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Abstract

Schizophrenia is a heterogeneous chronic and severe mental

disorder. There are several different theories for the develop-

ment of schizophrenia from an etiological point of view: neuro-

chemical, neuroanatomical, psychological and genetic factors

may also be present in the background of the disease. In this

study, we examined spontaneous speech productions by patients

suffering from schizophrenia (SCH) and bipolar disorder (BD).

We extracted 15 temporal parameters from the speech excerpts

and used machine learning techniques for distinguishing the

SCH and BD groups, their subgroups (SCH-S and SCH-Z) and

subtypes (BD-I and BD-II). Our results indicated, that there is a

notable difference between spontaneous speech productions of

certain subgroups, while some appears to be indistinguishable

for the used classification model. Firstly, SCH and BD groups

were found to be different. Secondly, the results of SCH-S sub-

group were distinct from BD. Thirdly, the spontaneous speech

of the SCH-Z subgroup was found to be very similar to the BD-

I, however, it was sharply distinct from BD-II. Our detailed exa-

mination highlighted the indistinguishable subgroups and led to

us to make our S and Z theory more clarified.

Index Terms: spontaneous speech, temporal parameters,

schizophrenia, bipolar disorder, support vector machines

1. Introduction

According to the DSM-5 (Diagnostic and Statistical Manual of

Mental Disorders, [1]), the following symptoms might repre-

sent schizophrenia (SCH): (1) delusions; (2) hallucinations; (3)

incoherent speech; (4) strikingly disintegrated or catatonic be-

havior; and (5) negative symptoms, i.e. emotional emptiness,

alogia, or lack of willingness. There are several different the-

ories for the development of schizophrenia from an etiological

point of view: neurochemical, neuroanatomical, psychological

and genetic factors may also be present in the background of the

disease. Even though numerous studies approached schizophre-

nia in various ways, specific genetic, neurobiological or envi-

ronmental factors have not been identified.

The spectrum theory holds promise for outlining a possi-

ble endophenotype (see [2]). The presumed endophenotype

concept is closely related to Crow’s theory, which explains

schizophrenia on the evolutionary side: “schizophrenia is the

price that homo sapiens pays for language” [3]. Crow assumed

that the underlying reason for the “preservation of schizophre-

nia” may be the genetic changes that cause lateralization. Kéri

and Janka [4] summarize Crow’s approach as “Main aspects of

the language are linked to the left temporal areas, which are

thicker in the majority of the population than the right areas.

This asymmetry in schizophrenia is often lacking, and the cor-

pus callosum, which connects the two hemispheres, has also

been reported to have differences compared to the brains of

healthy people.” .

In this study we build on a two-subgroups-theory of SCH,

specified and defined as groups S and Z by Szendi et al [5]. The

theory assumes two subgroups (or clusters) of SCH, which can

be differentiated mainly on executive functions and cognitive

abilities, in addition to MRI-results. The subgroups were de-

fined based on the results of a semantic fluency task, a visual

pattern test, a Wisconsin Card Sorting Test and a backwards

Corsi’s cube test. While group S includes patients with frontal

dysfunction affecting both hemispheres, group Z has only left

frontal dysfunction [5].

As the second main group of our study, bipolar disorder

(BD) is also located on the psychosis spectrum. BD subjects

generally have two distinct states: depression and mania. Fre-

quency is equally around 1% in both sexes; it manifests around

the age of 30 [2]. It can be classified into three types: I and

II subtypes of bipolar disorder (i.e. BD-I and BD-II) and cy-

clothymia. According to the duality of the disorder, depressive

and manic main symptom groups could be distinguished [2, 6].

According to ICD-10 [7], one or more manic or mixed

episodes are present in BD-I. The presence of a depressive

episode is not necessary for a BD-I diagnosis, although the

vast majority of patients with BD-I have undergone a depressive

episode. The BD-II subtype is a more frequent diagnosis, usu-

ally with one or more hypomanic episodes, and one or more se-

vere depressive episodes. The existence of a hypomanic episode

is enough to set up a BD-II diagnosis – this clause distinguishes

it from unipolar depression. There is no serious manic episode

in the case of BD II – and this distinguishes it from BD-I.

Both diseases were reported to manifest themselves in the

subjects’ speech. Regarding SCH subjects, differences were de-

tected in prosody [8], and the negative symptoms of schizophre-

nia may also appear as a lack of tone and inflection [9, 10].

Several of these symptoms were analyzed by computational

tools [11, 12, 13]. Prosodic abnormalities and potential charac-

teristics were also examined [14, 15], and so were the continuity

of speech and the quality and ratio of occlusive phenomena and

pauses [16]. Other findings indicated that patients with formal

thought disorder (which could be a symptom in schizophrenia)

made strikingly fewer filled pauses than controls did [17].

There are notable differences in the BD subjects’ speech

as well [18]. Articulatory movements of a depressed patient

slow down – this is reflected by the speech rate, while in the
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case of a manic patient we see an acceleration. In addition, pro-

longed recall time has also been shown for words with repressed

emotional content - presumably because of inhibition [19, 20].

Increasing the duration of vowels is frequent, while speech is

quiet and weak, and the prosody is poor for an anxious per-

son [20]. The linguistic characteristics of bipolar disorder are

also twofold due to the two groups of symptoms: both in terms

of quantity and quality of speech; from the speech rate to the

differences in theory of mind result [21].

In this study we examine the spontaneous speech of the

speaker groups, induced by a memory task. We describe the

recorded utterances by automatically extracted temporal param-

eters, describing the speech rate and the amount of hesitation.

We were primarily interested in the extent of similarity of the

speech of the speaker groups. Since it is far from trivial to

express the similarity of a group of attributes as a whole, we

employ machine learning for this purpose. (Since classification

techniques are well known for handling redundant and irrele-

vant features as well, we consider them suitable for this pur-

pose.) Therefore now we will not use machine learning for de-

tection or screening purposes, but to measure group similarity.

2. The Data

40 subjects with solid diagnoses were randomly selected from

the currently available clinical research database. Diagnoses

were based on DSM-5 [1], using ICD codes [7]. The group

of SCH and group of BD had the following sex distribution:

Table 1: The sex distribution of the participants of our tests

Group Subtype Female Male

S (N=10) 4 6

SCH Z (N=16) 5 11

Total (N=26) 9 17

I (N= 7) 3 4

BD II (N= 7) 5 2

Total (N=14) 8 6

The number of examined speakers is rather low, but we are con-

tinuously working on it to involve new subjects in our investi-

gations. The utterances were recorded between February 2016

and January 2019 at the Department of Psychiatry, Faculty of

Medicine, University of Szeged, Hungary. The study was ap-

proved by the Ethics Committee of the University of Szeged,

and it was conducted in accordance with the Declaration of

Helsinki. All the speakers were native Hungarian speakers. We

made the speakers perform spontaneous speech; the instruction

was simply “Tell me about your previous day!”. The subjects

were then given roughly five minutes to complete the task. We

used a Roland R-05 type recorder to record their replies.

3. Temporal Speech Parameters

To investigate the spontaneous speech of schizophrenic and

bipolar patients, we calculated specific temporal parameters

from their records. We based our investigations on our previous

studies [22, 23, 24, 25], where we focused on the early detection

of various forms of dementia such as Alzheimer’s Disease and

Mild Cognitive Impairment. To represent the verbal fluency of

the speaker, we developed a temporal parameter set that mostly

focuses on the amount of hesitation in the speech of the subject.

We are continuously developing this attribute set; in the cur-

(1) Articulation rate: the number of phones per sec-

ond during speech (excluding hesitations).

(2) Speech tempo: the number of phones per second

(including hesitations).

(3) Duration of utterance, given in milliseconds.

(4) Pause occurrence rate: divide the total number of

pauses by the number of phonemes in the utterance.

(5) Pause duration rate: divide the total duration of

pauses by the length of the utterance.

(6) Pause frequency: divide the number of pause oc-

currences by the length of the utterance.

(7) Average pause duration: divide the total duration

of pauses by the number of pauses.

Table 2: The seven examined temporal speech parameters,

based on the work of Hoffmann et al. [23] and Tóth et al. [24].

rent experiments we used only normalized attributes, i.e. none

of them was correlated with the length of the actual utterance

(except, of course, the attribute duration of utterance itself).

Our set of temporal parameters can be seen in Table 2. No-

tice that parameters (4)–(7) all describe the amount of hesita-

tion in the spontaneous speech of the subject by focusing on

the number or duration of pauses in some way. The simplest

form of pause is silent pause: the absence of speech for at least

30 ms [26]. However, hesitation may also manifest as filled

pauses, i.e. vocalizations like “er”, “uhm”, “eh” etc. Since

both pause types indicate some sort of hesitation in spontaneous

speech production, we calculate the temporal parameters (4) to

(7) for silent pauses only, for filled pauses only, and for taking

all pause occurrences into account regardless of type (15 tem-

poral parameters overall).

Following our previous studies (e.g. [22, 24, 27]), we ap-

plied Automatic Speech Recognition (ASR) techniques to ex-

tract the temporal parameters. We used a speech recognizer that

provides only a time-aligned phone sequence as output, treat-

ing filled pause as a special ‘phoneme’. Of course, omitting the

word level completely can be expected to increase the number

of errors at the phoneme level as well. Luckily, though, the

speech parameters in Table 2 do not require us to identify all the

phones; in most cases we need only to count them, and just the

two types of pauses (i.e. silent and filled) are important.

The acoustic model of this speech recognizer was trained

on spontaneous speech taken from the BEA Hungarian Spoken

Language Database [28], using roughly seven hours of speech

data. We made sure that the occurrences of filled pauses, breath

intakes and exhales, laughter, coughs and gasps were present

in the phoneme-level transcriptions in a consistent manner. For

acoustic modelling we applied a standard Deep Neural Network

(DNN) with feed-forward topology. The DNN had 3 hidden

layers each with 1000 ReLU neurons, and it had softmax neu-

rons in the output layer. As a language model, we employed

a simple phoneme bigram (including all the above-mentioned

non-verbal audio tags). The output of the ASR system is the

phonetic segmentation and labeling of the input signal (includ-

ing filled pauses); based on this output, the temporal speech pa-

rameters of Table 2 can be extracted in a straightforward way.
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4. Experimental Setup

This study focuses on the speech production of schizophrenic

and bipolar subjects. We were interested in the similarities and

differences of the spontaneous speech of the different groups

and subgroups. Our assumption was that similarly speaking

groups will be less distinguishable by machine learning; and

to this end, we performed several pair-wise (i.e. binary) classi-

fications. Next, we will describe the technical details of these

classification experiments.

4.1. The Classification Process

We basically followed standard biomedical practices, simi-

larly to our earlier studies that focused on detecting MCI

(i.e. [22, 24]) and distinguishing schizophrenic subjects and

healthy controls [27]. Using the above-listed temporal parame-

ters, we trained a Support-Vector Machine (SVM, [29]), using

the LibSVM [30] library. We used the nu-SVM method with a

linear kernel; the value of C was tested in the range 10{−5,...,1}.

From a machine learning perspective, we had an extremely

small dataset, but the number of diagnosed patients is very lim-

ited, especially if we also consider the further split of our gen-

eral diagnoses (i.e. the S and Z clusters of the schizophrenic

subjects, and the I and II subtypes of bipolar disorder). Having

so few examples, we applied the common solution of speaker-

wise cross validation (CV): we always withheld the data of

one speaker from classifier training, and evaluated the result-

ing SVM model only for this withheld speaker. To perfectly

balance the class distribution during training for all the possible

subject group pairs, we also employed upsampling (i.e. repeat-

ing training examples of rarer classes) during SVM training.

4.2. Evaluation Metrics

Although relying on simple classification accuracy is still com-

mon in biomedical studies (see e.g. [31, 32]), the frequency of

the different speaker types is imbalanced in the population (e.g.

only 1-1.5% of the population are affected by schizophrenia).

Such an imbalanced class distribution requires other evaluation

metrics as well. However, since we performed many pair-wise

binary classifications, we had no clear positive class, which

rules out otherwise straightforward information retrieval met-

rics like precision, recall and F-measure. Therefore, besides

classification accuracy, we calculated the Unweighted Average

Recall metric (UAR [33], it being the mean of the recall values

for all the classes) and the Area-Under-the-Curve (AUC) value

as well.

4.3. Data Preprocessing

In our experiments we could use only one recording from only

40 speakers, and sometimes we even used only a subset of them

(e.g. only 7 subjects had BD-I). To increase the size of our

dataset, we decided to utilize shorter utterance parts in our ex-

periments. Our hypothesis, justified by our previous experi-

ments (see [27]) was that the temporal speech parameters re-

main indicative even when they are calculated from relatively

short utterances. With this in mind, we split our utterances into

30 second-long segments with a 5-second overlap (regardless

of the actual phonetic boundaries), and treated these examples

independently. After this step, we ended up with 222 small,

equal-sized segments, significantly increasing our SVM train-

ing set sizes. Of course, we still used the leave-one-speaker-out

cross-validation scheme; that is, one fold always consisted of

all the speech segments of one speaker.

5. Results

In our first experiment we were interested in two things: firstly,

how much the speech of the two speaker groups (i.e. SCH and

BD speakers) differ, and secondly, how well we can differenti-

ate between the subgroups/subtypes of each disorder.

Table 3: The accuracy, UAR and AUC scores obtained when

separating the schizophrenic (SCH) and bipolar (BD) speaker

groups, and for separating the subtypes of the two groups.

Accuracy (%)

Subject Groups Acc. UAR AUC

SCH (all) vs. BD (all) 81.1 82.9 0.870

SCH-S vs. SCH-Z 61.0 61.9 0.634

BD-I vs. BD-II 58.6 58.2 0.488

According to the accuracy, UAR and AUC scores we obtained

(see Table 3 above), the speech of the bipolar and schizophrenic

subjects differed to a great extent in the speech parameters ex-

amined. Both accuracy and UAR appeared to be above 80%,

and the 0.870 Area-Under-Curve score is also quite high. How-

ever, it was hard to find any difference between the speech of

the subjects belonging to different subgroups: the accuracy and

UAR scores appeared to be around 60% in both cases, while

we actually got an AUC score below 0.5 when we trained our

SVM models to separate BD-I and BD-II. This suggests that

both disorders appear to be quite homogenous, at least when we

examine the spontaneous speech of the subjects using articula-

tion tempo, speech rate and our pause-related attributes.

Next, we will examine how well the subgroups can be sep-

arated from the other speaker group.

Table 4: The accuracy, UAR and AUC scores obtained when

separating the different subgroups from the other group

Accuracy (%)

Subject Groups Acc. UAR AUC

SCH (all) vs. BD-I 75.3 82.9 0.870

SCH (all) vs. BD-II 68.0 71.1 0.773

SCH-S vs. BD (all) 77.5 75.9 0.832

SCH-Z vs. BD (all) 58.1 58.2 0.625

According to the accuracy, UAR and AUC scores (see Table 4

above), there was no significant difference found between the

spontaneous speech of the subjects belonging to the two bipo-

lar subtypes. That is, the accuracy scores were quite similar

(68-75%), and we got high UAR and AUC values for both

cases. Nevertheless, when we tried to identify whether the ac-

tual speaker belonged to some of the subgroups of schizophre-

nia (i.e. S or Z) or he was suffering from a bipolar disorder,

we got quite different results. The S cluster of the SCH group

proved to be well separable from the BD class (classification

accuracy scores of 75-77% and an AUC value of 0.832), but

for the Z cluster we got fairly low scores. This, in our opin-

ion, indicates that the spontaneous speech of the S and Z cluster

members differ, regardless of the accuracy scores around 61%

obtained when we tried to separate them. Since we got lower

classification scores for the case of the Z cluster, this SCH sub-

group appears to be more similar to the bipolar group than the

S cluster.

Next, we will experiment with differentiating among the

members of the different clusters.
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Table 5: The accuracy, UAR and AUC scores obtained when

separating the different subgroups

Accuracy (%)

Subject Groups Acc. UAR AUC

SCH-S vs. BD-I 72.2 72.6 0.754

SCH-S vs. BD-II 70.5 70.1 0.810

SCH-Z vs. BD-I 53.3 50.0 0.462

SCH-Z vs. BD-II 88.6 90.6 1.000

Examining the accuracy, UAR and AUC scores (see Table 5

above) got when one of the tested classes was the S cluster of

the SCH category, we had quite similar results: the accuracy

and UAR scores were around 70-72% regardless of whether we

had the BD-I or the BD-II subtype as the second speaker group;

and there was no big difference in the AUC values either (0.754

and 0.810). These values are also very similar to those when we

tried to distinguish between the speech of the SCH S subjects

from all bipolar subjects (see the second row of Table 4).

However, when we focused on the Z cluster of the SCH

group, we got very different results. Our classifier models could

not distinguish the speech of these schizophrenic patients from

the speech of subjects belonging to the Bipolar-I subtype at all:

the 50% UAR value is just the one we would get with ran-

dom guessing, and the AUC score is actually below 0.5 (0.462).

Despite this, our SVM model was able to precisely identify

the difference between the schizophrenic Z and the BD-II sub-

groups, which indicates that the spontaneous speech of these

two speaker groups differed to a great extent.

Overall, we found that, at first glance, the speech of the

schizophrenic and the bipolar subjects differ to a large extent,

while the subgroups/subtypes of the two diseases seemed to be

very similar (UAR values around 60%). However, comparing

the spontaneous speech of subjects of the SCH subgroups with

that of BD-I, BD-II or all bipolar speakers, they were found to

be quite different. The SCH S group could be distinguished

from the two BD subtypes with a rate of 70%, while the mem-

bers of the SCH-Z cluster spoke much like the BD-I speakers

(UAR score of 50%) and very differently than the BD-II sub-

jects (90.6% UAR). This, in our opinion, supports the existence

of the S and Z clusters within schizophrenia. (These subgroups

were not defined by temporal speech parameters.)

Lastly, we tried to map the different subject groups / sub-

groups / subtypes into a two-dimensional space. For this, we

defined pair-wise distances based on the UAR scores of the clas-

sification experiments, using the following formula:

d(X,Y ) = −

1

log (2 ·max (UAR (X,Y )− 0.5, 0))
. (1)

This formula (with the straightforward generalization that 1

∞
=

0 and log 1 = −0) maps a pair-wise UAR score of 50% (i.e.

0.5) to a distance value of 0, and a high UAR score to a high

distance value. The representation of the subgroups and sub-

types were determined by minimizing the mean squared error

of the expected and the measured Euclidean distances.

Fig. 1 shows the resulting mapping. According to this rep-

resentation, schizophrenia is located close to its subgroups, and

so is bipolar disorder related to its subtypes (see the dashed

ellipses). Furthermore, the SCH-S and SCH-Z subgroups are

quite far away from each other, and so are the BD-I and BD-II

subtypes. The two farthest groups are the SCH-Z and the BD-

II subtypes, which is understandable as for this speaker group

SCH SCH-S

SCH-Z

BD

BD-I

BD-II

Figure 1: Two-dimensional mapping of the subject groups,

based on the UAR scores obtained in pair-wise classification.

pair we obtained an UAR score of 90.6%. Of course, not all

relations could be mapped to just two dimensions; for example,

the distance of the two bipolar subtypes should be roughly the

same from the SCH-S cluster, while now BD-II is noticeably

farther. Using data from more speakers could help make this

representation more accurate, which is one of our plans.

6. Conclusions

In this study, we focused on the similarities and dissimilarities

of spontaneous speech produced by schizophrenic and bipolar

subjects. To this end, we extracted 15 temporal parameters from

the spontaneous speech of 40 subjects, and performed binary

classification experiments. We assumed that groups/subgroups

with similarly-speaking members would result in a low classifi-

cation performance, while large speech differences would allow

high-precision discrimination between the speaker groups.

Our experimental results indicate that the two patient

groups (SCH and BD) speak quite differently, while subjects

belonging to the SCH subgroups (S and Z) produced similar

speech, and so did the speakers of the two BD subtypes exam-

ined (I and II). Of course, ‘similar’ only means that their inves-

tigated temporal parameters displayed similar patterns, while

their speech can (and do) differ at the semantic or at the prag-

matic level. Comparing the SCH subgroups and the BD sub-

types, however, the spontaneous speech of SCH-Z subjects was

found to be very similar to those of BD-I patients, while it was

remarkably different from that of BD-II speakers.

In the near future we plan to validate our experiments on a

larger number of subjects and with different speech tasks, and

we would also like to examine which temporal parameters con-

tribute the largest to the observed differences. Nevertheless, the

findings expressed in this study (related to spontaneous speech

parameters and the relation of different speaker groups) allow

us to make our S and Z theory more clarified.
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