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a b s t r a c t 

One of the main issue in detecting a target from an hyperspectral image relies on properly identifying the 

background. Many assumptions about its distribution can be advocated, even if the Gaussian hypothesis 

prevails. Nevertheless, the huge majority of the resulting detection schemes assume that the background 

distribution remains the same whether the target is present or not. In practice, because of the spectral 

variability of the target and the non-linear mixing with the background radiance, this hypothesis is not 

strictly true. In this paper, we consider that an unknown background mismatch exists between the two 

hypotheses. Under the assumption that this mismatch is small, we derive an approximation of the Like- 

lihood Ratio for the problem at hand. This general formulation is then applied to the case of Gaussian 

distributed background, leading to a robust Adaptive Matched Filter. The behaviour of this new detec- 

tor is analysed and compared to popular detectors. Numerical simulations, based on real data, show the 

possible improvement in case of target signature mismatch. 
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. Introduction 

An hyperspectral image is a two-dimensional map, where each 

ixel is composed of hundreds of spectral bands. This spectral in- 

ormation allows to characterize the different materials present 

n the image and hence hyperspectral imaging has encountered 

 large field of applications, ranging from remote sensing to 

edicine [1–8] . One of these applications consists in detecting a 

arget whose spectral signature could be known from laboratory 

xperiments, or unknown. In this latter case, one talks of anomaly 

etection. In this paper, we will focus on the first case, namely tar- 

et detection. 

The difficulty of this problem lies in the fact that the signature 

f interest (SoI) t is buried in a background b with unknown statis- 

ics. Even if its distribution were known, the parameters describing 

t (for instance mean and covariance matrix) are not known and 

ust be estimated from the available data. Consequently, detection 

f the SoI in a pixel under test (PUT) y requires using other pixels

so called training samples) to learn the background present in the 

UT. It has to be noticed that in the hyperspectral domain, we deal 

ith real positive data leading to non zero mean signals. 

Certainly due to its easy handling properties, the Gaussian as- 

umption prevails to model the background. In this context, many 

lgorithms have been developed, such as the Adaptive Matched 
∗ Corresponding author. 

E-mail addresses: francois.vincent@isae-supaero.fr , francois.vincent@isae.fr (F. 

incent), olivier.besson@isae-supaero.fr (O. Besson). 
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ilter (AMF) [9] , Kelly’s Generalized Likelihood Ratio Test (GLRT) 

10] , the Orthogonal Subspace Projection (OSP) [11] , or the Adap- 

ive Coherent/Cosine Estimator (ACE) [12] , to name the most pop- 

lar ones. However, with real hyperspectral data, Gaussian distri- 

utions rarely occur [13–16] , and more representative background 

istributions have been considered. One of the most common is 

he Elliptically Contoured (EC) t-distributed model that allows to 

xtend the Gaussian distribution to a broader class of probability 

ensity functions (p.d.f.). Different detectors have been derived un- 

er such an hypothesis, as the EC-GLRT [17] for instance. 

Nevertheless, although considering a broad class of distribution 

o model the background, the huge majority of the decision tests 

ely on the assumption that the background remains the same un- 

er the two hypotheses. 

 0 : y = b (1) 

 1 : y = αt + b 

here α is the so-called fill-factor. 

Hence, if considering the SoI and α as deterministic, which 

s a widespread assumption, this model amounts to consider the 

ame distribution under the two hypotheses. The only difference 

etween the two hypotheses is a mean shift. 

Unfortunately, this strong assumption is usually not met in real 

yperspectral detection schemes. Indeed, the first reason is related 

o the data acquisition itself. The radiance resulting from the mix- 

ure of a background and a target are driven by non-linear ef- 

ects [18] . These effects are due to multi-reflections or masking 

ffects. Thereby, the additive model from Eq. (1) , is over simpli- 
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ed. A more representative model, namely the so-called replace- 

ent model, can be used [1] . This model assumes that the tar- 

et, if present, replaces a part of the background, as it will mask 

n area proportional to its fill-factor α. Some detectors have been 

erived under such a model, as the FTMF [19] or ACUTE [20] . A

ore general model, relaxing the unitary constraints on the ampli- 

udes, only assumes a linear mixing between the background and 

he target [21] . But even if these two models are more represen- 

ative, they do not take into account the multiple light reflections 

onducting to non-linear mixing, and consequently a more compli- 

ated background behaviour when the target exists. 

The second main reason conducting to a change in the distri- 

ution between the two hypotheses is related to mismatches in 

he target SoI. Indeed, this so-called spectral variability is due to 

hanges in the conditions between the lab measurements and the 

ata acquisition [9,22] . In fact, the image is acquired by a differ- 

nt instrument and at a larger distance from the scene. Then, the 

aw radiance measurements have to be converted into reflectance 

ata using a so-called radiometric compensation [23] . Different 

echniques can be used [24,25] , nevertheless all these compensa- 

ion techniques are based on models inducing possible SoI mis- 

atches. Then, when assuming the SoI as deterministic and per- 

ectly known, this spectral variability results in a noise measure- 

ent increase. Again, the consequence is that the PUT exhibits a 

ifferent distribution beyond a simple mean shift. 

Thereby, in this paper, we consider a more general detection 

odel that may include a large class of mismatches, including 

hose stated here-above. In this model, the background distribu- 

ion may vary between the two hypotheses. More precisely we as- 

ume that when the target is present, the background undergoes a 

ossible perturbation with unknown statistics: 

 0 : y = b (2) 

 1 : y = αt + b + �b 

here �b is the mismatch. 

Conventionally, the distribution of b can be estimated from 

raining samples x k . On the other hand, �b has an unknown distri- 

ution, possibly linked to α. This unknown perturbation can model 

 large class of possible mismatches induced by non-linear mix- 

ures between the target and the background or from target signa- 

ure errors. 

Under the hypothesis that �b is small compared to b , we de- 

ive a robust Likelihood Ratio (LR), and show that it can be writ- 

en as the sum of the standard LR and a correction factor. When 

pplied to the popular case where b is supposed to be Gaussian 

istributed, we derive an approximation of the GLRT. This robust 

etector is shown to be the popular AMF, corrected by a simple 

dditive term. 

The remaining of this paper is organized as follows. We first 

erive the Likelihood Ratio for the general case of any background 

istribution in section 2 . Then, we focus on the popular Gaussian 

ase in Section 3 , where we propose a simple additive correction 

or the AMF detector to improve robustness. In Section 4 , we com- 

are the behaviour of the proposed robust AMF to popular de- 

ectors, thanks to their threshold limit plotted in a Matched Fil- 

er Residual (MFR) diagram. To finish, we compare these detectors 

sing a Monte-Carlo simulation based on real data, in Section 5 . 

inally concluding remarks end this paper in Section 6 . 

. Robust likelihood ratio 

As already said in the introduction, we assume that the back- 

round under H 1 writes b 1 = b + �b , where the probability den-

ity function (pdf) of b , p b (. ) is supposed to be known, and its

arameters can be estimated from the training samples, that is the 
2 
tandard hypothesis. Hence, for any �b pdf, p �(. ) , the pdf of b 1 

an be written as 

p b 1 (u ) = (p b ∗ p �)(u ) = 

∫ 
p �(z ) p b (u − z ) dz = E �[ p b (u − z )] 

(3) 

ow, using the approximation derived in the Appendix, for any 

iven u , we have 

 �[ p b (u − z )] � p b (u − μ�) + 

1 

2 

Tr 

{
∂ 2 p b (z ) 

∂ z ∂ z T 
| u −μ�

C �

}
(4) 

here Tr {} stands for the trace of the matrix between braces, μ�

nd C � denote respectively the mean and covariance matrix of the 

nknown background mismatch �b , and [ 
∂ 2 p b (z ) 

∂ z ∂ z T 
| u −μ�

] denotes 

he Hessian of p b (z ) evaluated at (u − μ�) . It should be pointed

ut that this approximation does not require complete knowledge 

f the pdf of �b , but only of its mean and its covariance matrix,

hich is an appealing feature. 

Hence, for any PUT measurement y , the Likelihood Ratio (LR) 

ssociated with the detection problem from Eq. (2) can be written 

n the following form, as soon as the background mismatch �b is 

mall: 

R r = 

p b 1 (y − αt ) 

p b (y ) 
� 

p b (y − αt − μ�) 

p b (y ) 
+ 

Tr { ∂ 2 p b (z ) 
∂ z ∂ z T 

| y −αt −μ�
C �} 

2 p b (y ) 

(5) 

 

p b (y − αt − μ�) 

p b (y ) 

[ 

1 + 

1 

2 

Tr { ∂ 2 p b (z ) 
∂ z ∂ z T 

| y −αt −μ�
C �} 

p b (y − αt − μ�) 

] 

(6) 

oreover, �b being some perturbation around b , we assume that 

� = 0 , so that we simply have 

R r � LR 

[ 

1 + 

1 

2 

Tr { 
∂ 2 p b (z ) 
∂ z ∂ z T 

| y −αt 

p b (y − αt ) 
C �} 

] 

(7) 

here LR = 

p b (y −αt ) 

p b (y ) 
is the LR in the standard case, i.e. when there 

s no background mismatch ( �b = 0 ). Hence, we can see that for

ny zero-mean mismatch distribution, we can approximate the 

odified LR by the sum of the LR without mismatch and a cor- 

ective term, depending on the pdf of b and the covariance matrix 

f �b . 

. Robust adaptive matched filter 

In this section, we now investigate the case where the back- 

round distribution under H 0 is Gaussian, b ∼ N ( μ, C ) . Let us start

ith the nominal case, to recall the AMF derivation. 

If no mismatch is present ( b 1 = b ), the standard LR writes 

R 

G = 

p b (y − αt ) 

p b (y ) 
= 

e −
1 
2 (y −αt −μ) T C −1 (y −αt −μ) 

e −
1 
2 (y −μ) T C −1 (y −μ) 

(8) 

ssuming that the background parameters are known from the 

raining samples, the only unknown parameter is α, whose Max- 

mum Likelihood (ML) writes ˆ α = 

t T C −1 (y −μ) 

t T C −1 t 
. Then, the logarithm 

f the Generalized LR (GLR) is shown to be: 

og GLR 

G = log 

[
p b (y − ˆ αt ) 

p b (y ) 

]
= 

1 

2 

| t T C 

−1 (y − μ) | 2 
t T C 

−1 t 
= 

1 

2 

AMF (9) 

here we recognize the popular AMF = 

| t T C −1 (y −μ) | 2 
T −1 . 
t C t 



Fig. 1. Typical MFR plot. 
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Fig. 2. Typical MFR plot. 

Fig. 3. Complete RGB view of the Viareggio test scene. 
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Now, in the mismatched case ( b 1 � = b ), the Hessian in

q. (7) writes 

∂ 2 p b (z ) 

∂ z ∂ z T 
| y −αt = C 

− 1 
2 

[ 
C 

− 1 
2 (y − αt − μ)(y − αt − μ) T C 

− 1 
2 − I 

] 
C 

− 1 
2 

×p b (y − αt ) (10) 

o that the modified LR becomes 

R G r � LR G 

·
[ 

1 + 

1 

2 
Tr 

{ (
C 

− 1 
2 (y − αt − μ)(y − αt − μ) T C 

− 1 
2 − I 

)
C 

− 1 
2 C �C 

− 1 
2 

} ]
(11)

irst, we have to estimate α. As the background mismatch under 

 1 is supposed to be small, we can use the ML estimation of α
btained here above in the nominal case, as a first order approx- 

mation, namely ˆ α = 

t T C −1 (y −μ) 

t T C −1 t 
. Hence, taking the logarithm and 

ubstituting α, the GLR writes: 

og GLR G r � log GLR G + log 

·
[ 

1 + 

1 

2 
Tr 

{ (
C 

− 1 
2 (y − ˆ αt − μ)(y − ˆ αt − μ) T C 

− 1 
2 − I 

)
C 

− 1 
2 C �C 

− 1 
2 

} ]
(12)

r, thanks to Eq. (9) 

 log GLR 

G 
r � AMF + 2 log 

[ 
1 + 

1 

2 

Tr 

{ (
uu 

T − I 
)
C 

− 1 
2 C �C 

− 1 
2 

} ] 
(13) 

here u = P 

⊥ 
t c 

y c , with t c = C 

− 1 
2 t and y c = C 

− 1 
2 (y − μ) , the

hitened versions of t and (y − μ) respectively. 

Therefore, we can see that assuming a Gaussian background un- 

er H 0 , and for small mismatches under H 1 , the GLR is the popular

MF, plus a correction. This additive term tends to measure the 

ap between the supposed background covariance matrix C and 

he actual one under H 1 . Indeed, u is an estimation of the back-

round under H 1 , whitened by the supposed covariance matrix C , 

o that (uu 

T − I ) is a kind of mismatch measurement. In the same

ay, C 

− 1 
2 C �C 

− 1 
2 is also a normalized measurement of this gap. 

Unfortunately, this expression of the correction is difficult to 

se in practice, except if one has an idea of C �. In order to ad-

ress this issue, we now derive an approximation of this correction 

n order to get a more convenient expression. 

The correction depends on T = Tr { (uu 

T − I 
)
C 

− 1 
2 C �C 

− 1 
2 } that 

an be written as follows 

 = Tr { ̃  C �} 
[

u 

T ˜ C �u 

Tr { ̃  C �} − 1 

]
(14) 
3 
here ˜ C � = C 

− 1 
2 C �C 

− 1 
2 is the covariance matrix of the background 

ismatch whitened by C . Diagonalising this covariance matrix, 

˜ 
 � = 

∑ 

εk u k u 

T 
k 
, the quadratic term here above writes 

u T ˜ C �u 

Tr { ̃ C �} = 

 

( 
εk ∑ 

εk 
)(u 

T 
k 

u ) 2 . Thereby, it corresponds to a weighted sum of the 

nergy of u . Unfortunately, in most cases, we do not have access 

o C � and the weights are unknown. To circumvent this problem, 

e simply propose to use a non-weighted sum to estimate this 

nergy, namely 
u T ˜ C �u 

Tr { ̃ C �} � 

u T u 
N . This approximation amounts to con- 

ider that all the eigenvalues of ˜ C � are equal, namely that C � = εC . 

n other words, there is no approximation when the covariance 

atrix of the mismatch is proportional to the covariance matrix 

f the background C . This hypothesis sometimes appears in the lit- 

rature when considering target signature mismatches, even if the 

ationale behind it is not obvious [26] . Nevertheless, this hypothe- 

is includes the popular case where both background and the mis- 

atch are supposed to be white. 

On the other hand, Tr { ̃ C �} = Tr { C 

− 1 
2 C �C 

− 1 
2 } = Tr { C �C 

−1 } =
r { E 

{
�b �b 

T C 

−1 
}} = E 

{
�b 

T C 

−1 �b 

}
represents the expectation of 

he energy of the mismatch, whitened by C . Assuming that �b and 

 are decorrelated, we can estimate this energy as the difference 

etween the energy of b 1 and the energy of b , both whitened by 

 . The first one can be estimated by u 

T u , as u is an estimation of



Fig. 4. Receiver Operating Characteristic for V 5 and V 6 targets, for r = 0 (no mismatch). 

Fig. 5. Receiver Operating Characteristic for V 5 and V 6 target, for r = 0 . 2 . 
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b

he background under H 1 , whitened by C , whereas the second one 

s simply equal to N, in average. 

Substituting both 

˜ C � and 

u T ˜ C �u 

Tr { ̃ C �} by their estimation in 

q. (14) we have 

 � N 

[
u 

T u 

N 

− 1 

]2 

(15) 

hen, from Eq. (13) , we can define a robust AMF as 

M F r = AM F + 2 log 

[ 

1 + 

N 

2 

(
u 

T u 

N 

− 1 

)2 
] 

(16) 

t this stage, we can make a few comments on the proposed ro- 

ust AMF. Whereas the standard AMF only measures the energy 

f the data projected on the target subspace, the proposed scheme 

lso measures the remaining energy, projected on the background 

ubspace. It checks if this energy corresponds to the background 
4 
nergy estimated from the training samples, and measures the gap. 

hen, it corrects the AMF with respect to this estimated mismatch 

nergy. Other popular detectors also use the data energy projected 

n the background subspace to improve performance, like ACE or 

elly’s GLRT, as we will see hereafter. In the following part, we 

ompare our robust AMF with these popular detectors regarding 

heir behaviour with respect to this residual energy. To this end, 

e plot both the data and the detectors threshold on the so- 

alled Matched Filter Residual (MFR) diagrams. These informative 

 D plots show both the energy projected on the target subspace 

MF) and the energy projected on the subspace orthogonal to the 

arget (R). 

. Insights 

Just like for the AMF, the majority of popular detectors are 

ased on the whitened and centred versions of both the data and 



Fig. 6. P fa gain for P d = 0 . 5 , for V5 target, with α = 0 . 1 and K 
N 

= 9 . 
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he target signature, namely y c and t c . As noticed previously, the 

tandard AMF simply consists in projecting the data onto the 1 D 

arget subspace and in measuring the energy, as AMF = ‖ P t c y c ‖ 2 = 

 

T 
c P t c y c , where P t c = 

t c t 
T 
c 

t T c t c 
is the projection onto the target sub-

pace. Nevertheless, the global energy, ‖ y c ‖ 2 , or the residual en- 

rgy, namely R = 

∥∥P 

⊥ 
t c 

y c 
∥∥2 = y T c P 

⊥ 
t c 

y c = ( ‖ y c ‖ 2 − AMF ) , where P 

⊥ 
t c 

=
 − P t c is the projection onto the so-called noise subspace, are also 

nformative. Indeed, when the target amplitude is unknown, this 

ast quantity is an estimation of the Log likelihood of the data, up 

o a scaling factor and an additive constant. Hence plotting data 

n a 2 D space, where the x-axis is the AMF and the y-axis is R, is

onvenient and valuable both for data and detectors analysis. 

Such real data MFR analyses exist in the literature [27–29] and 

how that the scatter plots for all the pixels are distributed along 

ines converging to the origin of the plot, each line corresponding 

o a given material on the ground. Fig. 1 shows a representative 

ituation with just 3 pixels classes (for instance, forest in green, 

oads in blue, and buildings in red), considering the buildings as 

he target for the AMF axis. 

Observing such a MFR plot, it is clear that the standard AMF 

ould not get good detection performance, as it only thresholds the 

-axis, as shown on Fig. 2 . To improve detection, one should also 

se the y-axis. That is what popular detection schemes do, such as 

elly’s GLRT or ACE. Indeed, these two detectors share the same 

ormulation, namely 

AMF 

(a + 

1 
K 

y T c y c ) 
(17) 

here a = 0 for ACE, and a = 1 for Kelly, K being the number of

raining samples. 

In both cases, comparing this quantity to a threshold γ
mounts to comparing AMF to a limit depending on the square 

orm of the data, ‖ y c ‖ 2 , so that the decision limit is defined by 

MF = γ
(

a + 

1 

K 

y T c y c 

)
(18) 

ow, as ‖ y c ‖ 2 = AMF + R, the thresholds of these two detectors 

raw lines in the MFR plot, whose equation are 

 = AMF 

(
K 

γ
− 1 

)
− Ka (19) 

As represented on Fig. 2 , the threshold line corresponding to 

CE goes through the origin of the plot, as a = 0 . In this case, an-
5 
ther intuitive way to see that the threshold region is a line, is to 

efer to the standard interpretation of ACE as the square cosine of 

he angle between y c and t c . Thresholding ACE amounts to limit 

his angle as shown on Fig. 2 . In the case of Kelly, the threshold

s still a line, but shifted along the AMF axis, depending on the 

umber of secondary data K. 

Now, referring to the definition of u in Eq. (13) , we have R =
 

u ‖ 2 , so that the threshold limit of the robust AMF, AMF r in the 

FR plot is defined as 

MF = γ − 2 log 

[
1 + 

N 

2 

(
R 

N 

− 1 

)2 
]

(20) 

hen, this threshold limit is characterized by a second order 

olynomial equation in the MFR plot, as represented on Fig. 2 . 

he threshold limit corresponding to the larger AMF being ob- 

ained when R = N. In the case of a white noise (C = σ 2 I ) , this

oint corresponds to the case where the residual energy equals 

he noise energy estimated from the training samples, namely 

P 

⊥ 
t (y − μ) 

∥∥2 = σ 2 N. Hence, as can be seen on Fig. 2 , the AMF r 
as approximately the same behaviour as ACE or Kelly when the 

esidual energy is smaller than that estimated from the training 

amples. 

In the opposite case, the behaviour of AMF r is not the same. 

ndeed, when the residual energy is larger than the training sam- 

les one, the threshold reduces to improve detection with respect 

o the data model from Eq. (2) . In fact, according to this model, 

ny noise energy variation with respect to the estimated one from 

he training samples is a clue for the H 1 hypothesis. Obviously, this 

ossible detection improvement can also increase the detection of 

onfuser elements. Indeed, improving detection according to model 

2) , goes against the so-called selectivity of the detector. 

In situations where possible unwanted targets exit, one has to 

upplement the detection scheme by a so-called False Alarm Miti- 

ation (FAM) step. These two-step procedures have been addressed 

n the hyperspectral literature [27–30] , but also in the radar one 

31] . The main idea behind this concept is to improve the selectiv- 

ty issues by adding a second detection stage based on the residual 

nergy. Indeed, as noticed previously, the residual energy is related 

o the likelihood of the data with respect to a given target type. 

hen, the possible false alarms existing after the first stage can 

e rejected using an appropriate threshold on the residual energy. 

his step amounts to adding a second threshold on the y-axis of 

he MFR plot. In the hyperspectral context, this procedure has been 

rst developed to tackle the selectivity issues of the AMF, with the 

atched Filter with False Alarm Mitigation (MF-FAM) [27] as rep- 

esented on Fig. 2 . This algorithm is very similar to the popular 

ixture Tuned Matched Filter (MTMF) approach from ENVI®soft- 

are environment. In this last case, the residual energy is replaced 

y an equivalent criterion, called infeasibility [30] . 

. Performance evaluation 

In order to assess the validity of the proposed robust detector, 

e now conduct a Monte-Carlo simulation based on a real exper- 

ment, namely the airborne Viareggio 2013 trial [32] . This bench- 

arking hyperspectral detection campaign took place in Viareggio 

Italy), in May 2013, with an aircraft flying at 1200 meters. The 

pen data consist in a [450 × 375] pixels map composed of 511 

amples in the Visible Near InfraRed (VINR) band (400 − 1000 nm ) . 

he spatial resolution of the image is about 0.6 meters. 

Different kinds of vehicles as well as coloured panels served as 

nown targets. For each of these targets, a spectral signature ob- 

ained from ground spectroradiometer measurements is available. 

oreover, a black and a white cover, serving as calibration targets, 

ere also deployed. As can be seen on Fig. 3 , the scene is com-

osed of parking lots, roads, buildings, sport fields and pine woods. 



Fig. 7. P fa gain for P d = 0 . 5 , for V5 target, with α = 0 . 1 and K 
N 

= 9 . 
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As for the majority of hyperspectral detection schemes, the first 

tep of the processing aims at converting the raw measurements 

nto a reflectance map, namely removing all atmospheric effects 

nd non-uniform sun illumination. To this end, we use the Empir- 

cal Line Method (ELM) [23,25] , considering the black and white 

alibration panels. Then a spectral binning [33] is performed to re- 

uce the vector size dimension to N = 32 . 

Based on this map, we will conduct a Monte-Carlo simulation 

y inserting a synthetic target t , initially not present in the image, 

nto a randomly chosen pixel y of the map ( y → (αt + y ) , where α
s the target amplitude). The target signature is subject to uncer- 

ainties and is composed of the sum of the assumed target signa- 

ure t̄ and a random zero-mean normally distributed white vector 

 �, whose energy is r times the energy of t̄ : 

 = ̄t + t � (21) 

here t � ∼ N (0 , r t̄ 
T t̄ 
N I ) . 

Figs. 4 and 5 represent the Receiver Operating Characteristic 

ROC) of different detectors, for both the so-called V 5 and V 6 
argets and for r = 0 (no mismatch) and r = 0 . 2 , respectively. In

oth cases, we use a 17 × 17 window to estimate the background 

ean and the sample covariance matrix. The target’s amplitude 

re α = 0 . 1 for V 5 and α = 0 . 2 for V 6 , as this last one is more

ifficult to detect. 

First of all, in the nominal case, where no mismatch exists 

 r = 0 ), all the detectors exhibit approximately the same perfor- 

ance, with a slight loss for the proposed AMF r . On the other 

and, when there is a mismatch on the target’s signature, the ro- 

ust AMF outperforms the other detectors. We can notice that both 

CE and Kelly exhibit a larger loss than the standard AMF. Indeed, 

he existence of a mismatch on the target signature increases the 

esidual part ( R ) of the data. Then, referring to Fig. 2 , it is obvious

hat both ACE and Kelly will be the more affected in this situation. 

e highlight here the compromise between selectivity and robust- 

ess. That is why the FAM techniques, using first a robust scheme 

o avoid non-detection, followed by a selective scheme to sort the 

argets and reduce false alarm, are worthy of interest. 

Now, we will successively analyse the influence of the fill fac- 

or α and of the level of uncertainties r. To this end, we compute 

he gain provided by AMF r compared to AMF in terms of proba- 

ility of false alarm ( P fa ) for a given P d , i.e., 10 log 10 

P fa (AMF ) 

P fa (AMF r ) 
, for

 d = 0 . 5 . This P fa gain allows to measure the improvement (if pos-

tive) or the loss (when negative) of the robust AMF with respect 
6 
o the standard one. We consider the so-called V 5 target for both 

hese analysis. Fig. 6 represents this false alarm gain with respect 

o α. On this figure we keep the same configuration as in Fig. 4 . We

oughly observe a linear performance increase as the target ampli- 

ude increases. 

To finish with, we now make vary the level of uncertainties on 

 , namely r, in Fig. 7 . As expected, we observe that the improve-

ent proposed by the robust AMF improves as the level of un- 

ertainties increases, with less than 1 db loss when the target sig- 

ature is perfectly known ( r = 0 ). Therefore, as soon as the target

ignature is not perfectly known, the proposed robust AMF has to 

e considered. 

. Conclusions 

In this paper, we considered the detection of a target in an hy- 

erspectral image when the background distribution may slightly 

ary between the null hypothesis and the alternate one, due e.g., 

o spectral variability. Under such an assumption we derived the LR 

or any background distribution, and the GLRT under the popular 

aussian case. This last detector is shown to be a simple correction 

f the AMF. We provided insights into the behaviour of this robust 

cheme and showed its good performance through numerical sim- 

lations. 
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ppendix A. Proof of (4) 

In this appendix, we derive the proof to Eq. (4) . For any random

ector u , we can write u = E { u } + �u , where �u is a zero mean

ector with the same covariance matrix as u , namely C u . Then, we

an write the following Taylor series expansion around E { u } : 

f (u ) = f (E { u } + �u ) � f (E { u } ) + 

∂ f (u ) 

∂u 

T 
| E { u } �u 

+ 

1 

2 

�u 

T 

[
∂ 2 f (u ) 

∂ u ∂ u 

T 
| E { u } 

]
�u (A.1) 

aking the expectation of this expression leads to 

 { f (u ) } � f (E { u } ) + 

1 

2 

E 

{
�u 

T [ 
∂ 2 f (u ) 

∂ u ∂ u 

T 
| E { u } ]�u 

}
(A.2) 

 f (E { u } ) + 

1 

2 

Tr { [ ∂ 
2 f (u ) 

∂ u ∂ u 

T 
| E { u } ] C u } (A.3) 
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