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1 Introduction

The goal of tomographic reconstruction is to discover the inner structure of objects using their
projections in a slice-by-slice manner. Most often, the projections are produced by X-rays. Mea-
suring the attenuation of the beams passing through the object can provide information on the
density of the materials along the paths of the beams (see Fig. 1a for illustration). Collecting
such projection data from many angles, one can produce an image showing the inner structure
of the object [4, 7]. Computed Tomography (CT) is a widely used tool in different fields, such
as medical imaging, non-destructive testing (NDT), material characterization, crystallography,
etc. to analyze the interior of the subject of investigation.

Discrete Tomography (DT) [5, 6] uses the prior information that the cross-section image to
be reconstructed contains only a few different intensities which are known in advance. Exploit-
ing this prior knowledge, a smaller set of projections is sufficient for a reconstruction with an
acceptable quality.

Binary Tomography (BT) is a more restricted variant of DT. In this case, every single pixel
of the image to be reconstructed can take only two different intensities. In practice, objects
corresponding to these images must be made of a homogeneous material.

The dissertation addresses the Author’s research in the field of CT and BT. Our main aim
was to improve reconstruction quality by developing novel algorithms and improving previ-
ous approaches in the research fields of selecting the most informative projection angles, au-
tomatic selection of the tube voltage of a CT scanner, and binarizing already reconstructed CT
slices using Convolutional Neural Networks.
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Figure 1: (a) Acquisition of a projection. (b) Equation system-based representation of the
parallel-beam projection geometry.

2 Formulation of the reconstruction problem

Due to the small number of projections, typically available in DT, the reconstruction is mainly
solved by one of the algebraic approaches. The idea is to describe the connections between
projections and pixels using equations. Assuming that the size of the image to be reconstructed
is n× n (N = n2), the reconstruction problem can be described as a system of linear equations
(see Fig. 1b for illustration):

Ax = b, A ∈ Rm×N , x ∈ RN , b ∈ Rm , (1)

where x is the vector of all N unknown image pixels, b is the vector of all m measured projection
values (m is the total number of projection lines used), and A describes the projection geometry
with all ai,j elements giving the length of the line segment of the ith projection line through the
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jth pixel. If we want to further limit this formulation into the binary reconstruction problem,
we have to add a new restriction to x, which is x ∈ {0, 1}N . This way x is forced to contain only
{0, 1} values.

3 Offline Projection Selection Algorithms and their Scale Invariance

In BT, we use the prior information that the object consists of a single material, and the gaps are
filled with air. In some cases, this constraint can lead to accurate results, even from just 4–8 pro-
jections. In their paper [16], Nagy et al. noted that when using a low number of projections, the
accuracy of a binary reconstruction can depend on the projection angles. Further investigated
in [24], this phenomenon was found to depend on the structure of the object of study. Thus,
further attention was paid on how the “most informative” projections can be found. Projection
selection methods can be classified as online and offline ones. In this thesis point, we are going
to focus on the latter.

In the offline case, a blueprint image of the object to be reconstructed is given (which is
rather typical, e.g., in industrial NDT), on which the whole projection data can be simulated,
and the proper projection set can be identified. In this context, the projections are not al-
ways gathered by real physical measurements. They can be simulated using a golden standard
(ground-truth or blueprint) that is often available in industrial quality testing, e.g., as a CAD
model. In [25], several approaches have been published aiming to find good projection angles
for BT, all of them reducing the search space of projection sets in various ways.

In this thesis point, we suggest sequential search methods [20] to find projection angles with
high information content and analyze the behavior of these methods under serious resolution
down-scaling.

3.1 Projection selection algorithms

We first recall three projection selection strategies from [25] that serve as references for com-
parison with our suggested methods. The approaches given in [25] are the best performing
state-of-the-art methods in this field.

One of the simplest methods is when the projection angles are distributed proportionally,
with equiangular spacing. One can distinguish two variants. In the first case, the starting angle
is positioned to 0◦. As an improved version, in the second case, all the integer starting angles
are analyzed between 0◦ and

[ 180
p

]◦, where p is the number of projections. In the end, the angle
set ensuring the best quality (with the smallest Relative Mean Error (RME) value) is kept. The
authors of [25] referred to these methods as Naive and EquiAng angle selections, respectively,
and so do we.

To handle the issue of selecting arbitrary angles, in [25], the authors presented the problem
as an energy minimization task. An optimal set of angles must satisfy

RME(x∗, xS∗) = min
S

RME(x∗, xS) , (2)

where S is an arbitrary set of angles, S∗ is the optimal set of angles, xS and xS∗ are the recon-
structions from the projections with S and S∗ angle sets, respectively. Simulated annealing [14]
was proposed for the minimization. We refer to this method as SA.

3.2 Proposed sequential search methods

By the observation that projections can serve as features of the image to reconstruct, we exam-
ined numerous types of feature selection algorithms, following the summary of [15]. According
to this examination, the floating search methods [20] seemed to be the best options in this area.
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Other algorithms contain too much randomization, use exhaustive search, or tree structure
which makes them hardly applicable for this task.

First, we investigated and modified the forward and backward sequential selection meth-
ods (SFS and SBS) to serve as projection selection methods. In the case of SFS, the process starts
with the initialization of a feature subset. Then it iteratively adds features to the initial subset.
In the case of SBS, the initial feature set contains all the features. Then, iteratively, one feature
will be removed from the set, namely whose deletion causes the least loss in the evaluation
measure. Both processes stop when no improvement happens in the evaluation measure in the
last t steps (where t is a predefined threshold variable) or all the necessary number of features
has been added to the set or deleted from the set, respectively.

Both SFS and SBS suffer from a so-called “nesting effect”. It means that in SFS, the fea-
tures once selected cannot be later discarded, while in SBS, the discarded features cannot be
reselected. The result is that the methods are only suboptimal. With a further investigation,
we combined the SFFS and SBFS (Sequential Floating Forward/Backward Search) methods to-
gether and created our Refinement algorithm. In our interpretation, the algorithm starts with an
initial angle set, which can be the output of any type of projection selection algorithm, and then
we apply the Refinement. Depending on which algorithm is used as the first step, we refer to
these algorithms as NaiveR, EquiAngR, SAR, SFSR, and SBSR, i.e., the original name is extended
with the letter R (R is for Refinement). The Refinement algorithm can be seen in Alg. 1, which is
capable of refining the result of the output of any other algorithm.

Algorithm 1: Angle selection with Refinement
1: let S be the set of the actual angles - output of an angle selection algorithm
2: fixΘ← the last element inserted into S
3: repeat
4: for all angle θ ∈ S \ {fixΘ} do
5: calculate RME(x∗, xS\{θ})
6: θmin ← angle corresponding to the smallest RME value
7: end for
8: S← S \ {θmin}
9: for θ← 0 to 179 do

10: calculate RME(x∗, xS∪{θ})
11: θmin ← angle corresponding to the smallest RME value
12: end for
13: S← S ∪ {θmin}
14: fixΘ← θmin
15: until the RME cannot be decreased any more.

3.3 Scale Invariance in Projection Selection

3.3.1 Technique (T1): Resizing the image

In industrial NDT, often hundreds or thousands of projections of the examined object are ac-
quired, and the number of detector pixels can also be of the same magnitude. This allows us to
reconstruct a high-quality image from its projections. However, if we want to apply a projec-
tion selection method on the reconstructed image, it could take an unacceptably long time due
to the high resolution. To speed up this process, one can downscale the reconstructed image
and then apply the projection selection algorithm just after this step.

By reducing the resolution, one may lose information, and the object in the image may
deform due to structural and topological changes. For projection selection, however, we do not
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need that much and detailed projection information. If the image preserves the most specific
structural information about its content, it is completely enough to find the most informative
angles. For downscaling, we used the Gaussian pyramid.

3.3.2 Technique (T2): Summing the projection values

Another possible technique preserves the original size of the blueprint image and takes the
normalized sum of every d neighboring projection value, where d will specify the magnitude
of reduction:

Dl(i) =
∑

j<d·i+d
j=d·i+1 Dl−1(j)

d2 , i = 0, . . . , ml − 1 . (3)

Here Dl represents the new projection vector and ml is the number of the detectors on the lth
level. For example, if we sum every 2nd neighboring projection value, we halve the size of the
projection vector and thus also the size of the sinogram.

3.3.3 Perimetric complexity

Finding the connection between the characteristics of objects and how similar they are in the
sense of direction dependency is an actively studied area of research. For that, a formula is
needed that tells us whether two objects share the same set of most informative angles. In our
case, this is also an important question since we want to predict how much we can rescale an
image still preserving the main characteristics of its direction dependency. In [29], the author
proposed a measure named perimetric complexity to describe the complexity of a binary dig-
ital image. Using this measure, we can determine which is the lowest “safe” resolution where
we have to stop the downscaling. Perimetric complexity is also useful to predict how many
projections one will need for a reconstruction to keep the RME value below a specified thresh-
old.

3.4 Experimental studies and results

We conducted several experiments on binary software phantom images. We chose to use
the thresholded version of the Simultaneous Iterative Reconstruction Technique (TSIRT). Our
dataset consisted of 22 structurally and topologically different phantoms. For the comparison
of the different projection selection algorithms, we used the software phantoms with a size of
256× 256 pixels. For the scale invariance case, we generated the same phantoms with the side
length of 16, 32, 64, 128, 256, 512, 1024, and 2048 pixels.

From all the different projection selection algorithms, SFSR had the ultimate smallest av-
erage in RME. However, all the other algorithms extended with Refinement were really close
to that result, and all the Refinement-extended algorithms provided better results than their
original (non-extended) versions.

We noticed that the original (previously published) equiangular methods (Naive and Equi-
Ang) were fast but provided really weak quality reconstructions. However, even these algo-
rithms could provide angle sets with acceptable quality when they were extended with our
Refinement method, and still in a very short time. Furthermore, these algorithms are completely
deterministic, while the results of SA, SAR, SFS and SFSR really depend on the random initial-
ization. One can draw the conclusion that applying the Refinement step, NaiveR and EquiAngR
become very competitive against the other algorithms, considering their good quality and fast
execution time.

In the case of analyzing scale invariance, first, we tested the T1 approach (resizing the im-
age). Investigating the equiangular approaches, it was discernible that the RME values of the
highest resolution images were the smallest, and these values increased (non-decreased) as the
size of the image decreased in almost every case. The RME values, however, were really close
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to each other. We noticed a significant difference only in the case of size 16× 16. In the non-
equiangular case, the RME values were not that close to each other as they had been in the
equiangular case since the algorithm has more freedom during the selection. We observed that
it is safer to stop downscaling when the size of 64× 64 is reached. We showed that we could
reduce the phantoms radically and still achieve projection sets to reconstruct the images with
almost the same quality as in the original case.

Furthermore, we also tested theory T2 in similar experiments as it was detailed above for
T1 and deduced very similar (almost same) properties. Thus, we determine that summing the
projection values - i.e., reducing the number of detectors - can be applied as successfully as
resizing the blueprint image.

The findings of this thesis point have been published in a conference proceedings [10] and
in a journal paper [9].

4 Reconstruction Uncertainty in BT and CT

Adaptive (online) approaches determine the successive angles during the acquisition, based on
the already available projection information. These types of projection selection algorithms al-
low dense sampling in the information-rich areas and sparse sampling in the information-poor
areas. Even with the properly selected acquisition angles, the low number of projections turns
the reconstruction task into an ill-posed problem, having various possible solutions. This lack
of information produces errors in the reconstructions because we cannot determine the exact
pixel values. Two research groups simultaneously investigated the theory of pixel uncertainty
in discrete reconstructed images. They introduced two different approaches for measuring the
variability of reconstructions.

In the first part of this thesis point, based on previous studies, we provide two projection
selection methods for binary reconstruction that use the reconstruction uncertainty [28] of the
available projections to choose the next angle. The first one is an offline method, which modifies
the SFSR algorithm presented in Section 3.2, and the second one is an adaptive method based on
[3]. In the second part of this thesis point, further examining the presence of uncertainty using
the experience gained studying [28], we define a grayscale uncertainty measure and examine
its behavior with different projection sets.

4.1 Binary uncertainty in projection selection

We can determine the uncertainty of the reconstruction using the results of [28] that we shortly
recall here. Due to the incomplete information in the projection data, there can be several
solutions of Eq. (1) in which the pixel values may vary. Knowing all the reconstructions we
could calculate the probability of xj (j = 1, . . . , N) taking the value xj = 1, by

pj =
N A

b (xj = 1)
N A

b
, (4)

where N A
b denotes the number of solutions of Eq. (1) and N A

b (xj = 1) stands for the number
of binary solutions with xj = 1. Given the probabilities, we can determine the uncertainty of
pixel xj as

H(xj) = −(pj log2(pj) + ( p̄j) log2( p̄j)) , (5)

where p̄j = 1− pj. Taking an image and indicating all the pixels with their uncertainty values,
we get the entropy map of the reconstruction. Furthermore, we can also calculate the global
uncertainty of the whole reconstruction by summing the pixel uncertainties as

U (x) =
∑N

i=jH(xj)
1
r ∑m

i=1 bi
, (6)
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where r is the number of projections. Calculating Eq. (6) needs an unreasonable amount of
processing time in practice since all the reconstructions satisfying the projection set have to be
generated. To produce the entropy map of the solution, we substitute the probability variables
in Eq. (5) with the pixel values of the reconstructed image, provided by the SIRT algorithm.

4.1.1 Proposed offline method

In Section 3.2, we proposed the SFSR algorithm for projection selection. The method being pro-
posed here uses the same methodology. The only difference is that all of the RME calculations
were replaced with global uncertainty (Eq. 6) calculations and uncertainty was used for the
optimization, i.e., no blueprint data was used for selecting the most informative angles, only
the uncertainty of the reconstructed image itself. We refer to the modified global uncertainty
based SFSR method as SFSR-UNC.

4.1.2 Proposed online method

In [3], the authors proposed two adaptive angle selection algorithms. These are a spectral
richness based method, which selects the projections based on the spatial spectral richness of
the image function (Alg1), and a reconstruction error based selection (Alg2). We modified Alg2
by replacing the error function with

Ek = log10(
N

∑
j=1
|H(x(k)j )−H(x(k−1)

j )|2) , (7)

and modified steps 1 and 5 of the original Alg2 accordingly, to use this measure when evaluat-
ing the projection angle candidates. Then, in each iteration, the candidate ensuring the biggest
decrease in reconstruction uncertainty is selected. We will refer to this algorithm as Alg2-UNC.

4.1.3 Experimental results

To test the projection selection algorithms, we used the same phantoms and settings that were
used in the previous thesis point. First, SFSR-UNC was compared to the original SFSR, then,
Alg2-UNC to the already published methods (Alg1, Alg2, Naive) using experimental tests on
the software phantom images. We found that our former method was able to provide approx-
imately as accurate reconstruction results as the method that used blueprint images to find
the optimal set of projections. In the latter case, we found that Alg2-UNC could outperform
the state-of-the-art algorithms and provided good alternative solutions for selecting projection
angles.

4.2 Grayscale uncertainty

Here, we provide a measurement of the uncertainty of continuous reconstructions. For that,
we introduce some notation and definitions.

4.2.1 Definition of the uncertainty

Let N = {1, 2, . . . , N} andM = {1, 2, . . . , m}. Moreover, let 0N denote the column vector with

(0N)k = 0 , ∀k ∈ N . (8)

Furthermore let eN,i denote the column vector such that

(eN,i)k =

{
1, if k = i ,
0, if k 6= i

∀k ∈ N . (9)
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Now we can define the core concept of the uncertainty measure.

Definition 1. For any A projection matrix let the i-th perturbed reconstruction of A be

PA(i) = arg min
x
{‖x− eN,i‖ | Ax = 0m, x ∈ RN} . (10)

Definition 2. Given a projection matrix A, let the uncertainty of the xi pixel be

UA(i) =
‖PA(i)‖2

‖eN,i −PA(i)‖2
. (11)

4.3 Bounds of pixel values

Using the bound on the slopes of the hyperplane of solutions, we can give bounds on the pixel
values in the reconstructions. Here, we provide two possible bounds.

Lemma 1. For any xk

xi ≤ min
j∈M

bj

aj,i
. (12)

Theorem 1. Let x̂ ∈ RN
≥0 be a solution of Ax = b, and define

LA(i) = min
j∈M

bj

aj,i
(13)

and
DA(i) =

√
∑

k∈N\{i}
(LA(k))2 . (14)

Then, for any y ∈ Rn
≥0 reconstruction and any i ∈ N index

x̂i −UA(i) · DA(i) ≤ yi ≤ x̂i + UA(i) · DA(i) . (15)

4.3.1 Connection of reconstruction error and perturbed reconstructions

Assume that we have x0, x̂, and x∗ as follows.

• x0 ∈ RN : is a starting point for seeking a solution.

• x̂: is a reconstruction closest to the x0 starting position in a euclidean manner, i.e.,

x̂ = arg min
x

(
‖x− x0‖ | Ax = b, x ∈ RN

)
. (16)

• x∗: is the expected image, i.e., the image of the original object of study.

From the definitions of x0, x̂, and x∗, we define two new values. Let E1 be the error of the
above reconstruction calculated by

E1 = x̂− x∗ . (17)

Furthermore, we define the E2 weighted sum based on the perturbed reconstructions and the
x0 base point as

E2 =
N

∑
i=1

(
PA(i)(x0

i − x∗i )
)

. (18)

Both E1 and E2 are vectors and by definition

AE1 = AE2 = 0m . (19)

We state that the error of the above-defined x̂ reconstruction can directly be determined if
we know the x∗ ideal reconstruction and the x0 base point.
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Theorem 2. Given an equation system of the form (1) and x∗, x0, x̂ points and E1, E2 vectors defined
above, then

E1 = E2 . (20)

4.3.2 Experimental validation

To investigate the uncertainty, the bounds, and the errors from a practical point of view, we con-
ducted experiments on different images. Our database consisted of 7 phantoms with different
structural complexity, each with a size of 64× 64 pixels and an intensity range of [0,1].

To show that the defined uncertainty formula can provide information about the variability
of the reconstructed pixel values, we performed hundreds of Conjugate Gradient Least Squares
(CGLS) reconstructions with randomly initialized starting images. These reconstructed images
were used to calculate the standard deviation on a bigger image set.

For a certain phantom, we concatenated the standard deviation maps into one matrix for
all the predefined projection numbers and did the same with the uncertainty maps. Then, we
calculated the correlation between these “montage” images. This way, 7 comparisons were
made (based on the 7 test images). The correlation values were around 0.8, which indicated a
reliable correspondence between the uncertainty measure and the deviation of pixel values in
reconstructions. We argue that the correlation was not higher only because the pixel values in
our random reconstructions were not from uniform distribution.

Using one random reconstruction from all the phantoms with a different number of projec-
tions (created with bounded SIRT), we also analyzed the range of the bounds given in Lemma 1
and Theorem 1. In the case of Lemma 1, we observed that as the projection number increased,
the bounds were getting closer and closer to the x-axis. In the case of a low number of pro-
jections, the bounds of Theorem 1 were far from each other, and as the projection number
increased, the bounds were approximating each other. We performed some tests to evaluate
our upper and lower bounds (based on Theorem 1) in practical reconstruction scenarios. Our
experiments proved that the theoretical upper and lower bounds can sufficiently limit the pixel
intensities for all the phantoms with different numbers of projections.

In a further investigation, we compared E1 (Eq. 17) and E2 (Eq. 18) for all the phantoms
with all the different predefined number of projections to prove their similarity. Calculating
|E1− E2|, all the values were close to zero (10−4− 10−6). We remark that these extremely small
values represent zeros. According to our findings, these non-zero values are present due to
rounding errors in the reconstruction algorithms and the fact that the reconstructions are only
approximate solutions with some tolerance.

The findings of this thesis point have been published in three conference proceedings [12,
13, 27] and are submitted as a journal paper [26].

5 Adaptive Automatic Tube Voltage Selection for CT

CT is one of the most frequently used modalities in radiodiagnostics and NDT. However, un-
dergoing multiple high radiation dose examinations may cause adverse health effects, even
lethal diseases in the human body. Besides, high radiation consumes a lot of energy. When
using a constant energy spectrum, the investigation of elongated objects may be problematic.
Using too low energy, the photons cannot penetrate the object in the direction of elongation. On
the other hand, too high energy can cause the photons to traverse the object without significant
attenuation, in the direction perpendicular to the elongation of the object. A solution could be
to use different energy levels when producing projections from different directions.

In this thesis point, our aim is to provide an adaptive tube voltage selection method. In
this context, “adaptive” means that the tube voltage will be re-selected during the acquisition,
projection-by-projection. To the best of our knowledge, this is the first approach that attempts
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to select tube voltage on-the-fly based only on projection (sinogram) information. This ap-
proach could be effectively applied, especially in the case of elongated objects.

5.1 Proposed methods

First, we need a figure of merit to quantitatively evaluate the radiation used, more precisely,
the projection images produced. After experimenting with different quality measures, we nar-
rowed down the list of possible options and chose transmission, which describes the ratio be-
tween the minimal and the maximal X-ray intensity at the detector. In our experiments, 20%
proved to be a good choice.

Our proposed voltage selection method is described in Alg. 2. As a first part (Lines 2-7
of Alg. 2), we acquire the first projection on all the different predefined energy levels. Then
the energy level with the closest transmission value to the optimum will be chosen for further
acquisitions. In the second part (Lines 9-19 of Alg. 2), we acquire a projection on the previously
chosen energy level. If its transmission value is in a tolerance distance to the optimum, then
we stay on the current energy level. Otherwise, if it is out of the acceptable range, then we step
to a higher/lower energy level for the next projection. This second part is repeated until the
predefined number of projections is reached. This way, based on the shape of the object, the
resulting sinogram may contain projections from different energy levels. Thus, one can collect
the most informative projections (energy levels) belonging to the given angles. We will refer to
the sinogram obtained this way as the adaptive sinogram.

Algorithm 2: Voltage selection
Require: tropt - optimal transmission; trtol - tolerance for the transmission level;

TVL - set of predefined tube voltage levels; S - set of predefined angles
1: tropt ← 0.2, trtol ← 0.25
2: for all lvl ∈ TVL do
3: acquire projection from starting angle on lvl
4: closestlvl ← lvl with the closest transmission value to tropt
5: closestpr ← projection acquired on closestlvl
6: closesttr ← transmission value of closestpr
7: end for
8: sinogramopt ← sinogramopt ∪ closestpr
9: for all angle θ ∈ S do

10: actualpr ← acquire projection from angle θ on closestlvl
11: sinogramopt ← sinogramopt ∪ actualpr
12: if |tropt − closesttr| ≥ tropt · trtol then
13: if tropt − closesttr < 0 then
14: closestlvl ← decrease closestlvl to the closest lower level in TVL
15: else
16: closestlvl ← increase closestlvl to the closest higher level in TVL
17: end if
18: end if
19: end for

It would be ideal if the sum of intensities at the detectors were equal for all individual pro-
jections. However, since we are using different energy levels for different projections, this is
not always the case. This can be an issue, during the reconstruction, since reconstruction algo-
rithms typically assume a constant energy spectrum for acquiring the projections. To resolve
this issue, we designed a sinogram equalization method. This algorithm uses the previously
created optimized sinogram’s intensities to create a scaling vector that can be used to equalize
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the intensities for a proper reconstruction. We will refer to the sinogram created by the con-
secutive application of Alg. 2 and the sinogram equalization method as the corrected-adaptive
sinogram.

5.2 Test environment

To conduct experiments, we used the GATE simulation software, an advanced open-source
software developed by the international OpenGATE collaboration and dedicated to numerical
simulations in medical imaging and radiotherapy. During the simulations, we used a poly-
chromatic source, which can keep us closer to real applications. To simulate a perfect energy
spectrum, we used Spekcalc, which is an executable for calculating the X-ray emission spectra
from tungsten anodes such as those used in diagnostic radiology and kV radiotherapy X-ray
tubes.

We used the following software phantoms. P1 was a perfect sphere on which we have
shown how the transmission behaves if an object is not elongated, P2-P5 were elongated bi-
nary objects (with different length-width ratio and/or inner structure), and P6 was a self-made
approximation of the well-known Forbild hip phantom1. For the reconstructions, we took the
middle slices of these objects. In the GATE software, Phantoms P1-P5 were virtually made
of PVC (Polyvinyl chloride). P6 consisted of the materials detailed in the description of the
Forbild hip phantom.

After acquiring the projections, the reconstructions were performed using the Filtered Back-
projection (FBP) technique. The quality of the reconstructions was evaluated by the Signal-to-
noise ratio (SNR).

5.3 Results

We predefined 15 different energy levels. After generating the sinograms of all the phantoms
on all the different energy levels, we calculated the SNR values belonging to the reconstructed
slices. We refer to the sinograms of the reconstructions with the highest SNR values as the
original best sinograms. The SNR values were also calculated for the reconstructed slices created
using our corrected-adaptive sinograms, and we observed a slight increase in the SNR values in
the case of almost every phantom.

Besides the slightly improved SNR values, another advantage of the adaptive voltage se-
lection strategy is lower energy consumption, based on the fact that from certain angles, even
a lower energy level could ensure optimal transmission. In the first and second row of Table 1,
one can see the cumulated energies for creating the original best and the corrected-adaptive sino-
gram, respectively (using the mean energies of the different energy levels). Note that sinogram
correction is simply achieved by executing the intensity equalization method, i.e., it does not
affect cumulated energy. As we mentioned before, P1 is the perfect opposite of an elongated
object. Therefore, the cumulated energy is the same in both cases. In all the other cases, the
required energy for acquiring the corrected-adaptive sinograms is lower than it is needed for the
original best sinograms. The percentages of the energy savings are shown in the third row. A
significant energy reduction can be observed.

The findings of this thesis point have been published in a conference proceedings [11].

6 Convolutional Neural Networks in BT

The Artificial Neural Networks (ANNs) are based on the biological structure and behavior of
the human brain, and the main application field for them is in Machine Learning. Convolu-
tional Neural Networks (CNNs) are different from the structure of other neural networks since

1http://www.imp.uni-erlangen.de/phantoms/index.htm
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Table 1: The cumulated energies needed for the original best and the corrected-adaptive sinograms,
and the percentage of the saved energies, respectively.

P1 P2 P3 P4 P5 P6

orig. best [keV] 11428.5 11428.5 11428.5 11428.5 10146 7638
corr. adapt. [keV] 11428.5 8930.4 10395 8930.4 8776.7 6906.1

Saved energy [%] 0 21.86 9.04 21.86 13.5 9.58

CNNs are mainly applied in the field of image processing and can also handle different types
of input (e.g., image, video, voice).

In this thesis point, first, we show that neural networks are capable of solving a complex
task like projection selection without any reconstruction step. Then, we provide a U-Net based
segmentation algorithm for binarizing CT slices of different 3D printed specimens as part of an
industrial project.

6.1 Proposed projection selection algorithm using CNNs

6.1.1 The workflow of the method

First, the CNN takes a sinogram (180× 91) as input (from the training database). After the 3
convolutional layers, a dense classifier connected to it outputs 180 activation values optimizing
the MSE (Mean Squared Error) as the loss-function. These output values are thresholded to get
the minimum number of projections required for each entity. Since we might end up with
more than the required number of projections, a K-means clustering is applied to determine
the exact angles to be used in the reconstruction process. Lastly, calculating the RME between
the original image and the images reconstructed using the 3 methods explored here (labels,
predictions, and equiangular projections) gives an estimate of the effectiveness of the selection
procedure.

6.1.2 Evaluation and Results

Our image database consisted of 8983 phantoms (icons) of varying structural complexity, each
with size 64× 64 pixels. To create the training dataset, we performed a modified version of
the SFS (Sequential Forward Selection) method (Section 3.2). This algorithm is referred to as
Label. The main purpose of the projection selection procedures is to outperform the equiangular
approaches by choosing the required angles in order to achieve a lower reconstruction error.
Therefore, the results of the CNN based projection selection are compared to the results of the
Naive method (Section 3.1) too. The proposed method will be denoted as CNN.

In Table 2, we present the RME and Standard Deviation (STD) values of the different meth-
ods with 4-6-8 angles, respectively. The / symbols highlight whether the differences are sta-
tistically significant ( ) or not ( ), using a t-test with a significance level of 0.05. The results
are statistically significant only with 8 projections. The RME values computed from the La-
bel projection angles are naturally the smallest of the three, followed by our CNN approach.
The equiangular approach produces the highest RMEs, meaning that the reconstructed images
differed from the original ones the most using the Naive angle set. Using our 10-fold cross-
validation test evaluations, we analyzed the RME values obtained using the 3 methods with 4
projections. We also present our findings in Table 3. We note here that these values are from
the test set containing examples never encountered during the training of the model.
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Table 2: Average of RME and Standard Deviation values calculated from 10 runs for the three
different approaches. The significance values were computed pairwise for Naive-Label, Label-
CNN and Naive-CNN and the significant statistical differences are presented column-wise with
the symbols of / .

4 projections Label CNN Naive
RME 0.3817 0.4015 0.4912
STD 0.2078 0.2189 0.2903

6 projections Label CNN Naive
RME 0.3196 0.3430 0.3866
STD 0.1723 0.1723 0.2341

8 projections Label CNN Naive
RME 0.2746 0.2940 0.3128
STD 0.1842 0.2174 0.2312

Table 3: The numbers of images on which the 3 distinct methods gave the smallest RME values
are shown along the diagonal. The other cells show where two approaches gave the same RME
value.

4 projections Label CNN Naive

Label 4676 37 19
CNN 37 3096 14
Naive 19 14 1141

6.2 Segmentation of CT slices using CNNs

6.2.1 The workflow of the segmentation

For the segmentation of the CT-image slices, first, we trained a U-Net [21], using the original
source code2 (implemented in Tensorflow), provided by the authors. Depending on the task,
3-4 original slices (meaning less than 1 percent of the whole database) have been manually
segmented to get golden standards (labels). The training data was formed by these few original
CT-slices together with their corresponding golden standard binary masks. The test dataset
consisted of the non-segmented slices. To increase the number of training images, the input
data was cut into pixel patches of size n× n, where n is chosen from the interval [50, 100] such
that the remainder of the integer division image_width/n is the minimal possible. After the
classification, the CT slices were reassembled from the patches.

The output of the network is a probability distribution, where the outputted values are
expected to be very close to 0 or 1, so they can be interpreted as binary pixel values. As a
post-processing step, a global thresholding was applied with different threshold values, and
the qualitatively best has been chosen as the final binarized result.

After the examination of the results, given by the U-Net, we wanted to improve its per-
formance. Therefore, we started to change the number of layers and the size of kernels in the
U-Net architecture. All the different modifications we did were based on empirical tests. We
modified some parts of the architecture, re-trained the model, generated the predictions and
analyzed the resulted binary images. Then kept changing various parts based on the outcome.
At the end of this process, the original architecture got modified quite significantly.

2https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
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Table 4: Comparison of different thresholding approaches using different quality measures

PFOM RAE ME HD Average

Otsu 0.225 0.205 0.133 0.591 0.289
Adaptive 0.334 0.327 0.162 0.597 0.355

Fuzzy C-means 0.212 0.188 0.132 0.592 0.281
Variational 0.134 0.117 0.134 0.600 0.246

U-Net 0.105 0.093 0.084 0.559 0.210
Proposed 0.059 0.032 0.093 0.579 0.191

6.2.2 Evaluation and Results

Our segmentation approach was validated on two additively manufactured metal components,
provided by Siemens AG. The full golden standard image set was given only for the second
specimen. Therefore, this specimen was analyzed in detail from the image processing point of
view and was compared to the results of other thresholding approaches.

We based our quantitative performance evaluation on a related research. In [23], the authors
presented 40 segmentation techniques, and then ranked them based on 5 different criteria:
misclassification error, edge mismatch, region nonuniformity, relative foreground area error,
and shape distortion penalty via Hausdorff distance. We decided to use 4 measurements for
this task. We used three propositions of [23]: misclassification error (ME), relative foreground
area error (RAE), and shape distortion penalty via Hausdorff distance (HD). Instead of the edge
mismatch, we used the mean-square distance figure of merit (PFOM) introduced by Pratt [19]
because we found it a better measure for analyzing edges. We did not use region nonuniformity
because it does not require ground-truth information, which could be misleading in this case.

Table 4 shows how the different thresholding methods performed based on the four dif-
ferent criteria. In the first column, one can see the thresholding approaches we used for the
comparison. These methods are: Otsu method [17], local adaptive thresholding [2], variational
minimax optimization based thresholding [22], fuzzy C-means [1], and the original U-Net. All
the performance measures are adjusted so that their scores vary from 0 (for an entirely correct
segmentation) to 1 (for an entirely erroneous case). Columns 2-5 contain the average scores
over all the slices belonging to different quality measures in case of different segmentation
techniques. To obtain an average performance, the authors of [23] suggested using the arith-
metic average of the normalized scores defined above. The sixth column of Table 4 shows this
average value. In every column, the smallest value is indicated with bold characters. One can
see that U-Net and the proposed architecture can significantly outperform all the other tech-
niques. In two of four measures, the U-Net performed better, while in the other two cases, the
proposed architecture did. Taking the last (average) column into account, overall, the proposed
approach seems to be the best one.

To compare the U-Net and the proposed architecture from another perspective, U-Net’s
total number of parameters is 1 940 817, while in the case of the proposed architecture, this
number is only 566 657. This means that the proposed one consists of almost four times fewer
parameters and can still provide at least as good results as the U-Net can, moreover, in most of
the cases it can outperform U-Net.

The findings of this thesis point were in part published in a conference proceedings [18]
and in a journal paper [8].
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7 Summary of the author’s contributions

The findings of the research can be divided into four thesis groups. Table 5 gives the connection
between the results and the publications of the Author.

In the first thesis group, I proposed different sequential projection selection algorithms and
analyzed their behavior under serious resolution down-scaling. These results were published
in a conference proceedings [10], and in a journal paper [9].

I/1. I adapted and implemented sequential selection and search approaches to projection se-
lection methods with almost fully deterministic behavior. I compared these methods to
already published algorithms and showed with experimental tests that my algorithms
could outperform the already existing approaches in this field.

I/2. I suggested two approaches to reduce the amount of data needed to select the most infor-
mative projection angles, and also examined how changing the scale of blueprint images
and number of detectors affect the performance of projection selection algorithms. I de-
veloped and tested these approaches with the previously proposed projection selection
methods. After the evaluation of the results, I proposed three different application fields
where the scale invariance of projection selection could be used.

In the second thesis group, I embedded reconstruction uncertainty into projection selection
algorithms and showed how grayscale uncertainty could be used in CT. These results were
published in three conference proceedings [12, 13, 27], and are submitted as a journal paper
[26].

II/1. I modified already implemented offline and online projection selection algorithms to em-
bed the uncertainty as the optimization measure. I tested and compared them to already
published algorithms. I showed that these algorithms can select the most informative
projection angles by relying only on the reconstruction uncertainty, and even in the of-
fline case, they do not require any blueprint data during the selection process.

II/2. I gave experimental validation to our results in the field of defining the grayscale un-
certainty. I showed how the grayscale uncertainty could be used in the reconstruction
of phantom images with continuous intensity interval and its correlation with the stan-
dard deviation of reconstructed pixel intensities, and how one can predict the upper and
lower boundaries of the intensity values in practice. I also showed how the perturbed re-
constructions could be used in practice to predict the reconstruction error that may arise
during the reconstruction, which was followed by the evaluation of the results.

In the third thesis, group I proposed a transmission-based adaptive Automatic Tube Volt-
age Selection method for CT. The results of this thesis group were published in a conference
proceedings [11].

III/1. I proposed an adaptive Automatic Tube Voltage Selection method complemented with a
sinogram equalization algorithm for CT. I proposed to use only the transmission value of
the sinogram to adjust the tube voltage on-the-fly during the acquisition and thus, to rely
only on the projection data. By experimental tests on software simulated phantoms using
the GATE toolbox, I found that this method is able to produce optimized sinograms and
by that ensuring lower energy consumption and slightly better reconstruction quality.
I pointed out that the presented method could be utilized in industrial non-destructive
testing, and it has potential even in medical cases.
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In the fourth thesis group, I proposed a CNN based offline projection selection algorithm
and modified the well known U-Net architecture for the segmentation of CT images. The re-
sults of this thesis group were published in a conference proceedings [18], and in a journal
paper [8].

IV/1. I proposed CNNs for projection selection to show that the most informative angles could
be chosen without performing any reconstruction. I provided the theoretical background
during this research from the tomographic point of view and the basis for the final angle
selection algorithm. I modified the already existing projection selection algorithms to
generate the training and test datasets. I compared the proposed method to state-of-the-
art approaches and evaluated the results.

IV/2. I proposed CNNs for solving a particular segmentation problem as part of a bigger project.
First, I used U-Net for the segmentations, then, modified its architecture to improve its
performance. I generated the training and test datasets for this task. I compared my re-
sults to state-of-the-art segmentation techniques. Using different segmentation quality
measures, I showed that my proposed model consists of almost four times fewer param-
eters and still provides at least as good results as the U-Net can. Still, in most of the cases,
it can outperform U-Net.

Table 5: The connection between the thesis points and the Author’s publications.

[10] [9] [12] [13] [27] [26] [11] [18] [8]

I/1.
I/2.
II/1.
II/2.
III/1.
IV/1.
IV/2.
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