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28 Abstract

29 Introduction: Activation of the parasympathetic nervous system has been reported to have an 

30 antiarrhythmic role during ischemia-reperfusion injury by decreasing the arrhythmia triggers. 

31 Furthermore, it was reported that the parasympathetic neurotransmitter acetylcholine is able to 

32 modulate the ATP-dependent K-current (IK-ATP), a crucial current activated during hypoxia. 

33 However, the possible significance of this current modulation in the antiarrhythmic 

34 mechanism is not fully clarified. 

35 Methods: Action potentials were measured using the conventional microelectrode technique 

36 from canine left ventricular papillary muscle and free-running Purkinje fibers, under normal 

37 and hypoxic conditions. Ionic currents were measured using the whole-cell configuration of 

38 the patch clamp method.

39 Results: 5 μM acetylcholine did not influence the action potential duration (APD) either in 

40 Purkinje fibers or in papillary muscle preparations. In contrast, it significantly lengthened the 

41 APD and suppressed the Purkinje–ventricle APD dispersion when it was administered after 

42 5 μM pinacidil application. 3 μM carbachol reduced the pinacidil-activated IK-ATP under 

43 voltage-clamp condition. Acetylcholine lengthened the ventricular action potential under 

44 simulated ischemia condition.

45 Conclusion: In this study we found that acetylcholine inhibits the IK-ATP and thus suppresses 

46 the ventricle-Purkinje APD dispersion. We conclude that parasympathetic tone may reduce 

47 the arrhythmogenic substrate exerting a complex antiarrhythmic mechanism during hypoxic 

48 conditions. 

49

50 Key words: acetylcholine, Purkinje fibers, papillary muscles, hypoxia
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51 Introduction

52 The parasympathetic nervous system has a crucial role in controlling the actual heart rate and 

53 impulse propagation via influencing the sinoatrial and atrioventricular nodes (Higgins et al., 

54 1973). The parasympathetic nerve endings operate by releasing acetylcholine that acts on 

55 M2-receptors, activating several intracellular signaling routes, and ultimately influencing the 

56 cardiac ion channels (Harvey and Belevych, 2003). Even though the parasympathetic nervous 

57 system primarily innervates the supraventricular areas of the heart, there are certain important 

58 ion channels in the ventricular muscle that are known to be influenced by the release of 

59 acetylcholine. It has been previously reported that the inward rectifier potassium current (IK1; 

60 Koumi et al., 1995) and the slow component of the delayed rectifier (IKs; Pappano and 

61 Carmeliet, 1979) are inhibited, whereas IK-ATP and IK-ACh are activated by acetylcholine via 

62 G proteins (Terzic et al, 1994; Ito et al., 1994; Kim et al., 1997).

63

64 The importance of these effects of acetylcholine is underpinned by the fact that the activation 

65 of IK-ATP channels is well known during hypoxia/ischemia, in which situations the duration of 

66 the action potential is shortened (Weiss and Venkatesh, 1993). Furthermore, it was reported 

67 that vagal activation is also facilitated under ischemia–reperfusion (Recordati et al., 1971). 

68 This vagal activation during hypoxia could be antiarrhythmic, since it was reported that 

69 increased parasympathetic tone reduces the catecholaminerg-induced early and delayed 

70 afterdepolarizations (arrhythmia triggers) (Song et al., 1992), as well as the incidence of 

71 ventricular fibrillation (Zuanetti et al., 1987; Collins and Billman, 1989). However, the 

72 underlying mechanism of antiarrhythmic effect of M2-receptor activation is not fully clarified. 

73 Arrhythmias may develop when an arrhythmogenic substrate (e. g., dispersion of 

74 repolarization) and arrhythmia triggers (e.g.: early and delayed afterdepolarizations) 

75 simultaneously exist in the heart. The arrhythmogenic substrate could be prominent at 

76 Purkinje–ventricle connection because of the relatively weak electrotonic coupling due to low 

77 number of gap junctions (Varró and Baczkó, 2010). As a consequence of the different 
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78 pharmacological susceptibility of Purkinje fiber and ventricular muscle (Baláti et al, 1998), 

79 the activation of IK-ATP may modulate the Purkinje and ventricular action potential duration 

80 (APD) to different extents, and the developed APD dispersion may contribute to the onset of 

81 arrhythmias.

82

83 The objective of this study was the investigation of the possible effect of acetylcholine on the 

84 IK-ATP and on the IK-ATP-mediated action potential dispersion under normal and hypoxic 

85 conditions. 

86

87 Methods

88 Human tissues

89 Non-diseased human hearts that were unusable for transplantation (based on logistical, not 

90 patient-related considerations) were obtained from organ donors. Before cardiac explanation, 

91 organ donor patients did not receive medication except dobutamine, furosemide and plasma 

92 expanders. The investigations conform to the principles outlined in the Declaration of 

93 Helsinki of the World Medical Association. All experimental protocols were approved by the 

94 Scientific and Research Ethical Committee of the Medical Scientific Board at the Hungarian 

95 Ministry of Health (ETT-TUKEB), under ethical approval No 4991-0/2010-1018EKU 

96 (339/PI/010). Human cardiac tissue was stored in cardioplegic solution at 4°C for 4–8 hours.

97

98 Animals

99 All experiments using canine cardiac preparations were carried out in compliance with the 

100 Guide for the Care and Use of Laboratory Animals (USA NIH publication NO 85-23, revised 

101 1996) and conformed to the Directive 2010/63/EU of the European Parliament. The protocols 

102 have been approved by the Ethical Committee for the Protection of Animals in Research of 

103 the University of Szeged, Szeged, Hungary (approval number: I-74-24-2017) and by the 
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104 Department of Animal Health and Food Control of the Ministry of Agriculture and Rural 

105 Development (authority approval number XIII/3331/2017).

106

107 Conventional microelectrode technique

108 Ventricular (papillary or trabecular) muscles were obtained from the right ventricle of canine 

109 hearts. Free-running Purkinje fibers were identified as false tendons and isolated from both 

110 ventricles of human and canine hearts. Canine hearts were removed through a right lateral 

111 thoracotomy from anesthetized (thiopental 30 mg/kg i.v.) mongrel dogs of either sex 

112 weighing 10–15 kg. At impalement, Purkinje fibers were observed under a surgical 

113 microscope (Zeiss OPMI PRO). The preparations were placed in Locke’s solution and 

114 allowed to equilibrate for at least 2 hours while superfused (flow rate 4-5 ml/min) also with 

115 Locke’s solution containing (in mM): NaCl 120, KCl 4, CaCl2 2, MgCl2 1, NaHCO3 22, and 

116 glucose 11. The pH of this solution was 7.40 to 7.45 when gassed with 95% O2 and 5% CO2 

117 at 37 °C. In the experiments where the effects of tissue hypoxia were examined, we changed 

118 the gas mixture to 95% N2 and 5% CO2, pH remained at 7.40 to 7.45. All experiments were 

119 performed at 37 °C. During the equilibration period, preparations were stimulated at a basic 

120 cycle length of 500 ms. Electrical pulses of 0.5–2 ms in duration at twice the diastolic 

121 threshold in intensity (S1) were delivered to the preparations through bipolar platinum 

122 electrodes. Transmembrane potentials were recorded using glass capillary microelectrodes 

123 filled with 3 M KCl (tip resistance: 5 to 15 MΩ). The microelectrodes were coupled through 

124 an Ag-AgCl junction to the input of a high-impedance, capacitance-neutralizing amplifier 

125 (Experimetria 2011). Intracellular recordings were displayed on a storage oscilloscope 

126 (Hitachi V-555) and led to a computer system (APES) designed for on-line determination of 

127 the following parameters: resting membrane potential, action potential amplitude, action 

128 potential duration at 10% to 90% repolarization and the maximum rate of rise of the action 

129 potential upstroke (Vmax). Control recordings were obtained after equilibration period. The 

130 compounds used in all experiments were purchased from Sigma/Merck.
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131 2.3. Cell isolation

132 Ventricular myocytes were enzymatically dissociated from the left ventricle of dog hearts. 

133 Canine hearts were removed through a right lateral thoracotomy from anesthetized (thiopental 

134 30 mg/kg i.v.) mongrel dogs of either sex weighing 10–15 kg. Cardiac myocytes were isolated 

135 from the left ventricle, containing an arterial branch through which the segment was perfused 

136 on a Langendorff apparatus with solutions in the following sequence: normal Tyrode's 

137 solution (containing in mM: 144 mM NaCl, 0.4 mM NaH2PO4, 4 mM KCl, 0.53 mM MgSO4, 

138 1.8 mM CaCl2, 5.5 mM Glucose, 5 mM HEPES, pH 7.4 adjusted with NaOH) for 10 min, 

139 Ca2+-free Tyrode solution for 10 min and Ca2+-free Tyrode solution containing collagenase 

140 (Worthington type II, 0.66 mg/mL). To the final perfusion solution protease (type XIV, 0.12 

141 mg/mL) was added at the 15 and the 30 minutes for digestion.

142

143 2.4. Measurement of ionic currents

144 One drop of cell suspension was placed in a transparent recording chamber mounted on the 

145 stage of an inverted microscope (Olympus IX51, Tokyo, Japan), and individual myocytes 

146 were allowed to settle and adhere to the chamber bottom for at least 5–10 min before 

147 superfusion was initiated and maintained by gravity. Only rod-shaped cells with clear 

148 striations were used. HEPES-buffered Tyrode’s solution (composition in mM: NaCl 144, 

149 NaH2PO4 0.4, KCl 4.0, CaCl2 1.8, MgSO4 0.53, glucose 5.5 and HEPES 5.0, at pH of 7.4) 

150 was used as the normal superfusate. During the measurement of IK-ATP, 1 µM nisoldipine was 

151 added to the bath solution to block ICaL, IKr was blocked by 0.1 µM dofetilide, and IKs was 

152 blocked by 0.5 µM HMR-1556. Micropipettes were fabricated from borosilicate glass 

153 capillaries (Science Products GmbH, Hofheim, Germany), using a P-97 Flaming/Brown 

154 micropipette puller (Sutter Co, Novato, CA, USA), and had a resistance of 1.5–2.5 MΩ when 

155 filled with pipette solution. The membrane currents were recorded with Axopatch-200B 

156 amplifiers (Molecular Devices, Sunnyvale, CA, USA) by applying the whole-cell 

157 configuration of the patch-clamp technique. The membrane currents were digitized with 250 
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158 kHz analogue to digital converters (Digidata 1440A, Molecular Devices, Sunnyvale, CA, 

159 USA) under software control (pClamp 8 and pClamp 10, Molecular Devices, Sunnyvale, CA, 

160 USA).  The composition of the pipette solution (in mM) was the following: KOH 110, KCl 

161 40, K2ATP 5, MgCl2 5, EGTA 5, HEPES 10 and GTP 0.1 (pH was adjusted to 7.2 by aspartic 

162 acid). 

163

164 2.5 Statistical analysis

165 Results are expressed as mean ± S.E.M. Normality of distributions was verified using 

166 Shapiro-Wilk test, and homogeneity of variances was verified using Bartlett's test in each 

167 treatment group. Statistical comparisons were made using analysis of variance (ANOVA) for 

168 repeated measurements, followed by Bonferroni’s post-hoc test. Differences were considered 

169 significant when p < 0.05.

170

171 Results

172 1. Acetylcholine lengthened the APD after pinacidil-mediated action potential shortening

173 Canine Purkinje fibers and ventricular papillary muscles were paced at 500 ms cycle length. 

174 In canine Purkinje fibers (PFs; n=15), acetylcholine (5 µM) did not affect the repolarization 

175 (233.6±4.7 to 231.7±4.6; Figures 1A and 1E). In contrast, in canine Purkinje fibers (n=8), the 

176 IK-ATP activator pinacidil, applied in 5 μM concentration, significantly abbreviated APD90 

177 (207.7±7.0 ms vs 113.1±9.1 ms, p<0.05) values. After steady state was reached, acetylcholine 

178 was administered. Within 3 minutes, acetylcholine prolonged APD90 to 147.3±7.4 ms, 

179 partially reversing the effects of pinacidil (Figures 1B and 1E; p<0.05).

180

181 Similarly, as observed in Purkinje fibers, 5 μM acetylcholine alone failed to influence the 

182 APD of the ventricular muscle (APD90: 172.6±5.7 ms vs 172.8±5.3 ms). Pinacidil (n=5; 

183 5 μM) pretreatment significantly abbreviated the APD90 value (187.9±4.5 ms vs 

184 163.7±6.4 ms, p<0.05), similarly to the effects observed in the case of PFs. After a period of 
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185 30 minutes, sufficient to reach a steady state, acetylcholine was added to the superfusate. 

186 Within 4 minutes, acetylcholine (5 μM) prolonged APD90 to 172.1±7.4 ms (p<0.05), thus 

187 partially reversing the effects of pinacidil (Figures 1D and 1E). 

188

189 2. Acetylcholine decreased the calculated APD dispersion between PF and VM

190 The changes in the difference between the APD90 values of PF and VM can be used to infer 

191 the effects of pinacidil and acetylcholine on the dispersion between these cardiac tissue types 

192 (Figure 2). The control APD90 dispersion (9.5%, 20 ms) was significantly increased upon 

193 5 μM pinacidil application (44.7%, 51 ms). On the other hand, subsequently applied 5 μM 

194 acetylcholine markedly decreased the repolarization heterogeneity (16.9%, 28 ms; p<0.05). 

195

196 3. Carbachol decreased the pinacidil-induced current activation

197 During ionic current measurements, voltage ramps were used from a holding potential of 

198 -90 mV. Membrane potential was hyperpolarized to -120 mV, and then was slowly (over 36 s) 

199 depolarized to 60 mV. Ionic currents were analyzed and compared at 0 and +30 mV. We 

200 found that carbachol did not change the control current when it was applied without pinacidil 

201 (0 mV - control: 0.20±0.2 pA/pF vs 3 μM carbachol: 0.32±0.2 pA/pF, n=6 and +30 mV - 

202 control: 0.55±0.4 pA/pF vs 3 μM carbachol: 0.74±0.3 pA/pF, n=6). In contrast, when 5 μM 

203 pinacidil was applied first, subsequently employed carbachol significantly reduced the current 

204 at both voltages (0 mV – control: 0.24±0.2 pA/pF  5 μM pinacidil: 2.03±0.3 pA/pF  3 

205 μM carbachol: 1.51±0.4 pA/pF, n=8, p<0.05. +30 mV - control: 0.78±0.6 pA/pF  5 μM 

206 pinacidil: 3.17±0.3 pA/pF  3 μM carbachol: 2.26±0.3 pA/pF, n=8, p<0.05). 

207

208 These measurements were carried out with acetylcholine as well. However, we found 

209 carbachol to be more stable during the applied long voltage protocol. 

210
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211 4. Acetylcholine restored the APD after hypoxia-induced action potential shortening

212 Simulated hypoxia, achieved by gassing the solution with N2 and CO2 instead of O2 and CO2, 

213 resulted in a significant abbreviation of APD90 from 181.4±5.7 ms to 135.0±8.6 ms (p<0.05, 

214 Figures 4A and 4B), and a decrease in amplitude (103.7±2.8 mV vs 92±3.5 mV). The 

215 maximum rate of depolarization was also decreased (185.8±15.8 V/s vs 156.1±20.6 V/s). 

216 When applied during hypoxia, 5 μM acetylcholine caused a significant APD90 prolongation to 

217 164.4±4.4 ms, partially reversing the effect of hypoxia on the repolarization. AMP returned to 

218 a normal range (102.1±1.6 mV), while Vmax remained at 156.0±16.1 V/s.

219

220 5. Acetylcholine caused a slight abbreviation in human Purkinje fibers

221 In human PFs (n=2), acetylcholine in 5 μM concentration caused a slight abbreviation of 

222 APD90 from 269.0±28.4 to 251.6±42.85 ms and APD50 from 184.4±20.0 ms to 

223 173.3±27.1 ms without affecting other characteristics of the action potential (Figure 5).

224

225 Discussion

226 In this study we investigated the electrophysiological effects of muscarinic agonists on the 

227 IK-ATP current. We found that (i) under normal conditions acetylcholine did not influence the 

228 action potential duration. (ii) In contrast, when IK-ATP was pharmacologically activated by 

229 pinacidil, subsequently applied acetylcholine lengthened the action potential duration as well 

230 as (iii) reduced the pinacidil-induced ventricle-Purkinje APD dispersion. (iv) In line with this, 

231 carbachol inhibited the IK-ATP that was previously activated by pinacidil. (v) Acetylcholine 

232 increased the APD after hypoxia-induced action potential shortening. 

233

234 Acetylcholine inhibits the IK-ATP in canine ventricular myocytes

235 It is well known that acetylcholine shortens the atrial APD and has been implicated in atrial 

236 fibrillation (Nakayama et al, 1968). Acetylcholine directly affects the GIRK1/4 or 

237 Kir3.1/Kir3.4 channels (Nobles et al, 2018; Corey and Clapham, 1998), encoded by KCNJ3 
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238 and KCNJ4 genes (Kurachi, 1995). These channels are largely expressed in atrial, SA and AV 

239 nodal cells (Galindo et al, 2016; Navarro-Polanco et al, 2013). At the same time, previous 

240 studies (Terzic et al, 1994; Ito et al., 1994) claimed that acetylcholine activates the IK-ATP 

241 channels, even though the physiological consequences of this effect on the action potential 

242 were not clarified.

243

244 The IK-ATP ATP-sensitive potassium channels comprise hetero-octamers consisting of four 

245 inward rectifying potassium channel pore-forming subunits (Kir6.1 or Kir6.2, encoded by 

246 KCNJ8 and KCNJ11 genes, respectively) and four ATP-binding cassette protein 

247 sulphonylurea receptors (SUR1 or SUR2, encoded by ABCC8 and ABCC9 genes, 

248 respectively; Inagaki et al, 195). An important feature of the IK-ATP is its closed state under 

249 physiological intracellular ATP levels (i. e., under normoxia) and its activation by metabolic 

250 stress, when the ratio of ATP/ADP is decreased, e. g., during myocardial ischemia (Deutsch et 

251 al., 1991). 

252

253 Activation of the sarcolemmal IK-ATP during myocardial ischemia shortens the action potential 

254 of various cardiac tissues to different extents, thus it may promote APD dispersion and re-

255 entry type arrhythmias (Janse and Wit, 1989). Accordingly, several investigations found IK-

256 ATP activation to be pro-arrhythmic (Chi et al., 1990), suggesting that sarcolemmal IK-ATP 

257 inhibition may prevent arrhythmias induced by myocardial ischemia and ischemia/reperfusion 

258 (Billman et al, 1998; Englert et al, 2003; Vajda et al, 2007).

259

260 In our experiments under normal conditions, we found no effect of carbachol on the 

261 membrane current (Figure 3) and, similarly, acetylcholine failed to influence the ventricular 

262 and Purkinje APDs (Figures 1A and 1C). The observed discrepancy between our and previous 

263 results, where an activation of IK-ATP was described upon acetylcholine administration (Terzic 
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264 et al, 1994; Ito et al, 1994; Kim et al., 1997), could be the consequence of the species 

265 difference and the distinct experimental conditions. 

266

267 In contrast, an important, and, to the best of our knowledge, previously not published result of 

268 our study is that carbachol is able to suppress the pinacidil-activated IK-ATP. As a consequence, 

269 in parallel tissue action potential experiments, acetylcholine lengthened the APD as long as it 

270 was previously shortened by the application of IK-ATP-activator pinacidil. Since IK-ATP 

271 activation could be arrhythmogenic (Chi et al., 1990) by causing an increase in the APD 

272 dispersion, this effect of acetylcholine raises the possibility of a novel antiarrhythmic 

273 mechanism of the previously described antiarrhythmic effect of parasympathetic activation 

274 during hypoxia (Song et al., 1992; Zuanetti et al., 1987; Collins and Billman, 1989). 

275

276 Our experiments conducted under hypoxic conditions provided similar results (i. e., 

277 acetylcholine lengthened the hypoxia-induced shortened ventricular action potential; 

278 Figure 4). Even though tissue hypoxia is a complex phenomenon (Carmeliet, 1999), during 

279 which several factors change simultaneously (e. g., Ca2+
i, Na+

i, pH, conductance of gap 

280 junctions, membrane potential etc.), it is feasible that IK-ATP activation, as a response to ATP 

281 depletion, is an important factor in the observed action potential shortening. Since 

282 acetylcholine lengthened the action potential under hypoxic conditions, we suggest IK-ATP 

283 inhibition as a possible underlying mechanism. 

284

285 Acetylcholine decreased the pinacidil-induced ventricle–Purkinje APD dispersion

286 Free-running Purkinje fibers connect to the ventricular muscle on a small surface area, 

287 providing a relatively large-resistance coupling (Tranum-Jensen et al., 1991), and a large sink 

288 for current flow that favors conduction blocks more than other parts of the healthy 

289 myocardium. Also, due to the weaker electrotonic coupling, the dispersion of repolarization 

290 here can be greater than in other areas (Martinez et al., 2018), causing the Purkinje–ventricle 
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291 APD ratio to have critical importance in arrhythmia generation. In our experiments, we found 

292 significantly greater shortening in Purkinje fibers caused by pinacidil that could be the 

293 consequence of the generally weaker repolarization reserve that makes the Purkinje action 

294 potential to be more susceptible to any pharmacological interventions (Varró et al, 2000; 

295 Baláti et al, 1998). Similarly, acetylcholine exerted larger lengthening in the Purkinje fiber 

296 probably by the same reason that ultimately led to reduced ventricle–Purkinje APD 

297 dispersion. The reduction of the ventricle–Purkinje fiber APD dispersion could suppress the 

298 arrhythmogenic substrate providing a narrower vulnerable period for a critically timed 

299 extrasystole to trigger a life-threatening arrhythmia under hypoxic conditions.

300

301 Proposed mechanism

302 Since inhibition of the K-ATP channels is possible by blocking various PKA-mediated 

303 pathways (Tinker et al, 2018.), we suggest that the decrease of cAMP levels caused by the 

304 activation of cardiac muscarinic receptors using acetylcholine/carbachol was the factor that 

305 decreased the density of the IK-ATP current in patch clamp measurements, leading to the 

306 subsequent prolongation observed in action potential durations.

307

308 Conclusions

309 We found that muscarinic agonists inhibit the IK-ATP. Therefore, during IK-ATP-mediated action 

310 potential shortening, acetylcholine causes asymmetrical action potential lengthening between 

311 ventricular muscle and Purkinje fiber that leads to reduced APD dispersion. 

312

313 These results suggest that the parasympathetic tone beyond suppressing the catecholaminerg-

314 induced arrhythmogenic triggers (Song et al., 1992) may be also able to reduce the 

315 arrhythmogenic substrate under hypoxic conditions. 

316

317
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318 Study Limitations

319 (i) In our experiments, the ventricular and Purkinje fiber action potentials were measured 

320 from electrically uncoupled tissue samples. 

321 (ii) The presented effects were attributed to the M2 muscarinic receptor; nevertheless, the 

322 exact level of contribution of other receptor subtypes was not addressed. To achieve this, 

323 further studies are needed, utilizing specific agonist and antagonist drugs.

324
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455 Figure Legends

456 Figure 1. Representative traces of Purkinje fiber (A, B) and ventricular muscle preparations 

457 (C, D); 5 μM acetylcholine (red dotted lines) alone caused no changes in either preparation 

458 type (A, C), while it caused significant prolongation when applied cummulatively after 5 μM 

459 pinacidil (B, D, pinacidil effect represented as blue dashed lines). Bars in panel E represent 

460 the values of APD90 in each treatment group, from top to bottom corresponding to the traces 

461 A to D. Abbreviations under bars: C, control; P, pinacidil, A, acetylcholine. The pacing cycle 

462 length was 500 ms. Values are mean ± SEM; *,# p<0.05 RM-ANOVA followed by 

463 Bonferroni’s post-hoc test.

464

465 Figure 2. Pinacidil (5 μM) increased the action potential duration dispersion (indicated by 

466 ΔAPD90 in percentages, and in ms above the bars) between Purkinje fiber and ventricular 

467 muscle preparations, while acetylcholine (5 μM), when applied after pinacidil, decreased 

468 dispersion. The pacing cycle length was 500 ms.

469

470 Figure 3. Effect of carbachol on IK-ATP. Ionic currents were measured under a slow voltage 

471 ramp protocol (panel A) between -120 mV and 60 mV. The currents were analysed at 0 and 

472 30 mV. Panel B demonstrates original representative current traces (left) and bar graphs 

473 (right) where 3 μM carbachol (dotted line) failed to influence the control current analysed at 

474 0 mV. Inset shows identical current fractions between –3 mV and 45 mV (indicated by dashed 

475 rectangle). Current traces in panel C as well as in the inset, illustrate large increase of the 

476 membrane current after application of 5 μM pinacidil (blue dashed line) that was inhibited by 

477 the subsequently applied 3 μM carbachol (red dotted line). In bar graphs (right), asterisk 

478 denotes significant change between control (left column) and pinacidil (middle column), 

479 while hash tag indicates significant change between pinacidil (middle column) and carbachol 

480 (right column). 

481
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482 Figure 4. Representative action potential trace (A) showing that hypoxic conditions caused 

483 significant action potential duration abbreviation and decreased mean diastolic potential and 

484 amplitude in canine ventricular preparations (blue dashed line), while acetylcholine (5 μM) 

485 caused a significant prolongation in action potential duration (red dotted line). Values of 

486 APD90 are represented as bars (B). Abbreviations under bars: C, control; H, hypoxia, A, 

487 acetylcholine. The pacing cycle length was 500 ms. Values are mean ± SEM; *,#p<0.05, 

488 RM-ANOVA followed by Bonferroni’s post-hoc test.

489

490 Figure 5. Representative action potential showing the effect of acetylcholine (5 μM, red 

491 dotted line) on a Purkinje fiber taken from a human donor heart (A). Values of APD90 are 

492 represented as bars (B). Abbreviations under bars: C, control; A, acetylcholine. The pacing 

493 cycle length was 500 ms. Values are mean ± SEM.
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28 Abstract

29 Introduction: Activation of the parasympathetic nervous system has been reported to have an 

30 antiarrhythmic role during ischemia-reperfusion injury by decreasing the arrhythmia triggers. 

31 Furthermore, it was reported that the parasympathetic neurotransmitter acetylcholine is able to 

32 modulate the ATP-dependent K-current (IK-ATP), a crucial current activated during hypoxia. 

33 However, the possible significance of this current modulation in the antiarrhythmic 

34 mechanism is not fully clarified. 

35 Methods: Action potentials were measured using the conventional microelectrode technique 

36 from canine left ventricular papillary muscle and free-running Purkinje fibers, under normal 

37 and hypoxic conditions. Ionic currents were measured using the whole-cell configuration of 

38 the patch clamp method.

39 Results: 5 μM acetylcholine did not influence the action potential duration (APD) either in 

40 Purkinje fibers or in papillary muscle preparations. In contrast, it significantly lengthened the 

41 APD and suppressed the Purkinje–ventricle APD dispersion when it was administered after 

42 5 μM pinacidil application. 3 μM carbachol reduced the pinacidil-activated IK-ATP under 

43 voltage-clamp condition. Acetylcholine lengthened the ventricular action potential under 

44 simulated ischemia condition.

45 Conclusion: In this study we found that acetylcholine inhibits the IK-ATP and thus suppresses 

46 the ventricle-Purkinje APD dispersion. We conclude that parasympathetic tone may reduce 

47 the arrhythmogenic substrate exerting a complex antiarrhythmic mechanism during hypoxic 

48 conditions. 

49

50 Key words: acetylcholine, Purkinje fibers, papillary muscles, hypoxia
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51 Introduction

52 The parasympathetic nervous system has a crucial role in controlling the actual heart rate and 

53 impulse propagation via influencing the sinoatrial and atrioventricular nodes (Higgins et al., 

54 1973). The parasympathetic nerve endings operate by releasing acetylcholine that acts on 

55 M2-receptors, activating several intracellular signaling routes, and ultimately influencing the 

56 cardiac ion channels (Harvey and Belevych, 2003). Even though the parasympathetic nervous 

57 system primarily innervates the supraventricular areas of the heart, there are certain important 

58 ion channels in the ventricular muscle that are known to be influenced by the release of 

59 acetylcholine. It has been previously reported that the inward rectifier potassium current (IK1; 

60 Koumi et al., 1995) and the slow component of the delayed rectifier (IKs; Pappano and 

61 Carmeliet, 1979) are inhibited, whereas IK-ATP and IK-ACh are activated by acetylcholine via 

62 G proteins (Terzic et al, 1994; Ito et al., 1994; Kim et al., 1997).

63

64 The importance of these effects of acetylcholine is underpinned by the fact that the activation 

65 of IK-ATP channels is well known during hypoxia/ischemia, in which situations the duration of 

66 the action potential is shortened (Weiss and Venkatesh, 1993). Furthermore, it was reported 

67 that vagal activation is also facilitated under ischemia–reperfusion (Recordati et al., 1971). 

68 This vagal activation during hypoxia could be antiarrhythmic, since it was reported that 

69 increased parasympathetic tone reduces the catecholaminerg-induced early and delayed 

70 afterdepolarizations (arrhythmia triggers) (Song et al., 1992), as well as the incidence of 

71 ventricular fibrillation (Zuanetti et al., 1987; Collins and Billman, 1989). However, the 

72 underlying mechanism of antiarrhythmic effect of M2-receptor activation is not fully clarified. 

73 Arrhythmias may develop when an arrhythmogenic substrate (e. g., dispersion of 

74 repolarization) and arrhythmia triggers (e.g.: early and delayed afterdepolarizations) 

75 simultaneously exist in the heart. The arrhythmogenic substrate could be prominent at 

76 Purkinje–ventricle connection because of the relatively weak electrotonic coupling due to low 

77 number of gap junctions (Varró and Baczkó, 2010). As a consequence of the different 
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78 pharmacological susceptibility of Purkinje fiber and ventricular muscle (Baláti et al, 1998), 

79 the activation of IK-ATP may modulate the Purkinje and ventricular action potential duration 

80 (APD) to different extents, and the developed APD dispersion may contribute to the onset of 

81 arrhythmias.

82

83 The objective of this study was the investigation of the possible effect of acetylcholine on the 

84 IK-ATP and on the IK-ATP-mediated action potential dispersion under normal and hypoxic 

85 conditions. 

86

87 Methods

88 Human tissues

89 Non-diseased human hearts that were unusable for transplantation (based on logistical, not 

90 patient-related considerations) were obtained from organ donors. Before cardiac explanation, 

91 organ donor patients did not receive medication except dobutamine, furosemide and plasma 

92 expanders. The investigations conform to the principles outlined in the Declaration of 

93 Helsinki of the World Medical Association. All experimental protocols were approved by the 

94 Scientific and Research Ethical Committee of the Medical Scientific Board at the Hungarian 

95 Ministry of Health (ETT-TUKEB), under ethical approval No 4991-0/2010-1018EKU 

96 (339/PI/010). Human cardiac tissue was stored in cardioplegic solution at 4°C for 4–8 hours.

97

98 Animals

99 All experiments using canine cardiac preparations were carried out in compliance with the 

100 Guide for the Care and Use of Laboratory Animals (USA NIH publication NO 85-23, revised 

101 1996) and conformed to the Directive 2010/63/EU of the European Parliament. The protocols 

102 have been approved by the Ethical Committee for the Protection of Animals in Research of 

103 the University of Szeged, Szeged, Hungary (approval number: I-74-24-2017) and by the 
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104 Department of Animal Health and Food Control of the Ministry of Agriculture and Rural 

105 Development (authority approval number XIII/3331/2017).

106

107 Conventional microelectrode technique

108 Ventricular (papillary or trabecular) muscles were obtained from the right ventricle of canine 

109 hearts. Free-running Purkinje fibers were identified as false tendons and isolated from both 

110 ventricles of human and canine hearts. Canine hearts were removed through a right lateral 

111 thoracotomy from anesthetized (thiopental 30 mg/kg i.v.) mongrel dogs of either sex 

112 weighing 10–15 kg. At impalement, Purkinje fibers were observed under a surgical 

113 microscope (Zeiss OPMI PRO). The preparations were placed in Locke’s solution and 

114 allowed to equilibrate for at least 2 hours while superfused (flow rate 4-5 ml/min) also with 

115 Locke’s solution containing (in mM): NaCl 120, KCl 4, CaCl2 2, MgCl2 1, NaHCO3 22, and 

116 glucose 11. The pH of this solution was 7.40 to 7.45 when gassed with 95% O2 and 5% CO2 

117 at 37 °C. In the experiments where the effects of tissue hypoxia were examined, we changed 

118 the gas mixture to 95% N2 and 5% CO2, pH remained at 7.40 to 7.45. All experiments were 

119 performed at 37 °C. During the equilibration period, preparations were stimulated at a basic 

120 cycle length of 500 ms. Electrical pulses of 0.5–2 ms in duration at twice the diastolic 

121 threshold in intensity (S1) were delivered to the preparations through bipolar platinum 

122 electrodes. Transmembrane potentials were recorded using glass capillary microelectrodes 

123 filled with 3 M KCl (tip resistance: 5 to 15 MΩ). The microelectrodes were coupled through 

124 an Ag-AgCl junction to the input of a high-impedance, capacitance-neutralizing amplifier 

125 (Experimetria 2011). Intracellular recordings were displayed on a storage oscilloscope 

126 (Hitachi V-555) and led to a computer system (APES) designed for on-line determination of 

127 the following parameters: resting membrane potential, action potential amplitude, action 

128 potential duration at 10% to 90% repolarization and the maximum rate of rise of the action 

129 potential upstroke (Vmax). Control recordings were obtained after equilibration period. The 

130 compounds used in all experiments were purchased from Sigma/Merck.
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131 2.3. Cell isolation

132 Ventricular myocytes were enzymatically dissociated from the left ventricle of dog hearts. 

133 Canine hearts were removed through a right lateral thoracotomy from anesthetized (thiopental 

134 30 mg/kg i.v.) mongrel dogs of either sex weighing 10–15 kg. Cardiac myocytes were isolated 

135 from the left ventricle, containing an arterial branch through which the segment was perfused 

136 on a Langendorff apparatus with solutions in the following sequence: normal Tyrode's 

137 solution (containing in mM: 144 mM NaCl, 0.4 mM NaH2PO4, 4 mM KCl, 0.53 mM MgSO4, 

138 1.8 mM CaCl2, 5.5 mM Glucose, 5 mM HEPES, pH 7.4 adjusted with NaOH) for 10 min, 

139 Ca2+-free Tyrode solution for 10 min and Ca2+-free Tyrode solution containing collagenase 

140 (Worthington type II, 0.66 mg/mL). To the final perfusion solution protease (type XIV, 0.12 

141 mg/mL) was added at the 15 and the 30 minutes for digestion.

142

143 2.4. Measurement of ionic currents

144 One drop of cell suspension was placed in a transparent recording chamber mounted on the 

145 stage of an inverted microscope (Olympus IX51, Tokyo, Japan), and individual myocytes 

146 were allowed to settle and adhere to the chamber bottom for at least 5–10 min before 

147 superfusion was initiated and maintained by gravity. Only rod-shaped cells with clear 

148 striations were used. HEPES-buffered Tyrode’s solution (composition in mM: NaCl 144, 

149 NaH2PO4 0.4, KCl 4.0, CaCl2 1.8, MgSO4 0.53, glucose 5.5 and HEPES 5.0, at pH of 7.4) 

150 was used as the normal superfusate. During the measurement of IK-ATP, 1 µM nisoldipine was 

151 added to the bath solution to block ICaL, IKr was blocked by 0.1 µM dofetilide, and IKs was 

152 blocked by 0.5 µM HMR-1556. Micropipettes were fabricated from borosilicate glass 

153 capillaries (Science Products GmbH, Hofheim, Germany), using a P-97 Flaming/Brown 

154 micropipette puller (Sutter Co, Novato, CA, USA), and had a resistance of 1.5–2.5 MΩ when 

155 filled with pipette solution. The membrane currents were recorded with Axopatch-200B 

156 amplifiers (Molecular Devices, Sunnyvale, CA, USA) by applying the whole-cell 

157 configuration of the patch-clamp technique. The membrane currents were digitized with 250 
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158 kHz analogue to digital converters (Digidata 1440A, Molecular Devices, Sunnyvale, CA, 

159 USA) under software control (pClamp 8 and pClamp 10, Molecular Devices, Sunnyvale, CA, 

160 USA).  The composition of the pipette solution (in mM) was the following: KOH 110, KCl 

161 40, K2ATP 5, MgCl2 5, EGTA 5, HEPES 10 and GTP 0.1 (pH was adjusted to 7.2 by aspartic 

162 acid). 

163

164 2.5 Statistical analysis

165 Results are expressed as mean ± S.E.M. Normality of distributions was verified using 

166 Shapiro-Wilk test, and homogeneity of variances was verified using Bartlett's test in each 

167 treatment group. Statistical comparisons were made using analysis of variance (ANOVA) for 

168 repeated measurements, followed by Bonferroni’s post-hoc test. Differences were considered 

169 significant when p < 0.05.

170

171 Results

172 1. Acetylcholine lengthened the APD after pinacidil-mediated action potential shortening

173 Canine Purkinje fibers and ventricular papillary muscles were paced at 500 ms cycle length. 

174 In canine Purkinje fibers (PFs; n=15), acetylcholine (5 µM) did not affect the repolarization 

175 (233.6±4.7 to 231.7±4.6; Figures 1A and 1E). In contrast, in canine Purkinje fibers (n=8), the 

176 IK-ATP activator pinacidil, applied in 5 μM concentration, significantly abbreviated APD90 

177 (207.7±7.0 ms vs 113.1±9.1 ms, p<0.05) values. After steady state was reached, acetylcholine 

178 was administered. Within 3 minutes, acetylcholine prolonged APD90 to 147.3±7.4 ms, 

179 partially reversing the effects of pinacidil (Figures 1B and 1E; p<0.05).

180

181 Similarly, as observed in Purkinje fibers, 5 μM acetylcholine alone failed to influence the 

182 APD of the ventricular muscle (APD90: 172.6±5.7 ms vs 172.8±5.3 ms). Pinacidil (n=5; 

183 5 μM) pretreatment significantly abbreviated the APD90 value (187.9±4.5 ms vs 

184 163.7±6.4 ms, p<0.05), similarly to the effects observed in the case of PFs. After a period of 
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185 30 minutes, sufficient to reach a steady state, acetylcholine was added to the superfusate. 

186 Within 4 minutes, acetylcholine (5 μM) prolonged APD90 to 172.1±7.4 ms (p<0.05), thus 

187 partially reversing the effects of pinacidil (Figures 1D and 1E). 

188

189 2. Acetylcholine decreased the calculated APD dispersion between PF and VM

190 The changes in the difference between the APD90 values of PF and VM can be used to infer 

191 the effects of pinacidil and acetylcholine on the dispersion between these cardiac tissue types 

192 (Figure 2). The control APD90 dispersion (9.5%, 20 ms) was significantly increased upon 

193 5 μM pinacidil application (44.7%, 51 ms). On the other hand, subsequently applied 5 μM 

194 acetylcholine markedly decreased the repolarization heterogeneity (16.9%, 28 ms; p<0.05). 

195

196 3. Carbachol decreased the pinacidil-induced current activation

197 During ionic current measurements, voltage ramps were used from a holding potential of 

198 -90 mV. Membrane potential was hyperpolarized to -120 mV, and then was slowly (over 36 s) 

199 depolarized to 60 mV. Ionic currents were analyzed and compared at 0 and +30 mV. We 

200 found that carbachol did not change the control current when it was applied without pinacidil 

201 (0 mV - control: 0.20±0.2 pA/pF vs 3 μM carbachol: 0.32±0.2 pA/pF, n=6 and +30 mV - 

202 control: 0.55±0.4 pA/pF vs 3 μM carbachol: 0.74±0.3 pA/pF, n=6). In contrast, when 5 μM 

203 pinacidil was applied first, subsequently employed carbachol significantly reduced the current 

204 at both voltages (0 mV – control: 0.24±0.2 pA/pF  5 μM pinacidil: 2.03±0.3 pA/pF  3 

205 μM carbachol: 1.51±0.4 pA/pF, n=8, p<0.05. +30 mV - control: 0.78±0.6 pA/pF  5 μM 

206 pinacidil: 3.17±0.3 pA/pF  3 μM carbachol: 2.26±0.3 pA/pF, n=8, p<0.05). 

207

208 These measurements were carried out with acetylcholine as well. However, we found 

209 carbachol to be more stable during the applied long voltage protocol. 

210
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211 4. Acetylcholine restored the APD after hypoxia-induced action potential shortening

212 Simulated hypoxia, achieved by gassing the solution with N2 and CO2 instead of O2 and CO2, 

213 resulted in a significant abbreviation of APD90 from 181.4±5.7 ms to 135.0±8.6 ms (p<0.05, 

214 Figures 4A and 4B), and a decrease in amplitude (103.7±2.8 mV vs 92±3.5 mV). The 

215 maximum rate of depolarization was also decreased (185.8±15.8 V/s vs 156.1±20.6 V/s). 

216 When applied during hypoxia, 5 μM acetylcholine caused a significant APD90 prolongation to 

217 164.4±4.4 ms, partially reversing the effect of hypoxia on the repolarization. AMP returned to 

218 a normal range (102.1±1.6 mV), while Vmax remained at 156.0±16.1 V/s.

219

220 5. Acetylcholine caused a slight abbreviation in human Purkinje fibers

221 In human PFs (n=2), acetylcholine in 5 μM concentration caused a slight abbreviation of 

222 APD90 from 269.0±28.4 to 251.6±42.85 ms and APD50 from 184.4±20.0 ms to 

223 173.3±27.1 ms without affecting other characteristics of the action potential (Figure 5).

224

225 Discussion

226 In this study we investigated the electrophysiological effects of muscarinic agonists on the 

227 IK-ATP current. We found that (i) under normal conditions acetylcholine did not influence the 

228 action potential duration. (ii) In contrast, when IK-ATP was pharmacologically activated by 

229 pinacidil, subsequently applied acetylcholine lengthened the action potential duration as well 

230 as (iii) reduced the pinacidil-induced ventricle-Purkinje APD dispersion. (iv) In line with this, 

231 carbachol inhibited the IK-ATP that was previously activated by pinacidil. (v) Acetylcholine 

232 increased the APD after hypoxia-induced action potential shortening. 

233

234 Acetylcholine inhibits the IK-ATP in canine ventricular myocytes

235 It is well known that acetylcholine shortens the atrial APD and has been implicated in atrial 

236 fibrillation (Nakayama et al, 1968). Acetylcholine directly affects the GIRK1/4 or 

237 Kir3.1/Kir3.4 channels (Nobles et al, 2018; Corey and Clapham, 1998), encoded by KCNJ3 
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238 and KCNJ4 genes (Kurachi, 1995). These channels are largely expressed in atrial, SA and AV 

239 nodal cells (Galindo et al, 2016; Navarro-Polanco et al, 2013). At the same time, previous 

240 studies (Terzic et al, 1994; Ito et al., 1994) claimed that acetylcholine activates the IK-ATP 

241 channels, even though the physiological consequences of this effect on the action potential 

242 were not clarified.

243

244 The IK-ATP ATP-sensitive potassium channels comprise hetero-octamers consisting of four 

245 inward rectifying potassium channel pore-forming subunits (Kir6.1 or Kir6.2, encoded by 

246 KCNJ8 and KCNJ11 genes, respectively) and four ATP-binding cassette protein 

247 sulphonylurea receptors (SUR1 or SUR2, encoded by ABCC8 and ABCC9 genes, 

248 respectively; Inagaki et al, 195). An important feature of the IK-ATP is its closed state under 

249 physiological intracellular ATP levels (i. e., under normoxia) and its activation by metabolic 

250 stress, when the ratio of ATP/ADP is decreased, e. g., during myocardial ischemia (Deutsch et 

251 al., 1991). 

252

253 Activation of the sarcolemmal IK-ATP during myocardial ischemia shortens the action potential 

254 of various cardiac tissues to different extents, thus it may promote APD dispersion and re-

255 entry type arrhythmias (Janse and Wit, 1989). Accordingly, several investigations found IK-

256 ATP activation to be pro-arrhythmic (Chi et al., 1990), suggesting that sarcolemmal IK-ATP 

257 inhibition may prevent arrhythmias induced by myocardial ischemia and ischemia/reperfusion 

258 (Billman et al, 1998; Englert et al, 2003; Vajda et al, 2007).

259

260 In our experiments under normal conditions, we found no effect of carbachol on the 

261 membrane current (Figure 3) and, similarly, acetylcholine failed to influence the ventricular 

262 and Purkinje APDs (Figures 1A and 1C). The observed discrepancy between our and previous 

263 results, where an activation of IK-ATP was described upon acetylcholine administration (Terzic 

Page 30 of 52

© The Author(s) or their Institution(s)

Canadian Journal of Physiology and Pharmacology



Draft

264 et al, 1994; Ito et al, 1994; Kim et al., 1997), could be the consequence of the species 

265 difference and the distinct experimental conditions. 

266

267 In contrast, an important, and, to the best of our knowledge, previously not published result of 

268 our study is that carbachol is able to suppress the pinacidil-activated IK-ATP. As a consequence, 

269 in parallel tissue action potential experiments, acetylcholine lengthened the APD as long as it 

270 was previously shortened by the application of IK-ATP-activator pinacidil. Since IK-ATP 

271 activation could be arrhythmogenic (Chi et al., 1990) by causing an increase in the APD 

272 dispersion, this effect of acetylcholine raises the possibility of a novel antiarrhythmic 

273 mechanism of the previously described antiarrhythmic effect of parasympathetic activation 

274 during hypoxia (Song et al., 1992; Zuanetti et al., 1987; Collins and Billman, 1989). 

275

276 Our experiments conducted under hypoxic conditions provided similar results (i. e., 

277 acetylcholine lengthened the hypoxia-induced shortened ventricular action potential; 

278 Figure 4). Even though tissue hypoxia is a complex phenomenon (Carmeliet, 1999), during 

279 which several factors change simultaneously (e. g., Ca2+
i, Na+

i, pH, conductance of gap 

280 junctions, membrane potential etc.), it is feasible that IK-ATP activation, as a response to ATP 

281 depletion, is an important factor in the observed action potential shortening. Since 

282 acetylcholine lengthened the action potential under hypoxic conditions, we suggest IK-ATP 

283 inhibition as a possible underlying mechanism. 

284

285 Acetylcholine decreased the pinacidil-induced ventricle–Purkinje APD dispersion

286 Free-running Purkinje fibers connect to the ventricular muscle on a small surface area, 

287 providing a relatively large-resistance coupling (Tranum-Jensen et al., 1991), and a large sink 

288 for current flow that favors conduction blocks more than other parts of the healthy 

289 myocardium. Also, due to the weaker electrotonic coupling, the dispersion of repolarization 

290 here can be greater than in other areas (Martinez et al., 2018), causing the Purkinje–ventricle 
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291 APD ratio to have critical importance in arrhythmia generation. In our experiments, we found 

292 significantly greater shortening in Purkinje fibers caused by pinacidil that could be the 

293 consequence of the generally weaker repolarization reserve that makes the Purkinje action 

294 potential to be more susceptible to any pharmacological interventions (Varró et al, 2000; 

295 Baláti et al, 1998). Similarly, acetylcholine exerted larger lengthening in the Purkinje fiber 

296 probably by the same reason that ultimately led to reduced ventricle–Purkinje APD 

297 dispersion. The reduction of the ventricle–Purkinje fiber APD dispersion could suppress the 

298 arrhythmogenic substrate providing a narrower vulnerable period for a critically timed 

299 extrasystole to trigger a life-threatening arrhythmia under hypoxic conditions.

300

301 Proposed mechanism

302 Since inhibition of the K-ATP channels is possible by blocking various PKA-mediated 

303 pathways (Tinker et al, 2018.), we suggest that the decrease of cAMP levels caused by the 

304 activation of cardiac muscarinic receptors using acetylcholine/carbachol was the factor that 

305 decreased the density of the IK-ATP current in patch clamp measurements, leading to the 

306 subsequent prolongation observed in action potential durations.

307

308 Conclusions

309 We found that muscarinic agonists inhibit the IK-ATP. Therefore, during IK-ATP-mediated action 

310 potential shortening, acetylcholine causes asymmetrical action potential lengthening between 

311 ventricular muscle and Purkinje fiber that leads to reduced APD dispersion. 

312

313 These results suggest that the parasympathetic tone beyond suppressing the catecholaminerg-

314 induced arrhythmogenic triggers (Song et al., 1992) may be also able to reduce the 

315 arrhythmogenic substrate under hypoxic conditions. 

316

317
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318 Study Limitations

319 (i) In our experiments, the ventricular and Purkinje fiber action potentials were measured 

320 from electrically uncoupled tissue samples. 

321 (ii) The presented effects were attributed to the M2 muscarinic receptor; nevertheless, the 

322 exact level of contribution of other receptor subtypes was not addressed. To achieve this, 

323 further studies are needed, utilizing specific agonist and antagonist drugs.

324
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455 Figure Legends

456 Figure 1. Representative traces of Purkinje fiber (A, B) and ventricular muscle preparations 

457 (C, D); 5 μM acetylcholine (red dotted lines) alone caused no changes in either preparation 

458 type (A, C), while it caused significant prolongation when applied cummulatively after 5 μM 

459 pinacidil (B, D, pinacidil effect represented as blue dashed lines). Bars in panel E represent 

460 the values of APD90 in each treatment group, from top to bottom corresponding to the traces 

461 A to D. Abbreviations under bars: C, control; P, pinacidil, A, acetylcholine. The pacing cycle 

462 length was 500 ms. Values are mean ± SEM; *,# p<0.05 RM-ANOVA followed by 

463 Bonferroni’s post-hoc test.

464

465 Figure 2. Pinacidil (5 μM) increased the action potential duration dispersion (indicated by 

466 ΔAPD90 in percentages, and in ms above the bars) between Purkinje fiber and ventricular 

467 muscle preparations, while acetylcholine (5 μM), when applied after pinacidil, decreased 

468 dispersion. The pacing cycle length was 500 ms.

469

470 Figure 3. Effect of carbachol on IK-ATP. Ionic currents were measured under a slow voltage 

471 ramp protocol (panel A) between -120 mV and 60 mV. The currents were analysed at 0 and 

472 30 mV. Panel B demonstrates original representative current traces (left) and bar graphs 

473 (right) where 3 μM carbachol (dotted line) failed to influence the control current analysed at 

474 0 mV. Inset shows identical current fractions between –3 mV and 45 mV (indicated by dashed 

475 rectangle). Current traces in panel C as well as in the inset, illustrate large increase of the 

476 membrane current after application of 5 μM pinacidil (blue dashed line) that was inhibited by 

477 the subsequently applied 3 μM carbachol (red dotted line). In bar graphs (right), asterisk 

478 denotes significant change between control (left column) and pinacidil (middle column), 

479 while hash tag indicates significant change between pinacidil (middle column) and carbachol 

480 (right column). 

481
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482 Figure 4. Representative action potential trace (A) showing that hypoxic conditions caused 

483 significant action potential duration abbreviation and decreased mean diastolic potential and 

484 amplitude in canine ventricular preparations (blue dashed line), while acetylcholine (5 μM) 

485 caused a significant prolongation in action potential duration (red dotted line). Values of 

486 APD90 are represented as bars (B). Abbreviations under bars: C, control; H, hypoxia, A, 

487 acetylcholine. The pacing cycle length was 500 ms. Values are mean ± SEM; *,#p<0.05, 

488 RM-ANOVA followed by Bonferroni’s post-hoc test.

489

490 Figure 5. Representative action potential showing the effect of acetylcholine (5 μM, red 

491 dotted line) on a Purkinje fiber taken from a human donor heart (A). Values of APD90 are 

492 represented as bars (B). Abbreviations under bars: C, control; A, acetylcholine. The pacing 

493 cycle length was 500 ms. Values are mean ± SEM.
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Figure 1. Representative traces of Purkinje fiber (A, B) and ventricular muscle preparations (C, D); 5 μM 
acetylcholine (red dotted lines) alone caused no changes in either preparation type (A, C), while it caused 
significant prolongation when applied cummulatively after 5 μM pinacidil (B, D, pinacidil effect represented 
as blue dashed lines). Bars in panel E represent the values of APD90 in each treatment group, from top to 

bottom corresponding to the traces A to D. Abbreviations under bars: C, control; P, pinacidil, A, 
acetylcholine. The pacing cycle length was 500 ms. Values are mean ± SEM; *,# p<0.05 RM-ANOVA 

followed by Bonferroni’s post-hoc test. 
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Figure 2. Pinacidil (5 μM) increased the action potential duration dispersion (indicated by ΔAPD90 in 
percentages, and in ms above the bars) between Purkinje fiber and ventricular muscle preparations, while 
acetylcholine (5 μM), when applied after pinacidil, decreased dispersion. The pacing cycle length was 500 

ms. 
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Figure 3. Effect of carbachol on IK-ATP. Ionic currents were measured under a slow voltage ramp protocol 
(panel A) between -120 mV and 60 mV. The currents were analysed at 0 and 30 mV. Panel B demonstrates 
original representative current traces (left) and bar graphs (right) where 3 μM carbachol (dotted line) failed 
to influence the control current analysed at 0 mV. Inset shows identical current fractions between –3 mV 

and 45 mV (indicated by dashed rectangle). Current traces in panel C as well as in the inset, illustrate large 
increase of the membrane current after application of 5 μM pinacidil (blue dashed line) that was inhibited by 
the subsequently applied 3 μM carbachol (red dotted line). In bar graphs (right), asterisk denotes significant 

change between control (left column) and pinacidil (middle column), while hash tag indicates significant 
change between pinacidil (middle column) and carbachol (right column). 
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Figure 4. Representative action potential trace (A) showing that hypoxic conditions caused significant action 
potential duration abbreviation and decreased mean diastolic potential and amplitude in canine ventricular 

preparations (blue dashed line), while acetylcholine (5 μM) caused a significant prolongation in action 
potential duration (red dotted line). Values of APD90 are represented as bars (B). Abbreviations under bars: 

C, control; H, hypoxia, A, acetylcholine. The pacing cycle length was 500 ms. Values are mean ± SEM; 
*,#p<0.05, RM-ANOVA followed by Bonferroni’s post-hoc test. 
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Figure 5. Representative action potential showing the effect of acetylcholine (5 μM, red dotted line) on a 
Purkinje fiber taken from a human donor heart (A). Values of APD90 are represented as bars (B). 

Abbreviations under bars: C, control; A, acetylcholine. The pacing cycle length was 500 ms. Values are 
mean ± SEM. 
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12 Introduction

13 Acetylcholine has been previously shown to augment J-point elevation and to induce phase-2 reentry, 

14 thus precipitating polymorphic ventricular tachycardia in preparations pretreated with agents designed 

15 to pharmacologically mimic the genetic defects previously shown to be associated with the early 

16 repolarization syndrome (ERS). Previously, Haïssaguerre et al. (2008) have described that extrasystolic 

17 activity arising from the Purkinje network is able to precipitate ventricular tachyarrhythmias in the 

18 setting of ERS. We examined Purkinje fibers under conditions pharmacologically mimicking the ion 

19 channel changes caused by the genetic defects previously reported to be associated with ERS, including 

20 gain of function in IK-ATP (KCNJ8 and ABCC9) or Ito (SCN1Bb and KCND3) (Hu et al., 2014b; Barajas-

21 Martínez et al., 2014; Haïssaguerre et al., 2009) or loss of function in ICa (CACNA1C, CACNB2 and 

22 CACNA2D1) (Burashnikov et al., 2010; Napolitano and Antzelevitch, 2011) or INa (SCN5A and 

23 SCN10A) (Watanabe et al., 2011; Hu et al., 2014a), and applied an antiarrhytmic drug successfully used 

24 to treat ventricular tachyarrhythmias in ERS: cilostazol (Iguchi et al., 2013; Shinohara et al., 2014; ).

25

26 Methods

27 Conventional microelectrode technique

28 All experiments were performed on canine Purkinje fibers using the conventional microelectrode 

29 technique. The preparations were placed in Locke’s solution and allowed to equilibrate for at least 2 

30 hours while superfused (flow rate 4-5 ml/min) also with Locke’s solution containing (in mM): NaCl 

31 120, KCl 4, CaCl2 2, MgCl2 1, NaHCO3 22, and glucose 11. The pH of this solution was 7.40 to 7.45 

32 when gassed with 95% O2 and 5% CO2 at 37 °C. All experiments were performed at 37 °C. Electrical 

33 pulses of 0.5–2 ms in duration at twice the diastolic threshold in intensity (S1) were delivered to the 

34 preparations through bipolar platinum electrodes at a basic cycle length of 500 ms. Transmembrane 

35 potentials were recorded using glass capillary microelectrodes filled with 3 M KCl (tip resistance: 5 to 

36 15 MΩ). The microelectrodes were coupled through an Ag-AgCl junction to the input of a 
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37 high-impedance, capacitance-neutralizing amplifier (Experimetria 2011). Intracellular recordings were 

38 displayed on a storage oscilloscope (Hitachi V-555) and led to a computer system.

39

40 Pharmacological models

41 Our pharmacological models of the early repolarization syndrome in Purkinje fibers were based on 

42 previous experiments (Koncz et al., 2014; Gurabi et al., 2014). We pharmacologically mimicked the 

43 ion channel changes caused by the genetic defects associated with ERS: pinacidil (5 μM; IK-ATP gain of 

44 function), NS5806 (7 μM; Ito gain of function), nisoldipine (1 μM; ICa loss of function), mexiletine 

45 (20 μM; INa loss of function). The more efficacious enantiomer of mexiletine, R-mexiletine was used 

46 (Gurabi et al., 2017); the concentration corresponds to a peak therapeutic plasma concentration (Varró 

47 and Lathrop, 1990). The application of each compound was followed by an equilibration period, 

48 enabling the tissue to reach steady-state, then the next compound was administered in a cumulative 

49 manner. Acetylcholine (5 μM) was used to simulate increased parasympathetic tone. Cilostazol 

50 (10 μM) was applied after acetylcholine.

51

52 Results

53 Model 1: Pinacidil + acetylcholine + cilostazol (n=6)

54 The effects of pinacidil and acetylcholine were described in the main article. Cilostazol caused a 

55 notable plateau elevation without changing repolarization (Figure A1-A).

56

57 Model 2: NS5806 + pinacidil + acetylcholine + cilostazol (n=5)

58 Cilostazol significantly increased action potential duration (APD) when applied after NS5806, pinacidil 

59 and acetylcholine (Figure A1-B). 

60

61
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62 Model 3: Mexiletine + NS5806 + cilostazol (n=4)

63 After inhibition of INa by mexiletine, followed by the activation Ito by NS5806 and the administration of 

64 acetylcholine, cilostazol caused a slight prolongation of the APD (Figure A1-C).

65

66 Model 4: Nisoldipine + NS5806 + acetylcholine + cilostazol (n=4)

67 Cilostazol was also applied after nisoldipine, NS5806 and acetylcholine, causing a slight plateau 

68 elevation and slight APD prolongation (Figure A1-D).

69

70 Conclusion

71 Since most conventional antiarrhythmic drugs, including beta-blockers, verapamil, lidocaine or 

72 amiodarone, are not capable of suppressing tachyarrhythmic episodes in the early repolarization 

73 syndrome, cilostazol should remain a prominent candidate in clinical trials related to early 

74 repolarization. Formerly, we found Ito blocking ability of cilostazol (Patocskai et al., 2016) next to its 

75 ability to augment ICa (Matsui et al., 1999). The above detailed normalization of the repolarization 

76 defect might carry a possible therapeutic value of cilostazol in early repolarization (ER), when the 

77 origin of arrhythmic activity is localized to the Purkinje system. 

Page 48 of 52

© The Author(s) or their Institution(s)

Canadian Journal of Physiology and Pharmacology



Draft

78 References

79 Barajas-Martínez, H., Hu, D., Ferrer, T., Onetti, C. G., Wu, Y., Burashnikov, E., Boyle, M., Surman, T., Urrutia, J., 

80 Veltmann, C., Schimpf, R., Borggrefe, M., Wolpert, C., Ibrahim, B. B., Sánchez-Chapula, J. A., Winters, S., Haïssaguerre, 

81 M., & Antzelevitch, C. (2012). Molecular genetic and functional association of Brugada and early repolarization syndromes 

82 with S422L missense mutation in KCNJ8. Heart Rhythm, 9(4), 548–555. https://doi.org/10.1016/j.hrthm.2011.10.035

83

84 Burashnikov, E., Pfeiffer, R., Barajas-Martinez, H., Delpón, E., Hu, D., Desai, M., Borggrefe, M., Häissaguerre, M., Kanter, 

85 R., Pollevick, G. D., Guerchicoff, A., Laiño, R., Marieb, M., Nademanee, K., Nam, G.-B., Robles, R., Schimpf, R., 

86 Stapleton, D. D., Viskin, S., … Antzelevitch, C. (2010). Mutations in the cardiac L-type calcium channel associated with 

87 inherited J-wave syndromes and sudden cardiac death. Heart Rhythm, 7(12), 1872–1882. 

88 https://doi.org/10.1016/j.hrthm.2010.08.026

89

90 Gurabi, Z., Patocskai, B., Györe, B., Virág, L., Mátyus, P., Papp, J. G., Varró, A., & Koncz, I. (2017). Different 

91 electrophysiological effects of the levo- and dextro-rotatory isomers of mexiletine in isolated rabbit cardiac muscle. 

92 Canadian Journal of Physiology and Pharmacology, 95(7), 830–836. https://doi.org/10.1139/cjpp-2016-0599

93

94 Haïssaguerre, M., Chatel, S., Sacher, F., Weerasooriya, R., Probst, V., Loussouarn, G., Horlitz, M., Liersch, R., Schulze-

95 Bahr, E., Wilde, A., Kääb, S., Koster, J., Rudy, Y., Le Marec, H., & Schott, J. J. (2009). Ventricular fibrillation with 

96 prominent early repolarization associated with a rare variant of KCNJ8/KATP channel. Journal of Cardiovascular 

97 Electrophysiology, 20(1), 93–98. https://doi.org/10.1111/j.1540-8167.2008.01326.x

98

99 Haïssaguerre, M., Derval, N., Sacher, F., Jesel, L., Deisenhofer, I., de Roy, L., Pasquié, J.-L., Nogami, A., Babuty, D., Yli-

100 Mayry, S., De Chillou, C., Scanu, P., Mabo, P., Matsuo, S., Probst, V., Le Scouarnec, S., Defaye, P., Schlaepfer, J., 

101 Rostock, T., … Clémenty, J. (2008). Sudden cardiac arrest associated with early repolarization. The New England Journal 

102 of Medicine, 358(19), 2016–2023. https://doi.org/10.1056/NEJMoa071968

103

104 Hu, D., Barajas-Martínez, H., Pfeiffer, R., Dezi, F., Pfeiffer, J., Buch, T., Betzenhauser, M. J., Belardinelli, L., Kahlig, K. 

105 M., Rajamani, S., DeAntonio, H. J., Myerburg, R. J., Ito, H., Deshmukh, P., Marieb, M., Nam, G.-B., Bhatia, A., Hasdemir, 

Page 49 of 52

© The Author(s) or their Institution(s)

Canadian Journal of Physiology and Pharmacology

https://doi.org/10.1016/j.hrthm.2011.10.035
https://doi.org/10.1016/j.hrthm.2010.08.026
https://doi.org/10.1139/cjpp-2016-0599
https://doi.org/10.1111/j.1540-8167.2008.01326.x
https://doi.org/10.1056/NEJMoa071968


Draft

106 C., Haïssaguerre, M., … Antzelevitch, C. (2014). Mutations in SCN10A are responsible for a large fraction of cases of 

107 Brugada syndrome. Journal of the American College of Cardiology, 64(1), 66–79. 

108 https://doi.org/10.1016/j.jacc.2014.04.032

109

110 Hu, D., Barajas-Martínez, H., Terzic, A., Park, S., Pfeiffer, R., Burashnikov, E., Wu, Y., Borggrefe, M., Veltmann, C., 

111 Schimpf, R., Cai, J. J., Nam, G.-B., Deshmukh, P., Scheinman, M., Preminger, M., Steinberg, J., López-Izquierdo, A., 

112 Ponce-Balbuena, D., Wolpert, C., … Antzelevitch, C. (2014). ABCC9 is a novel Brugada and early repolarization syndrome 

113 susceptibility gene. International Journal of Cardiology, 171(3), 431–442. https://doi.org/10.1016/j.ijcard.2013.12.084

114

115 Iguchi, K., Noda, T., Kamakura, S., & Shimizu, W. (2013). Beneficial effects of cilostazol in a patient with recurrent 

116 ventricular fibrillation associated with early repolarization syndrome. Heart Rhythm, 10(4), 604–606. 

117 https://doi.org/10.1016/j.hrthm.2012.11.001

118

119 Koncz, I., Gurabi, Z., Patocskai, B., Panama, B. K., Szél, T., Hu, D., Barajas-Martínez, H., & Antzelevitch, C. (2014). 

120 Mechanisms underlying the development of the electrocardiographic and arrhythmic manifestations of early repolarization 

121 syndrome. Journal of Molecular and Cellular Cardiology, 68, 20–28. https://doi.org/10.1016/j.yjmcc.2013.12.012

122

123 Matsui, K., Kiyosue, T., Wang, J. C., Dohi, K., & Arita, M. (1999). Effects of pimobendan on the L-type Ca2+ current and 

124 developed tension in guinea-pig ventricular myocytes and papillary muscle: Comparison with IBMX, milrinone, and 

125 cilostazol. Cardiovascular Drugs and Therapy, 13(2), 105–113. https://doi.org/10.1023/a:1007779908346

126

127 Napolitano, C., & Antzelevitch, C. (2011). Phenotypical manifestations of mutations in the genes encoding subunits of the 

128 cardiac voltage-dependent L-type calcium channel. Circulation Research, 108(5), 607–618. 

129 https://doi.org/10.1161/CIRCRESAHA.110.224279

130

131 Patocskai, B., Barajas-Martinez, H., Hu, D., Gurabi, Z., Koncz, I., & Antzelevitch, C. (2016). Cellular and ionic 

132 mechanisms underlying the effects of cilostazol, milrinone, and isoproterenol to suppress arrhythmogenesis in an 

Page 50 of 52

© The Author(s) or their Institution(s)

Canadian Journal of Physiology and Pharmacology

https://doi.org/10.1016/j.jacc.2014.04.032
https://doi.org/10.1016/j.ijcard.2013.12.084
https://doi.org/10.1016/j.hrthm.2012.11.001
https://doi.org/10.1016/j.yjmcc.2013.12.012
https://doi.org/10.1023/a:1007779908346
https://doi.org/10.1161/CIRCRESAHA.110.224279


Draft

133 experimental model of early repolarization syndrome. Heart Rhythm, 13(6), 1326–1334. 

134 https://doi.org/10.1016/j.hrthm.2016.01.024

135

136 Shinohara, T., Ebata, Y., Ayabe, R., Fukui, A., Okada, N., Yufu, K., Nakagawa, M., & Takahashi, N. (2014). Combination 

137 therapy of cilostazol and bepridil suppresses recurrent ventricular fibrillation related to J-wave syndromes. Heart Rhythm, 

138 11(8), 1441–1445. https://doi.org/10.1016/j.hrthm.2014.05.001

139

140 Varró, A., & Lathrop, D. A. (1990). Sotalol and mexiletine: Combination of rate-dependent electrophysiological effects. 

141 Journal of Cardiovascular Pharmacology, 16(4), 557–567. https://doi.org/10.1097/00005344-199010000-00006

142

143 Watanabe, H., Nogami, A., Ohkubo, K., Kawata, H., Hayashi, Y., Ishikawa, T., Makiyama, T., Nagao, S., Yagihara, N., 

144 Takehara, N., Kawamura, Y., Sato, A., Okamura, K., Hosaka, Y., Sato, M., Fukae, S., Chinushi, M., Oda, H., Okabe, M., … 

145 Makita, N. (2011). Electrocardiographic characteristics and SCN5A mutations in idiopathic ventricular fibrillation 

146 associated with early repolarization. Circulation. Arrhythmia and Electrophysiology, 4(6), 874–881. 

147 https://doi.org/10.1161/CIRCEP.111.963983

148

Page 51 of 52

© The Author(s) or their Institution(s)

Canadian Journal of Physiology and Pharmacology

https://doi.org/10.1016/j.hrthm.2016.01.024
https://doi.org/10.1016/j.hrthm.2014.05.001
https://doi.org/10.1097/00005344-199010000-00006
https://doi.org/10.1161/CIRCEP.111.963983


Draft

149 Appendix figure legend

150 Figure A1. Representative action potential traces from canine Purkinje fibers showing the effects of 

151 10 μM cilostazol (continuous lines) in the following models of the early repolarization syndrome (ERS, 

152 dotted lines): pinacidil 5 μM + acetylcholine 5 μM (Model 1; A), NS5806 7 μM + pinacidil 5 μM + 

153 acetylcholine 5 μM (Model 2; B), mexiletine 20 μM + NS5806 7 μM  (Model 3; C), and nisoldipine 

154 1 μM + NS5806 7 μM + acetylcholine 5 μM (Model 4; D).
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Figure A1. Representative action potential traces from canine Purkinje fibers showing the effects of 10 μM 
cilostazol (continuous lines) in the following models of the early repolarization syndrome (ERS, dotted lines): 

pinacidil 5 μM + acetylcholine 5 μM (Model 1; A), NS5806 7 μM + pinacidil 5 μM + acetylcholine 5 μM 
(Model 2; B), mexiletine 20 μM + NS5806 7 μM  (Model 3; C), and nisoldipine 1 μM + NS5806 7 μM + 

acetylcholine 5 μM (Model 4; D). 
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