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Abstract

The automatic detection of conflict situations from human

speech has several applications like obtaining feedback of em-

ployees in call centers, the surveillance of public spaces, and

other roles in human-computer interactions. Although several

methods have been developed to automatic conflict detection,

they were designed to operate on relatively long utterances.

In practice, however, it would be beneficial to process much

shorter speech segments. With the traditional workflow of par-

alinguistic speech processing, this would require properly an-

notated training and testing material consisting of short clips.

In this study we show that Support Vector Regression machine

learning models using Fisher vectors as features, even when

trained on longer utterances, allow us to efficiently and accu-

rately detect conflict intensity from very short audio segments.

Even without having reliable annotations of these such short

chunks, the mean scores of the predictions corresponding to

short segments of the same original, longer utterances corre-

late well to the reference manual annotation. We also verify

the validity of this approach by comparing the SVM predic-

tions of the chunks with a manual annotation for the full and

the 5-second-long cases. Our findings allow the construction of

conflict detection systems having smaller delay, therefore being

more useful in practice.

Index Terms: conflict intensity estimation, computational par-

alinguistics, Fisher vectors

1. Introduction

Conflicts are an inherent part of everyday human communica-

tion, either in personal or in public life. In a conflicted situation,

the people involved are pursuing incompatible goals [1, 2]. This

usually leads to conversations being more intense than usual,

manifesting itself in raised voices and in a greater number of

interruptions [3]. Since conflicts are one of the main causes of

stress [4], the quick and automatic detection of conflicted situa-

tions could prove to be useful. With the rise of socially intelli-

gent technologies, the automatic detection of conflicts could be

the first step of handling them properly.

Of course, participating in a conflict affects the speech of

people as well. For example, in such situations speakers tend

to interrupt each other more frequently than usual, which leads

to a more frequent occurrence of overlapping speech [5, 6], and

also to increased volume and articulation tempo [7]. Over the

past few years, researchers have applied various approaches for

detecting conflict from the speech signal, ranging from the auto-

matic detection of speech interruptions to Recurrent Deep Neu-

ral Networks [3, 7, 8, 9, 10, 11, 12, 13]. What was common

in these studies, however, is that (despite some authors using

phrases such as ‘continuous’ and ‘short-term’) the actual’ con-

flict intensity was determined based on a relatively long audio

clip. The reason for this was simple: the absence of annotated

short audio clips. For example, the most popular dataset used

in these experiments is the SSPNet Conflict Corpus [3], which

consists of 30-second-long segments. Although short(er) audio

clips can easily be created automatically from longer utterances,

without a proper annotation these would be of a very limited

use in two distinct steps. The more straightforward issue is that

we would need these recordings for model training. However,

perhaps a more important issue with the absence of such short,

annotated recordings is that of model evaluation: without ap-

propriate development and test sets it is very hard to rate the

performance of our classification or regression models.

In this study, in contrast with previous works, we will show

that it is possible to train machine learning methods which can

deliver a good performance even on very short utterances (in

our case, even one second). For this, we employ the feature

extraction approach of Fisher vectors (FV, [14]), which was

shown to provide a robust utterance-level feature representation

regardless of the length of the actual recording. Besides image

processing studies, FVs were used in audio processing as well,

for categorizing audio files as speech, music and other [15], for

speaker verification [16, 17], for emotion recognition [18], for

determining food type from eating sounds [19], and for identi-

fying Parkinson’s disease [20] and depression [21].

We train our Support Vector Regression (SVR) models on

the original, longer segments, and evaluate them on the short

chunks. In the absence of chunk-level manual annotation, we

compare the utterance-level ground truth scores with the cor-

responding predictions as well as with their mean. Our main

finding is that, while the original chunk-level predictions are

actually pretty much uncorrelated with the utterance-level man-

ual annotation scores, using the means of these predictions in-

stead lead to quite high correlation values. We explain this con-

tradiction by the heterogeneous nature of the original (longer)

recordings. Indeed, the original utterances tend to consist of

parts with remarkably different conflict levels, which are com-

bined into one score by the human annotators; and according

to our results, the SVR models could distinguish between these

regions when making predictions from the small chunks alone.

In the last part of our study, we also verify this hypothesis

by comparing the automatic predictions with human-annotated

conflict intensity opinion scores of small chunks. That is, one

subject annotated 5-second-long chunks of 100 utterances as

well as the full 30-second-long original clips. We measured

very similar correlation coefficient, MSE and RMSE values for

both utterance length cases. This also supports that the SVR

model, trained on 30-second-long utterances, was able to pre-

cisely estimate the conflict intensity of much shorter and diverse

speech segments. Since in a real-life scenario, automatic con-

flict detection systems are expected to react within a relatively

short amount of time (i.e. a few seconds), this finding might as-

sist actual applications, and bring closer automatic human con-

flict detection systems to human expectations.
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2. Fisher Vector Representation

One of the more frequent problems encountered in computa-

tional paralinguistics is that one has to be able to extract a fixed-

size feature vector from the utterances, regardless of their dura-

tion. Although the utterances can be readily split into very short,

overlapping segments (i.e. the frames), utterances of different

lengths will also contain a different number of frame-level fea-

ture vectors. A good solution for resolving this contradiction

and extracting the same number of features from each utterance

is to apply Fisher vectors [19, 22].

The aim of the Fisher vector representation is to combine

the generative and discriminative machine learning approaches

by deriving a kernel from a generative model of the data [14].

That is, let X = {x1, . . . , xT } be d-dimensional low-level fea-

ture vectors extracted from an input sample, and let their distri-

bution be modelled by a probability density function p(X|Θ),
Θ being the parameter vector of the model. The Fisher score

describes X via the gradient GX
Θ of the log-likelihood function;

that is,

G
X
Θ =

1

T
∇Θ log p(X|Θ). (1)

This gradient function practically corresponds to the direction

in which the model parameters (i.e. Θ) should be changed to

best fit the data. Notice that, at this point, the size of GX
Θ is

already independent of the number of low-level feature vectors

(i.e. of T ), and it depends only on the number of model param-

eters (i.e. Θ). The Fisher kernel between the sequences X and

Y is then defined as

K(X,Y ) = G
X
ΘF

−1

Θ G
Y
Θ , (2)

where FΘ is the Fisher information matrix of p(X|Θ), defined

as

FΘ = EX [∇Θ log p(X|Θ)∇Θ log p(X|Θ)T ]. (3)

Expressing F−1

Θ
as F−1

Θ
= LT

ΘLΘ, we get the Fisher vectors as

GX
Θ = LΘG

X
Θ = LΘ∇Θ log p(X|Θ). (4)

When we utilize Gaussian Mixture Models to model the dis-

tribution of the low-level features (i.e. p(X|Θ)) and assume a

diagonal covariance matrix, the GMM model has 2 ·N · (d+1)
parameters (i.e. means and variances for each Gaussian com-

ponent in each feature dimension and the priors of the com-

ponents) overall; by keeping the prior values fixed, the Fisher

vector representation of an instance has a length of twice the

number of Gaussian components for each feature dimension.

To apply Fisher vectors to audio processing, it is straight-

forward to use some standard frame-level features (e.g.

MFCCs [23]) of the utterances as the low-level features (i.e.

X). When using GMMs, a parameter of the method is the num-

ber of Gaussian components (N ).

3. Experimental Setup

3.1. The SSPNet Conflict Corpus

The SSPNet Conflict Corpus [3] contains recordings of Swiss

French political debates taken from the TV channel “Canal9”.

It consists of 1430 recordings, 30 seconds each, making a total

of 11 hours and 55 minutes. The ground truth level of conflicts

was determined by manual annotation performed by volunteers

who did not understand French (French-speaking people were

excluded from the list of annotators). Each 30-second-long clip

was tagged by 10 annotators; in the end each recording was as-

signed a score in the range [-10, 10], 10 denoting a very high

Table 1: Some key properties of the SSPNet Conflict Corpus.

No. of Total Conflict

Set Clips Duration Scores

Training 793 6:36:13 -0.68 ± 3.98

Development 240 2:00:00 -0.21 ± 3.75

Test 397 3:18:16 -0.58 ± 3.98

Total 1430 11:54:29 -0.58 ± 3.94

level of conflict and -10 denoting the absence of conflicts. Al-

though the database contains both audio and video recordings,

following previous studies (see e.g. [9, 11, 24, 25, 26]), we will

rely on the audio data only, and discard the video track.

The audio clips of this dataset were later used in the Conflict

sub-challenge of the Interspeech 2013 Computational Paralin-

guistic Challenge (or ComParE 2013 [27]). Besides completely

discarding video data, other steps were made to standardize the

work on this dataset, and this setup has since been adopted by

most researchers. Perhaps the most important one was that, in-

stead of relying on cross-validation as Kim et al. did when in-

troducing this corpus [3], separate training and test sets were

defined. For some key properties of the SSPNet Conflict Cor-

pus, see Table 1. Note that, although having 12 hours of audio

data is nowadays regarded as a quite small dataset in automatic

speech recognition, in conflict intensity estimation and in sim-

ilar areas (commonly known as computational paralinguistics)

this counts as a moderate-sized corpus.

3.2. Technical Parameters

For the frame-level feature vectors, we used the ComParE fea-

ture set proposed by Schuller et al. [27]. It consists of four

energy-related features (including loudness, energy and Zero-

Crossing-Rate), 55 spectral attributes (e.g. MFCCs, spectral en-

ergies and variances, skewness, kurtosis) and 6 voicing-related

ones (like F0, probability of voicing, logarithmic Harmonic-

to-Noise Ratio, Jitter and Shimmer). These 65 frame-level at-

tributes and their first-order derivatives were calculated using

the OpenSMILE tool [28]. The number of Gaussian Compo-

nents was N = 2, 4, 8, 16, 32, 64 and 128.

For regression, we employed Support Vector Regression

(SVR), using the libSVM implementation [29]. We used a lin-

ear kernel, and the C complexity parameter was set in the range

10{−5,...,1}. Under these experimental conditions, in our pre-

liminary tests we found N = 32 and C = 10−4 to be the

optimal hyper-parameter values on the development set. Since

our study focuses on the applicability of SVR models in very

short-term conflict intensity detection, we will employ this SVR

model from now on. We would also like to add that this model is

an effective one: the correlation coefficient of 0.854 obtained on

the test set is a very competitive one, as the highest such score

ever reported for the SSPNet Conflict Corpus was 0.856 [12].

Similarly to more recent studies on conflict intensity es-

timation (e.g. [10, 12, 13]), we treat the task as a regression

one, and evaluate the performance of a machine learning model

primarily via the Pearson’s correlation coefficient (CC) of the

hand-annotated labels and the predictions. We also report Mean

Squared Error (MSE) and Root-Mean Squared Error (RMSE)

values. We split the original 30-second-long utterances of the

test set into 1, 2, 3, 5, 10 and 15-seconds-long chunks.
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Figure 1: Short-term conflict intensity estimates for two sample utterances. Human-annotated conflict scores are shown with a dashed

line, while (also human-annotated) speaker overlap is shown with a gray background.

Table 2: CC, MSE and RMSE values measured on the test set

of the SSPNet Conflict corpus, when comparing the predictions

with the reference annotation of the full segments.

Prediction Accuracy

Utterance Length CC MSE RMSE

30 sec. (original) 0.854 4.433 2.105

15 sec. 0.771 6.511 2.552

10 sec. 0.719 7.685 2.772

5 sec. 0.652 9.125 3.021

3 sec. 0.612 9.942 3.153

2 sec. 0.580 10.556 3.249

1 sec. 0.530 11.473 3.387

4. Experimental Results

In our first experiment we made the straightforward assumption

that the reference conflict level of each chunk is the same as the

reference annotated score of the original, 30-second long utter-

ance (especially since we have no separate chunk-level annota-

tions). Table 2 shows the results obtained in this way. Clearly,

the shorter the chunks, the less precise the conflict intensity esti-

mation becomes: while we achieved a CC value of 0.854 for the

original segments, we measured a quite low score of 0.530 when

we evaluated our regression model on one-second-long chunks.

The MSE and RMSE values display similar tendencies: there is

a significant increase for the shorter chunks. Considering only

these scores, we might have the impression that the low perfor-

mance associated with the shorter chunks is due to the different

conditions (i.e. utterance lengths) of the training and test sets.

A possible different explanation, however, is that the utter-

ances are made up of smaller parts, which have different lev-

els of conflicts, and the human annotators somehow summarize

these different conflict intensity values into one score, char-

acterizing the average conflict present in the whole utterance.

Therefore, our automatic predictions, obtained only on specific

parts of these utterances, cannot reflect the conflict intensity of

the whole recording; however, it would make sense to combine

these predictions in some way. To do this, we simply took the

mean of the SVR outputs corresponding to the chunks of each

original utterance. (Note that, to adjust the scale of the predic-

tions, we linearly transformed them so as to have the same mean

and standard deviation as the original utterances of the training

set; the transformation parameters were set on the dev set.)

The CC, MSE and RMSE scores for the averaged pre-

dictions are listed in Table 3. Surprisingly, we see that the

Table 3: CC, MSE and RMSE values measured on the test set

of the SSPNet Conflict corpus, when comparing the averaged

predictions with the reference annotation of the full segments.

Prediction Accuracy

Utterance Length CC MSE RMSE

30 sec. (original) 0.854 4.433 2.105

15 sec. 0.850 5.635 2.374

10 sec. 0.847 5.395 2.323

5 sec. 0.844 5.042 2.245

3 sec. 0.843 4.875 2.208

2 sec. 0.844 4.805 2.192

1 sec. 0.845 4.779 2.186

mean of the predictions for the small audio chunks actually fell

quite close to the predictions obtained on the whole utterances.

The Pearson’s correlation coefficient values fell in the range

[0.843, 0.850], which means only a slight decrease in perfor-

mance from the original 0.854 score, while the MSE values rose

from 4.433 to 4.779 . . . 5.635 and the RMSE values from 2.105
to 2.186 . . . 2.374, which are also quite close to the level of the

original predictions. In our opinion, this finding supports our

observation that the difference between the predictions obtained

for the chunks of the same utterances comes from the different

actual conflict level of the chunks. Therefore the SVR outputs

might actually reflect the conflict level of each chunk more pre-

cisely than the manual annotation (which was obtained for the

whole 30-second-long utterances).

Fig. 1 shows two sample utterances, and the short-

term predictions obtained for the chunks that have different

lengths. Clearly, the predictions show that the SVR mod-

els treated the different chunks as ones with different con-

flict levels: in the first utterance (06-04-12 2400 2430),

there are three short intervals that contain a more intense de-

bate than the remaining parts, while for the second utterance

(08-02-06 1530 1560) the second half was identified as a

higher conflict part than the first half. Interestingly, the (human-

annotated) speaker overlaps, shown as grey bars, also indicate

that these regions are more intense conflict-wise.

The predictions obtained for the different chunk lengths be-

have quite similarly, which, in our opinion, also indicates the ro-

bustness of the short-term predictions. When using chunks that

are only one second long, the curve becomes somewhat jagged,

but even this noise leads only to a predicted score difference of

1 or 2 in most cases.

3129



Time

C
o
n
fl
ic

t 
In

te
n
s
it
y
 P

re
d
ic

ti
o
n

-10

-5 

0  

5  

10 

Annotation (reference)

SVR estimation

Human annotation

Time

C
o
n
fl
ic

t 
In

te
n
s
it
y
 P

re
d
ic

ti
o
n

-10

-5 

0  

5  

10 

Annotation (reference)

SVR estimation

Human annotation

Figure 2: Short-term conflict intensity estimates and manually annotated scores of one annotator for the 5-second-long chunks of the

same two utterances as in Fig. 1.

5. Evaluating versus a Manual Annotation

Up to now, we argued that Support Vector Regression machine

learning models trained on the Fisher vector features are suit-

able for very short-term conflict intensity estimation, as they

were able to find those parts within longer utterances that had

different levels of conflicts. In the last part of our study, we

investigate this result by comparing the SVR outputs with man-

ually annotated scores. Of course, annotating a dataset of this

size is extremely labour-intensive; therefore, our annotation was

limited in terms of the amount of audio data, the length of the

chunks and the number of annotators. Still, we regard it suffi-

cient to verify our finding from another aspect.

The annotation process covered the first 100 utterances of

the test set of the SSPNet Conflict corpus; since the order of

the recordings is shuffled in the official file lists, these record-

ings already showed a great variety of recording dates, topics

and speakers. We had only one annotator, the sole author of this

study (who, in accordance with the original annotation guide-

lines, did not understand French1). Besides ranking the whole

30 second-long utterances in the [−10, 10] scale, we split these

utterances into chunks with a length of 5 seconds. During anno-

tation, we made sure that all chunks of the same recording were

rated in one session, but not directly after each other.

Table 4 shows the CC, MSE and RMSE scores obtained

from this experiment. Of course, since we only used 100 ut-

terances in these tests, even the SVR predictions’ scores differ

slightly compared to those listed in Table 3. Surprisingly, we

found that, either when we compared the scores of the original,

30 second-long utterances or the mean values of the 5 second-

long chunks to the reference scores of the dataset, the SVR pre-

dictions always proved to be more similar to these gold stan-

dard scores than the opinions of our single human annotator.

Of course, due to the inevitable subjectivity present in the an-

notation process, this does not mean that the SVR model could

actually exceed human performance. (Recall that the reference

values were determined as the mean ratings of ten annotators

for each recording.)

Comparing the conflict intensity values obtained by SVR

and by our actual subject (see the last two rows of Table 4), we

measured similar CC, MSE and RMSE values in the 5-second

and the 30-second cases. Since these manually set scores were

obtained in an identical way, we think that this experiment sup-

ports our finding that the Support Vector Regression models

were able to estimate the intensity of conflicts from a quite short

amount of audio data. Fig. 2, which shows the human-annotated

1honestly, not a word

Table 4: CC, MSE and RMSE values measured on the first 100

utterances of the test set for the SVR predictions and the human-

annotated values compared to the reference annotation (first 4

rows), and their relation (last 2 rows)

Utterance Prediction Accuracy

Length Approach CC MSE RMSE

30 s
SVR 0.847 4.981 2.232

Human annot. 0.739 12.114 3.481

5 s (mean)
SVR 0.830 5.907 2.430

Human annot. 0.789 6.545 2.558

30 s SVR vs. Human 0.783 11.393 3.375

5 s SVR vs. Human 0.754 10.667 3.266

and automatically predicted scores for the same two utterances

as Fig. 1 does, also shows that the two approaches (i.e. SVR and

our human annotator) led to remarkably similar estimations.

6. Conclusions

In this study we focused on continuous-scale conflict intensity

estimation from audio. Although previous works operated only

on longer segments, now we have shown that Support Vector

Regression models, using Fisher vectors as features, are ca-

pable of determining conflict level from much shorter audio

chunks. Although the predictions for these small chunks of

the SVR model were only loosely correlated with the reference

conflict scores obtained via human annotation, it turned out that

it was due to the fact that these subsegments of the original,

much longer utterances indeed contained conversational parts

with different conflict levels. We also verified this finding by

annotating 5-second-long chunks created from a subset of the

publicly available SSPNet Conflict corpus. Our findings might

help actual conflict detection applications by allowing them to

process very short audio data, hence reduce their reaction time

and so bring closer their operation to human expectations.
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