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Zsolt Zombori1, Adrián Csiszárik1, Henryk Michalewski3, Cezary Kaliszyk2, and
Josef Urban4
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1 Introduction

The FLoP system was built to allow for experimenting with advanced reinforcement learning
(RL) methods applied to guide theorem proving. Its particular focus is to enable learning from
and generalizing to long proofs, which is a largely unsolved challenge in theorem proving. The
system is very flexible in terms of what it can learn from: even a single training environment
(proof) can result in meaningful generalization. On the other hand, FLoP is simplistic in several
ways: 1) it learns from manually extracted features, 2) it can overfit in some learning scenarios
and 3) its merits have so far been demonstrated only on a very simple dataset. Here we only
address 1), the problem of feature extraction.

We present ongoing work that aims to use graph neural networks (gnn) [9] for feature extraction.
Gnns have been used to learn features of logic formulae on several supervised tasks, e.g. [3, 7,
8, 2]. However, there are very few experiments with such extractors in a reinforcement learning
setting. RL models are typically convolutional and dense networks. Related exceptions are [6]
and [5] that use graph extractors. However, while these systems use intertwined iterations of
proof search and supervised learning, FLoP uses a pure reinforcement learning loop.

We consider learned formula embedding as a stepping stone for more involved projects that
combine machine learning and theorem proving. In Appendix A and B we briefly present two
such project proposals planned as future work.

2 Feature extraction

Machine learning models require inputs embedded into some Euclidean space Rn. However,
when it comes to learning to guide a theorem prover, states and actions are given as logical
formulae and it is highly unclear how to turn them into fixed length vectors. An often used
approach is to do some manual feature extraction. Currently, FLoP extracts triples of adja-
cent nodes in the formula trees as features. These features convey some statistically relevant
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information, however, a large part of the semantics is lost. Another approach that is gaining
popularity is to represent formulae as graphs and use graph neural networks to produce an em-
bedding vector. Their promise is to adapt feature extraction both to the data and the problem,
i.e., to produce an embedding that best fits the current learning task.

3 Embedding with Graph Neural Networks

A gnn takes a labelled graph as input. Each node has some inital embedding vector. The initial
embedding is refined in multiple iterations using a learnable updater model : the new embedding
is calculated from previous embeddings of its neighbourhood. Hence, it exploits the structure
of the graph, allowing information to propagate along the edges. We perform a fixed number
of update operations, called hops to obtain the final embedding of the nodes. Finally, some
aggregation operation creates a single embedding of the graph from that of its nodes.

Projects using gnns show a large variance with respect to how the input is turned into a graph.
We present our proposed approach by comparing it to two recent variants: [7] and [8, 6].

NeuroSAT [7] embeds propositional formulae in conjunctive normal form (CNF). The result-
ing graph has 2 kinds of nodes (clauses, literals) and 2 kinds of edges (from literals to their con-
taining clauses, between negated literal pairs). Thanks to the small number of node/edge labels,
each kind of interaction is represented by separate neural networks in the update step.

FormulaNet and Graph Embeddings for HOList [8, 6] embed formulae of higher order
logic. The graph is the abstract syntax tree of the formula. The number of different symbols that
can occur in the input is not bounded, so a single update operation is performed on all nodes.
Node type information is preserved in a learnable initial embedding. Function application is
curried in the syntax tree, so each node has at most two children, i.e., we only need two types of
edges. Identical subexpressions are merged. A major complication, that was not present in [7]
is the representation of variables. [8, 6] collapse all variables into a single ”VAR” symbol.

FLoP In FLoP, we embed first order formulae in CNF. Our implementation is very similar
to that of [6], we start from the syntax tree, with two differences: 1) The initial embedding
is a fixed random vector. 2) Variables are not collapsed into a single node. Rather, they are
wrapped into a ”VAR” function and are normalised to ensure that they are renaming invariant.
This setup ensures that the formula is recoverable from the graph: the initial embedding vector
of the nth variable (according to a preorder traversal) is the same for all inputs.

4 Graph Embedding in FLoP

FLoP is built on the leanCoP connection tableau calculus, so its current state is given by the set
of valid actions and the partial tableau tree, with the following main components: the current
goal, the branch leading to the current goal, remaining open goals and the currently applicable
lemmas. At each step, a policy network computes a probability distribution over the valid
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Update on FLoP Zombori, Csiszárik, Michalewski, Kaliszyk, Urban

actions. Each component of the input is currently a hand crafted feature vector, which can be
easily replaced with the embedding network described above.

This is an ongoing effort and in our talk we will present first results using graph embeddings in
FLoP. As a proof of concept, we have done some supervised experiments that use our embedding
network: we collected theorem proving attempts from FLoP training and trained to predict if a
(state, action) pair can lead to success. We achieved 100% training accuracy on a training set
of 20000 entries. We are working to see how well it generalizes.
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Appendix A Project Plan: Bolzano-Weierstrass Theorem

The MPTP Challenge [4] consists of the Bolzano-Weierstrass theorem and its 252 auxiliary
lemmas, constituting a relatively small, consistent problem domain. One part of the challenge
is to prove the theorem and all lemmas from scratch using in each derivation only basic axioms,
hence forcing long proofs. In this setup, we believe that curriculum learning can be very useful
and we intend to try to tackle the challenge with FLoP.
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Appendix B Project Plan: Backward Hindsight Experi-
ence Replay

Hindsight Experience Replay (HER) [1] is a clever approach to alleviate reward sparsity prob-
lems in RL environments. Its core idea is to take an unsuccessful exploration trajectory, observe
state S that it reached (as opposed to target state T) and then replay the same trajectory, while
pretending that the target state is now S. During the replay, the agent is rewarded for reaching
the new target.

HER is directly applicable to a theorem proving environment that performs forward reasoning:
each theorem proving attempt some valid consequences of the axioms, even if not the target
conjecture, so it makes sense to assume the new target in the replay. However, it is not obvious
how to do it for backward reasoning.

The aim of our project is to redesign HER for the setting of a backward theorem prover.

B.1 Setup

We want to train a backward theorem prover, i.e., one that starts from a target formula (goal)
and at each inference step reduces the current goal to a list of other goals. Once a goal is
identical to some axiom or previously known lemma, the goal is closed and we can proceed to
try to prove the remaining goals. The proof is complete when all goals have been closed.

B.2 Core Idea

We use Hindsight Experience Replay to provide denser reward to the guidance model. Consider
a single theorem proving attempt. If all goals are closed, then we have obtained a proof of the
target and we can give positive reward to the policy. If there are some open goals, then we
can pretend that those goals were among the initial axioms and give positive reward in this
modified setting.

B.3 Components

The system has four components:

1. Embedder e: takes a formula and maps it into a vector in Rn. This is most likely a
graph neural network.

2. Aggregator c: takes a set of formula (axiom) embeddings e(a1), e(a2) . . . e(ak) and maps
it into a single aggregate embedding, which represents the conjuction of the formulae. This
could be a recurrent neural network, though some permutation invariant solution would
be best.

3. Policy p: takes a goal embedding and an aggregate axiom embedding and returns
an action probability distribution.

4. Value v: takes a goal embedding and an aggregate axiom embedding and returns
a scalar value of the goal, given the axioms.
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These components are trained together, end-to-end.

B.4 Training

We iterate the steps below:

1. Select a problem with goal g0 and axioms (lemmas) a1, a2, . . . ak

2. Compute initial goal embedding eg0 = e(g0) and aggregate axiom embedding ea =
c(e(a0), e(a1), . . . e(ak))

3. Try to prove the goal based on the current policy p(egi , ea)

4. Perform a gradient step based on the proving attempt for the value and policy, propagating
the gradients all the way to the aggreagator and embedder as well.

5. If the proof attempt failed, i.e., we are left with open goals og0, og1, . . . ogl, then

(a) Compute new aggregate embedding
eâ = c(e(a0), e(a1), . . . e(ak), e(og0), e(og1), . . . e(ogl))

(b) Replay the same inference steps with the new aggregate axiom embedding in the
policy p(egi , eâ)

(c) The open goals (ogi) are now axioms, so the proof is complete, hence we give positive
reward and perform a gradient step.

B.5 Benefits

• We provide positive reward for every single theorem proving attempt.

• The policy receives a representation of the axiom set (knowledge base) and can make
more informed decisions.

• This works with any RL algorithm. There is no need of a DAGGER like setup, with
separate phases of data collection and supervised learning.

B.6 Difficulties

• Building a meaningful aggregate embedding of the available knowledge base (all axioms
and lemmas) might be hard and might be very slow. Some ideas to address this:

– Use premise selection to restrict the aggregator to a handful of lemmas.

– Precompute the aggregate embedding of all the lemmas and only ”incorporate” the
embeddings of the axioms to the aggregate lemma embedding for each problem

• Different open goals might be related due to sharing some variables. When we add the
open goals as new axioms in HER, we have to make sure that the axioms are consistent.
E.g. when we have two open goals f(X) and ¬f(X), there is no way to add axioms that
satisfy both.
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