just r , indicating that firing a source produces no useful
new value. Finally, the value of the state µ(r ) is changed to v ś we write update(µ, r ,v) to represent
the updated store (c.f. Figure 3).

The commit rule ends the propagation and updates the snapshot to include all changes. When a
propagation ends, the set of processed reactives P contains all reactives in the domain of µ. The
commit rule steps from a propagation that processed all reactives back to normal application
execution by keeping the term and store ⟨µ⟩ tl from the propagation and producing a new snapshot
Σ
′ which reflects the changes to folds and sources A that were active in the propagation. We write

Σ
′
= (Σ, r 7→ v) to say that Σ′ contains the same value assignments as Σ, except for r which is

updated to v . The premise of commit asserts that Σ′ is updated to contain the current values of all
active sources and folds r ∈ A. Sources and folds are computed by inspection of the inputs µ(r ).in,
sources have no inputs, and folds have themselves as an input.
The access rule evaluates the term to the current value of the reactive, without modifying the

store nor the snapshot.
The outer rule embeds the stepping relation of the λ-calculus outside of reactive operators. The

rules of the lambda-calculus are not shown but are standard call-by-value rules using substitution.
The context rule evaluates nested device terms.

3.2 Creating and Restoring the Dataflow Graph

The reduction rules in Figure 6 are concerned with creating the dataflow graph. The source, map,
fold, and flatten rules each create a fresh identifier r = location(µ), and add the inputs, value,
and operators r 7→ (in, val, op) to the store µ. Restoration from a snapshot happens during the
creation of sources and folds, and changes their initial values depending on the snapshot.

The source rule creates a reactive r with initial value vs and neither operator nor inputs. If the
snapshot contains r , then the value is restored from the snapshot, i.e., vs = Σ(r ). If the snapshot
does not contain r , then the given value is used, i.e., vs = v .
The map rule derives a new reactive from two inputs r1, r2, with operator vop . Map reactives

must evaluate their operator on their inputs to compute their initial value. The initial evaluation
uses the same mechanism as the propagation of actions. A new propagation with reevaluation
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µ =(

rname 7→ (∅, "some name", unit),

rtext 7→ (∅, "some message", unit),

rmessage 7→ ({rname, rtext}, "some name: some message", n => i => append (n, ": ", i)),

rtopic1 7→ ({rtopic1, rmessage}, nilCRDT("topic1"), state => m => consCRDT (m, state)),

rtopic2 7→ (∅, nilCRDT("topic2"), unit),

rroomList 7→ (∅, (rroom1, rroom2), unit),

rindex 7→ (∅, 0, unit),

rselectedRoom 7→ ({rroomList, rindex}, rtopic1, l => n => lookup (l, n)),

rroomContent 7→ ({dynamic(rselectedRoom)}, nilCRDT("topic1"), unit)

)

10 val contentWidget = rroomContent.Map {content => listWidget (content)}

11 displayUI(rname, rtext, contentWidget)

Fig. 7. Example of the store after evaluating the chat example up to line 10.

t · r starts. The term t = reevexp(µ ′, r ) computes the application of the operator vop to the inputs
r1, r2. The propagation initiated by the map rule will always only change r , because r does not
have any other derived value yet. Map reactives are neither stored nor restored from the snapshots.
The operator vop is applied to the restored values of r1, r2 to compute the restored value, because
operators in FR (i.e., λ-calculus terms) are deterministic.

The fold rule creates a reactive r with operator vop . The initial value vs is restored in the same
way as in the source rule. To model access of its state during reevaluation r has itself as an input
in addition to r0, thus passing its own value to its operator.
The flatten rule creates reactives which derives its value from a single input reactive r0. The

initial value µ(µ(r0).val).val of flatten precisely describes the indirection flatten creates. However,
flatten reactives have a specially labeled input dynamic(r0), instead of just r0. Propagation requires
special support for handling graphs with dynamic(r0) dependencies described in Section 3.3. The
reevexp(µ ′, r ) of flatten applies two values to the operator: (1) the value of r0 (the outer reactive)
named xr , and (2) the value of µ(r0).val (the inner reactive) named xv . Thus, the operator of flatten
returns the value of the inner reactive xv . Like map reactives, flatten does not directly restore its
values, but all inputs of flatten are assumed to be restored before the flatten is created.

Storing nested reactives. Storing a reactive inside a source or fold reactive requires that reactive
to be stored in the snapshot for restoration. For storing a snapshot Σ, this means that if the value
v0 of reactive r0 is included in the snapshot, then also any other reactive r referenced from that v0
must have its value stored in Σ. This process is recursive. During restoration of r0, the values of
any inner r are also restored, if r has not yet been restored otherwise. Neither the operator nor
the inputs of r are restored however, and the reactive is essentially constant. In the case that r is
recreated later, the restored value will be overwritten, and the inputs connected. We will show in
Section 5 how the restoration of nested reactives is achieved in a practical implementation.

Example 3.1. We now have all constructs required to build a dataflow graph of an FR application.
Figure 7 shows store µ (which encodes the dataflow graph) and the remaining application term
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→p⊂ D × D
r ∈ ready(P, µ) r < outdated(A, µ)

Σ ▷ ((A; P) ⟨µ⟩ tl )
r
−→p Σ ▷ ((A; P, r ) ⟨µ⟩ tl )

(skip)

r ∈ ready(P, µ) r ∈ outdated(A, µ) t = reevexp(r , µ)

Σ ▷ ((A; P) ⟨µ⟩ tl )
r
−→p Σ ▷ (t · r · (A, r ; P, r ) ⟨µ⟩ tl )

(reevaluate)

t →λ t
′

Σ ▷ (t · r · (A; P) ⟨µ⟩ tl )
r
−→p Σ ▷ (t ′ · r · (A; P) ⟨µ⟩ tl )

(inner)

Σ ▷ (v · r · (A; P) ⟨µ⟩ tl )
r
−→p Σ ▷ ((A; P) ⟨update(µ, r ,v)⟩ tl )

(write)

Fig. 8. Operational semantics for propagation and reevaluation.

after evaluating up to Line 10 of Figure 1. The application was structured in a way, that each created
reactive was assigned a variable, and we have reused these names to label the location of each
reactive for better understanding, except for the distributed reactives which use their given names
as location names.

3.3 Runtime Processing of Actions

The rules for propagation and reevaluation
r
−→p of reactive r are shown in Figure 8. We write just

→p if the specific reactive is not important. Whenever an action changes the value of a reactive the
runtime starts propagation of that change and all transitively derived reactives must reevaluate, i.e.,
compute their new value based on the inputs and on the operator. Syntactically, processes doing
propagations are written ▷(U ⟨µ⟩ t). WithU containing the state of the propagation including the
set of active A and processed P reactives.→p evaluates devices with such processes. From the
application developers’ point of view, all reevaluations happen at the same time and use the most
up-to-date value of their inputs. FR models propagation as a stepwise process to reason about
failure cases but guarantees synchronous semantics. At the beginning of a propagation, an action
has changed the value of a reactive r , which is active r ∈ A and processed r ∈ P . During the
propagation, ready reactives r ′ ∈ ready(µ, P) are either reevaluate or skipped, until all reactives are
processed.

Reevaluation. A reevaluation is the process of computing the current value of a reactive r using
the operator op and the inputs of r by evaluating t = reevexp(r , µ) (Figure 3) which applies op to
the values of the inputs of r . We write inputs(r , µ).val to access the value of all inputs of r and
apply the operator in the correct order to the values. In case r is a flatten reactive the inputs(r , µ)
function accesses the nested reactive, which is then treated as a normal input.

Reevaluation starts when an expression t and a reactive r are added to the propagation configu-
rationU by the reevaluate rule. The inner rule evaluates the expression t2 according to→λ until
it is a value. The resulting value v is written by the write rule as the new value of the reactive r in
the store µ.

Propagation. The initial activation caused by the fire rule, writes a new value to the store µ and
marks r as active and processed. A reactive r is ready r ∈ ready(P, µ) if it has not been processed
and all inputs of r are processed. Fold reactives have themselves as inputs and are ready if all other
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→C⊂ I × I Di →D D ′i

(M ; S ;D1 |...|Di |...|Dn) →C (M ; S ;D1 |...|D
′
i |...|Dn)

(device)

r ∈ dom(M) r ∈ dom(µ)

(M ; S ;D1 |...|Σ ⟨µ⟩ tl |...|Dn) →C (M ; S, (r , µ(r ).val);D1 |...|Σ ⟨µ⟩ tl |...|Dn)
(send)

(M ; S, (r ,vr );D1 |...|Dn) →C (M ; S ;D1 |...|Dn)
(drop)

merge = M(r ) r ∈ dom(µ) v = merge(µ(r ).val,vr )

Di = Σ ⟨µ⟩ tl D ′i = Σ ▷ (({r }; {r }) ⟨µ(r ).val ← v⟩ tl )

(M ; S, (r ,vr );D1 |...|Di |...|Dn) →C (M ; S ;D1 |...|D
′
i |...|Dn)

(receive)

Fig. 9. Operational semantics for remote updates.

inputs are processed. Flatten reactives are ready when the outer and the inner inputs are processed.
Additionally, a reactive r is outdated r ∈ outdated(A, µ), if any of its inputs are active, i.e., the input
has been modified. Depending on whether a ready reactive is outdated the skip or reevaluate
rules are applied. The skip rule just marks a reactive as processed, if it is ready and not outdated.
The reevaluate rule additionally causes a reevaluation of the reactive and marks the reactive as
active. In both cases, the reactive is marked as processed. When all reactives in the store have been
processed the commit rule ends the propagation. Due to both sets, active reactives A and processed
reactives P , only growing during a propagation, the process is guaranteed to terminate.

3.4 Communication between Multiple Devices

Communication is based sending state between devices without requiring ordering or reliability
of messages, thus the guarantees of FR apply to most existing systems. The stepping rules for
communicating devices (M ; S ;D1 |...|Dn) are shown in Figure 9. The merge functions inM define
the global behavior of the distributed reactives and they are fixed before any device starts ś no
central coordination is required. The messages in S model an unreliable communication channel,
with reordered, duplicated, and lost messages.

The device rule models any of the concurrent devices Di taking a normal step in the device
evaluation relation→D (c.f., Section 3.1). This model allows for devices to execute at different
speeds or pause execution for some time before resuming.
In the send rule a device Di = ⟨µ⟩ tl , which has a reactive r with value vr = µ(r ).val and

an associated merge function M(r ), sends message (r ,vr ). We do not model specific targets for
messages but assume that messages are eventually sent to every other interested device at least
once. The drop rule removes a message from the set of messages.
The receive rule models the device Di = ⟨µ⟩ tl , receiving a remote value vr for reactive

r . (S, (r ,v)) is the disjoint union, i.e., {(r ,v)} is separated from S thus consuming the received
message. The received remote value vr is merged with the local value µ(r ).val resulting in v =

merge(µ(r ).val,vr ). Do then starts a propagation using r 7→ v as the update. Sending and receiving
may happen at any time when there is no ongoing propagation.
To ensure eventual consistency between devices, the merge function must form a semilattice

(i.e., it is associative, commutative, and idempotent). Additionally, we only allow fold reactives
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and sources (i.e., reactives which already have state) to be updated remotely. However, eventual
consistency does require that all devices eventually do receive new messages for all reactives.

Sending nested reactives. Distributed reactives r0 may contain other nested reactives r as values.
When a device D adds r to the value of r0 for the first time, there are two cases to consider. First, if
r is already a distributed reactive each device uses its local value of r inside of r0. The two reactives
r and r0 are synchronized independently. Second, if r is not a distributed reactive, only the local
device d can cause r to change. In this case, d promotes r to a distributed reactive by providing an
initial value and a merge function. The merge function for r selects the latest value according to a
logical timestamp. This latest-writer-wins scheme is race condition free, because the original device
is the only writer of r . The current value of r is sent along the value of r0 when synchronizing, to
allow remote devices to initialize a replica of r . Once initialized, r synchronizes independently of r0.
In the next section, we assume that this transformation has already been applied for each nested
reactive.

4 THEORY OF DEVICES, DISTRIBUTION, AND RESTORATION

In this section, we first present the results about the evaluation of individual devices. We assume
that user-defined operators always terminate, i.e., they only contain terminating λ-calculus terms.
We will show that update propagation on a single device is glitch-free, complete, deterministic, and
isolated. These local guarantees form the foundation for fault tolerance for distributed state and
restoration for local state.

Definition 4.1 (Syntax). We write→=→D ∪ →p , and→
∗ for the transitive closure. We

write µ ∈ D to say that µ store is the store of D, and similar with other syntax. We write
D ∈ D0 → ...→ Dn and Di → D j ∈ D0 → ...→ Dn to say that D and Di → D j , respectively,
are contained in the sequence D0 → ...→ Dn .

4.1 Traces

We use traces to reason about device evaluation represented as sequences of steps, e.g., a single
propagation or the initialization of the application. We generally assume that traces are finite, i.e.,
that the evaluation of devices terminates when no external inputs are received.

Definition 4.2 (Trace). A trace of a device D0, written trace(D0) is a sequence D0 →
∗ Dn ,

where Dn cannot be further reduced.

Definition 4.3 (Propagation). Given D0, a propagation p = ptrace(Di ,D j ) is any maximally
long subsequence Di →

∗
p D j of trace(D0), i.e., there is no longer sequence D ′i →

∗
p D ′j that

contains Di →
∗
p D j .

Definition 4.4 (Reevaluation). We call any D
r
−→p D ′ which was produced by the reevaluate

rule, a reevaluation of r .

4.2 At-Most-Once Reevaluation of Reactives

In a realistic implementation, multiple reevaluations of a single reactive are observable by user
code using side effects. Even in FR , multiple reevaluations would produce incorrect values for folds,
i.e., the inputs are aggregated multiple times. We show that propagation ensures that reactives are
reevaluated at-most-once.
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Lemma 4.5 (At-most-once evaluation). Each propagation ptrace(D0,Dn) contains at most

one reevaluation D
r
−→p D ′ of each reactive r .

Proof. By the premise of reevaluate it must be r ∈ ready(P, µ) which requires r < P .
However, the reevaluate rule adds r to P , and no step during a propagation removes reactives
from P . Thus, there can be at most one reevaluation of each reactive r . □

4.3 Glitch-Free Propagation

When actions are incorrectly propagated, inconsistencies ś called glitches ś can arise where a mix
of values before and after the action is observed. A system is called glitch-free if no glitches are
observable by user code. In the case of FR , only user-defined operators observe multiple values of a
single propagation (c.f., isolation in Lemma 4.13), thus potentially observe a glitch. An operator
observes a glitch (mixed values) if one of its inputs is written before the other input after the
reevaluation of the operator in a single propagation.

Lemma 4.6 (Glitch Freedom). For any propagation p = ptrace(D0,Dn), and reevaluation

D j−1
r
−→p D j in p and for all inputs r ′ ∈ inputs(r , µ) \ {r } of r , there is no write Dk−1

r ′

−→p Dk

with k > j in p.

Proof. By contradiction. Assume there is a write on r ′ satisfying the conditions above.
Because r is reevaluated it must be r ∈ ready(P, µ) for some µ and P , thus r ′ ∈ P at the time
of the reevaluation. Due to at-most-once reevaluation (Lemma 4.5), for r ′ ∈ P to be true, the

sole reevaluation of r ′ at Di−1
r
−→p Di it must be j > i , i.e., r ′ is reevaluated before r . However,

k > j > i means that the reevaluation of r is between the reevaluation of r and the write of r ,
which by inspection of the rules is impossible.

□

4.4 Complete Propagation

At-most-once evaluation (Section 4.2), and glitch freedom (Section 4.3) are trivially fulfilled if actions
are not propagated at all and hence, we require an additional liveness property. We show that after
a propagation, all derived reactives reflect the changes to their inputs, given their operators. For
folds applying their operator multiple times aggregates new values even without changed inputs,
thus it is also incorrect to just reevaluate all reactives. We show that FR reevaluates reactives that
are reachable in the dataflow graph from the action (Lemma 4.10). To this end, we first show that
there is always a ready reactive until all reactives become processed, and exactly the reachable
reactives become active (Lemma 4.8).

Lemma 4.7. For any step during a propagation, either all reactives are processed P = dom(µ),

or there is at least one r ∈ ready(P, µ).

Proof. By construction. Pick any unprocessed r ∈ dom(µ) \ P , if r is ready, we found a
candidate. Otherwise, there must be an unprocessed input ri ∈ inputs(r , µ) from which we
continue our search. This search must terminate, because the graph is acyclic. □

Lemma 4.8. At the end of any propagation started by an action on reactive r the set of active

reactives A is the set of transitively derived reactives of r .
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Proof. Inspection of the rules show that r is added to A at the start of a propagation (fire,
remote). Reactives are outdated only if they are derived from reactives in A. Exactly the
outdated and ready reactives are processed by the reevaluate rule which adds them to A. All
other ready reactives are processed by the skip rule, which does not add them to A. Because
of Lemma 4.7 there is always a ready reactive until all reactives are added to P and reachable
ones are also added to A. □

Definition 4.9 (Complete Reactives). Given a propagation p = ptrace(D,D ′) with respective
stores µ ∈ D and µ ′ ∈ D ′, and new synthetic stores µ ′r = update(µ ′, r , µ(r ).val). We say a
reactive r is complete(r ) inp if and only if reevaluating r in µr produces reevexp(r , µr ) →

∗
λ
µ ′(r ).

Lemma 4.10 (Complete Propagation). For any propagation p starting with an action setting

r to v and ending in store µ ′, we call p complete if

• the action changes the correct reactive µ ′(r ).val = v ,

• all active derived reactives {r ′ ∈ A} are complete,

• all non-active folds and sources keep their values.

Proof. First, the rules causing an action ś fire and receive ś set the correct state and
mark the reactive as processed, and because of at-most-once reevaluation (Lemma 4.5) we
know those will not be changed again. Second, all active reactives are reevaluated (Lemma 4.8).
Due to glitch freedom (Lemma 4.6) each reevaluated reactive is complete, and because of
at-most-once evaluation (Lemma 4.5) they do not change afterwards. And last, the skip rule
causes all non-active reactives to become processed without changing their value (Lemma 4.8).

□

4.5 Determinism

While the order of reevaluations during propagation is not deterministic propagation is confluent,
i.e., always produces the same result. Thus, we say execution of devices is deterministic.

Lemma 4.11 (Confluence). For any two propagations starting at the same configuration

p1 = ptrace(D,D1) and p2 = ptrace(D,D2), the final states µ1 ∈ D1 and µ2 ∈ D2 are equal

µ1 = µ2.

Proof. No reactives are created during a propagation, thus dom(µ) = dom(µ1) = dom(µ2).
Due to Lemma 4.8 the set of active reactives A1 ∈ D1 and A2 ∈ D2 are the same A1 = A2, and
by complete propagation (Lemma 4.10) the evaluate to the same values.

□

Lemma 4.12 (Determinism). For any device D all execution traces trace(D) contain the same

sequence of→D steps, i.e., they are equal after removing all→p steps.

Proof. Follows from the determinism of the λ-calculus, which we extend only with deter-
ministic→D -rules, and the confluent propagation (Lemma 4.11). □

4.6 Isolated Propagation

Isolation captures the final piece of the synchronous nature of FR by stating that propagations do
not interfere with each other. FR itself executes only one propagation at a time, thus propagations
are trivially isolated from each other. In a distributed FR application, propagations are executed
concurrently. However, because there is no shared state, propagations on different devices are
naturally isolated from each other.
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Lemma 4.13 (Isolation). The resulting configuration D ′ of a propagation p = ptrace(D,D ′)

is independently of any concurrent action.

Proof. Propagation is confluent (Lemma 4.11) and there are no concurrent actions by
inspection of the rules. Neither the fire nor remote rule may trigger a concurrent action
when a propagation is in progress. □

4.7 Optimal Parallelization of Propagation

FR is designed for efficient implementations by allowing for high level optimizations due to the
use of managed propagation. Reevaluation of multiple reactives which are ready are parallelizable,
and we show that the algorithm used in FR is optimal with regards to the number of reactives
that are ready at any given point of time, allowing for maximum parallelization. These results are
equivalent to earlier work in SID-UP [Drechsler et al. 2014] and FElm [Czaplicki and Chong 2013]
both of which are also optimal but proven here for the first time. We only consider configurations
during propagation where the skip rule has already been fully applied, because skipping reactives
does not constitute work we want to parallelize, and this simplifies the proof. SID-UP [Drechsler
et al. 2014] shows an efficient way to not compute skips at all.

Lemma 4.14. For a propagation p = ptrace(D0,Dn) and device Di ∈ p with processed reactives

P ∈ Di and store µ ∈ Di . If the skip rule is not applicable to Di , then reevaluating a reactive

r < ready(P, µ) violates one of our correctness guarantees.

Proof. By contradiction. Assume there exists a reactive r ∈ dom(µ) but r < ready(P, µ). It
holds r < P , otherwise r would be reevaluated twice (Lemma 4.5). Inspecting the premises
of the ready rule shows that there must be an input ri ∈ inputs(r , µ) which is not yet
processed ri < P . We use a similar argument to Lemma 4.7 to show that either ri or one of its
predecessors must be ready. Due to complete propagation (Lemma 4.10) the reactive ri will
be reevaluated in the future because it has a ready predecessor. Thus, reevaluating r is not
glitch-free (Lemma 4.6). □

4.8 Distributed Updates

Distributed reactives in FR have a commutativity and idempotent merge function for each dis-
tributed reactive r ∈ dom(M), and all devices use the same merge function for the same distributed
reactive r . Thus, each distributed reactive corresponds to a CRDTs for which eventual consistency
is well known [Jagadeesan and Riely 2018]. FR combines of eventual consistency and complete
propagation (Lemma 4.10) to provide eventual consistency for the interactive application. In general,
state derived from a distributed reactive r could become inconsistent between replicas, because
both replicase observe a different number and order of activations of r . The critical insight is
that only the state of fold reactives depends on the number and order of activations. Thus, fold
reactives derived from a distributed reactive must be distributed themselves to make the application
eventually consistent. This property is captured by the following theorem.

Definition 4.15 (Consistent reactives). Given a reactive r and devices D1 and D2 with states
µ1 ∈ D1 and µ2 ∈ D2, we say r is consistent if r < dom(µ1) ∩ dom(µ2) or µ1(r ).val = µ2(r ).val

Lemma 4.16 (Eventual consistency). Given two devicesD1 andD2 and reactive r ∈ dom(M).

If there are no other changes to r and the devices eventually exchange values, then r is consistent.
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Proof. Follows directly from commutativity and idempotence ofM(r ) once both devices
have received the remote value at least once with the receive rule. □

Theorem 4.17. A fully connected component of reactives R in the dataflow graph is eventually

consistent, if all sources Rs ⊂ R and folds Rf ⊂ R are eventually consistent.

Proof. Once all I and F reach a consistent state, then because of complete propagation
(Lemma 4.10), all derived reactives R become consistent. □

4.9 Restoration

Restoration consists of two parts: taking proper snapshots and restoring the application and its state.
When a device starts for the first time the snapshot is empty, and when it is restored the snapshot
was proper in a prior run. We will first show that the reduction rules on devices produce proper
snapshots. We then show that, for recovery, using a proper snapshot restores the application.
A device is proper, if each value in the current snapshot matches the corresponding value in

the store. The reduction relation→D reduces configurations with proper devices to other proper
devices, and propagations started at a proper device will result in a proper device.

Definition 4.18 (Proper device). A device D = Σ ⟨µ⟩ t is proper if and only if all sources
and folds in µ are included in Σ with ∀r ∈ dom(µ) : (inputs(r , µ) = ∅ ∨ r ∈ inputs(r , µ)) →

µ(r ).val = Σ(r ).

Lemma 4.19 (Evaluation produces proper devices). If D = Σ ⟨µ⟩ t is proper, then D ′ =

Σ
′ ⟨µ ′⟩ t ′ with D →∗ D ′ is also proper.

Proof. The source and fold rules ensure that created reactives are included in the snap-
shot, and at no other time is the store modified outside of an ongoing propagation. The commit
rule updates the snapshot to include the values of all reactives which were active during
propagation. □

For the remaining discussion, we individually look at two separate stages of executing the
application: the first stage which only creates new reactives, which we call the creation prefix of
the application, and the rest of the application which does read or modify the restored values from
the dataflow graph. For example, the chat application in Figure 1 only consists of a creation part.
Pure FRP languages such as FElm [Czaplicki and Chong 2013] only consist of such creation parts,
and modifications or observations of the dataflow graph are only executed by the runtime after the
program has terminated. We show that for the creation prefix, the restoration produces an exact
subset of the state before a crash, and that the rest of the program has a trace which produces the
same observable behavior as if the crash had not happened.

Definition 4.20 (Creation prefix). The creation prefix of a device, ctrace(D0,Dn), is the longest
prefix D0 →

∗
p Dn of trace(D0) where the steps→ was not produced by the fire or access

rules.

Consider restoring just the creation prefix of an application. During restoration ś because the
application is deterministic ś it reproduces the original creation trace. When the application has
executed all creation reductions, its state is a proper subset of the state before the crash. All restored
reactives have the same value they had before the crash. However, reactives created after the
creation prefix have not yet been restored.
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Lemma 4.21. For any proper device D ∈ trace(D0) with D = Σ ⟨µ⟩ t and D0 = Σ0L the re-

execution of the creation trace of the application with the snapshot ctrace(ΣL,D ′) ending with

D ′ has a store µ ′ ∈ D ′ which agrees with the original store µ ′ ⊆ µ.

Proof. Creation of reactives during restoration still happens in the same order, because
there are no steps produced by the access rule in the creation prefix that, i.e., the execution of
the process can never observe any differing values from the snapshot. In particular, dom(µ ′) ⊆
dom(µ). It remains to show that each reactive r ∈ dom(µ ′) matches the value before the crash
µ(r ).val = µ(r ).val. Due to proper devices, it holds that∀r ∈ dom(Σ)∩dom(µ) : µ(r ).val = Σ(r ).
For the source and fold rules, the lookup function returns Σ(r ) as a new value, which is equal
to µ(r ).val. For the map and flatten rules, the new value is computed from the values of the
dependencies, which is equal to µ(r ).val because of complete propagation (Lemma 4.10). □

When continuing evaluation after the creation prefix, applications may trigger new actions
or read the value of already restored reactives, which may be different compared to the original
execution which was initialized with a different snapshot. Thus, reactives may be created in different
orders, and firing of new actions may cause different reactions. We first show that the value of
restored reactives is correct, independent of the order of restoration.

Lemma 4.22. Assume a restoration of ctrace(D ′0,D
′) as in Lemma 4.21. Creation of new reactives

in the restored trace D ′ ∈ trace(D ′0) will produce a store µ ′ compatible with the store µ of the

crashed device D: ∀r ∈ dom(µ) ∩ dom(µ ′) : µ(r ) = µ ′(r ).

Proof. Lemma 4.21 does not depend on the order in which reactives are restored. Thus, the
reactives are restored with the correct values, independent of the order of their restoration. □

Triggering new actions after restoring the creation prefix of the device D ′0 also causes compatible
changes. That is, the same action propagated in the original device D and the restored device D ′

will change the same reactives consistently.

Lemma 4.23. Assume a device D and the restored device D ′ as in Lemma 4.22, i.e., their stores

µ ∈ D and µ ′ ∈ D ′ are compatible ∀r ∈ dom(µ) ∩ dom(µ ′) : µ(r ) = µ ′(r ). Propagating the same

action on both devices produces new devices D →∗p Dp and D ′→∗p D ′p with stores µp ∈ Dp and

µ ′p ∈ D
′
p that are still compatible: ∀r ∈ dom(µp ) ∩ dom(µ

′
p ) : µp (r ) = µ ′p (r ).

Proof. Follows from complete propagation for the same store and action (Lemma 4.10).
The updated restored store is still a subset of the updated store before the crash µ ′p ⊆ µp , as
the same values have been updated in both stores. □

When propagating the same action on the original device D and the restored device D ′, the
propagation may update reactives of the original device, which have not been created on the
restored device. In particular, if a fold reactive is not yet restored, any action changing that fold
on the original device may cause the applications to diverge. However, this problem occurs even
when considering device evaluation without crashes. The problem occurs if the application allows
an action to trigger before or after creating a derived fold, e.g., the application enables user input
before the fold is created. Restoration reflects this behavior of folds.

In conclusion, snapshots contain enough state to restore the store of the application to the state
it was before a crash. In addition, FR allows actions to change the state for a partially restored
application, thus applications immediately react to actions without compromising correctness.
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Theorem 4.24 (Restoration). The creation prefix of the execution of an application is restored

exactly as before a crash, and after the creation prefix any action causes the same changes as

before the crash.

Proof. Follows from Lemma 4.21, Lemma 4.22, and Lemma 4.23. □

The actions after a crash cause a divergence of the state before and after restoration. We assume
this behavior of restoration to be intuitive to programmers, as it is very similar to how the lan-
guage behaves without fault tolerance when actions are triggered during the initialization of the
application. Applications which require more strict correctness guarantees must initialize their
dataflow graph as part of the creation prefix, which guarantees exact recovery. When an application
is recovered, the eventually consistent distribution mechanism will ensure that the application is
again brought up-to-date.

5 EVALUATION

Having formally proven the consistency guarantees provided by FR , we now provide evidence that
its programming model supports suitable abstractions to implement an existing interactive applica-
tion. We implemented FR as an open source (APL-2) Scala library within the REScala [Salvaneschi
et al. 2014] ecosystem1. This library is then used to implement the TodoMVC2 case study and
extend it with peer-to-peer data synchronization. We first discuss the benefits on the application
code when fault tolerance is part of the programming model. We then compare the performance
of our TodoMVC implementation with two other existing implementations that also add data
synchronization between multiple client instances.

5.1 Implementation

We implemented FR within REScala, a reactive programming library that provides syntax and
semantics of local reactives. The implementation integrates snapshot and recovery mechanisms
proposed by Mogk et al. [2018], network communication packages from Weisenburger et al. [2018],
and a custom CRDT library based on Shapiro et al. [2011a]. The programming API of the implemen-
tation and formalization have minor differences. Instead using of λ-calculus, user-defined operators
are written in a functional subset of Scala. The implementation of FR benefits from Scala’s type
checker, i.e., operator types must match their inputs. The implementation also provides operators
for common usage patterns, e.g., count for a Fold that counts the number of activations.

The formalization does not specify the generation of fresh names, serialization, network commu-
nication and connectivity. These depend on the concrete implementation of the application and
are the responsibility of the developer. However, we do provide the solutions we developed in our
case study for all these aspects as readily reusable components. REScala automatically generates
unique names for each reactive, which is used for the locations in FR . The developer only must
ensure that all distributed reactives that should be connected with each other have the same name,
usually by specifying these names manually. Serialization is delegated to existing libraries, which
handle serialization of simple data structures automatically. Developers only need to manually
implement serializers for complex custom data structures, in particular for data structures with
nested reactives. The desired type of network communication varies greatly between applications,
from a web application using JSON messages over Websockets to a server exchanging binary data
on a TCP socket. For maximum compatibility, FR provides a simple interface to integrate with any
bidirectional communication channel.

1http://www.rescala-lang.com/
2http://todomvc.com/
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5.2 Case Study

TodoMVC is a to-do list application that is widely used to compare different languages and frame-
works for programming interactive applications. The TodoMVC application shows a list of tasks,
each representing one to-do item. Tasks can be added, changed, completed and removed. At the
time of writing, the official website of TodoMVC presents 64 implementations in different languages
and frameworks, and many more unofficial implementations (such as ours) exist. Synchronization
of data across multiple clients is not part of the official feature set of TodoMVC, thus not all imple-
mentations support synchronization. However, we were able to find two implementations that do
support synchronization with slightly different guarantees and use them as a comparison to FR .
One uses Twilio3 to synchronize state with a centralized server, providing strong consistency, but
prohibiting offline usage. The other uses Flask4 to synchronize state with a central server, but does
not make any guarantees, i.e., changes may arbitrarily get lost. We discuss our implementation of
TodoMVC and the other two before comparing them.

The FR implementation. To synchronize the full state of the application between devices, we
implement the list of tasks and each individual task as distributed reactives. Each task has a unique
identifier and uses a last-writer-wins CRDT [Shapiro et al. 2011a]. Last-writer-wins is appropriate
since a task represents a single data item. Each task has its own łdonež button and łeditž input box,
which are the sources from which the task is derived. Various parts of the UI are derived from each
task reactive. The list of tasks is a single distributed fold with a fixed name. The list is stored as a
replicated growable array (RGA [Shapiro et al. 2011a]), because tasks are added and removed at any
position. As the list contains nested reactives (the tasks), the RGA requires a custom user-defined
serializer. This serializer stores the ID and the initial value of each task. During deserialization, the
application uses the ID to look up the corresponding task reactive. If no task exists for a given ID, a
new one is created with the given ID and initial value, using the same function that is used when
the user presses a button to create a new task.

Twilio and Flask Implementations. Both implementations support recovery based on a central
server ś there is no support for merging diverged states. Thus, the application is unavailable when
the device is offline. The two approaches differ their approach to state synchronization.
Flask replaces the local storage used by TodoMVC with a custom implementation that has a

compatible interface. The result is that new or modified tasks are individually sent to a central
server, which orders based on arrival time. The application only requests state from the server
during startup. That is, changes to the to-do list on one device become visible on other devices only
when the application is restarted there, resulting in no consistency guarantees for the user.

Twilio has its own commercial implementation of a replicated list. The list has a primary replica
on a central server, which ensures consistency of the list, but it requires local replicas to request
confirmation for each change. Thus, Twilio ensures consistency at the cost of not supporting
offline usage. Also, once the Twilio implementation displays more than 50 tasks at once, multiple
devices become inconsistent when removing tasks, most likely due to an implementation bug in
the application’s UI.

5.3 Effect on Application Code

Our implementation of TodoMVC consists of 252 lines of code. Most of the code expresses the
application logic in the programming model of FR and is not specific to distribution or fault-
tolerance. Out of all lines, only 5 lines of code accommodate the distribution of individual tasks by

3https://www.twilio.com/blog/2017/09/building-a-todomvc-with-twilio-sync.html
4https://simplectic.com/blog/2014/flask-todomvc-backbone-sync/

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 144. Publication date: October 2019.

https://www.twilio.com/blog/2017/09/building-a-todomvc-with-twilio-sync.html
https://simplectic.com/blog/2014/flask-todomvc-backbone-sync/


A Fault-Tolerant Programming Model for Distributed Interactive Applications 144:21

200

n
d

s)

Flask Twilio This work

0

50

100

150

200

1 5 9 41 45 49 53 95 99 103 107

ti
m

e 
(m

il
li

se
co

n
d

s)

size of distributed state (no. of todo items)

0

100

200

300

400

500

600

1 5 9 41 45 49 53 95 99 103 107

ti
m

e 
(m

il
li

se
co

n
d

s)

size of distributed state (no. of todo items)

Fig. 10. Time spent on computation (left) and network (right) when adding a new task.

using CRDTs instead of plain data. Another 5 lines of code are required for the task list, including
the custom serializer implementation mapping each task to its ID and initial value, the ID lookup,
and the creation of new tasks during deserialization. The rest of the application then automatically
reacts to changes from remote devices.
The Flask implementation has 268 lines of code. The implementation is based on one of the

official versions of TodoMVC, and only modifies 4 lines of code to exchange the local storage back
end used by TodoMVC with the one used by Flask. However, the storage interface was not designed
to support fault tolerance, which makes it impossible for the framework to provide any guarantees
in its alternative implementation. For example, the local storage API is not designed for values
to be changed outside of the application, thus the API does not provide any means to notify the
application of remote changes. Even if notification were available, handling them correctly would
require restructuring the rest of the application.

The Twilio implementation has 818 lines of code. Out of these, 14 deal with authenticating with
their central server, 32 implement routing for callback listeners when tasks are modified, and 70
implement the various interactions with the custom API of their distributed data structure. This
boilerplate code is specific to this application, thus the functionality it supports cannot be easily
moved to a library implementation.

To recap, our case study indicates that implementing fault-tolerant interactive distributed appli-
cations with eventual consistency guarantees in FR is not only feasible, but also does not increase
the complexity of the application logic in order to make it fault-tolerant.

5.4 Performance

Experimental setup. We use the Chromium developer tools5 to collect performance data and use
reported script execution time as a measurement of computational overhead, and the idle time
between events as a measure for network communication latency. All network connections happen
in a gigabit LAN with less than 1 millisecond latency. The exception is the Twilio implementation,
which uses its own external commercial service. We measured 1 to 2 ms latency to the Twilio
cloud front servers, but we have no insight on how much network latency their API requests incur
internally.

Results. We study the performance of adding a single new task to task lists of different sizes.
For FR , we use a peer-to-peer connection between two devices running the same application.
Even though FR does not have to wait for remote confirmation to apply updates, we still measure
the time until the local device receives a confirmation that the update has been applied remotely.

5Chromium 73.0.3683.75, Ubuntu 18.10 (64-bit), Intel(R) Core(TM) i5-5300U
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Figure 10 shows the results of the experiment. The x-axis shows the size of the task list at which
the operation happened, and the y-axis the time taken to add a single new task. The left graph
shows the time spent on local computations. The right graph shows the round-trip time of sending
tasks to the remote device, including processing time of the remote device.

The Flask implementation has the least computational overhead and the overhead is independent
of the size of the list. Flask provides no fault-tolerance and does not confirm that remote changes
are applied, thus there is no network overhead to measure. The Twilio-based implementation is on
the other extreme of the spectrum. When making changes, users must wait for both computation
and communication to finish, because clients eventually receive a confirmation. In our case, this
approach results in an average of 412 ms until any interaction produces a result. Note that the exact
numbers heavily depend on a remote system outside of our control.

In contrast to the Twilio-based implementation, FR can display changes to user inputs without
waiting for confirmation. Therefore, changes become visible after 109ms on average, which consists
only of computational overhead. The computational overhead of FR grows with the size of the task
list because the list is stored in a replicated growable array (RGA), which has the most overhead of
all CRDTs in our implementation. Concretely, our RGA implementation has an overhead of 357
bytes for added tasks, and 224 bytes for deleted tasks. However, the overhead is independent of the
content of the tasks, i.e., of the actual size of application level objects, as those are synchronized
separately. In terms of network communication, waiting for confirmation from the remote device
requires a similar amount of time as a local change. This is expected, as the remote device mirrors
the behavior of the local device before sending the confirmation.

Summary. Our results show that while consistent approaches do have an impact on performance,
the eventual consistent approach of FR has competitive computational cost compared to the strong
consistency of Twilio, which gives up availability. This is a very good result given that dealing with
unreliable communication and crashes has a significant performance impact in the implementation
of FR . Moreover, performance in FR does not depend on network conditions.
The performance of FR is affected noticeably by the size of remotely shared data, compared to

an approach that is independent of data sizes such as Flask. However, this is to a significant extent
due to FR implementation still being in its infancy, with clear directions for improvement. In future
work, we plan to improve the performance of FR in two ways. First, currently serialization happens
independently for snapshots and communication, which enables decoupling those features in the
implementation, but causes duplicate computation. We can address the problem by serializing each
value only once and using it both for the snapshot and communication. This approach would result
in saving 23ms in the best case for lists of size 100. Second, further improvements are possible by
synchronizing modifications to list-style CRDTs incrementally (e.g., using the approach by Almeida
et al. [2018]).

6 RELATED WORK

FR is related to work in the areas of cluster-based systems, interactive applications, formal pro-
gramming models for concurrent and distributed computations, and abstractions for unreliable
networks. We consider strengths and weaknesses of work in these areas but find all of them lacking
some desirable properties for distributed interactive applications with decentralized state.

6.1 Cluster-Based Systems

Due to the large number of devices involved in clusters, failures of at least one device become fre-
quent. However, there are ample spare resources to replace failed devices. In MapReduce [Dean and
Ghemawat 2008; Lämmel 2008] the severely restricted programming model facilitates rescheduling
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of tasks. Consistency is ensured by a central coordinator. Dryad [Isard and Yu 2009], PigLatin [Ol-
ston et al. 2008], and FlumeJava [Chambers et al. 2010] are similar to MapReduce - the difference
is in their support for more flexible operations than just map and reduce. Spark [Zaharia et al.
2012], Flink [Alexandrov et al. 2014; Carbone et al. 2015], and MBrace [Dzik et al. 2013] express
computations as embedded domain specific functional dataflow languages. Viering et al. [2018]
develop a typing discipline to ensure correct execution even in the presence of faults. None of
these systems is applicable without central coordination and replacements for failed devices, which
makes sense in their environment, but not for interactive applications. Bernstein et al. [2017]
introduce an eventually consistent mechanism to synchronize state between multiple data centers,
however, the solution does not extend to client devices. GSP [Burckhardt et al. 2015] provides
a semantic foundation for eventual consistency using a central server connected to clients with
unreliable connections; GOS [Gotsman and Burckhardt 2017] generalizes GSP and provides a
formal foundation for proving equivalence of multiple implementations. GSP operates at the edge,
it requires a central system for ordered message delivery, but enables eventual consistency for
client devices. Thus, GSP can be integrated with FR for distributed reactive using GSP instead of
CRDTs.

6.2 Reactive and Interactive Systems

Functional reactive programming (FRP) originally considers systems with continuous time [Elliott
and Hudak 1997] but has inspired many languages that like FR handle discrete changes [Cooper
and Krishnamurthi 2006; Czaplicki and Chong 2013; Kamina and Aotani 2018]. Florence et al. [2019]
provide a calculus for Esterel ś a synchronous programming language conceptually similar to
discrete FRP, but with very different syntax. DREAM [Margara and Salvaneschi 2014, 2018] analyze
consistency levels of different propagation algorithms based on a formal model of FRP like propaga-
tion of events in a distributed system. Jeffrey [2013a,b, 2014] shows that a type system for FRP has
a Curry-Howard [Howard 1980] correspondence to linear time logic. ScalaLoci [Weisenburger et al.
2018] combines distributed FRP with static typing for remote communication. None of these systems
considers faults. REScala [Salvaneschi et al. 2014] extends FRP with thread-safety, distribution, and
fault tolerance [Drechsler et al. 2018, 2014; Mogk et al. 2018]. However, the interaction between
distribution, propagation, and faults has not been considered, especially not based on a rigorous
formal language model with formal guarantees about the properties of the overall system.

Actors [Akka 2019b; Armstrong 2010; Bernstein et al. 2014; Karmani and Agha 2011; Miller et al.
2005; Van Cutsem et al. 2014] are well-known abstractions for loosely coupled distributed systems.
Actor systems always consider faults but are too unstructured to provide fully automatic solutions.
Akka [2019b] and Erlang [Armstrong 2010] have supervision hierarchies which allow user-defined
handlers to redeploy actors on crashes. Orleans [Bernstein et al. 2014] and extensions to Akka
[2019a] provide automatic restoration of individual actor state in cluster environments but provide
no overall system consistency. Reactive Caching [Burckhardt and Coppieters 2018] adds a layer for
push-based state for client devices on top of Orleans. AmbientTalk [Van Cutsem et al. 2014] extends
actors with service discovery for mobile ad-hoc networks. Direst [Myter et al. 2016] builds on top
of AmbientTalk and adds reactive abstractions with synchronization similar to FR but requires a
central replica. These systems either require a cluster like environment (with central coordination)
or delegate the responsibility for ensuring consistency in case of faults to the application.

6.3 Formal Models for Concurrent and Distributed Computations

There are a wide variety of calculi [Cardelli and Gordon 1999; Fournet and Gonthier 1996; Hoare
1978; Milner 1982; Milner et al. 1992] covering traditional distributed and concurrent systems.
These calculi focus on systems with multiple processor cores, thus they have no inherent concept
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of unreliable communication over the Internet. Caires and Pérez [2017] adds linear types to the π -
calculus, to model protocols including unreliable message delivery. Dal Lago et al. [2019] investigate
theoretical foundations for typed runtime errors in the π -calculus. Cloud calculus [Jarraya et al.
2012] focuses on upholding low-level security policies when migrating processes between virtual
machines. The above systems address reliability (if at all) for individual internal messages, not
providing application-level guarantees. More recently, Atkey [2017] adds external communication
to classical processes, with a focus on the external high-level behavior, bringing the abstraction level
closer to our goals for FR . v. Gleissenthall et al. [2019] extracts typical communication structures
from programs with only minimal annotations, and generates a synchronous model for those
communications for which proofs apply to the original asynchronous program. This extraction fits
the synchronous model of FR , so future could apply their analysis.
CPL [Bračevac et al. 2016] is a calculus to create and combine multiple services in a type

safe manner. Function passing [Haller et al. 2018; Miller et al. 2016] defines derived values of
immutable remote data in a type safe way. Concurrent Objects [Filipović et al. 2010] provides objects
with serializability and linearizability by guaranteeing that concurrent implementations behave
observational equivalent to sequential implementations. Attiya et al. [2013] provides transactional
behavior on the abstraction level of typical programming APIs. None of these languages consider
faults beyond allowing application defined fault handling, thus providing no automatic guarantees.

6.4 Abstractions for Unreliable Networks

Hellerstein and Alvaro [2019] argue that monotonic data structures work well in distributed systems,
because they represent the class of applications, which can be available and consistent [Hellerstein
2010]. Eventual consistent data types such as CRDTs [Shapiro et al. 2011a] or CloudTypes [Bur-
ckhardt et al. 2012] are important building blocks providing well-understood tradeoffs between
consistency and responsiveness. Lasp [Meiklejohn and Van Roy 2015a,b] tackles the problem of de-
riving one CRDT from another, preventing multiple derivations to produce duplicates. LVars [Kuper
and Newton 2013] uses monotonicity for deterministic concurrency and has been combined with
CRDTs to provide determinism and distribution [Kuper and Newton 2014]. Bloom [Conway et al.
2012] supports declarative composition of monotonic operations to write monotonic programs.
All of the above restrict the application to use only monotonic operations, which is not required
for local consistency. FR only uses monotonic operations for distribution but allows arbitrary
operations locally.

Myter et al. [2018] enable switching between strong consistent and eventual consistent commu-
nication in a single language, if the application is tolerant to unavailability in case of connection
problems. Meiklejohn [2017] argues for the need of languages to support both forms of synchroniza-
tion, based on earlier arguments by Landin [1966]. Zhang et al. [2014] argue that many traditional
applications become distributed, thus they enable a flexible model, where distribution details are
specified by different libraries for each group of objects. Goldstein et al. [2018] argues for using
database techniques to provide durability for general purpose applications, by logging all incoming
actions for the application and replaying the log in case of failures. Combinations of these proposals
with the FR model seem worth considering, given that the dataflow graph and the semantics of
propagation of FR provide much of the insights and programming disciplines these proposals
require.

7 CONCLUSION

Decentralized architecture will only become more relevant in the future, as they improve resource
usage, latency, and privacy in distributed applications. Their failure modes, such as device crashes
and disrupted communication, are unavoidable, meaning distributed interactive applications must
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address them. Current solutions require reasoning about low level properties of message propaga-
tion, and ensuring consistency requires too much commitment from developers.
In this paper, we presented FR , a programming model for distributed interactive applications

that combines the best of two worlds. On the one hand, FR is practical in that it provides an
elegant, high-level programming model with automatic local and distributed change propagation
and automatic recovery from crashes and communication disruptions while guaranteeing strong
eventual consistency. Its implementation is readily available in the form of a Scala library, and
has promising performance. On the other hand, FR has formally proven correct semantics, and
therefore also enables formal reasoning on the theoretical side about the behavior of applications,
including propagation, consistency, and recovery from crashes or disconnects.
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