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Abstract

This paper aims to study the foundations of applied mathematics, using a for-
malized base theory for applied mathematics: ZFCAσ (Zermelo-Fraenkel set theory
(with Choice) with atoms, where the subscript used refers to a signature specific
to the application. Examples are given, illustrating the following five features of
applied mathematics: comprehension principles, application conditionals, represen-
tation hypotheses, transfer principles and abstract equivalents.
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1 Mathematicized Theories
Standard scientific theory supplies much of the information it supplies about
physical entities only indirectly, by way of apparatus pertaining to supposed
relationships of physical entities to supposed mathematical entities and sup-
posed classifications of and relationships among the supposed mathematical
entities themselves. As much of what science says about observable entities is
“theory-laden”, so much of what science says about concrete entities (observable
or theoretical) is “abstraction-laden”. (Burgess & Rosen (1997): 84)

1.1 The Logical Structure of Applied Mathematics

This paper aims to study the foundations of applied mathematics. Perhaps contrary to
current fashions, I treat applied mathematics as taking place within a certain formalized
system: specifically, Zermelo-Fraenkel set theory (with Choice) with atoms, over an
application signature σ. This formalized system is denoted ZFCAσ. We shall think of it
as a standard base theory for applied mathematics.

The subscript “σ” on “ZFCAσ” denotes what I shall call the application signa-
ture. This signature may contain predicates and function symbols which relate only
“atoms”/“urelements” and also may contain predicates which relate atoms to sets and,
more generally, to other abstract/mathematical objects. Since σ can be varied, there is
a base theory ZFCAσ for each signature σ, rather than a single overall base theory.

There is no great originality in aiming to identify a base theory for applied mathematics
and focusing on something like ZFCAσ as exemplar. There are related variations: higher-
order logic & type theory. Once we have some sort of framework set up, we can aim to
implement insights from many mathematicians, logicians, scientists and philosophers over
the years in connection with the logical analysis of applied mathematics.1 In particular,
we wish to carefully examine how mixed predicates are integrated within scientific and
mathematical reasoning—for, without mixed predicates, there is no applied mathematics.

When this issue is properly understood, we begin to obtain a good account of the
central features that make applied mathematics tick. I single out these five important
features:

Comprehension principles ∃X∀x (x ∈ X ↔ φ(x)).
Application conditionals φ1(X, . . . )→ φ2(X, . . . ).
Representation hypotheses F : P ∼= M .
Transfer principles φ(P )↔ φ(M).
Abstract equivalents φ↔ φabs.

1 Examples include: Frege (1884), Hilbert (1899), Hölder (1901), Russell (1903), Einstein (1921),
Carnap (1928), Ramsey (1929), McKinsey et al. (1953), Tarski (1959), Suppes (1960), Putnam (1967),
Putnam (1971), Krantz et al. (1971), Sneed (1971), Stegmüller (1976), Field (1980), Burgess (1984),
Lewis (1991), Burgess & Rosen (1997), Shapiro (1997), Resnik (1997), Steiner (1998), Ketland (1998),
Colyvan (2001), Leng (2010), Ketland (2011), Bueno & Colyvan (2011), Andréka et al. (2012), Pincock
(2012), Mycielski (2013), Halvorson (2012), Halvorson (2016), Bueno & French (2018).
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1.2 Mixed Predicates; Mixed & Impure Objects

These features, and how they appear in mathematicized theories and applications,
are explained in more detail in the sections below.2

1.2 Mixed Predicates; Mixed & Impure Objects

The standard number systems are N, Z, Q, R and C. The elements of these are sui generis
“pure” mathematical objects, in some intuitive sense, not easy to pin down—roughly, they
don’t have non-mathematical elements and don’t “depend” on non-mathematical objects
at all. On the other hand, when one considers sets, relations, functions and structures
in general, the situation is different. This is because there may be “urelements”/“atoms”.
So, one may consider sets of urelements, relations amongst ur-elements and functions
from urelements to, say, real numbers, and structures whose domain contains urelements.
Such examples are called “impure” sets, relations, functions and structures. These are
the fundamental objects of applied mathematics.

The notion of “pure set” is defined as follows (and may be generalized to relations,
functions and structures). A set A is called transitive just if, for any x, y, if x ∈ y and
y ∈ A, then x ∈ A. The transitive closure of a set A is the smallest transitive set B such
that A ⊆ B. A set is pure iff its transitive closure contains no urelements/atoms (Potter
(2004): 50). So an impure set (or relation) is a set whose transitive closure contains
atoms. All elements of the cumulative hierarchy V—the system of sets built up from
∅ by iteratively applying the power set operation, Pα(∅) (e.g., ∅, Vω, etc.)—are pure.
But, if there are atoms/urelements, there are also sets of them too. And these generate
impure sets, relations and structures. This is particularly clear in applied mathematics.

So, in addition to pure mathematical objects, one notices that the mathematical ob-
jects referred to in applied mathematics include those in the following classes:

(i) Impure mathematical objects:
sets of “ur-elements”/“atoms”, relations amongst them, and structures
built up from such impure sets and relations.

(ii) Mixed mathematical objects:
functions from (and relations between) “ur-elements”/“atoms” to math-
ematical values (e.g., elements of N, R, C, etc. of vector spaces, etc.).

2 For reasons of space, I have set aside discussion of a number of closely-related topics, which cannot
be dealt with adequately here. These topics are: indispensability arguments (e.g., Colyvan (2001),
Melia (2000), Leng (2010), Colyvan (2019)); mathematical explanation in science (e.g., Baker (2005),
Mancosu (2018)); representation/modelling (e.g., Pincock (2012), Frigg (2012)); measurement theory
(e.g., Krantz et al. (1971), Roberts (1985), Narens (1985), Suppes (2002), Tal (2015)); approximation
and idealization (e.g., Batterman (2002), Pincock (2012)) and recent so-called “mapping accounts” of
applied mathematics (e.g., Pincock (2012), Bueno & Colyvan (2011) and Bueno & French (2018)).
That said, some of these issues are, albeit briefly, touched on at points below. Representation and
modelling are illustrated in Example 2, Section 6, Subsection 6.4, Subsection 6.5, Section 8, Example
5 and Example 6. I comment sceptically on a difficulty for the “mapping accounts” in Subsection 7.3
connected to differential equations. An example of mathematical explanation (of quantized atomic
orbitals) is mentioned in Subsection 7.4.
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1.2 Mixed Predicates; Mixed & Impure Objects

W. V. Quine discusses this aspect of applied mathematics in his 1986 “Reply to
Charles Parsons”:

Another example of applied mathematics is the use of number in measurement.
In terms of physical testing procedures we describe a Fahrenheit temperature
function whose arguments are place-times and whose values are real numbers.
Fahrenheit temperature is a class of pairs of pure real numbers and concrete
place times. Similarly distance in metres is a class of triples, each comprising
one pure real number and two concrete localities.
Mathematical objects and concrete objects are thus in perpetual interplay, par-
ticipating in the same triples and pairs. Mathematical vocabulary and empirical
vocabulary are in perpetual interplay, participating in the same sentences. We
see this already at the most primitive level of applied mathematics, when we say
that there are fifty people in this room: the pure abstract number, fifty, is how
many concrete people there are in this concrete room. I see pure mathematics
as an integral part of our system of the world. (Quine (1986b): 398)

Example 1. Mixed functions: The magnetic field
To continue with the sort of example Quine has in mind, consider a physical field like

the magnetic field B. This is a mixed function, a map from spacetime to R3:

B : Spacetime→ R3 (1)

satisfying Maxwell’s laws (∇ • B = 0, and so on). The field B is, to stress, a physical
field. Indeed, we can measure it.3 If a small charged particle p with mass m and charge
q is moving in the vicinity of a region with non-vanishing B, then p has a measurable
physical trajectory, say r(t). This is determined by B, and given, to first approximation,
via the Lorentz force law (assuming the electric field is 0):

m
d2r
dt2

= q(
dr
dt
×B). (2)

Along with the magnetic field is its co-ordinate representation Bϕ, with respect to
any chart ϕ: i.e., Bϕ := B ◦ (ϕ)−1. While B is a physical field, Bϕ is a map R4 → R3.
Hence, a pure mathematical object. One should be careful not to conflate the mixed
quantity, the physical field B, and its pure, co-ordinate representation Bϕ. 4

Example 2. Impure mathematical objects
Consider the “Seven Bridges of Königsberg” problem:4

3 There are other measurement devices, like compasses, of course, Hall probes, . . .
4 I took this diagram from Harary (1969) (p. 2). I return to this problem several times below.
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1.2 Mixed Predicates; Mixed & Impure Objects

The diagram shows part of the city of Königsberg and the route of the Pregel River.
The river’s route separates the city into two large islands and two mainland areas, con-
nected by seven bridges. The relevant locations are here called “A”, “B”, “C” and “D”.
The problem was to devise a way of walking from one location, visiting each of the other
three locations, covering each bridge exactly once, back to the original location.

Euler proved that there is no such route (Euler (1736)). In doing so, Euler invented
graph theory and provided the first theorem proper to that area of mathematics. The
relevant concept is that of a “Euler cycle” in a multigraph.5 A path in a graph is a
sequence of vertices connected by edges. A cycle is a path through the graph beginning
and ending at the same vertex, visiting each vertex, and going through each edge exactly
once. The number of edges incident on a vertex is called its degree.

Euler discovered that a cycle is possible only if the graph is connected and the degree
of each vertex is even. Roughly, the reasoning is this. Let the cycle through the vertices
and edges visited be depicted as below (allowing repetitions of vertices, but no repetitions
of edges):

v1 − e1 − v2 − e2 − v3 − e3 − v4 − e4 − · · · − en − vn (= v1) (3)

This cycle is a path containing all the vertices of the graph, and all the edges (without
repetition), and final vertex is the same as the first. Examining each occurrence of a
vertex, v, we see that there must be an incoming edge, say ein and an outgoing edge, say
eout, making two edges. If the vertex v occurs n times in the cycle, there must be 2n such
distinct edges incident on v in the cycle. Because each vertex in the graph must occur
at least once and the graph is connected, this number is at least 2. Since these edges
must be distinct and the cycle includes all edges, those 2n edges must be the degree of
the vertex v. Hence every vertex must have even degree. In fact, this condition is not
merely necessary but sufficient:6

Theorem 1. A multigraph has a Euler cycle iff it is connected and each vertex has even
degree.

In order to see more exactly how mathematics got applied to this problem, we need to
understand how one “abstracts”—from the given data concerning the problem—a struc-
tured system. To see how this is done, let us use “land-area” to refer to the four separated
regions of the city, and make the following definitions of impure mathematical objects:

5 A (simple, undirected) graph G is a pair (V,E) where V is a set, the vertices of G, and E is a set of
distinct pairs {x, y} drawn from V , the set of edges of G. An (undirected) multigraph is a kind of
graph in which a pair of vertices may be connected by more than one edge. It may be represented
as a triple (V,E, f), where V is the set of vertices, E is a (disjoint from V ) set of edges, and f is a
connection function, which assigns to each edge in E a pair {x, y} drawn from V .

6 See Harary (1969): 64.
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1.3 Quantity Primitives

L := {x | x is a land-area at Königsberg}.
B := {x | x is a bridge at Königsberg}.

C := {(x, y, z) | x ∈ B and y, z ∈ L and x connects y and z}.
F := {(x, {y, z}) | (x, y, z) ∈ C}.

PK := (L,B, F ).

(4)

Here, PK is the resulting structured system: it is the physical system we wish to
study.7 PK is not, itself, a concrete object. Rather, PK is itself an impure mathematical
object. It is incorrect to say that, in our applied mathematics reasoning, PK must be
“modelled” by some pure mathematical structure.8 We can simply reason about PK as
a mathematical object.

With this in hand, we can go on to show for example (in applicable mathematics
itself) that, given the specific facts about the bridges, PK is a connected multigraph
with 4 vertices and 7 edges. Moreover, given the specific facts about the bridges, each
vertex of PK has odd degree. And therefore, given the specific facts about the bridges and
Theorem 1, it follows that there is no Euler cycle in PK . Notice that Theorem 1 does not
specify that the multigraph in question be a pure mathematical object. It applies equally
well to impure mathematical objects: e.g., a structure built up from atoms/urelements.
Since this example illustrates quite a few important features of applied mathematics, but
without introducing orthogonal complexities related to idealization/approximation and
infinity, I shall return to it a couple of times below (Section 6.4 and Example 5). 4

1.3 Quantity Primitives

Next let’s write down some examples of “mixed quantity functions”:9

l = `m(c) the real l ∈ R is the length in metres of the object c
z = Ψ(p) the complex number z ∈ C is the value of the wave-function Ψ at

spacetime point p
{xµ} = ϕ(p) in the co-ordinate chart ϕ, the quadruple (x1, x2, x3, x4) ∈ R4 are

the co-ordinates of spacetime point p
r = T (x, t) the real number r ∈ R is the temperature (in kelvin) at point x

and time instant t.

In a formalized setting, these quantity primitives are then expressed, usually, by
function symbols. In some cases, by predicates. An example of the latter might for
example be:10

7 If I understand their meaning right, PK is the “assumed structure” that Bueno & Colyvan (2011)
refer to and the “empirical set-up” that Bueno & French (2018) refer to.

8 Though it could be: PK is isomorphic to a certain abstract graph, GK : see Section 6.4 below.
9 The approach here is fairly close to that described in Carnap’s works: Carnap (1956), Carnap (1958),

Carnap (1966). See also, for example, Suppes (1960), Sneed (1971), Stegmüller (1976), Field (1980),
Burgess (1984), Andréka et al. (2012).

10 This appears in the axiomatizations of relativity given by Andréka et al, who call it the “worldview
relation”. See especially: Andréka et al. (2006) and Andréka et al. (2012).
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1.4 A Classification

W(ϕ, b, x1, . . . , xd) observer ϕ coordinatizes body b by coordinates
x1, . . . , xd (in his coordinate system).

1.4 A Classification

Example 1 gave the example of a mixed function, the physical field B. Example 2 showed
how impure sets, relations and structures turn up in applied mathematics. In the previous
subsection, we gave some further examples of mixed quantity primitives.

General consideration of the kinds of mathematical objects appearing in applied
mathematics suggests the following seven-fold classification of basic impure & mixed
mathematical objects:11

Impure mathematical objects Mixed mathematical objects
1. Sets (of atoms) 4. Mixed relations
2. Relations (of atoms) 5. Charts (co-ordinate systems)
3. Structures (on atoms) 6. Scales (mass, length, duration, etc.)

7. Fields (scalar, spinor, tensor, etc.)

Applied mathematics is then the business of asserting the existence of, and estab-
lishing properties of, certain impure sets, relations and structures, and certain mixed
relations and functions. To be more exact, applied mathematics allows for the possibil-
ity that the sets, relations and structures referred to are impure, and the relations and
functions referred to are mixed. Of course, we frequently don’t know whether some set
(or relation or structure) X is impure, or whether some function F is mixed. Indeed,
free variables within the overall theory can leave this unspecified.

The beauty of applied mathematics is that it doesn’t matter. For example, mathe-
matical principles such as:

|X|+ |Y | = |X ∪ Y |+ |X ∩ Y |

If A
F∼= B, any structural property of A is a property of B

If (F : X → C and . . . and (∀x : X)(−a∇2 − b

|x|
)Ψ(x) = EΨ(x) and E < 0, then E = − c

n2
, with n ∈ N>0

(5)

hold irrespective of whether the sets X,Y are pure/impure, and irrespective of whether
the spaces A,B are built from atoms or not, and irrespective of whether the set (or
structure) X is impure and the function F : X → C is mixed or not.12 To apply
∀X∀Y

(
|X|+ |Y | = |X∪Y |+ |X∩Y |

)
, we use comprehension on ur-element predicates to

form set terms, like “{x | cat(x)}” and “{x | dog(x)}”, and instantiate the set quantifiers
on these terms to obtain:

|{x | cat(x)}|+ |{x | dog(x)}| = |{x | cat(x)} ∪ {x | dog(x)}|+ |{x | cat(x)} ∩ {x | dog(x)}| (6)

11 The point of the qualification “basic” is that further impure and mixed objects can then be defined
by standard mathematical constructions: pairs, products, etc.

12 The first principle is routinely used in applications of arithmetic. See Section 8 for more on the second
principle. I return to the third theorem in Section 7: Example 4 and Subsections 7.3 and 7.4.
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2 How The Laws of Set Theory Apply

Set theory is applied to non-mathematical matters via examples such as those below:

(1) The set of elephants is a subset of the set of mammals.
(2) The cardinal of the set of left-handed people is less than the cardinal of the set

of right-handed people.
(3) There is no injective function from the set of people in this room to the set of

handouts that I have printed.
(4) Napoleon is not an element of the set of all humans which contains Quine and

is closed under the relation “parent-of”.

However, many standard presentations of axiomatic set theory tend to ignore appli-
cations to non-mathematical subject matter. The reason is that more or less all core
mathematics may be developed within ZFC without any assumption as to the existence
of “atoms” or “urelements” or “individuals”. So contemporary discussions incorporating
atoms or urelements are less common. Within set theory itself, set theories with atoms
derive their interest for reasons connected to independence proofs. In that connection,
a closely related system is the one that Thomas Jech discusses (lacking Choice), ZFA, in
his classic set theory textbook:

In order to describe this method, we introduce the theory ZFA, set theory with
atoms. In addition to sets, ZFA has additional objects called atoms. These
atoms do not have any elements themselves but can be collected into sets.
. . . The effect of atoms is that the universe is no longer obtained by iterated
power set operation from the empty set. In ZFA, the universe is built up from
atoms. (Jech (2002): 250)

That said, there does exist a literature which includes formulations of set theory with
urelements/atoms. Historically, this was the standard approach—including both the
axiomatic system given by Ernst Zermelo in 1908 and the type theories given by Bertrand
Russell from 1903 on and the Church-style type theories given by Alonzo Church from
1940 on.13

Moreover, from the point of view of applicability, the major difficulty with a pure
set theory is that, since it doesn’t permit sets of atoms/urelements/individuals, it’s in-
applicable. Commenting briefly on this in his review of Potter (2004), Timothy Bays
writes:

13 Zermelo (1908), Russell (1903), Russell (1908), Russell & Whitehead (1912). Quine (1956) discusses
Zermelo’s set theory with atoms (individuals, as Quine calls them: Quine suggests individuals be
defined as being “self-membered”). Church’s type theories were formulated with individuals at the
base (Church (1940)). More recent examples include Quine’s set theory with urelements, NFU (e.g.,
Jensen (1968), Forster (1995), Holmes (1998)); Chihara (1990) (pp. 148–149); Barwise (1975), which
focuses on Kripke-Platek set theory with urelements, KPU; Barwise & Moss (1996); Lewis (1991);
Mendelson (2010) (§4.6.5); Jech (2002) (p. 250 ff.); Potter (2004); and Menzel (2014).
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From a purely technical perspective, three things make Potter’s treatment
unusual. First, Potter allows urelements in his basic axiomatization. This
is quite handy for philosophical purposes, as it lets us talk about sets of
individuals—people, atoms, space-time points, etc.—without employing awk-
ward set-theoretic surrogates. (Bays (2005): paragraph 2.)

Likewise, Elliott Mendelson summarizes the need for such a system in terms of ap-
plicability:

The theories NBG,MK,ZF,NF, and ML do not allow for objects that are not
sets or classes. This is all well and good for mathematicians, since only sets or
classes seem to be needed for dealing with mathematical concepts and problems.
However, if set theory is to be a part of a more inclusive theory having to do with
the natural or social sciences, we must permit reference to things like electrons,
molecules, people, companies, etc., and to sets and classes that contain such
things. Things that are not sets or classes are sometimes called urelements.
We shall sketch a theory UR similar to NBG that allows for the existence of
urelements. (Mendelson (2010): 300–301)

Coming from a quite diverse range of philosophical angles, Field (1980), Quine
(1986a), Steiner (1998), Potter (2004), Leng (2010) (and no doubt many others) agree
with Mendelson. This is how Hartry Field puts it:

In order to be able to apply any postulated abstract entities to the physical
world, we need impure abstract entities, e.g. functions that map physical ob-
jects to pure abstract entities. Such impure abstract entities serve as a bridge
between pure abstract entities and the physical objects; without the bridge,
the pure objects would be idle. Consequently, if we regard functions as sets of
a certain sort, then the mathematical theories we should be considering must
include at least a minimal amount of set theory with urelements (an urelement
being a non-set which can be the member of sets). (Field (1980): 9)

If the mathematics to be applied is set theory, then it must be set theory with atoms.

3 A Base Theory for Applied Mathematics

Let ZF be standard Zermelo-Fraenkel set theory (including the axiom of choice);
let restricted ZFU be ZF modified to allow for the existence of urelements, but
not allowing for any non-set-theoretic vocabulary to appear in the comprehen-
sion axioms (for definiteness, we may stipulate that it contains as an axiom
that there is a set of all non-sets); and if V is a class of expressions, let ZFUV
be restricted ZFU together with any instances of the comprehension schemas in
which the vocabulary in V as well as the set-theoretic vocabulary is allowed to
appear. What I earlier called ‘full set theory’ isn’t really a single theory; rather,
to ‘apply full set theory’ in the context of a theory T is to apply ZFUV (T ), where
V (T ) is the vocabulary of T . (Field (1980): 17)
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3.1 Introduction

3.1 Introduction

The approach we develop from here on is modeled on Field’s summary quoted above.14 It
is a many-sorted set theory, which I call Zermelo-Fraenkel set theory (with Choice) with
atoms, over an application signature σ, denoted ZFCAσ.15 However, it is worth pointing
out that this is not very different from a formalism using type-theory or higher-order
logic.16

3.2 The Sort System

We shall use a many-sorted formalization with four sorts:17

atom Ranges over atoms.
bool Ranges over booleans.
set Ranges over sets.
global Ranges over everything.

One can, in fact, build a type hierarchy over these four sorts. I will define that in a
moment, but will not really use it (except as a convenient mnemonic for declaring the
types of various constants, predicates and function symbols). We are only interested in
the first-order fragment. The sorts atom, bool and set are treated as disjoint, and all
three are proper subsorts of global and, together, they exhaust global.18 There is one
feature of the many-sorted logic worth stressing at the outset: this is not a conventional
many-sorted system because (a) it includes subsorts (of the global sort) and (b) it is not
an order-sorted system because “downwards substitution” is not always permitted over
the global sort variables.19

We next define this a bit more precisely:

Definition 1 (Sorts). The expressions bool, atom, set and global are sorts. Let S :=
{bool, atom, set, global}.

14 An approach that seems to be similar is given in Mycielski (2013), where the base theory invoked is
called ZF+ and scientific theories are then treated as taking the form ZF+ + Σ, where the scientific
laws, etc., are elements of Σ.

15 The approach developed here is influenced by Jon Barwise’s similar many-sorted formulation of KPU
(Kripke-Platek set theory with urelements) in Barwise (1975). I am grateful to Ali Enayat for drawing
my attention to Barwise’s approach.

16 This would have been the preferred formalism of the logical empiricists, and especially Rudolf Carnap:
e.g., Carnap (1928), Carnap (1966). See Leitgeb & Carus (2020) for a detailed survey of Carnap’s
proposed formalization systems for science. Because of well-known intertranslatability results, these
approaches may well be near notational equivalents, modulo some subtleties about proof-theoretic
strength.

17 See Manzano (1996) for an exposition of many-sorted logic and its applications. Enderton (2001)
also explains the main ideas. In his Quine (1956), Quine gives some reasons to prefer a single-
sorted formalization of theories, although it’s not clear how persuasive these reasons are given the
intertranslatability of many-sorted and one-sorted theories.

18 In principle, we might introduce a richer system, perhaps with subsorts ord, real, natnum, etc., for
sets, and with subsorts point, line, region, etc., for atoms.

19 For example, if P is a unary predicate on atoms, then P(ai) is well-formed, for any atom variable ai.
But P(xi) is also well-formed, where xi is a global variable.
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3.2 The Sort System

These expressions are not in the object language.20

Definition 2 (Type System). We define the full type system S∗ as follows. S ⊆ S∗.
Furthermore, if s1, s2 ∈ S∗, then s1 ⇒ s2 ∈ S∗. There are no other types. So the type
system S∗ is defined by an inductive definition, using the sorts in S as its base, and
closing under the “constructor” ⇒.21

However, we shall not use the full type system, since we are only concerned with a
first-order four-sorted formalism (wrt S), and not a full type hierarchy of variables for
each type, along with constants, function symbols and predicates of various types.

Definition 3 (Sorted Variables). Corresponding to each sort is a special system of
variables, defined as follows:

Sort Variables Range over
atom a, a1, a2, . . . atoms.
bool b,b1,b2, . . . truth values T and F.
set X,X1, X2, . . . sets
global x, x1, x2, . . . objects

In general, each variable is assigned a sort as follows:22

τ(ai) = atom τ(bi) = bool.
τ(Xi) = set τ(xi) = global.

Definition 4 (Type Declaration). A (first-order) type declaration for a symbol s has the
form:

(i) s : τ1.
(ii) s : τ1 ⇒ · · · ⇒ τn ⇒ τn+1.
(iii) s : τ1 ⇒ · · · ⇒ τn ⇒ bool.

If the type of s is τ for some τ ∈ S, then we say it is a (first-order) variable or constant. If
the type of s is τ1 ⇒ · · · ⇒ τn ⇒ τn+1, then we say that s is a (first-order) n-ary function
symbol. If the type of s is τ1 ⇒ · · · ⇒ τn ⇒ bool, then we say that s is a (first-order)
n-ary predicate.

A remark is in order. I am using a version of Church type-theoretic notation (which
is similar to Isabelle notation) as a mnemonic for the types of constants, predicates and
function symbols that appear in the application signature.23 Nothing really hangs on
this.

20 However, we shall show how to define them in the object language.
21 I have not said what this constructor ⇒ “is”. However it doesn’t matter. I am using a type-theory

notation here: “s1 ⇒ s2” means “the ‘type’ of functions from s1 to s2”. Originally, Church (1940),
who had two base sorts, o (booleans) and ι (individuals), used a bracketing notation (oo), (oι), o(oo),
(oι)ι, etc. (and read backwards: so (oι) is ι⇒ o). See Coquand (2018) on type theory and Benzmüller
& Andrews (2019) for Church’s type theory, for further explanation.

22 Thus, by “τ(s) = . . . ”, we mean “the sort of symbol s is . . . ”. The functional notation “τ(−)” belongs
to the meta-language, not the object language.

23 Isabelle is a higher-order/type-theoretic theorem-proving system initially designed by Laurence Paul-
son. See Wenzel et al. (2020) for the user manual for Isabelle.
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3.2 The Sort System

Definition 5 (Application Signature). A (first-order) application signature σ over the
sorts S is a (possibly empty) set of non-logical syntactic primitives

σ =

constants︷ ︸︸ ︷
{ci}i∈I1 ∪

function symbols︷ ︸︸ ︷
{Fi}i∈I2 ∪

predicates︷ ︸︸ ︷
{Pi}i∈I3 (7)

where each symbol has an associated type declaration as follows:

c is a constant c : τ(c).
F is an n-ary function symbol F : τ1(F)⇒ · · · ⇒ τn(F)⇒ τn+1(F).
P is an n-ary predicate symbol P : τ1(P)⇒ · · · ⇒ τn(P)⇒ bool.

where in each case, τ(c), the τi(F) and the τi(P) are elements of S.

Signatures do not officially contain the identity predicate or the boolean constants.
But we shall assume that every language built over a signature implicitly contains the
binary identity predicate = and the boolean constants.

Definition 6 (Boolean constants). Every language we consider will be assumed to con-
tained the boolean constants > and ⊥, with type declarations:

> : bool ⊥ : bool (8)

Definition 7 (Type Declaration for Identity). The predicate = has type declaration:

=: global⇒ global⇒ bool. (9)

Identity is global, and thus t1 = t2 is well-formed for any terms t1, t2.

Definition 8 (Purely Atomic). If a constant, predicate or function symbo has type
declaration of the form:

c : atom

P : atom⇒ · · · ⇒ atom⇒ bool

F : atom⇒ · · · ⇒ atom⇒ atom

(10)

it is called “purely atomic”.
A signature whose symbols are purely atomic is called a purely atomic signature. If

σ is a signature, then the restriction to its symbols which are purely atomic symbols
is called its purely atomic subsignature, denoted σ �atom. If the component sorts for a
function symbol are all the same, then I call the symbol homogeneous. If the component
sorts vary, I call the symbol mixed. If the component sorts for a predicate symbol are all
the same except for the compulsory final ⇒ bool, then I call the predicate homogeneous.
If the sorts vary, I call the predicate mixed.

Definition 9 (Auxiliary predicates). Let σ be an application signature over S. For any
n-ary function symbol F in σ, with type declaration,

F : τ1(F)⇒ · · · ⇒ τn(F)⇒ τn+1(F) (11)

12



3.3 Unary Sort Predicates

we introduce an auxiliary (n+ 1)-ary predicate PF, with type declaration:

PF : τ1(F)⇒ . . . τn(F)⇒ τn+1(F)⇒ bool (12)

Along with defining axiom:

(AxF) : PF(v1, . . . , vn, vn+1)↔ vn+1 = F(v1, . . . , vn) (13)

where v1, . . . , vn are variables of the appropriate sorts.

From now on, whenever we introduce an application signature, we assume it has been
extended with the corresponding auxiliary predicates.

Definition 10 (Extended signature: σ∈). Let σ be an application signature over S. Let
the extended signature σ∈ := σ ∪ {∈} be the extension of σ by adding the new binary
predicate ∈ with type declaration:

∈: global⇒ global⇒ bool. (14)

Note that ∈ is global. Thus, t1 ∈ t2 is a well-formed formula for any terms t1, t2.

3.3 Unary Sort Predicates

An advantage of a global variable sort, along with the three subsorts, is that we can
“express the primitive sorts” inside the object language language itself:

Definition 11 (Unary Predicates for Sorts). For each primitive sort, we introduce a
unary global predicate by explicit definition:

Dfnatom : ∀x(atom(x)↔ ∃a(x = a)).

Dfnbool : ∀x(bool(x)↔ ∃b(x = b)).

Dfnset : ∀x(set(x)↔ ∃X(x = X)).

Dfnglobal : ∀x(global(x)↔ ∃x1(x = x1)).

(15)

We let Dfns be {Dfnatom,Dfnbool,Dfnset,Dfnglobal}.

3.4 Structures for L(σ∈)

Definition 12. Let σ = {ci}i∈I1 ∪ {Fi}i∈I2 ∪ {Pi}i∈I3 be an application signature over
S. A σ∈-structure M is a 4-sorted (first-order) structure:

M = (globalM , setM , atomM , boolM ;∈M ; . . . , (ci)M , . . . , (Fi)M , . . . , (Pi)M , . . . )

where the following ten conditions are satisfied:24

24 Our structures interpret variables. So, if v is a variable, then vM is an element of the domain.
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3.5 ZFCAσ with sorts {bool, atom, set, global}

(1) globalM is the global domain (values of global variables x, x1, . . . ).
(2) setM is the collection of sets in M (values of set variables X,X1, . . . ).
(3) atomM is the collection of atoms in M (values of atom variables a, a1, . . . ).
(4) boolM = {T,F} (where >M = T; ⊥M = F).
(5) globalM = setM ∪ atomM ∪ boolM .
(6) globalM 6= ∅; setM 6= ∅; atomM 6= ∅.
(7) setM ∩ atomM = setM ∩ boolM = atomM ∩ boolM = ∅.
(8) ∈M is a subset of globalM × setM (the interpretation of ∈).

And, for the variables, we have:

(9) (bi)M ∈ boolM ; (ai)
M ∈ atomM ; (Xi)

M ∈ setM ; (xi)
M ∈ globalM .

And, for each constant c, function symbol F and predicate P of the non-logical symbols
from σ, their interpretations cM , FM and PM must respect the sorting built into σ:

(10.a) cM ∈ (τ(c))M .
(10.b) FM : (τ1(F))M × · · · × (τn(F))M → (τn+1(F))M .
(10.c) PM ⊆ (τ1(P))M × · · · × (τn(P))M .

Various reducts might be defined. The most important is the single-sorted structure:

Matom := (atomM ; . . . , (ci)M , . . . , (Fi)M , . . . , (Pi)M , . . . ) (16)

where the ci, Fi and Pi are purely atomic primitive symbols.

Identity is interpreted naturally, and the definitions of term denotation tM and sat-
isfaction M |= φ are more or less straightforward.

3.5 ZFCAσ with sorts {bool, atom, set,global}

The remaining features of the sort system and syntax are relegated to the Appendix.25

Definition 13 (Quasi-logical axioms). The following L(σ∈)-sentences are called quasi-
logical axioms (some of these are explained in the Appendix):

(1) For each function symbol F, the explicit definition AxF of its auxiliary predicate
PF. (Definition 9)

(2) Explicit definitions Dfns of predicates bool, atom, set and global. (Definition 11)
(3) The Boolean axioms (Definition 22).
(4) The Sort axioms (SA1), . . . , (SA5) (Definition 23)
(5) The Subsort axioms (Definition 24).

Lemma 1. Dfns ` ∀a atom(a) ∧ ∀b bool(b) ∧ ∀X set(X).

Proof. I show ∀a atom(a). The other conjuncts are similar. Suppose we have some a
with ¬atom(a). Hence, ¬∃a1(a = a1). So, for all a1, we have a 6= a1. In particular,
a 6= a. Contradiction.

25 Definition 20 defines the well-formed terms and primitive formulas of L(σ∈). Definition 21 completes
the definition of the language L(σ∈).
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3.5 ZFCAσ with sorts {bool, atom, set, global}

One can prove from the “quasi-logical” axioms theorems expressing sort exclusion:

Lemma 2. Quasi-logical axioms ` ∀a∀X(a 6= X).

Proof. Suppose ¬∀a∀X(a 6= X) and so, there is some a and some X such that a = X.
Thus, atom(a) and set(X) and a = X. So, ∃x(x = a ∧ x = X ∧ atom(x) ∧ set(x)). So,
∃x(atom(x) ∧ set(x)), which contradicts the sort axiom (SA1).

Definition 14 (Axioms of ZFCAσ). The non-logical axioms of ZFCAσ in L(σ∈) are:

Atoms set. ∃X1(∀a(a ∈ X1) ∧ ∀X2(X2 /∈ X1)).

Extensionality. ∀x(x ∈ X1 ↔ x ∈ X2)→ X1 = X2.

Empty set. ∃X∀x(x /∈ X).

Pairing. ∃X∀x
(
x ∈ X ↔ (x = x1 ∨ x = x2)

)
.

Union. ∃X1∀x
(
x ∈ X1 ↔ ∃X2(x ∈ X2 ∧X2 ∈ X3)

)
.

Power set. ∃X1∀X2

(
X2 ∈ X1 ↔ X2 ⊆ X3

)
.

Infinity. ∃X
(
∅ ∈ X ∧ ∀x(x ∈ X → x ∪ {x} ∈ X)

)
.

Foundation. ∃X2(X2 ∈ X1)→ (∃X2 ∈ X1)(X2 ∩X1 = ∅).

Separation. ∃X1∀x
(
x ∈ X1 ↔ (x ∈ X2 ∧ φ)

)
.

Replacement. funcφ(X1)→ ∃X2 imφ(X1, X2).

Choice. (∀X2 ∈ X1)∃x(x ∈ X2)→ ∃X3 choice.fun(X3, X1).

These axioms are all implicitly universally quantified. In instances of Separation, φ
must not contain X1 free. The axioms use the symbols “∅”, “⊆”, “∩” and “{.}”: we
assume these are given their standard definitions.

The formulas φ appearing in the Separation and Replacement schemes belong to the
full language L(σ∈), and may contain parameters, including set parameters.26 In the
formulation of Replacement, funcφ(X1) expresses that the formula φ defines a (class)
function on (set) X1. And imφ(X1, X2) expresses that X2 is the image of X1 under the
(class) function defined by φ. In the formulation of Choice, choice.fun(X3, X1) expresses
that X3 is a choice function on X1.

In addition, we have the quasi-logical axioms of ZFCAσ. So long as sort restrictions
are not violated (e.g., in quantifier instantiations and in substitutions), the deductive
system is a fairly straightforward modification of that for 1-sorted first-order logic.27

I will sometimes call ZFCAσ the standard base theory for applied mathematics (with
respect to the signature σ over the sort system S).

26 In principle, one could weaken the theory by requiring that φ may only belong to the sublanguage
L(σ �atom)—the result would be a kind of predicative weakening.

27 The most important modification is this. Standardly in many-sorted logic, the logical axiom ∀vφ(v)→
φvt requires the term t substituted for v to have same sort as that of v (in order-sorted MSL, the sort
of t may be a subsort of that of v) . In our system, we also have global variables, and an additional
logical axiom ∀xφ(x) → φxt , where the sort of t may be any sort. This is handled by the additional
quasi-logical subsort axioms specified in Definition 24.
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3.5 ZFCAσ with sorts {bool, atom, set, global}

Regarding its properties, note first that ZFCAσ implies the existence of just one
atom, since ∃a(a = a) is theorem of logic. Although there is a set of atoms, ZFCAσ
can be shown to be neutral on there being more than one element of this set. Note
second that ZFCAσ is powerful enough to model all known mathematics, and certainly
all core mathematics. Third, note that there is some redundancy here: Replacement
implies Separation (and Separation implies Empty Set) and (assuming Empty set and
Power set) Pairing. Notationally, ZFAσ is ZFCAσ without Choice; ZAσ is ZFAσ without
Replacement; ZFA−∞σ is ZFAσ without Infinity; ZA−∞σ is ZAσ without Infinity. For many
examples, finitary set theory (with atoms) ZA−∞σ is perfectly adequate.

Fourth, there is a standard technique for translating a many-sorted theory into a
one-sorted equivalent: corresponding to each sort s, one introduces a unary one-sorted
predicate Ps(x). The translation ◦ : Lmany-sorted → Lone-sorted then takes, e.g., a formula
∀vφ(v), where v has sort s, to a relativized one-sorted formula ∀x(Ps(x) → φ◦(x)).28

Here, essentially because it uses global variables and each sort atom, . . . has a corre-
sponding unary sort predicate atom(x), . . . , the system ZFCAσ in fact contains that
translation as a subtheory (a subtlety about the translation of function symbols is dealt
with via the auxiliary predicates introduced in Definition 9).

I will henceforth assume that ZFCAσ also contains the various explicit definitions
needed to develop and formalize all core mathematics. Strictly speaking, what we are
calling ZFCAσ is a conservative extension of ZFCAσ given by a complicated series of
explicit definitions.29

Definition 15. “Atoms set” asserts there is a set X of all atoms. We have uniqueness
by Extensionality. So we can define a set constant (i.e., of sort set) A such that

∀x(x ∈ A↔ atom(x)) (17)

In this many-sorted system, we no longer need a separate axiom that “atoms lack
elements”. It is provable from the set of quasi-logical axioms:

Lemma 3. Quasi-logical axioms ` ∀a∀x(x /∈ a).

Proof. The sort axiom (SA5) for ∈ states: ∀x1∀x2(x1 ∈ x2 → set(x2)). Using the
definition (Dfnset), we infer: ∀x1∀x2(x1 ∈ x2 → ∃X(x2 = X)). Thus, by a Subsort
axiom, x1 ∈ a → ∃X(a = X). But by Lemma 2, ∀X(a 6= X) and so ¬∃X(a = X). So,
x1 /∈ a. And since a, x1 are arbitrary, generalization gives: ∀a∀x(x /∈ a).

Example 3. Defining impure sets
Consider Pairing: ∃X∀x

(
x ∈ X ↔ (x = x1 ∨ x = x2)

)
. Suppose we wish to assert

the existence of an impure set : say, defined by the formula x = c ∨ x = ∅, where c is
a constant denoting an atom: i.e., the existence of X = {c,∅}. This is given by the
instance:

∃X∀x
(
x ∈ X ↔ (x = c ∨ x = ∅)

)
(18)

28 The translation was first given in Schmidt (1938), and later in more detail, Wang (1952).
29 E.g., “X is the ordered pair of x1 and x2”, “X1 is a binary relation on X2”, “X is a real number”, etc.
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Formulating this in 2-sorted logic without global variables seems to be tricky. But the
use of global variables simplifies it enormously. 4

Definition 16. Consider Pairing again. An instance is:

∃X∀x
(
x ∈ X ↔ (x = > ∨ x = ⊥)

)
(19)

We have uniqueness by Extensionality. So, define a set constant B such that

∀x(x ∈ B↔ bool(x)) (20)

4 Comprehension and Set Abstracts

For set theorists, the interest of ZFA is connected to permutation models and independence
proofs. Because no structure whatsoever is imposed on the atoms, the atoms are, in a
sense, “indiscernible” objects, compared with the sets. However, for us, the situation
is different, because the scientific axioms written in the application language L(σ) will
typically impose structure onto the atoms—the atoms may be asserted to be structured as
an ordering, a geometry, a discrete structure, a graph, etc. Consequently, such methods
don’t transfer; or at least not easily.

4.1 Comprehension

Definition 17. Let φ(a1, . . . , an) be an L(σ∈)-formula containing only atom variables
free. We say that φ expresses a relation on atoms.

Even if φ expresses a relation on atoms, this is compatible with φ containing further
expressions referring to non-atoms. For example, suppose `m is a mixed function symbol
with type declaration atom ⇒ set. Perhaps `m(a) can be read to mean: “the length in
metres of concrete atom a”. Even so, the following formula does satisfy that condition:

φ(a1, a2) := (`m(a2) = π • `m(a1)) (21)

Indeed, φ might express a relation on atoms which is not definable in the purely atomic
fragment, L(σ �atom).

Lemma 4. Suppose φ(a1, . . . , an) expresses a relation on atoms. Then:

ZA−∞σ ` ∃X∀a1 . . . ∀an ((a1, . . . , an) ∈ X ↔ φ(a1, . . . , an)).

Proof. By separation, we have: ∃X1∀x
(
x ∈ X1 ↔ (x ∈ X2 ∧ ψ(x))

)
. Thus, letting ψ(x)

be ∃a1 . . . ∃an(x = (a1, . . . an) ∧ φ(a1, . . . an)), we get:

∃X1∀x
(
x ∈ X1 ↔ [x ∈ X2 ∧ ∃a1 . . . ∃an(x = (a1, . . . an) ∧ φ(a1, . . . an))]

)
. (22)

By instantiating X2 with the set term An, this yields that there is a set X1 st:

∀x
(
x ∈ X1 ↔ [x ∈ An ∧ ∃a1 . . . ∃an(x = (a1, . . . an) ∧ φ(a1, . . . an))]

)
. (23)
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4.2 Set Abstracts

Let us assume: (an+1, . . . , a2n) ∈ X1. By (23), we infer ∃a1 . . . ∃an((an+1, . . . , a2n) =
(a1, . . . an) ∧ φ(a1, . . . an)). And so (using the properties of orderned n-tuples),
φ(an+1, . . . , a2n). Conversely, this reasoning runs backwards too. Suppose
φ(an+1, . . . , a2n). By Lemma 1, we have atom(an+1), . . . , atom(a2n). This gives
an+1 ∈ A, . . . , a2n ∈ A. And so, (an+1, . . . , a2n) ∈ An. Furthermore, we have
∃a1 . . . ∃an((an+1, . . . , a2n) = (a1, . . . an) ∧ φ). Thus, from (23), (an+1, . . . , a2n) ∈ X1.

So, conjoining these:

∃X1∀a1 . . . ∀an
(
(a1, . . . , an) ∈ X1 ↔ φ(a1, . . . , an)

)
(24)

Lemma 5. Let P be a purely atomic n-ary predicate from σ. Then

ZA−∞σ ` ∃X∀a1 . . . ∀an ((a1, . . . , an) ∈ X ↔ P(a1, . . . , an)).

Proof. P(a1, . . . , an) expresses a relation on atoms.

4.2 Set Abstracts

Lemma 4 and Lemma 5 imply that, under certain conditions, we can introduce an explicit
definition of a set constant (aka set abstract):

φ := {(a1, . . . , an) | φ(a1, . . . , an)}
P := {(a1, . . . , an) | P(a1, . . . , an)}

(25)

satisfying a corresponding condition:

(a1, . . . , an) ∈ φ↔ φ(a1, . . . , an)

(a1, . . . , an) ∈ P↔ φ(a1, . . . , an)
(26)

Loosely speaking, comprehension permits us to “convert” the predicates into constants,
and then we may reason accordingly about the impure mathematical objects denoted by
these constants. These objects are themselves impure sets/relations. For example, the
constant A refers to the set of atoms and the constant P refers to an impure n-ary relation
on atoms. And because the applied mathematics is geared up to prove general claims
about sets and relations (irrespective of their underlying domain), there is an interplay
between such general claims and their instantiations onto constants for impure objects
like (the denotations of) A,P, etc.

4.3 Set Abstracts for Mixed Symbols

A similar point will apply to mixed primitives. However, one has to be a bit careful
to ensure that the set variables are bound in a certain way, and also about dealing
with function symbols defined only on a special subsort. Let us suppose the application
signature contains a unary mixed function symbol F with type declaration:

F : atom→ set (27)
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4.3 Set Abstracts for Mixed Symbols

There are two reasons we cannot “lift” this to a constant F denoting its extension (i.e.,
graph). The only way to do so is to apply separation:30

∃X1∀x1∀x2

(
(x1, x2) ∈ X1 ↔ ((x1, x2) ∈ X2 ∧ φ(x1, x2))

)
(28)

However, there is no set of sets. So I cannot as yet instantiate the set variable X2 on
a suitable “container set”. Second, the relevant formula φ would be x2 = F(x1). But this
is not well-formed, since the well-formedness of F(t) requires that t be of sort atom. The
solution to the first problem involves the auxiliary predicate PF (Definition 9). In this
case, it has type declaration

PF : atom⇒ set⇒ bool (29)

and defining axiom:
PF(a,X)↔ X = F(a) (30)

Since PF(x1, x2) is well-formed, using global variables, I can now form the required
separation axiom:

∃X1∀x1∀x2

(
(x1, x2) ∈ X1 ↔ ((x1, x2) ∈ X2 ∧ PF(x1, x2))

)
(31)

which is now well-formed. I am however left with the problem that I need a “container”
set X2 to make this work.

What this container set will be will vary from case to case, depending on what F
means in the specific application. Often, function symbols in physical laws map to the
reals; sometimes to a structure built over the reals; sometimes to some vector space, or
perhaps Lie group. There is no difficulty in defining set terms for these, and therefore
as terms for bona fide sets: e.g., R,Rn, C∞[Rn], L2[Rn], . . . . In these cases, one then
includes a special axiom for F, stating its codomain as a set, thus bounding its values.
This resolves the whole problem. For example, perhaps F formalizes a quantity with
real-values, like a scalar field. Its codomain axiom is then:

∀a(F(a) ∈ R) (32)

The product A × R is now our required “container set”. Using Separation with respect
to A× R, on the auxiliary predicate:

∃X1∀x1∀x2

(
(x1, x2) ∈ X1 ↔ ((x1, x2) ∈ A× R ∧ PF(x1, x2))

)
(33)

Since this X1 is unique by Extensionality, we may next explicitly define:

F := {(x1, x2) ∈ A× R | PF(x1, x2)} (34)

30 This form of separation, for relations, is equivalent to the original form: ∃X1∀x3
(
x3 ∈ X1 ↔

∃x1∃x2(x3 = (x1, x2) ∈ X2 ∧ φ(x1, x2))
)
if we have Pairing.
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This somewhat roundabout method provides for the explicit definition:

F := {(a,X) ∈ A× R | X = F(a)} (35)

And from this, we then have the usual comprehension equivalence:

(a,X) ∈ F↔ X = F(a) (36)

The point generalizes to other mixed primitives, both predicates and function symbols.

5 Abstract Counterparts: Equivalence Modulo Mathemat-
ics

. . . let us abbreviate the statement “the set of planets belongs to the number
nine” as P , and the statement “there is an x and there is a y and . . . such that
x is a planet and y is a planet and . . . and x 6= y and . . . and such that for every
z, if z is a planet then z = x or z = y or . . . ”, which expresses “the number of
planets is nine” in a purely first order way, as P ∗. The equivalence P ↔ P ∗ is
a theorem of Principia, and hence holds in all models. (Putnam (1967): 31).

An important part of understanding how applied mathematics works concerns the
relation between certain kinds of non-mathematical statement and certain mathematical
statements which are, in some sense, “equivalent”. Such equivalences in the context of
applied mathematics were, so far as I know, first explicitly noted in the quote from
Putnam above.

Suppose we have the following sentences,

∃9x planet(x) (37)
#planet = 9 (38)

where ∃9x planet(x) is formulated using numerically definite quantifiers ∃n. Letting PM
stand for Principia Mathematica, Putnam’s point is:

PM ` ∃9x planet(x)↔ (#planet = 9) (39)

Building on Putnam’s work, Field (1980) suggested we might consider mathematical
statements like “#planet = 9” to be abstract counterparts of non-mathematical state-
ments like “∃9x planet(x)”. Under Quine’s analysis of ontological commitment, (37) car-
ries a commitment only to planets. On the other hand, the second (38) is a mathematical
claim, implying there is set with a certain cardinality.

In the context of the base theory we are using, suppose the signature σ contains a
unary predicate planet on atoms. Then:

ZA−∞σ ` ∃9a planet(a)↔ (#planet = 9) (40)
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So: (37) and (38) are equivalent, modulo ZA−∞σ (infinity is not needed for such simple
equivalences). Another mathematical equivalence, modulo ZA−∞σ , is:

ZA−∞σ ` ∀a(rabbit(a)→ mammal(a))↔ (rabbit ⊆ mammal) (41)

The relevant meta-theorems have the generic form:

Abstract Equivalence

ZFCAσ ` φ↔ φabs
(42)

Of course, if φ and φabs are already theorems of ZFCAσ, then this equivalence is trivial.
However, all the interesting cases for applied mathematics occur when φ and φabs are
emphatically not theorems of ZAσ, ZFAσ, ZFCAσ, etc.31 In the next section, I will give
several kinds of example of such abstract equivalences, modulo set theory.

6 Systems and Equivalences

6.1 Suppes Equivalence

Fix a signature σ = {P1,P2} with type declarations P1 : atom ⇒ bool and P2 : atom ⇒
bool. Let a very simple law Θ ∈ L(σ) be given:

Θ(P1,P2) : ∀a(P1(a)→ P2(a)) (43)

We next define the corresponding (binary) “structural predicate” for Θ:

Θs(X1, X2) : ∀a(a ∈ X1 → a ∈ X2) (44)

And then we define the (unary) “Suppes predicate”:32

modΘ(X3) : ∃X1∃X2(X3 = (X1, X2) ∧Θs(X1, X2)) (45)

Inside ZA−∞σ , using separation and pairing we can certainly prove the existence of
the structure (P1,P2). So, consider the sentence, which I call the Suppes sentence for Θ:

Supp(Θ) : modΘ((P1,P2)) (46)

It is easy to see that the Supp(Θ) is equivalent to Θ in (quite weak) set theory.

31 Analogously, Choice is equivalent to various other statements, using, say, Z set theory as a background
base theory. Similarly, within the Reverse Mathematics programme of proving the equivalence of
certain second-order set existence axioms with certain mathematical statements, using weaker sub-
systems as a base theory. For example, many interesting claims in analysis are equivalent to ACA0,
with the weaker system RCA0 as base theory (see Simpson (2009) for further details).

32 This term seems to originate in da Costa & Chuaqui (1988). The slogan often repeated by Patrick
Suppes is: “To axiomatize a theory is to define a predicate in terms of notions of set theory. A
predicate so defined is called a set-theoretical predicate” (Suppes (1957), Ch.12 §12.2).
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6.1 Suppes Equivalence

Lemma 6. ZA−∞σ ` Θ↔ modΘ((P1,P2)).

Proof. Consider the set abstracts P1 and P2, which satisfy:

∀x(x ∈ P1 ↔ P1(x)) ∀x(x ∈ P2 ↔ P2(x)) (47)

Substituting P1 for X1, and P2 for X2, in the structural predicate Θs(X1, X2), we obtain:
Θs(X1/P1, X2/P2)↔ ∀a(a ∈ P1 → a ∈ P2). Using the equivalences above, we infer:

Θs(X1/P1, X2/P2)↔ Θ. (48)

Next, consider modΘ((P1,P2)). This is equivalent to ∃X1∃X2((P1,P2) = (X1, X2) ∧
Θs(X1, X2)). But, assuming pairing, this is equivalent to Θs(X1/P1, X2/P2). So,

modΘ((P1,P2))↔ Θs(X1/P1, X2/P2) (49)

Combining (48) and (49) we obtain the claim:

Θ↔ modΘ((P1,P2)) (50)

Generalizing, it is not difficult to see that, modulo set theory with atoms, we can
prove an equivalence between a (finitely axiomatized) theory Θ (in L(σ), where σ is
purely atomic) and its Suppes sentence:33

Theory︷ ︸︸ ︷
Θ(P1, . . . ,Pn) ↔

Suppes sentence of theory︷ ︸︸ ︷
modΘ((P1, . . . ,Pn)) (51)

In general, there is class of theories Θ which are equivalent, modulo set theory with
atoms, to their Suppes sentence:34

Suppes equivalence

ZAσ `
Theory︷︸︸︷

Θ ↔
Suppes sentence Supp(Θ)︷ ︸︸ ︷

modΘ(P )

(52)

33 One might wish to bring all the “models” together, as a set. In general, this is not possible, for
class/set reasons. However, it is possible to form the set of models which all live inside a suitably
large “container set”, called a universe. In Muller (2011), the container set or universe is a von
Neumann universe Vω+n, for some largish n. In fact, to ensure we get the right equivalence for set
theory with atoms, it would need to be Vω+n(A), where A is the set of atoms.

34 If σ is purely atomic, this is true for all finitely axiomatized theories in L(σ). In the broader case, it
remains true for certain finitely axiomatized theories in L(σ∈), but one must be more careful about
the set quantifiers appearing in the axioms of Θ: these quantifiers need to be bounded in some way,
so that they range over a set. In such cases, Suppes Equivalence holds too.
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6.2 Remark on The “Semantic” vs “Syntactic” View Debate

6.2 Remark on The “Semantic” vs “Syntactic” View Debate

It’s worth remarking here that the phenomenon I’ve called Suppes Equivalence may
provide a constructive way of looking at the long-standing debate in the philosophy of
science concerning “what theories are”. This is quite a complicated debate, so I simplify.35

On one side are those who take the standard logical view: a theory is a set of sentences
(or propositions expressed by sentences), which might in principle be formalized. I shall
call these propositionalists.36 On the other side are those who say that a theory is a
“collection of models” or “collection of structures”. I shall call these structuralists.37

Certainly, it has been argued before these approaches are, somehow, two ways of
putting the same thing (e.g., Worrall (1984), Friedman (1982)).38 Roughly, the argument
notes that, given a theory Θ in L(σ), one may define its model class, Modσ(Θ), which
is a class of structures (of signature σ). And given a class Σ of structures of uniform
signature σ, one may define its theory, Thσ(Σ): the set of all sentences (in the signature
σ of the structures) which are true in all the structures. In some cases, specifying the set
of (uninterpreted) sentences and specifying the model class will be equivalent. However,
while one can indeed do this, these operations are not mutual inverses, except in highly
constrained circumstances.

That said, one can give another argument, which is based on two points following
from the previous discussion. First, an objection to the structuralist claim that “a theory
is a collection of structures” is that this conception of what a theory is makes it impossible
for a theory to be true.39 But surely theories are truth bearers.40 There is, however, a

35 One can simplify a bit too much as well. Steven French has published a new book, French (2020),
There Are No Such Things As Theories, claiming theories don’t exist.

36 Such a view was standard amongst the logical empiricists, and that remained so to the 1960s. For
example, Carnap (1928), Carnap (1966), Hempel (1952), Przełȩcki (1969) and others. It is sometimes
called “the received view”, or “the syntactic view of theories”.

37 It is sometimes called “the semantic view of theories” or “the model-theoretic view”. The beginnings
of this view are usually traced to articles McKinsey et al. (1953), Suppes (1960), a couple more by
Patrick Suppes et al, Suppes’s textbook Suppes (1957) (see Ch. 12, §12.2: “Set-Theoretical Predicates
and the Axiomatization of Theories”), and then followed by important and influential developments
in Sneed (1971), Suppe (1977) and van Fraassen (1980). Joseph Sneed’s work came to influence the
“Munich school”: e.g., Stegmüller (1976), Balzer et al. (1987). A valuable and sympathetic summary
of the history of the semantic or model-theoretic or structuralist view is Muller (2011).

38 A discussion arguing that the alleged flaws are misrepresentations is Lutz (2012). Further criticisms
of the semantic view have appeared in Halvorson (2012), Halvorson (2013) and Halvorson (2016), as
well as Lutz (2014) and Lutz (2017).

39 I might add that the first objection, the Friedman-Worrall objection, seems to me not quite relevant.
Like any other logician, I present, for example, Peano arithmetic PA as a theory in L(σarith), where
σarith = {0, s,+,×}. PA has six axioms PA1, . . . ,PA6 and an induction scheme Ind(L(σarith)).
Obviously, I may consider Modσarith(PA). For example, Kaye (1991) is a book about these models of
PA. However, this excludes the crucial additional point that PA is true. That is, PA is a formalized
theory of number theory—an interpreted theory in an interpreted language, with a fixed, definite
intended interpretation: (N, 0, S,+,×). In saying PA is true, I mean that each axiom of PA is true in
(N, 0, S,+,×).

40 I call this the Truth Bearer Objection. I’ve occasionally presented it in talks since the 1990s.
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6.2 Remark on The “Semantic” vs “Syntactic” View Debate

response. This is that there is indeed a truth bearer: namely, what the structuralists call
the “theoretical hypothesis”.

So one now has a theory formulation favoured by structuralists. Moreover, we can, in
a sense, internalize the theory formulation favoured by structuralists inside the applied
mathematics base theory. For Suppes Equivalence tells us that a theory Θ as originally
formulated in L(σ∈) is equivalent, in the base theory to the corresponding Suppes sentence
Supp(Θ). But the Suppes sentence just is what the structuralists call the “theoretical
hypothesis”.41 So, the propositionalist formulation of a theory and the structuralist
formulation of the same theory are equivalent.

For example, take a simple quantitative law:

(L) For all time instants t, F (t) = 0. (53)

To put this into our formalization, we fix a signature σ = {tim.inst,F} with type
declarations tim.inst : atom ⇒ bool and F : atom ⇒ set. We shall have two axioms
formulating our quantitative law (I call the first the codomain axiom for the quantity):

∀a(F(a) ∈ R)

∀a(tim.inst(a)→ F(a) = 0)
(54)

where R and 0 are defined constants in L(σ∈).
Let’s now work through the machinery proposed by structuralism for this law (L). We

shall need a definition of a class of structures via a “set-theoretic predicate” or “Suppes
predicate”:

(Df1) (D,R, G) is an stays-the-same-structure iff G : D → R and, for all d ∈ D,G(d) = 0. (55)

Thus, (Df1) defines the “stays-the-same-structures”. In addition, I add (Df2) and (Df3),
which are definitions by comprehension, which “convert” the primitive predicate tim.inst
and function symbol F to set constants. We compare the two approaches:

Propositionalist Structuralist
Df1: (D,R, G) is an stays-the-same-structure iff G :
D → R and, for all d ∈ D, G(d) = 0.
Df2: Tim = {a | tim.inst(a)}.
Df3: F = {(a,X) ∈ Tim× R | X = F(a)}.

Theory: Θ Theoretical hypothesis (Suppes sentence Supp(Θ))
∀a (F(a) ∈ R ∧ (tim.inst(a)→ F(a) = 0)) (Tim,R,F) is a stays-the-same structure.

41 For van Fraassen, the additional theoretical hypothesis of interest to him, for epistemological reasons,
is not the claim of a theory’s being true, but rather a claim of a theory’s “empirical adequacy”.
However, I do not wish to get sidetracked into epistemology.
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6.3 Semantic Equivalence

The two versions are now:42

Propositionalism : For all time instants t, F (t) = 0. (56)
Structuralism : (Tim,R,F) is a stays-the-same structure︸ ︷︷ ︸

Suppes sentence

(57)

But, as we have seen, set theory with atoms proves (56)↔ (57). They’re equivalent.
So it seem hard to see why one is, in principle, preferable to the other. In practice,

things might be different, and it might be easier to work with one formulation than
another. However, in principle, one can go back and forth between the theory in its
original “received” form, and the theoretical hypothesis (i.e., the Suppes sentence) in its
“structuralist” form. For this reason, I suspect this is some sort of pseudo-debate, arguing
simply about what is a “nicer way” to express provable equivalents.

6.3 Semantic Equivalence

Let σ = {P} with P : atom⇒ atom⇒ bool. Let PO be the conjunction of:

∀a P(a, a).

∀a1∀a2 (P(a1, a2) ∧ P(a2, a1)→ a1 = a2).

∀a1∀a2∀a3 (P(a1, a2) ∧ P(a2, a3)→ P(a1, a3)).

(58)

So, PO says “P is a partial order (on atoms)”.
Then we can introduce, inside ZAσ, a defined satisfaction predicate Sat, some other

semantic notions (e.g., value of term in an interpretation) and a gödel coding of syntac-
tical objects as sets (say elements of Vω). In other words, we formalize the meta-theory
for L(σ) inside ZAσ. And then show:

Lemma 7. ZAσ ` PO↔ Sat((A,P), pPOq).

Proof. The details are messy, but require only more or less standard truth-theoretic
compositional moves, but all formalized inside ZAσ:43

ZAσ ` pPq(A,P) = P (59)

ZAσ ` Sat((A,P), p∀aP(a, a)q)↔ (∀x ∈ A)((x, x) ∈ P(A,P)) (60)
ZAσ ` Sat((A,P), p∀aP(a, a)q)↔ (∀x ∈ A)((x, x) ∈ P)) (61)
ZAσ ` Sat((A,P), p∀aP(a, a)q)↔ (∀x ∈ A)P(x, x) (62)
ZAσ ` Sat((A,P), p∀aP(a, a)q)↔ ∀a P(a, a) (63)
. . . . . . . . . (64)

ZAσ ` Sat((A,P), x ∧̇ y)↔ Sat((A,P), x) ∧ Sat((A,P), y) (65)
. . . . . . . . . (66)

ZAσ ` Sat((A,P), pPOq)↔ PO (67)

42 I treat the codomain axiom for F as implicit, mainly for ease of presentation.
43 I am using certain kinds of “disquotation” and “compositionality”. See Halbach (2014) or Cieśliński

(2017) for a detailed examination of such things.
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6.4 Categorical Equivalence: The Königsberg Bridge System

Looking at the structure of this result:

ZAσ `
Partial order axioms︷ ︸︸ ︷

PO(P) ↔

System of atoms satisfies partial order axioms︷ ︸︸ ︷
Sat((A,P), pPOq) (68)

It is not difficult to see it will generalize in certain ways. In particular, with σ
purely atomic, a finitely axiomatized theory Θ in L(σ) can be converted to a mathemat-
ically equivalent (in ZAσ) sentence Θabs (in L(σ∈)), about the “corresponding system”—
asserting that the system satisfies the theory Θ:44

Semantic equivalence

ZAσ `
Theory︷︸︸︷

Θ ↔
System satisfies theory︷ ︸︸ ︷

Sat(P, pΘq)

(69)

6.4 Categorical Equivalence: The Königsberg Bridge System

Consider Example 2 again. This particular example is interesting for a number of reasons.
The first has already been mentioned: we defined above the physical bridge system PK ,
and noted that it an impure mathematical object : indeed, PK is a multigraph.

Next, I formalize this entirely in our notation and explain how this example illustrates
the idea of “abstract counterparts” and what I call categorical equivalence. Fix a purely
atomic application signature σ = {land-area, bridge, connects}, with type declarations:

land-area : atom⇒ bool

bridge : atom⇒ bool

connects : atom⇒ atom⇒ atom⇒ bool

(70)

By comprehension and pairing, we define inside ZAσ the bridge system PK :

land-area := {a | land-area(a)}.
bridge := {a | bridge(a)}.

connects := {(a1, a2, a3) | connects(a1, a2, a3)}
Fconnects := {(a1, {a2, a3}) | (a1, a2, a3) ∈ connects}

PK := (land-area, bridge,Fconnects).

(71)

Define inside ZAσ the (pure) mathematical object GK as follows:

V := {1, 2, 3, 4} E := {5, 6, 7, 8, 9, 10, 11}
f := {(5, {1, 2}), (6, {1, 2}), (7, {1, 3}), (8, {1, 3}), (9, {1, 4}), (10, {2, 4}), (11, {3, 4})}

GK := (V,E, f)

(72)

44 The reader might note the analogy with disquotation sentences for a truth predicate: T(pφq) ↔ φ.
This connection is not a coincidence! We could simply define T(X) to mean: Sat((A,P), X). And
then: ZAσ ` T(pφq)↔ φ, for all φ ∈ L(σ).
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6.4 Categorical Equivalence: The Königsberg Bridge System

Then GK is a multigraph with vertices V , edges E and connection function f :45

1

2

3

4

5

6

7

8

9

10

11

We need a sentence in L(σ) which describes the bridge-connection relationships
amongst the four land-areas in Königsberg.

Definition 18 (The Königsberg sentence). First, define the following eight L(σ)-
formulas, θi:46

(θ1) ∀a12 (land-area(a12)↔ ¬bridge(a12)).
(θ2) ∀a12∀a13∀a14 (connects(a12, a13, a14)→ (bridge(a12) ∧ land-area(a13) ∧ land-area(a14))).
(θ3) ∀a12∀a13∀a14 (connects(a12, a13, a14)→ connects(a12, a14, a13)).
(θ4) ∀a12∀a13∀a14∀a15∀a16 (connects(a12, a13, a14) ∧ connects(a12, a15, a16) → ((a13 = a15 ∧ a14 = a16) ∨

(a13 = a16 ∧ a14 = a15))).
(θ5) ∀a12 (land-area(a12)↔ (a12 = a1 ∨ a12 = a2 ∨ a12 = a3 ∨ a12 = a4)).
(θ6) ∀a12 (bridge(a12)↔ (a12 = a5 ∨ a12 = a6 ∨ a12 = a7 ∨ a12 = a8 ∨ a12 = a9 ∨ a12 = a10 ∨ a12 = a11)).
(θ7)

∧11
i,j=1;i 6=j (ai 6= aj).

(θ8) connects(a5, a1, a2) ∧ connects(a6, a1, a2) ∧ connects(a7, a1, a3) ∧ connects(a8, a1, a3)
∧ connects(a9, a1, a4) ∧ connects(a10, a2, a4) ∧ connects(a11, a3, a4).

The Königsberg sentence φK is defined as follows, by taking the conjunction of the θi,
and then existentially quantifying the eleven free variables:

φK := ∃a1 . . . ∃a11

8∧
i=1

θi (73)

Lemma 8. GK is a model of φK and any model of φK is isomorphic to GK .

Proof. One first shows that GK is a model of φK directly. Next, assuming M |= φK ,
one can show, by looking at what each axiom requires, that M must be isomorphic to
GK .

45 I.e., f(5) = {1, 2}, etc. That is, edge labelled 5 connects vertices labelled 1 and 2. Etc.
46 These axioms (if we treat the free variables a1, . . . , a11 as constants) are true of PK . Moreover, they

provide a categorical description of the structured system PK we are interested in. I call the first four
axioms “structural axioms”: any (undirected) multigraph satisfies these. Axiom (θ5) is the vertex
axiom: the vertices—i.e., land-areas—are a1, . . . , a4. Axioms (θ6) is the edge axioms: the edges—i.e.,
bridges—are a5, . . . , a11. Axiom (θ7) states that these are all distinct. Axiom (θ8) is the “connection
axiom” stating how the bridges and land-areas are connected in this specific multigraph.
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6.5 Example of Categorical Equivalence: Second-Order Geometry

So φK itself is a categorical description of the Königsberg bridge system. Following
our discussion of the semantic equivalence above, we have:

Lemma 9. ZAσ ` φK ↔ Sat(PK , pφKq).

But Lemma 8 implies:

Lemma 10. PK is a model of φK iff PK is isomorphic to GK .

Lemma 10 can be formalized inside ZAσ:

Lemma 11. ZAσ ` Sat(PK , pφKq)↔ (PK ∼= GK).

Hence, by Lemmas 9 and 11 we conclude:

Lemma 12. ZAσ `
Sentence︷︸︸︷
φK ↔

Abstract equivalent︷ ︸︸ ︷
(PK ∼= GK) .

In summary, we have two (contingent) sentences which are equivalent modulo set
theory (with atoms):

φK (in L(σ)) says: “There are seven bridges, four land-areas and certain con-
nection relations holding between them”.

PK ∼= GK (in L(σ∈)) says: “The Königsberg bridge system PK is isomorphic to GK”.

In this particular case, we have what I call categorical equivalence:

ZAσ `
Königsberg sentence︷︸︸︷

φK ↔
Rep. Hypothesis︷ ︸︸ ︷
(PK ∼= GK) (74)

On the right-hand side, we have an isomorphism claim which I call a Representation
Hypothesis. The more general phenomenon is the following. For finitely axiomatized
categorical theories Θ in a purely atomic signature σ whose categoricity is provable in
set theory, we obtain:47

Categorical equivalence

ZFCAσ `
Theory︷︸︸︷

Θ ↔
Repres. Hypothesis︷ ︸︸ ︷

(P ∼= M)

(75)

6.5 Example of Categorical Equivalence: Second-Order Geometry

David Hilbert (Hilbert (1899)) formulated Euclidean geometry as a second-order theory
and proved a representation theorem to the effect that any (full) model of the theory
is isomorphic to R3, with certain additional geometric relations defined on R3. Alfred

47 This leaves open the possibility that Θ may be categorical, but not provably so. Sentences of the form
“Θ is categorical” (including when Θ is “second-order”: i.e., has set quantifiers) are hardly elementary,
or even arithmetic sentences, so this must be a real possibility.
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6.5 Example of Categorical Equivalence: Second-Order Geometry

Tarski and his school simplified the axioms, resulting in systems I call Geomd
n, for d-

dimensional geometry, with n = 1 or n = 2. Geomd
1 is a first-order system and Geomd

2 is
second-order. The axioms for Geomd

1 are given in Tarski (1959) (pp. 19-20). The axioms
for Geomd

2 are obtained by changing the elementary continuity axioms (Tarski (1959), p.
20) into a corresponding single axiom, using a set quantifier over points. Tarski proved
a representation theorem for the first-order theories (Tarski (1959): Theorem 1, pp. 21–
22). Focusing on the second-order version, the Hilbert-Tarski representation theorem
says:48

Theorem 2. M is a full model of Geomd
2 iff M is isomorphic to (Rd, BRd , CRd).

It is intuitively clear that this is provable inside set theory. To put this into our
formalization, fix an application signature σ = {B,C} with type declarations: B : atom⇒
atom⇒ atom⇒ bool and C : atom⇒ atom⇒ atom⇒ atom⇒ bool. Let Geomd=3

2 (B,C)
be 2nd order Hilbert-Tarski geometry with d = 3 using these primitives.

Then we have a semantic equivalence (76) and the Hilbert-Tarski Representation
Theorem (77) as theorems of set theory with atoms:49

ZAσ ` Geomd=3
2 (B,C)↔ Sat2((A,B,C), pGeomd=3

2 (B,C)q) (76)

ZAσ ` Sat2(M, pGeomd=3
2 (B,C)q)↔ (∃ϕ : A→ R3)

(
M

ϕ∼= (R3, BR3 , CR3)
) (77)

Together these imply another categorical equivalence:50

ZAσ `

2nd order geom (d = 3)︷ ︸︸ ︷
Geomd=3

2 (B,C) ↔

Rep. Hypothesis︷ ︸︸ ︷
(∃ϕ : A→ R3)

(
(A,B,C)︸ ︷︷ ︸

World’s structure

ϕ∼= (R3, BR3 , CR3)︸ ︷︷ ︸
Abstract 3-d geometry

)
(78)

We may, as Albert Einstein did (see Einstein (1921)), see the geometric theory
Geomd=3

2 (B,C) as an interpreted physical theory : it says the points of real physical space
are betweenness-related, and congruence-related, thus-and-so.51 Yet realizing of course
the heavily mathematicized nature of contemporary geometry within pure mathematics
itself, Einstein raises the issue of applicability in Einstein (1921):

48 BRd and CRd are betweenness and congruence relations defined on Rd. See Tarski (1959), p. 21, for
their definitions (as applied to an arbitrary real-closed field F . Here that field is R). I have changed
notation a little bit.

49 The subscript on the (model-theoretic) satisfaction predicate Sat2 is there to indicate that Sat2(M, ...)
means “M is a full model of . . . ”.

50 One can repeat this trick for any finitely axiomatized categorical second-order theory whose cate-
goricity is provable in set theory. For example, PA2 and RCF2.

51 A claim which ultimately has empirical content. The surface area A of any sphere with radius R
metres around some point p (imagine a gigantic spherical “balloon”, millions of kilometres in radius,
centred on the Sun) should satisfy A = 4πR2 (in metres2). If A < 4πR2 or A > 4πR2, then the
(spatial) geometry is non-Euclidean.
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At this point an enigma presents itself which in all ages has agitated inquiring
minds. How can it be that mathematics, being after all a product of human
thought which is independent of experience, is so admirably appropriate to the
objects of reality? (Einstein (1921): 28)

Einstein goes on to describe the then-contemporary (Hilbertian) views, as “advocated by
modern axiomatics”:

This view of axioms, advocated by modern axiomatics, purges mathematics of
all extraneous elements, and thus dispels the mystic obscurity which formerly
surrounded the principles of mathematics. But a presentation of its principles
thus clarified makes it also evident that mathematics as such cannot predicate
anything about perceptual objects or real objects. In axiomatic geometry the
words “point”, “straight line”, etc., stand only for empty conceptual schemata.
That which gives them substance is not relevant to mathematics. (Einstein
(1921): 30-31)

Einstein notes the puzzle concerning how this more structural view of geometry, which
had become prevalent under the influence of Hilbert (1899) and others was reconnected
back up to the physics.52

The solution that Einstein gives is quoted below, at the beginning of Section 8: we
require an additional claim involving “the co-ordination of real objects of experience
with the empty conceptual frame-work of axiomatic geometry”. This is what I call
a Representation Hypothesis below. The explanation of how the two ways of putting
things are “connected” is given by our (78): the physical theory Geomd=3

2 (B,C) may be
reformulated equivalently, in a “more structural way”, as a Representation Hypothesis,
saying that there is an isomorphic correspondence between these points equipped with
their physical structure, viz. (A,B,C), and the abstract system (R3, BR3 , CR3). It is
intimately related also to what the logical empiricists began to call “correspondence
rules” or “bridge principles”.

7 Application Conditionals

I find it quite amazing that it is possible to predict what will happen by math-
ematics, which is simply following rules which really have nothing to do with
the original thing. (Feynman (1965): 171.)

7.1 Definition

Definition 19. Let φ1 and φ2 be L(σ∈)-formulas (which may have free variables). If

ZFCAσ ` φ1 → φ2 (79)

we say that φ1 → φ2 is an application conditional (provable in ZFCAσ).

52 This was a topic of enormous interest to, and huge stimulus to, the newly forming group of logical
empiricists, Moritz Schlick, Rudolf Carnap and Hans Reichenbach. See Schlick (1918), Carnap (1922),
Reichenbach (1924).
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7.2 Examples: Differential equations

This looks very trivial. And indeed is, in some cases. For example, ∀x(x = x) →
∀x(x = x) is an application conditional, as is any logical validity of the form φ1 → φ2.
And if φ2 is a theorem of ZFCAσ, then, again trivially, so is φ1 → φ2.

However, it becomes non-trivial when φ1 and φ2 are not theorems of ZFCAσ. And this
is the standard situation in applied mathematics: in that setting, application conditionals
turn up everywhere. The reason is the following. In applied mathematics, we frequently
mathematically reason from some assumptions about, e.g., some physical function F (i.e.,
a mixed function) and/or some “physical” set X and/or relation R (including impure
sets and relations of concrete things) to conclusions about that function F , and/or set
X and/or relation R.53 Suppose we schematically represent the premise as φ1(F, . . . )
and the conclusion as φ2(F, . . . ). In general, φ1(F, . . . ) and φ2(F, . . . ) are not theorems
of applied mathematics. However, we may reason mathematically from φ1(F, . . . ) to
φ2(F, . . . ) within applied mathematics.

To put it as a metaclaim about provability in the base theory:

ZFCAσ ` φ1(F, . . . )→ φ2(F, . . . ) (80)

In some cases, the F, . . . in premise φ1(F, . . . ) and conclusion φ2(F, . . . ) are free
variables. In some cases, F, . . . may be function symbols, predicates or constants in the
application signature. Either way, it is not usually the case that these premises and
conclusions are provable in ZFCAσ. And it is not usually the case that these sentences
φ1, φ2 are themselves mathematics-free.

7.2 Examples: Differential equations

Examples in mathematical physics abound. Many have the following form:

ZFCAσ `

law/differential equation︷ ︸︸ ︷
Law(F, . . . ) ∧

boundary condition︷ ︸︸ ︷
BC(F, . . . )

→ solution︷ ︸︸ ︷
Sol(F, . . . ) . (81)

Suppose we have a simple first-order differential equation and along with a boundary
condition, such as:54

∂tF = kF (t)

F (0) = p
(82)

Then it is standard exercise to deduce the form of its solutions:

F (t) = pekt (83)

53 The function F might be a temperature function, or an electric field, or a wavefunction, or . . . ; the
set X might be the set of impacts between a billiard ball and the cushion, or the set of voters in a
region, or . . . .

54 Here, we have some otherwise unspecified function F : R→ R, and k ∈ R is some fixed parameter.
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7.2 Examples: Differential equations

In such cases, clearly the premises and conclusion are not theorems of applicable mathe-
matics. However, the whole conditional is such a theorem:55

ZFCAσ `

· · · ∧ differential equation︷ ︸︸ ︷
(∀t ∈ R)

(
∂tF (t) = kF (t)

)
∧

boundary condition︷ ︸︸ ︷
F (0) = p

→ solution︷ ︸︸ ︷
∀t ∈ R (F (t) = pekt)). (84)

Example 4. Schrödinger’s Equation and the Quantized Energy Spectrum
I return to the example mentioned at the end of Subsection 1.4. First, the time-

independent Schrödinger Equation, specialized to the hydrogen atom, is, roughly:56

(∀x : Space)

(
(− ~2

2me
∇2 − e2

4πε0|x|
)Ψ(x) = EΨ(x)

)
(85)

Clearly, applied mathematics does not prove the (physical) Schrödinger equation (85),
which, after all, is contingent. But applied mathematics does prove the conditional—
that if the Schrödinger equation holds for a (possibly mixed) function F on some set or
structure X (which may or may not be spacetime), satisfying certain conditions, then
the solutions are thus-and-so, or certain properties of such solutions hold:

F : X → C ∧ · · · ∧

Time Indep Schrödinger equation︷ ︸︸ ︷
(∀x : X)((−a∇2 − b

|x|
)F (x) = EF (x))∧E < 0

→
Quantized spectrum︷ ︸︸ ︷

(∃n ∈ N>0)(E = − c

n2
) (86)

An application conditional like (86) may require a substantial level of mathematical
sophistication to prove. Indeed, textbooks and monographs in mathematical physics
probably devote over 90% of their material to developing such techniques.

It is now easy to see how the application conditional (86) is then applied to the
physical law (85) itself. It is merely an example of quantifier instantiation, followed by
modus ponens; doing this (and plugging in the correct value for c, given the specified
parameters) we obtain:

E < 0→ (∃n ∈ N>0)(E = − mee
4

2(4πε0)2~2

1

n2
) (87)

This says the bound states (E < 0) have precisely these energy eigenvalues. 4

55 The dots “. . . ” in the antecedent stand for a a couple of implicit structural conditions “F is a function
on the reals (F : R→ R) and F is differentiable”.

56 Here I simplify a fair amount and use some standard physics notation. The “|x|” means the length of
the segment from the point x to some implicit origin O, centred in the proton. Normally, this equation
is written in terms of the co-ordinate representation of Ψ in polar co-ordinates—say ψ(r, θ, φ)—with
r = 0 being the proton’s location, and then |x| is replaced by r, but I wish to stress that Ψ really is
a (mixed) function on space.
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7.3 Remark on the “Mapping Accounts”

7.3 Remark on the “Mapping Accounts”

Recent advocates of “mapping account(s)” of applied mathematics have argued that,
whenever mathematics is applied, this always must be reducible to there being a “repre-
sentational mapping”, say a morphism

h : Memp →M (88)

from an “empirical setup” (or “assumed structure”) Memp to a pure mathematical struc-
ture M .57 My focus here is on the view set out in Bueno & Colyvan (2011) and Bueno
& French (2018).

In the case of geometry (e.g., Subsection 6.5), or in the case of the Königsberg bridge
problem (e.g., Example 6.4, Subsection 6.4, Example 5), one can see that something like
this is indeed the case.58

However, in examples like the above—and differential equations in general in math-
ematical physics, involving mixed quantity functions—I don’t see anything like such a
“representational mapping”. What, for example, isMemp? What is h? The wavefunction?
How is the wavefunction a representational mapping? What relations does it preserve or
represent?

Instead, it seems we have (i), an application conditional (86), a theorem of applied
mathematics (i.e., provable in a system like ZFCAσ), and (ii), a law of physics (85). The
conditional is universally quantified with what are, in effect, set and function quantifiers.
I am then able to instantiate the initial quantifiers of this theorem on the set terms from
the physical law itself (85)—i.e., set terms which denote the (mixed) wavefunction and
the (impure) set of space points. Consequently, I may infer the required conclusion, (87),
regarding the energy spectrum of hydrogen.

In fact, I would estimate a gigantic proportion of applied mathematics fits this very
mould: universally quantified application conditionals (provable in the applied mathe-
matics base theory), combined with specific (contingent) laws containing set or function
constants (denoting certain mixed physical quantities, often measurable ones) which can
be used to instantiate the relevant conditional.

It is not clear to me how this fits into the “mapping account”. Perhaps it is being
implicitly assumed that the physical wavefunction Ψ (of the electron) is itself a “repre-
sentational mapping”? But how is that so? This particular claim does happen to be a
central component of Field’s Programme, and Field aims to establish such results in Field

57 See Pincock (2007), Pincock (2012), Bueno & Colyvan (2011) and Bueno & French (2018). The
Königsberg Problem is raised and discussed in some detail in both Pincock (2007) and Pincock
(2012).

58 In both cases, I also defined the “assumed structure”. For geometry, the assumed structure is (A,B,C).
For the Königsberg Problem, the assumed structure is PK , the Königsberg multigraph. I should
mention also that the Königberg problem can be solved without invoking any mapping or isomorphism.
One may simply reason directly about PK and infer from its properties that each vertex has odd
degree, and thus that it lacks a Euler cycle, without a detour involving an abstract copy (i.e., GK) of
PK . In fact, the problem can be solved without mathematics at all, but that brings in considerations
of conservativeness.
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7.4 Example of Mathematical Explanation

(1980), by showing that physical fields can be “nominalized”. So the only way I can see
the “mapping account” as being in accord with the widespread formulation of physical
laws as differential equations is that it presupposes the success of Field’s Programme.

7.4 Example of Mathematical Explanation

Our Schrödinger Equation example also seems to provide an example of mathematical
explanation: Why are the energy levels of the hydrogen atom quantized? The answer
is: first, the orbital wavefunctions of the hydrogen atom are eigenstates satisfying the
time-independent Schrödinger equation; second, the negative eigenvalue spectrum (for
these eigenstates) is quantized. The first fact is contingent (and only holds to a certain
approximation). But the second fact, i.e., (86), is a theorem of the base theory for applied
mathematics.

8 Representation and Transfer

To be able to make such assertions, geometry must be stripped of its merely
logical-formal character by the co-ordination of real objects of experience with
the empty conceptual frame-work of axiomatic geometry. To accomplish this,
we need only add the proposition: –

Solid bodies are related, with respect to their possible dispositions,
as are bodies in Euclidean geometry of three dimensions.

Then the propositions of Euclid contain affirmations as to the relations of
practically-rigid bodies.

Geometry thus completed is evidently a natural science; we may in fact regard
it as the most ancient branch of physics. (Einstein (1921): 31–32. Emphasis
added)

8.1 Isomorphism and Transfer

A standard result in model theory, the Isomorphism Theorem, is the following:

Theorem 3. Let σ be a signature and let A,B be σ-structures. Then

If A
F∼= B then, for any φ ∈ L(σ), A |= φ iff B |= φ.

There is a sense in which “A |= φ” expresses that the structure A has a certain
“structural property” (viz: the structural property defined by φ).59 So, the Isomorphism
Theorem states that if A ∼= B, then A and B have the same structural properties. One
can express this a little more intuitively by talking of transfer :

59 A “structural property” of A = (D,R1, . . . ) is one that doesn’t depend on aspects of the intrinsic
nature of the elements of dom(A), but only on the properties and relations Ri explicitly specified
in the structure A. See Korbmacher & Schiemer (2018) for a discussion of such properties and an
analysis of them in terms of definability in infinitary languages.
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8.2 Examples

If A ∼= B, any structural property of A transfers to a structural property of B
(and vice versa).

This yields another, extremely common, phenomenon in applied mathematics. We define,
usually by comprehension, an impure physical system P . We then state a contingent
representation hypothesis:60

Representation Hypothesis: ∃F (P
F∼= M). (89)

From this hypothesis, we may deduce (within applied mathematics):

Transfer Principle: If M satisfies condition φ, P satisfies condition φ. (90)

Schematically:
Transfer Principle: φ(M)→ φ(P ). (91)

We have the physical system P (the physical system is an impure mathematical object,
sometimes involving mixed functions too). This physical system is represented by an
abstract mathematical object M via an isomorphism. Since we may already have some
large library of results about that object M (e.g., because it belongs to a well-known
class of objects satisfying similar conditions), we can “transfer” such results back to P .61

8.2 Examples

Example 5. Königsberg Bridges
I return again to Example 2 and Section 6.4. There, we fixed a purely atomic ap-

plication signature σ = {bridge, land-area, connects}; we defined the Königsberg bridge
system PK ; we expressed the “relevant empirical facts” in the Königsberg sentence φK ;
we defined an abstract multigraph GK ; we proved that PK is a model of φK and that
φK is categorical; and we sketched the result that this in formalizable inside ZAσ:

ZAσ ` φK ↔ (PK ∼= GK) (92)

Here, the mathematical sentence (PK ∼= GK), which is an abstract equivalent of
φK , is a Representation Hypothesis: therefore, we obtain transfer principles from it.
In particular, the following property of the (pure) multigraph GK , provable in ZAσ (in
ZA−∞σ in fact):

Lemma 13. GK has no Euler cycle.

60 Here the representation is an isomorphism. But it is clear that sometimes weaker morphisms, homo-
morphisms and embeddings, are in play in applied mathematics.

61 In this case, structures A and B are isomorphic. What if there is merely a homomorphism f : A→ B?
Or an embedding, say? Then the class of transferable properties is smaller. The pattern for groups
is analysed in Lyndon (1959). For example if f : G1 → G2 is a surjective homomorphism of groups,
then G2 is Abelian if G1 is; and G2 is cyclic if G1 is; etc.
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Proof. GK is a connected multigraph with 4 vertices and each vertex has odd degree. By
Theorem 1, GK has no Euler cycle. 4

We may therefore combine this with the above, and transfer this property to the
physical bridge system PK :

Lemma 14. ZAσ `
[
φK → (PK has no Euler cycle)

]
.

We have a proof in applied mathematics of the conditional claim that: if φK is true,
then PK has no Euler cycle. Since φK is (empirically) true, we conclude that PK has no
Euler cycle.62

I must stress that applied mathematics ZAσ does not, of course, prove the contingent
sentence “PK has no Euler cycle” (about an impure structure). It proves the conditional :
“If some vertex in PK has odd degree, then PK has no Euler cycle”. Indeed, this—i.e.,
its provability in applied mathematics—is what licences any counterfactual conclusions
we might draw about the bridges at present, or in future. 4

Example 6. Geometry
I return to Subsection 6.5, concerning second-order geometry and categorical equiv-

alence. Inside our applied mathematics base theory—set theory with atoms—we can
prove the abstract equivalence:

2nd order geom (d = 3)︷ ︸︸ ︷
Geomd=3

2 (B,C) ↔

Rep. Hypothesis︷ ︸︸ ︷
(∃ϕ : A→ R3)

(
(A,B,C)︸ ︷︷ ︸

World’s structure

ϕ∼= (R3, BR3 , CR3)︸ ︷︷ ︸
Abstract 3-d geometry

)
(93)

Thus if I think of my overall scientific theory T of the geometry of space as follows:63

T := ZFCAσ + Geomd=3
2 (B,C), (94)

I can therefore prove in T the Representation Hypothesis:

T ` (∃ϕ : A→ R3)
(

(A,B,C)︸ ︷︷ ︸
World’s structure

ϕ∼= (R3, BR3 , CR3)︸ ︷︷ ︸
Abstract 3-d geometry

)
(95)

So, if I happen to know some (pure, and structural) mathematical fact about
(R3, BR3 , CR3), I can transfer it back to the (impure) physical system (A,B,C). To take a
standard example that arises in physics lectures, we know from the linear algebra of vec-
tor spaces that there are not four vectors v1,v2,v3,v4 in R3 which are mutually at right
angles. For if I have three v1,v2,v3 meeting this condition, then they form a basis (for

62 Although φK was true, it is, apparently, no longer true; some of the bridges of Königsberg at the
time of Euler have been knocked down.

63 We know, course, from Einstein, that T is not true. The flat spatial geometry Geomd=3
2 (B,C) is in

some sense “approximately true” for smallish regions of space around a point.
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the tangent space), and therefore any extra vector w that I happen to consider is linearly
dependent on them somehow (there are reals α1, α2, α3 st: w = α1v1 + α2v2 + α3v3).

By transfer, this means that there cannot be four line segments (say all rooted at
some point O) in (A,B,C)—i.e., in physical space—all mutually at right angles. But
there can be three, given by one’s thumb, forefinger and second finger:

But no matter how one tries to point one’s third finger, it cannot point perpendicu-
larly to the three given directions.64 4

9 Summary

A major point I want to make is that a simple standard formalization of most
theories in the empirical sciences is not possible. The source of the difficulty
is easy to describe. Almost all systematic scientific theories of any interest
or power assume a great deal of mathematics as part of their substructure.
There is no simple or elegant way to include this mathematical substructure in
a standard formalization that assumes only the apparatus of elementary logic.
(Suppes (1992): 207)

I have described a many-sorted base theory for applied mathematics—ZFCAσ:
Zermelo-Fraenkel set theory (with Choice) with atoms, over an underlying sort sys-
tem S = {bool, atom, set, global}—showing how it accommodates reasoning about impure
mathematical objects (sets and relations of atoms; structures built from them) and mixed
relations and functions. The formalism incorporates what I have called an “application
signature” σ (which can be varied from case to case). The examples given above illustrate
the following five features of applied mathematics:

64 One may, of course, take this empirical observation and read it backwards: as empirical evidence for
d = 3 in our underlying geometric system Geomd

2(B,C). This is precisely what one hears in a physics
lecture. “Why is d = 3? How do we know? Why isn’t d = 4 or d = 25?”, followed by the three
finger explanation. Of course, this argument may break down if there are teeny extra dimensions,
too small for us to notice them as a new direction into which to “point”. The idea that (spatial) d = 4
in fact was introduced by Theodor Kaluza in 1921 (Kaluza (1921)) and extended by Oskar Klein
in 1926 (Klein (1926)), suggesting the extra dimension is curled up in a tiny circle with subatomic
radius. In such “Kaluza-Klein theories”, by imposing Einstein’s equations on the 4 + 1-metric, one
obtains Maxwell’s equations as a consequence! The idea that d = 25 arises in the quantum theory of
(bosonic) strings. The quantum theory of a bosonic string in N dimensions only works if N = 25 + 1.
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Comprehension principles ∃X∀x (x ∈ X ↔ φ(x)).
Application conditionals φ1(X, . . . )→ φ2(X, . . . ).

Representation hypotheses P
F∼= M .

Transfer principles φ(P )↔ φ(M).
Abstract equivalents φ↔ φabs.

To test the adequacy of this approach, including identifying when the features CARTA
appear, one may take any law of physics, or quantitative law, or statistical reasoning,
or discrete mathematics reasoning, and see if it can be formalized in ZFCAσ, at least in
principle. One must fix a signature σ, and then formalize the relevant laws, assumptions,
etc., in this signature.65 There is no requirement that the signature σ be purely atomic
(although that case is philosophically interesting, as Field (1980) made clear).

In a second paper, I intend to explain certain meta-logical features of applied
mathematics—conservativeness, non-conservativeness, and speed-up.66

A Four-Sorted System

A.1 Well-Formed Terms and Primitive Formulas

Definition 20 (Well-formed). Let σ be an application signature over S. We recursively
define the well-formed terms and well-formed primitive formulas:

(1) Each constant (including >,⊥) and variable is a well-formed primitive term.
(2) If F is an n-ary function symbol in σ and t1, . . . , tn are well-formed terms, then

F(t1, . . . , tn) is a well-formed term iff τi(F) = τ(ti); and, if well-formed, the
term F(t1, . . . , tn) has sort τn+1(F).

(3) If P is an n-ary predicate in σ, t1, . . . , tn are well-formed terms, then
P(t1, . . . , tn) is a well-formed primitive formula iff either τi(P) = τ(ti) or τ(ti)
is global.

Note: the additional clause in (3) implies that if x1, . . . , xn are global variables, then
P(x1, . . . , xn) is always a well-formed primitive formula.

A.2 Definition of the language L(σ∈)

Definition 21 (Definition of L(σ∈)). In stages: (1) Variables: Each sort has its own
stock of variables (bi, ai, Xi, xi). (2) Identity & Membership Predicates: There is a global
identity predicate = and a global membership predicate ∈, each with the type declaration:
global ⇒ global ⇒ bool. (3) Terms: primitive terms are defined to be variables and

65 One could extend the basic sort system S I have described, if one likes, in order to make it more
“user-friendly”. One might include sorts for special kinds of atoms (e.g., in geometry one might adopt
special sorts point and region), or sorts for special kinds of sets, or relations, or functions, or structures.

66 I am grateful to two referees who provided very helpful comments and suggestions. I am grateful to
Ali Enayat and Christopher Menzel for suggestions. This work was supported by a grant from the
National Science Centre (NCN) in Kraków (2018/29/B/HS1/01832).
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A.3 Quasi-logical Axioms

constants; terms are defined to be primitive terms, along with, for terms t1, . . . , tn and n-
ary function symbol F, the function terms F(t1, . . . , tn) constructed inductively, matching
the sort restrictions given above.67 (4) Primitive Formulas: The primitive formulas are
identity and membership primitive formulas, of the form t1 = t2 and t1 ∈ t2, along with,
for terms t1, . . . , tn, formulas P(t1, . . . , tn), constructed according to the sort restrictions.
(5) Connectives & Quantifiers: We introduce the usual logical connectives ¬,∧, . . . , and
quantifiers ∀ and ∃ which can bind any variable. (6) Formulas: Formulas of L(σ∈) are
primitive formulas, along with formulas obtained recursively by applying connectives and
quantifiers, by the obvious modification of the usual definition of “formulas” for a 1-sorted
first-order language. (7) Sublanguage L(σ): L(σ) is the corresponding sublanguage over
σ. (8) Sublanguage L(σ �atom): L(σ �atom) is the 1-sorted language over subsignature
σ �atom, in which all variables are atom variables, ai.

A.3 Quasi-logical Axioms

Definition 22 (Boolean axioms). The following are called boolean axioms:

> 6= ⊥ ∀b(b = > ∨ b = ⊥). (96)

Definition 23 (Sort axioms). The following five formulas are called the sort axioms:

SA1 : atom(x)→ ¬set(x).

SA2 : atom(x)→ ¬bool(x).

SA3 : bool(x)→ ¬set(x).

SA4 : bool(x) ∨ atom(x) ∨ set(x).

SA5 : x1 ∈ x2 → set(x2).

(97)

Definition 24 (Subsort Axioms). The following schemes are called “Subsort Axioms”:

∀xφ(x)→ ∀aφ(a).

∀xφ(x)→ ∀bφ(b).

∀xφ(x)→ ∀Xφ(X).

(98)

where it is required that φ(a), φ(b) and φ(X) be well-formed.
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