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Hybrid-electric aircraft are a potential way to reduce the environmental footprint of aviation. Research aimed at

this subject has been pursued over the last decade; nevertheless, at this stage, a full overall aircraft design procedure is

still an open issue. This work proposes to enrich the procedure for the conceptual design of hybrid aircraft found in

literature through the definition of a multidisciplinary design optimization (MDO) framework aimed at handling

design problems for such kinds of aircraft. The MDO technique has been chosen because the hybrid aircraft design

problem shows more interaction between disciplines than a conventional configuration, and the classical approach

based on multidisciplinary design analysis may neglect relevant features. The procedure has been tested on the case

study of a single-aisle aircraft featuring hybrid propulsion with distributed electric ducted fans. The analysis

considers three configurations (with 16, 32, and 48 electric motors) compared with a conventional baseline at the

same 2035 technological horizon. To demonstrate the framework’s capability, these configurations are optimized

with respect to fuel and energy consumption. It is shown that the hybrid-electric concept consumes less fuel/energy

when it flies on short range due to the partialmission electrification.When one increases the design range, penalties in

weight introduced by hybrid propulsion overcome the advantages of electrifiedmission segment: the range for which

hybrid aircraft have the same performance of the reference conventional aircraft is named the “breakdown range.”

Starting from this range, the concept is no longer advantageous compared to conventional aircraft. Furthermore, a

tradeoff between aerodynamic and propulsive efficiency is detected, and the optimal configuration is the one that

balances these two effects. Finally, multiobjective optimization is performed to establish a tradeoff between airframe

weight and energy consumption.

Nomenclature AR = aspect ratio
b = span
CD = drag coefficient
CDeq

= trim drag coefficient

CDi
= induced drag coefficient

CDw
= wave drag coefficient

CD0
= drag coefficient at zero lift

CL = lift coefficient
cr = root chord
ct = tip chord
cCCM = vector containing the certification’s specification
Ec = energy consumption
e = specific energy density
f, g, h, l = generic function
ke = Oswald coefficient
L∕D = lift-to-drag ratio
lnac = nacelle length
Mtakeoff = rotational momentum at takeoff
mf = fuel mass

N = yaw momentum
Nb = number of batteries
NEM = number of engines
P = power
p = specific power density
R = range
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t∕c = thickness-to-chord ratio
V = velocity
wf = fuselage width

x = position along the x axis
x = design variables vector
yk = wing break section
α = parameter, varying between zero and one
η = efficiency
Λ25 = sweep angle, at 25% of the chord
λ = taper ratio
τ = volume

Subscripts

app = approach
b = battery
cs = cooling system
g = generator
HT = horizontal tail
toc = top of climb
ts = turboshaft
VT = vertical tail
w = wing

I. Introduction

I N RECENT years, the aviation industry has been facing con-
straints due to growing air traffic: without any action, its environ-

mental footprint will be unsustainable.¶¶ To reduce the impact of
aviation, disruptive changes at the aircraft level are required. Fostered
by the progress made in the automotive industry, significant efforts
have been achieved in promoting hybrid and electric concepts [1],
coupled with new technologies such as distributed propulsion for
thrust generation [2,3] and boundary-layer ingestion (BLI) technol-
ogy [4,5]. Distributed propulsion is a technology that has gained
attention in past years because it can increase the propulsive effi-
ciency through the reduction of fan pressure ratios [2,6,7]. Distrib-
uted propulsion is particularly well suited to electric aircraft because
it is easier to distribute electric motors, as evidenced by its use in the
NASA X-57 [8–13] and the NASA N3-X hybrid wing–body con-
cepts [14–17]. BLI ingests the boundary layer from the aircraft wing
or fuselage to increase the aerodynamic efficiency [18,19]. These two
technologies are related and can enhance each other [3].
The main issue when dealing with a new concept aircraft is that

most of the aircraft design methods used for conventional configu-
rations are no longer applicable. Even the basic Breguet equation has
to be modified to take into account an electric power source, both on
its own or coupled with another one [20,21]. On a more complex
level, hybrid-electric aircraft have more possible interactions
between disciplines than a conventional aircraft [22–24]. As an
example, thermal aspects play a key role in this kind of architecture
and are a driver for the overall design,whereas they have no impact on
a conventional aircraft [12,25].
In the last few years, research has been focusing on the problem of

defining a preliminary design sizing process. Isikveren et al. [26]
developed a set of strategies to deal with dual-energy aircraft in a
generalway,without focusing on the sources themselves. Pornet et al.
[27] and Cinar et al. [28] presented a modified design process that
includes hybrid-electric propulsion to evaluate aircraft performance.
Ludowicy et al. [29] performed comparative studies between differ-
ent configurations for a light aircraft with serial distributed propul-
sion. De Vries et al. [30,31] developed a preliminary design process
that estimates the aeropropulsive effects in a distributed propulsion
aircraft. However, these efforts do not take into account some key
disciplines, such as thermal aspects and efficiencies.
Sgueglia et al. [32,33] presented a revised conceptual design

process that overcomes these limitations: in particular, concerning

the thermal management and the trajectory simulation, as well as
considering an aircraft featuring distributed electric propulsion. They
considered all the key disciplines (aerodynamics, weights, structure,
performance, thermal) for a large passenger aircraft with distributed
electric propulsion. The level of detail achievedwas still limited to the
conceptual design level since they used low-fidelity models, such as
semiempirical equations and the vortex-lattice method (VLM). Also,
they considered modifications in the multidisciplinary design analysis
(MDA) loop; but, as stated byBrelje andMartins [1], anMDAapproach
may neglect relevant coupled features in the design of unconventional
configurations. They identified multidisciplinary design analysis and
optimization (MDAO, also referred to asMDO) as the only way to deal
withunconventional configurations [34].MDOisa solution todealwith
problems that present interactions between disciplines, due to its ability
to take these interactions into account in reaching an optimal configu-
ration [35], as demonstrated by Hwang and Ning [36].
Brelje and Martins [35] presented an open source framework that

includes the optimization of small aircraft that considers mission tra-
jectory. While this is a good step toward the optimization of hybrid-
electric aircraft, it still relies on simplified assumptions, such as constant
efficiency and specific fuel consumption over the trajectory.Most of the
published work on hybrid-electric aircraft sizing has focused on the
design of propeller-driven regional aircraft [30,37,38]; however, large
transport aircraft represent a wide segment of commercial aviation.***

Thus, considering the integration of hybrid-electric propulsion for large
transport aircraft is of interest for next generation aircraft. There have
been a fewefforts in this area, such as theNASAN3-Xconcept [39] and
the ONERA DRAGON (Distributed fans Research Aircraft with elec-
tric Generators by ONERA) [6]. Therefore, there is a need for the
development of a full MDO procedure for the design optimization of
large transport hybrid aircraft [1].
This work extends the work of Sgueglia et al. [32], developing the

procedure for the conceptual design of hybrid aircraft that use MDO.
The main objective is to develop a tool for the design optimization and
performance evaluation of hybrid-electric aircraft at the conceptual
level, where all key disciplines are modeled with low fidelity to keep
the computational cost low. The developed framework computes gra-
dients for use with gradient-based optimization [34,35]. At this stage,
the aircraft is evaluated by only considering its performance; stability,
control, as well as operational aspects are not taken into account.
To fulfill this goal, the existing sizing tool FAST (which stands for

fixed-wing aircraft sizing tool) [40] is implemented within the Open-
MDAO framework [41,42]. FAST is an aircraft sizing tool that has
alreadybeen testedona largevarietyof configurations including turbojet
[40,43,44], turboprop [45], and blended-wing–body aircraft [46,47].
OpenMDAO is an optimization framework that implements the

MAUD (modular analysis and unified derivatives) architecture [42],
which is an efficient way to compute coupled derivatives. Together
with gradient-based optimization, this enables the solution of large-
scale optimization problems [41]. OpenMDAO has been extensively
used for various applications, such as aerostructural optimization
[48], topology optimization [49], on-demand air mobility [36], small
satellite design [50], aircraft design optimization with airline profit
analysis [51], and BLI optimization using high-fidelity tools [22,52].
In this work, we use OpenMDAO version 2.4.†††

This paper describes the development of this integrated hybrid-
electric aircraft analysis and design optimization framework, and it
presents the results of its application to the design of a large transport
aircraft with distributed propulsion. Section II presents a brief over-
viewof the aircraft concept, which has been detailed in previouswork
[32]. Section III presents the integration between FAST and Open-
MDAO, which represents the core development of the present work.
This required the redevelopment of the aircraft design framework
FAST to use the OpenMDAO features. The resulting tool is then
demonstrated by performing the design optimization of the hybrid-

¶¶Collier, F., and Wahls, R., “ARMD Strategic Thrust 3: Ultra-Efficient
CommercialVehicles SubsonicTransport,”2016, https://www.nasa.gov/sites/
default/files/atoms/files/armd-sip-thrust-3a-508.pdf.

***Data available online at http://www.boeing.com/resources/boeingdotcom/
commercial/about-our-market/assets/downloads/cmo_print_2016_final_updated.
pdf [retrieved 08 June 2019].

†††Data available online at http://openmdao.org/twodocs/versions/2.4.0/
index.html [retrieved 08 June 2019].
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electric aircraft in Sec. IV. We compare the developed tool with the
original version of FAST, citing both advantages and drawbacks. We
also compare the resulting optimal designs. Finally, Sec. V summa-
rizes the findings of our work.

II. Hybrid-Electric Aircraft Concept

A. Aircraft Modeling

The case study considered in this work is a hybrid-electric large
passenger aircraft with distributed electric fans previously proposed
and studied by Sgueglia et al. [32]. This aircraft concept, shown in
Fig. 1, assumes an entry into service (EIS) in 2035. The main features
of this concept are that it flies fully electric, at least up to 3000 ft (about
1 km), to reduce the emissions in the mean atmospheric boundary
layer, where the convective effects are the most significant [53].
In this concept, the batteries are coupledwith two turbogenerators (a

combination of a gas turbine and an electric generator) that supply the
power to the distributedducted fans.Amongall the possible choices for
the position of the fans, the wing upper inner surface is chosen to
increase the wing circulation [54]. This increases the maximum lift
coefficient [10,11], making it possible to reduce thewing area, shorten
the takeoff field length, or both. In addition, this concept is expected to
save weight because of the absence of high-lift devices.
The main advantage of distributed propulsion is the potential

to increase propulsive efficiency relative to conventional aircraft
[7,17,55]. Due to the larger number of fans, it is possible to reduce
the fan pressure ratio, leading to a propulsive efficiency larger than 0.9

[2]. Distributed propulsion also improves the aerodynamics [30,31],
but this effect is of second order compared to the overwing blowing
and can be neglected at the conceptual design level stage [56].
Turbogenerators are located at the rear to reduce the pylons’wetted

area and avoid interferencewith thewing. Their position also increases
passenger safety since they are far from the cabin. AT-tail is adopted
because of the turbogenerators’ location. Batteries are located in the
cargo area, split between the regions ahead of and behind the wing.
This choice is dictated by the available volume and center of gravity
positioning; the battery weight is significant and is the component that
affects the center of gravity the most. The aircraft center of gravity is
located around the center of gravity of the wing; so, with this arrange-
ment, the batteries do not move it significantly.
The fuselage weight is also affected by the batteries, due to the

reinforcement to carry their weight. Preliminary studies show that the
penalty is 5% for the baseline case. Linear extrapolation is considered
for different values of battery volume. The percentage already includes
a margin to be conservative. The maximum payload is decreased as
well, since only part of the cargo area is available for luggage.
The core of the new concept is the hybrid-electric chain definition,

which is described in the next section together with the description of
most relevant models.

B. Propulsive System Architecture

The propulsive system is depicted in Fig. 2, considering 40 dis-
tributed electric motors. As described in the previous section, bat-
teries and generators are coupled to supply electric power. These are
connected through a set of electrical buses. An electric line connects
each power source to all the buses to avoid power losses in case of a
bus failure. From these devices, the lines provide power to the electric
motors and the ducted fans. Inverters convert the current type from dc
to ac, and vice versa. In the battery package, converters are used to
bring current to the right transport voltage. Finally, breakers are
installed to disconnect a line in case of failure.
The propulsion system architecture shows two different energy

sources, and it intrinsically introduces a redundancy since, in case of
failure of one energy source, the other can react to keep the required
level of thrust. The propulsion system is sized by the case where one
of the electric cores becomes inoperative. In this case, no loss of
power is detected, but it must be distributed over a reduced number of
components, resulting in an oversizing [56,57]. The propulsion
system sizing is detailed in the next section.
When dealingwith electric components, the key parameters are the

specific energy and the specific power density, following the notation
used by Brelje and Martins [1]. These quantities are represented as

Fig. 1 Hybrid-aircraft concept with distributed electric ducted fan,
proposed in Ref. [32].
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Fig. 2 Propulsive system architecture used in the proposed hybrid-electric concept, considering (as examples) 40 engines distributed along the wing.



subscripts e for specific energy density and p for specific power
density. A detailed description of all the models adopted in this study
can be found in previous work [32]. The electric components are
sized by considering their power density and the maximum power
demand, and the gas turbine is modeled with Gas turbine Simulation
Program (GSP) [58].We use a simplifiedmodel of the batteries that is
detailed in the next section.

III. Aircraft Design Optimization Framework

A. Initial Sizing Loop for Hybrid-Electric Aircraft

Aspreviouslymentioned, we use the aircraft design tool FAST [40].
This is a multidisciplinary design analysis tool developed in Python
and tailored for the conceptual design and performance evaluation for a
given set of top-level aircraft requirements (TLARs). Inputs are given
through an XML (eXtended Matrix Language) file, which works also
as an output file and stores the results of the sizing. FAST has been
validated for the CERAS (CEntral Reference Aircraft data System)
reference aircraft,‡‡‡which is a public database that emulates the A320
aircraft. Results of this validation are detailed in Ref. [40].
FAST is a low-fidelity tool: aerodynamic and mass estimation meth-

ods come from statistical data and empirical equations contained in
classical design handbooks [59,60]. Table 1 lists the methods imple-
mented in FAST and provides the corresponding references [59–65].
Sgueglia et al. [32] developed a version of FAST tailored to the

sizing of hybrid-electric aircraft, which we refer to as the original
version. Algorithm1 can be graphically represented using theXDSM

standard [66]. In this notation, the purple circular block represents the

optimizer; meanwhile, the orange one refers to an MDA loop. Green

blocks represent the analysis, and they are numbered according to the

order of processing; and pink rectangles represent the functions.

Figure 3 depicts the FAST sizing loop in this standard. The main

workflow is identified by the black line, whereas gray lines denote/

identify/represent the data sharing between analyses. Analysis outputs

are indicated with a gray block; finally, I/O data are identified with a

white block: inputs are at the top row, andoutputs are at the left column.

The notation x represents the design variables vector, y are the state

variables, apex (0) indicates an initial guess, t is a target variable (that is,
a variable that is a copy of a previous output), and � is the final value.
The driven parameter for the procedure is the operating empty

weight: its value is estimated at step 7, after the mass breakdown

(OEWmb), and at step 8, after the performance calculation, as

OEWperfo � MTOW −mf − PL. At convergence, these two values

mustmatch; if not, theMTOWisupdated for next iteration as inEq. (1):

MTOWi�1 � MTOWi � �OEWmb − OEWperfo� (1)

In practice, the tolerance for convergence is set to 10−3; that is, the
relativedifferencebetween the twovaluesofOEWmustnot exceed0.1%.
Compared to a classical design loop, in the reviewed procedure, there

is a new analysis called “battery sizing” (step 2 in the preceding

algorithm) to properly size the battery according to the energy and power

requirements.Then, other changes are present at steps4 and5 to consider

the presence of batteries, the ducted fan, and generators; and then in step

8, to consider thedouble energy source in theperformancecalculation. In

thenext sections, the essential notionsofmodelingadopted forgeometry,

mass estimation, performance, and certification are provided.

1. Geometry

The geometry module is devoted to the estimation of the aircraft

dimensions, as well as the center of gravity placement. The aircraft

geometry is decomposed in five elements: fuselage, wing, horizontal

and vertical tails, and nacelle. Each of these elements needs a set of

variables to be fully defined.
The fuselage only needs the number of passengers and the seat’s

dimensions to estimate thewidth and the total length, according to the

methods provided by Roskam [62].
As seen also fromAlgorithm1, thewing area is estimated out of the

geometry module at step 2; wing dimensions are computed together

with other dimensions in step 3. The wing area is estimated by

considering two criteria: approach condition and fuel stored. The

first condition is represented by Eq. (2), whereMLWis themaximum

landing weight, Vs is the stall speed given in the TLAR, CLmax
is the

maximum lift coefficient in the landing configuration, and Swapp
is the

value of wing area that satisfies the equation:

MLWg � 1

2
ρV2

sSwapp
CLmax

(2)

The second condition is more complicated. The maximum fuel

weight (MFW) that can be stored in the wing can be expressed as

MFW � f

�
Swf

; ARw;

�
t

c

�
w

�
� k1S

1.5
wf
AR−0.4

�
t

c

�
w

� k2 (3)

where Swf
is a value of the surface, ARw is the wing aspect ratio,

�t∕c�w is the mean thickness-to-chord ratio, and k1 and k2 are

constant parameters that depend on the type of aircraft. Imposing

mf � MFW, with mf being the fuel needed for the design mission,

yields an estimation of the wing area that satisfies the condition.

Finally, the value of the wing area is the maximum of Swapp
and Swf

.

Once the wing area is known, the planform can be obtained. The

parametrization adopted is shown in Fig. 4: the wing geometry is a

two-section wing, with the break located at station yk. Assuming that

the break is at 40% of the semispan and that the trailing edge has an

angle equal to zero in the inner section, the wing planform is then

defined by four parameters: wing area; wing aspect ratio ARw; wing

sweep angle, evaluated at 25% of the chord Λ25w
; and the taper ratio

λw � ct∕cr. In addition, the thickness-to-chord ratio is needed for

aerodynamic evaluations.

Algorithm 1: FAST algorithm description, as used in the version
presented in Ref. [32] for the sizing of a hybrid-electric aircraft

(original version)

Require: Top-level aircraft requirements
Ensure: Sized aircraft, drag polars, masses, design mission trajectory

0: An initial guess for weight wing surface DEP components is computed
using statistical methods from Raymer's book [60].
repeat
1: Initialize the loop.
2: Size the battery, according to power and energy requirements.
3: Size the wing, according to fuel and approach requirements.
4: Compute initial geometry, starting from a set of geometrical inputs.
5: Resize the geometry and locate center of gravity. At each iteration,
mass estimation is carried out to evaluate the center of gravity position.
6: Aerodynamic calculation, based on sem-empirical equations and VLM.
7: Mass breakdown calculation, with the final values coming from
analysis 5.
8: Evaluate performance.
9:Updatemaximum takeoff weight (MTOW), considering the difference
in operating emptyweight (OEW) coming frommass calculation (step 7)
and performance (step 8).
10: Check convergence criteria: if they are satisfied, it ends the loop;
otherwise it proceeds to next iteration.

until 10 → 2: MDA has converged

Table 1 Summary of themethods implemented inFASTfor
each of the disciplines included in the conceptual design process

Discipline Method Reference(s)

Geometry Statistical equations [59,61,62]
Aerodynamics Semiempirical equations, VLM [60,63]
Mass breakdown Statistical equations [64]
Performance Time step approach [65]

‡‡‡Data available online at https://ceras.ilr.rwth-aachen.de/.

https://ceras.ilr.rwth-aachen.de/
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Horizontal and vertical tail geometries show a similar procedure,

with the difference that they have just a single section in place of two.
Fan dimensions are obtained by the knowledge of the fan pressure

ratio (FPR) and the design thrust, with the procedure explained in the

work of Sgueglia et al. [32]. From the knowledge of the fan radius rf,
the lengthof thenacelle is obtainedas1.05 × 2NEMrf,where the factor
of 1.05 accounts for some space margin between fans and the nacelle.
At this point, the first limitation of the code comes out: in case the

fans do not fit in the available space on the wing, an error message

appears, but no actions are automatically taken by the code. It is up to

users to modify inputs in order to have a feasible solution.
Finally, the battery volume is computed in the geometry module

too. Their sizing recalls the wing area sizing: they need to satisfy two

criteria and, at the end, the maximum volume between the two values

is taken. In particular, the conditions are related to energy and power

requirements. The first one ensures that batteries can store all the

energy available, with a 20% safety margin [67,68], and can be

expressed through the definition of the State Of Charge (SOC):

SoC�tf� � 1 −
Ec�tf�
Eb

≥ 0.20 (4)

where Ec is the energy consumption, Eb is the battery energy stored,
and tf indicates the final mission time. In reality, the SOC is defined

using the capacity notion (current multiplied by the time step) [67];
however, the assumption of constant voltage leads to Eq. (4).
The second condition ensures, instead, that batteries can deliver all

the power required for a required phase of flight Pref :

NbPb ≥ Pref (5)

where Nb and Pb indicate the number of batteries and the maximum
power delivered by each battery, respectively. Imposing the equality
in Eqs. (4) and (5) yields an estimation of the minimum volume
needed to satisfy each condition; the maximum between the two is
the actual value of battery volume. The reference power may be the
power required during any phase of flight (takeoff, climb, : : : ); the
condition will be further detailed in one of the next paragraphs.

2. Mass Estimation

For the mass and the center of gravity estimation, a breakdown
standard must be chosen. This choice is arbitrary and left to design-
ers; in FAST, the standard follows the rules of reference French
norm 2001/D [40,64].Models formass estimation of the components
rely on semiempirical methods; the standard is limited to the con-
ventional aircraft, and the mass associated to the hybrid-electric
powerplant must be added. Following the example of some authors
[16,69–72], mass is estimated by the knowledge of the power-to-
mass ratio as

mi �
Pmaxi

pi

(6)

where the subscript i indicates a generic electric component, and
Pmaxi

is the maximum power demanded.

3. Aerodynamics

The aerodynamic model computes the drag polar, in low and high
speeds. The drag coefficient is decomposed into four terms:

CD � CD0
� CDi

� CDw
� CDeq

(7)

where CD0
represents the term related to friction, CDi

is the induced
drag,CDw

is thewave drag for the transonic regime, andCDeq
is a term

related to trim condition.
All these terms are obtained using the methods provided by

Roskam [63]. To compute the CD0
, friction coefficient for each

Fig. 4 Wing parametrization used in geometry module for FAST; only
half-wing is shownbecause of symmetry. It consists of a two-sectionwing,
with the break placed at the station yk; chord distribution is obtained
from the knowledge of the sweep angle at 25% of the chord Λ25w .

Fig. 3 Original version FAST XDSM, as used in Ref. [32]. Figure refers to Algorithm 1. (A/C = aircraft, CG = center of gravity, Req = required.)



subcomponent (wing, fuselage and tails) is estimated based on their
wetted surface, then the global value is obtained as a weighted mean
value among these coefficients. Effects related to thickness are
modeled through linear corrective factors.
For the induced drag, it is assumed that only thewing produces lift;

in other words, the contribution of the horizontal tail is neglected, as
suggested by some authors [73]. The termCDi

is then computed using
its classical formulation coming from the Prandtl theory [74]:

CDi
� C2

L

πARwke
(8)

whereCL is the lift coefficient, and ke is the Oswald factor, estimated
using the method proposed by Niţă and Scholz [75]. The other two
terms, related to wave drag and trim, are estimated by consider-
ing linear dependency with geometric parameters like sweep and
thickness.
No modifications due to hybrid propulsion are considered for

the polars, other than estimating the parasite drag of the nacelle using
the method described earlier in this paper.
At low speed, a value of CLmax

� 4.5 is considered to model the
blowing phenomenon [11,56,57]. The following assumptions are
made:
1) Blowing is relevant only at low speed and maximum thrust:

that is, at takeoff. Its effects in cruise are neglected.
2) The only effect is on the value of CLmax

; the impact on the slope
CLα

is neglected [56].

4. Performance Evaluation

Performance is evaluated through the computation of the mission
profile using a time-integration approach. The mission profile is
made up of takeoff, initial climb, climb, cruise, descent, and an
alternate flight plus a holding phase for reserve. The trajectory is
obtained by solving the flight equations with the time-marching
approach for each phase. It is also assumed that the cruise starts at
the point of maximum lift-to-drag ratio, and then the aircraft climbs
gradually to fly always at CL � CLopt

(cruise climb approach). To
find the right initial cruise point, an iterative loop is needed: cruise
altitude is changed and the climb phase iterated until the condition
CL � CLopt

is met.

Since this is a hybrid-electric concept, at each time step, both the
fuel and the energy consumption are evaluated. Knowing the actual
state of the aircraft at step i (that is, its CL and CD), it is possible to

obtain the power required by batteries and turboshaft (Pbi and Ptsi
,

respectively) to sustain the flight and the value of power specific fuel
consumption (PSFC) of turboshaft engines. The values of fuel and
energy consumption are then updated using

mfi�1
� mfi � NtsPtsi

PSFCiΔt (9)

Eci�1
� Eci � NbPbiΔt (10)

whereΔt is the time step. Using Eq. (4) for the time step i, the SOC is
updated as well; finally, the mass of the aircraft at time step i� 1 is
obtained by subtracting the fuel consumed during the time step i. This
procedure is iterated for each segment until termination.
During the cruise step, the code calls the function for descent phase

at the end of each time step to check if the total distance covered is
equal to the range. If this is not the case, the process moves to next
time step. The procedure is depicted in Fig. 5 using the XDSM
standard. The scheme highlights the iterative loops implemented:
from steps 0 to 2, the climb is iteratively called until the cruise altitude
is obtained to match the condition of optimal flight point. Then, steps
3–7 implement the time step approach: for each time step, the code
obtains the distance travelled in cruise thus far (step 4), and then it
performs the descent (step 5). Afterward, step 6 takes as an input the
distance travelled during climb, cruise, and descent, and checks if it is
equal to the design range; if not, it proceeds to the next time step.
The implementation is very costly since it requires a call to the

descent function thousands of times for a single sizing iteration,
which is a limitation of the code used here.

5. Certification Constraint Module

Finally, once that trajectory is obtained, an analysis on certification
is carried out through the certification constraint module (CCM) [43].
This module checks if the specifications given by CS-25 [76] are
satisfied. In addition, the EASA acceptable means of compliant Part
CAT document [77] for operational requirements is also considered:
although it is not related to certifications, it is of great importance to
have an aircraft satisfy these specifications. Conditions implemented
in the code are listed as follows:
1) Reserve of vertical speed at top of climb and top of descent of at

least 300 ft∕min, as prescribed by CAT.POL.A.410(a)-1 and 2 [77].
2) Steady gradient flight, in landing configuration and with all

engines operative (AEO condition) of at least 3.2%, as prescribed by
CS-25.119(a) [76].

Fig. 5 Scheme of the performance module in FAST using the XDSM standard, limited to the climb, cruise, and descent. The scheme highlights the time
step approach, which is implemented in FAST.



3) Steady gradient flight, in takeoff configuration and with one
engine operative (OEI condition) greater than zero, as prescribed by
CS-25.121(a) [76].
4) Steady gradient flight, in takeoff configuration at 400 ft

of altitude and in OEI condition of at least 2.4%, as prescribed by
CS-25.121(b) [76].
5) Steady gradient flight, at the end of takeoff phase and in OEI

condition of at least 1.2%, as prescribed by CS-25.121(c) [76].
6) Steady gradient flight, in approach configuration and AEO

condition of at least 2.1%, as prescribed by CS-25.121(d) [76].
In the case of distributed propulsion, the OEI condition is mean-

ingless since a loss of one engine is not relevant as for conventional
aircraft [57,78,79]. Also, given the two energy sources, the failure
case is not clear. Two different situations may occur: failure of an
energy source, which leads to a loss in total thrust available; and
failure of an electric core, which leads to a set of electric motors
becoming inoperative (see Fig. 2). In this work, the first condition is
not considered since it is assumed that in, case one source becomes
inoperative, the second can always provide supplementary power to
avoid loss of total thrust.
The second condition, hereby called one core inoperative (OCI),

instead represents the sizing case for electric components since there is
no loss of total power, but it has to be distributed over a reduced number
of electric components. This situation leads to an oversizing of electric
components, and it has been considered as a failure case. Table 2
reports the proposed certification rules for the hybrid-electric concept
studied here. This table highlights that the CCM only checks if the
constraints are satisfied; if they are not, it is up to users tomanually edit
some TLARs or input in order to comply with specifications.
Regarding the pending question of the reference power for battery

and other electric components sizing, it should be the minimum
power that guarantees all the specifications of Table 2 are satisfied.
Unfortunately, this is not known a priori and, since theCCMperforms
only a check, is not possible to get this power from the application.
Some trade studies [57] show that the most stringent condition is

the CS-25.121(b) [76], which requires the gradient flight at 400 ft, in
the OCI condition, must be greater than 2.4%: this condition is
retained for the sizing.
So far, the code presented in previous paragraphs is tailored only

for sizing; its integration within an optimization framework is the
goal of the next section.

B. Optimization Algorithm for Hybrid-Electric Aircraft

To enable optimization with the FASTmodels, it is integrated with
OpenMDAO 2.4 [41] to address design challenges of the unconven-
tional concept proposed here. ThemainOpenMDAObuilding blocks
are the Components, which map inputs to outputs in either an
implicit or explicit formulation. Components represent the starting
point fromwhich complex models are built up. Theymay represent a
discipline in simplermodels but, most of the time, they represent only
a small part of a discipline (e.g., for aerodynamics, each component
may represent a single contribution to the drag coefficient). An
ensemble of different Components is called a Group, which is a
higher level of OpenMDAO hierarchy. A discipline is typically
represented by a Group. To give a practical example, in the case

of the aerodynamics module, Components may be defined to
compute a single contribution to the drag polar; their regrouping to
get the total drag coefficient occurs in a Group, which represents the
aerodynamic discipline. This logic allows one to have flexibility
since it is always possible to easily add or remove analysis from a
problem.
To perform the integration between FAST and OpenMDAO, the

original code was modified by decomposing each module in a set of
Components, and then it was regrouped to form disciplines (geom-
etry, mass breakdown, aerodynamic, and performance). To differen-
tiate from the original version, the developed framework is hereafter
referred to as the “integrated version.”

Because of the choice to define the MDO based on analytic
derivatives, each Component computes no more than three equa-
tions at a time to simplify the derivation of analytic derivatives. In
OpenMDAO, the total derivatives are obtained from the knowledge
of partial derivatives for all components; therefore, for each compo-
nent’s output, its derivatives with respect to inputs must be analyti-
cally defined.
Algorithm 2 presents the new optimization procedure; the corre-

sponding XDSM scheme is shown in Fig. 6. The green blocks here

represent a single discipline, as in the scheme of Fig. 3, but each block
is not a Component but rather a Group.
The resulting MDO architecture is called multidisciplinary fea-

sible (MDF) [34]: in this kind of architecture, the optimizer directly
controls x, f�x�, and g�x�. The main MDF benefit is that, in case the
optimization terminates earlier, the resulting system design is always
feasible, which is a key point for designers since it is possible to
establish a tradeoff even in case of nonconverged simulations (that is,
the solution may not be optimal in a mathematical sense) [34]. The
main disadvantage, instead, is that it requires a full MDA to be
performed at every optimization iteration: in the integrated version,
steps 3–8 in Algorithm 2 represent the sizing process, that is, the
MDA. In addition, total derivatives of the full MDA are required.
The integrated version has been run once, without optimization,

starting from the configuration studied inRef. [32] to ensure the result
is the same and no error occurred during the development. The
validation results, considering NEM � 40 and R � 1200 n miles,

Table 2 CS-25 [76] and CATPOL [77] rules revised
for the hybrid-electric concepta

Certification Phase Condition Parameter
Minimum
value

CAT.POL.A.410(a)-1 Top of climb AEO Vz 300 ft∕min

CAT.POL.A.410(a)-2 Top of descent AEO Vz 300 ft∕min

CS-25.119(a) Landing AEO γ% 3.2%

CS-25.121(a) Takeoff OCI γ% 0%

CS-25.121(b) 400 ft OCI γ% 2.4%

CS-25.121(c) End of takeoff OCI γ% 1.2%

CS-25.121(d) Approach AEO γ% 2.1%

aVz represents vertical speed; meanwhile, γ% is the gradient flight given in percentage.

Algorithm 2: Updated FAST algorithm description,
tailored to perform an optimization of a hybrid-electric

concept (integrated version).

Require: Initial design parameters (TLARs), designvariables initial vector x�0�.
Ensure: Sized aircraft, drag polars, masses, performances/

0: Initialize the optimization loop: the starting point x�0� is read from the
XML file.

repeat
1: Compute the battery parameters (power and energy stored).
2: Initialize the MDA, used to get a feasible aircraft.
repeat
3: Update the MTOWat each iteration, according to values of OEW
coming from previous iteration.
4: Compute the aircraft geometry, by the knowledge of the design vector
x and other top-level input parameters, and perform themass breakdown
to estimate weight of all components.

5: Compute the static margin. CL slope for wing and horizontal are
estimated from the geometry defined in previous analysis.

6: Aerodynamic calculation, based on the same equations of the original
version, described in Sec. III.A.3.
7: Compute the aircraft performance.
8: Convergence check. The control parameter to ensure the convergence
is theOEW; the criterion is the same as of the original version of the code.
until 8 → 3: MDA has converged

9: Evaluate the objective function.
10: Evaluate the design constraints.
11: Check if the optimization has converged. If not, x is updated for the
next iteration.

until 11 → 1: MDO has converged and the final design variables vector x⋆

is found.



are reported in Table 3. The difference is below 0.5% and can be

considered negligible.

The original and the integrated versions present differences in the

way the overall aircraft design problem is coded and solved; they are

listed in the following:
1) The original version shows only one MDA loop, whereas in the

integrated version, two loops appear: the outer one is the optimization
loop; meanwhile, the inner one is the MDA, which is used to get a
viable aircraft.
2) In the integrated version, design constraints are used in place of

sizing criteria. Thismeans that step 2 ofAlgorithm1 is removed since
the wing area parameter belongs to design variables. Equations (2)
and (3) are rewritten as design constraints; the solver letsSw vary in its
design space and, at convergence, it automatically finds the optimal
value that satisfies design constraints. The same approach applies to
battery, tail sizing, cruise altitude matching and center of gravity
assessment. At each optimization iteration, the code only needs to
compute the geometry once and check the stability conditions; if
design constraints are not satisfied, the optimization solver finds a
new value of wing position.
3)A consequence of the previous point is one of the peculiarities of

the new integrated formulation: in this approach, it is not the case that
each optimization iteration produces an aircraft that satisfies all the
design constraints; whereas in the original code, at the end of each
iteration, a feasible aircraft (in terms of wing, tail sizing criteria, and
stability) was obtained.
4) In the original version, the starting point was initialized before

the loop using statistical equations; in the integrated version, instead,
it is randomly chosen within the design space.
5) The iterative routine available in OpenMDAO makes the code

more efficient. The main example of this is in the performance calcu-
lation: as highlighted in Sec. III.A.4, at each cruise point, it carries out
the descent to check the distance covered,which results in an expensive
procedure. In the integrated version, instead, the OpenMDAO routines

just need the distance to travel in cruise; then, they iteratively change
this value to cover the total range considering climb and descent
lengths.
All the differences listed previously make the integrated version

more efficiently coded: the absence of iterative loops in the geometry

and, overall, in the performance module reduce the computational

cost by a factor of five for the validation case reported in Table 3.
In the original version, a fixed point iteration was used for every

loop. OpenMDAO, instead, presents a large variety of numerical

schemes that can be used to solve iterative loops. This affects the

robustness since a choice of proper scheme may accelerate the

convergence or allow for a more accurate result: in fact, the MDA

tolerance is reduced by three orders of magnitude, from 10−3 to 10−6.
Despite these advantages, the integrated version presents some

drawbacks: in the integrated version, there are more than 200 Open-

MDAO Components associated with the discipline to facilitate

analytic gradient computation compared to the 19 of the original

one. This canmake it hard for a newuser to understand how tomodify

the code.
At this stage, the MDO procedure is set. The next section reports

the associated optimization problem.

C. Problem Definition

An optimization problem is mathematically defined as

8<
:
minimize f�x�
with respect to x ∈ Rn

subject to c�x� ∈ Rd

where f�x� is the objective function, x is the design variables vector,
c�x� is the constraint vector, n is the problem size, and d is the

constraint size. All these elements must be defined; Table 4 sums

up this definition. The optimization problem consists of 20 design

variables, subject to a total of 17 design constraints. The bounds of

variables are chosen by considering a large number of existing air-

craft of the same category [61].
The objective function f�x� can be fuel, energy consumption, or

even more complex functions. The design vector x contains geomet-

rical (for wing and tails), propulsive, andmission variables. Note that

they must be continuous, as OpenMDAO does not consider discrete

variables in the optimization problem [41,80]. The choice of these

parameters relies on the models adopted in FAST, following the

parametrization shown in Fig. 4 and the comments reported in

Sec. III.A. Battery volume τb is needed to properly size batteries.

Table 3 Results of validation between the original

and the integrated version for the case presented in
Ref. [32]: NEM � 40 and R � 1200 n miles

Original Integrated

MTOW, t 80.1 80.1

OEW, t 59.5 59.4

Wing area, m2 118.77 118.51

Energy consumption, GJ 305.61 305.68

Fig. 6 Integrated version FAST XDSM, tuned for optimization of hybrid-electric aircraft. The MDO is detailed in Algorithm 2. (RC = rate of climb.)



The propulsive design variables are the FPR (to control the power
demanded by fan) and the sizing power for electric components Pref

(that must comply with certification aspects listed in Table 2). Cruise
altitude htoc is also needed to have continuity between segments. It is
worth noting that none of the design variables are related to the
turbogenerator; instead, this component ismodeled outside the sizing
loop because no sizing mode is available. Power and power specific
fuel consumption curves are provided to FASTand interpolated to get
the values of interest during the performance calculation.
The design constraints are described in the following:
1) Thewing has to carry all the fuel needed andmatch the approach

condition; these two criteria can be expressed as Δmf � MFW −
mf ≥ 0 and ΔCLldg

� CLmax
− CLapp

≥ 0, respectively.

2) The horizontal tail and wing position are sized for two consid-
erations: obtain rotational performances at takeoff and ensure that the
static margin (SM) is between 5 and 10%. The first consideration
requires that the longitudinal momentum balance is larger than zero
(zero at limit) for a given maximum center of gravity variation
(Mtakeoff ≥ 0); meanwhile, the second consideration is simply quan-
tified as 0.05 ≤ SM ≤ 0.10. Note that this is a limitation since more
aspects related to controllability play a role in the horizontal tail (HT)
sizing and, due to the blowing, the effect is even more relevant in the

present case. However, as previously stated, this work only focuses
on the performance evaluation and does not consider these aspects.
3) Thevertical tail is sized to have lateral stability in cruise:SVT has

to ensure that the fuselage yaw moment is counterbalanced by the
vertical tail yaw moment or in mathematical symbols ΔN cruise ≥ 0,
with N being the yaw moment.

4) The possibility to collocate all the engines in the available space is
ensured by constraining the length of the nacelle: Δlnac ≤ bw −wf,
withwf being the fuselagewidth,which is not usable for fan allocations.

5) The fan must not be too big, to avoid structural problems.
Defining a proper maximum dimension for the fan size is challeng-
ing; using the work of Wick et al. [54], a rough estimation of the
allowable fan radius-to-chord ratio �rf � rf∕ �c, with �c being themean
aerodynamic chord (MAC), can be drawn.A reasonable threshold for
this parameter is 0.15: that is, the fan radius must not exceed 15% of
the MAC: this is expressed by �rf ≤ 0.15.

6) Thewing spanbw and takeoff field length (TOFL) are limited by
operational constraints for a medium range aircraft [81].§§§

7) The state of charge at the end of the mission is fixed to 0.20
through an equality constraint to consume all the possible electrical
energy, reducing fuel consumption.
8) The lift coefficient at the top of climb must be equal to the value

that maximizes the lift-to-drag ratio to fly at the best altitude; in other
words, ΔCL;toc � CLtoc

− CLopt
� 0.

9) The certifications constraints may be expressed by defining a
single vector

cCCM � �
Vztoc − 300; Vztod − 300; γ%119a

− 3.2; γ%121a
; γ%121b

− 2.4; γ%121c
− 1.2; γ%121d

− 2.1
�

and imposing cCCM ≥ 0. To satisfy these conditions, Pref is varied,
but the wing area may also be impacted.
The next section will present the application of the integrated

version of FAST on some test cases for the hybrid-electric aircraft
featuring distributed propulsion.

IV. Optimization Results

This section presents the application of the new integrated version
for the case study considered here. Results are divided as follows. At
first, the top-level requirements are reported together with the techno-
logical assumptions reflecting an EIS of 2035. The following sections
present the single-objective optimizations to assess the performance of
the optimized architecture with respect to the conventional baseline in
terms of fuel and energy consumption. Ultimately, a Pareto front is
obtained, considering OEW and energy consumption, and using a
gradient-free and a gradient-based method, in order to compare the
two methods and show the gain using derivative information.

A. Top-Level Requirements for the Hybrid-Electric Aircraft

Table 5 reports the TLARs: they correspond to an A320-type
aircraft (150 passengers). Range is not fixed yet because one of the
main outcomes of Ref. [32] is that the zone of interest for design is
limited to a range called breakdown range. This particular range
represents the starting point after which the hybrid-electric aircraft
is not advantageous anymore, and thus it is interesting to study
performances varying this input.
As said in the previous section, discrete variables cannot be easily

included in the optimization problem [80], and so the number of
engines, batteries, and turbogenerators cannot be included in the
optimization problem, but they are rather top-level entries. To under-
stand the impact of this variable on the design, three different base-
lines varying NEM from 16 to 48 are considered. The hybrid-electric
concept is compared to a conventional aircraft, corresponding to a
revisedCERAS aircraft (see footnote ¶¶) resized tomatch the TLARs
of Table 5 and optimized.

Table 4 Optimization problem definitiona,b,c

Category Name Size Lower Upper Equals Units

Objective f�x� 1 —— — — —— ——

Variables Sw 1 100 150 —— m2

xw 1 18 24 —— m

ARw 1 8 12 —— ——

λw 1 0.2 0.6 —— ——

Λ25w
1 20 45 —— deg

�t∕c�w 1 0.1 0.15 —— ——

SHT 1 20 80 —— m2

ARHT 1 2 5 —— ——

λHT 1 0.2 0.6 —— ——

Λ25HT
1 20 45 —— deg

�t∕c�HT 1 0.1 0.15 —— ——

SVT 1 15 50 —— m2

ARVT 1 1 2.5 —— ——

λVT 1 0.85 1.0 —— ——

Λ25VT
1 25 55 —— deg

�t∕c�VT 1 0.13 0.18 —— ——

Pref 1 6 15 —— MW

τb 1 1 3 —— m3

FPR 1 1.05 1.4 —— ——

htoc 1 30,000 40,000 —— ft

Total variables — — 20 —— — — —— ——

Constraints Δmf 1 0 — — —— kg

ΔCLapp
1 0 — — —— ——

bw 1 —— 36 —— m

Mtakeoff 1 —— 0 —— N∕m
ΔN cruise 1 0 — — —— N∕m
SoCf 1 —— — — 0.20 ——

ΔPb 1 0 — — —— W

Δlnac 1 —— 0 —— m

�rf 1 —— 0.15 —— ——

TOFL 1 —— 2200 —— m
ΔCLtoc

1 —— — — 0 ——

SM 1 0.05 0.10 —— ——

cCCM 5 0 — — —— %

Total constraints — — 17 —— — — —— ——

aVariables are described by their bound constraint and their unit.
bBounds come from data on a large number of tube-and-wing aircraft provided in

Roskam’s book [61].
cInequality and equality constraints are also defined.

§§§The ICAO Aerodrome Reference Code, International Civil Aviation
Organisation, 2017, https://www.skybrary.aero/index.php/ICAO_Aerodrome_
Reference_Code [retrieved 09 May 2020].

https://www.skybrary.aero/index.php/ICAO_Aerodrome_Reference_Code
https://www.skybrary.aero/index.php/ICAO_Aerodrome_Reference_Code
https://www.skybrary.aero/index.php/ICAO_Aerodrome_Reference_Code
https://www.skybrary.aero/index.php/ICAO_Aerodrome_Reference_Code
https://www.skybrary.aero/index.php/ICAO_Aerodrome_Reference_Code


The assumptions at the technological level aremade to consider the

2035 technology horizon. In the literature, there is a large uncertainty

concerning the future technology perspectives [1,32,70,82,83]¶¶¶:

mostly related to battery parameters. Table 6 reports the assumptions

considered here, which correspond to the previous work of Sgueglia

et al. [32].

B. Aircraft Optimization with Respect to Fuel and Energy Consumption

In this section, single-objective optimizations are presented.

Table 7 reports the setup used: the optimization solver is SNOPT

[84], which is a gradient-based algorithm based on the least-squared

method.

The nonlinear and linear solvers are block nonlinear Gauss–Seidel

and lower-upper (LU) decomposition, respectively. Specifically, the

first is used to solve iterative systems and the second to obtain

solution for the linearized derivative system. The problem is not

scaled, and so the tolerance must be an absolute tolerance.

One issue regarding the gradientmethods is that the optimumpoint

x� can be a local minimum; to increase the likelihood of convergence

to the global optimum, a multistart check is performed with 10

different initial vectors x�0�. The starting points are generated using

the Latin hypercube sampling technique [85] in order to have them

spaced within the design space reported in Table 4.

As an example, Table 8 reports the final objective function f⋆ �
E⋆
c and the norm of constraints in the case of a hybrid aircraft with 32

engines, designed for a range of 900 n miles; for brevity, only this

case is reported, and the others are similar in nature. From Table 8, no

evidence of local minima is detected since the maximum difference

among the 10 values of f⋆ is less of 0.4%.

The aircraft have been optimized considering both fuel and energy

consumption. A total of four different configurations are considered:

three hybrid-electric aircraft, varying the number of engines from 16 to

48, and a conventional configuration; each of them is sized on four

different range values equally spaced from 600 to 1500 n miles.

Figures 7 and 8 show the fuel and energy consumption with respect

to range for each configuration; as a complement to these plots,

Tables 9–12 report the quantities of interest for the conventional aircraft

and the hybrid aircraft with 16, 32, and 48 engines, respectively.
First result to highlight is that the configuration that optmizes the

fuel consumption corresponds to the configuration that minimized

the energy consumption, which is intuitive since these parameters are

correlated each other.
From Figs. 7 and 8, a point of breakdown in the design range is

detected, in agreement with the previous results from Sgueglia et al.

[32]. The hybrid aircraft is significantly heavier than the reference

aircraft, and it has worse performance in cruise. The zone of interest

for its design is limited to short range because, in this region, the

benefits overcome the penalties due to the greater mass in cruise

because they come from a fully electric climb, which translates in

about 2 t of fuel saved. On longer ranges, the mass introduced by

batteries diverges, making the concept a poor performer against a

conventional aircraft; also, it is worth noting that, due to the diver-

gence, it is not possible to get any feasible aircraft above R �
1600 n miles.
The preceding results show that, in the zone of interest for design,

the best performing configuration corresponds to NEM � 32. The
NEM � 16 case shows the best aerodynamics’ performance, with a

maximum lift-over-drag (LOD) around 18.05 because it has less

wetted area due to the lower number of engines. Despite that, the

propulsion is poorly distributed, and to satisfy the constraint on fan

dimension, the FPR needs to be augmented (around 1.3 from

Table 10), worsening the propulsive efficiency.
The opposite case, with highly distributed propulsion (NEM �

48), does not show more promising results. Thanks to the large

number of engines, the fan size is not limited by the constraint on

their dimension; but, since the space over the wing is limited by the

span, the FPR is increased in any case to satisfy allocation.Moreover,

it has more wetted surfaces and the aerodynamics is significantly

worsened. The combination of these two effects makes this configu-

ration worse than the others.
The case NEM � 32 represents a balance between aerodynamics

and propulsive efficiency: the maximum lift-to-drag ratio is only 1.3%

lower than the case with 16 engines, but the FPR is significantly lower

(around 1.1 from Table 11), resulting in good aerodynamics and

propulsion. As a consequence, the battery volume is lower for this

configuration than the others, for all the ranges, which limits the

increase in mass. The MTOW and OEW are greater in any case due

to the higher number of elements present in the architecture. Nonethe-

less, even for the best performing configuration, the zone of interest is

still limited: regarding the fuel consumption, the design zone is limited

to 1500 nmiles,whereas regarding the energy consumption it is limited

to 900 n miles.
Analysing the certification constraints, it can be noted that all the

configurations complywith the revised CS-25 [76]; also, results from

Tables 10–12 show that themost stringent condition is the CS-25.121

(b) [76], related to the climb rate at 400 ft of altitude and in the

OCI case.

Table 6 Technological parameters
for hybrid-electric chain components in

the 2035 perspectives [32]

Variable Value Unit

eb 500 W ⋅ h∕kg
ρE;b 850 W ⋅ h∕L
pb 2 kW∕kg
ηb 0.9 ——

pEM 10 kW∕kg
ηEM 0.98 ——

pcs 2 kW∕kg
ηcs 0.99 ——

pts 7 kW∕kg
pgen 13.5 kW∕kg
ηgen 0.95 ——

pic 16.4 kW∕kg
ηic 0.98 ——

Table 7 Optimization setup for the
hybrid aircraft design problem using

gradient-based method

Parameter Value

Optimization solver SNOPT
Linear solver Linear Gauss–Seidel
Nonlinear solver Direct solver
MDA tolerance 10−6

Optimization tolerance 10−6

Table 5 Top-level aircraft requirements used to size the
case studya

Parameter Value Unit

Range 600–1500 n miles
Mach number 0.78 ——

Number of passengers 150 ——

Design payload 13,608 kg
Number of electric motors 16–48 ——

CAS (calibrated air speed) approach speed 132 kn
Maximum wing span 36 m
Maximum TOFL 2.2 km

aRange and number of engines are not fixed yet.

¶¶¶Delhaye, J.,“ElectricalTechnologies forAviationof theFuture,”Airbus,2015,
.https://ec.europa.eu/research/index.cfm?pg=events&eventcode=E6B592A3-
C341-5F62-B5950B69BFB6824D.=2015 [retrieved 09 May 2020].

https://ec.europa.eu/research/index.cfm?pg=events&eventcode=E6B592A3-C341-5F62-B5950B69BFB6824D=2015
https://ec.europa.eu/research/index.cfm?pg=events&eventcode=E6B592A3-C341-5F62-B5950B69BFB6824D=2015
https://ec.europa.eu/research/index.cfm?pg=events&eventcode=E6B592A3-C341-5F62-B5950B69BFB6824D=2015
https://ec.europa.eu/research/index.cfm?pg=events&eventcode=E6B592A3-C341-5F62-B5950B69BFB6824D=2015
https://ec.europa.eu/research/index.cfm?pg=events&eventcode=E6B592A3-C341-5F62-B5950B69BFB6824D=2015
https://ec.europa.eu/research/index.cfm?pg=events&eventcode=E6B592A3-C341-5F62-B5950B69BFB6824D=2015


In conclusion, there is an agreement between the fuel and energy
consumption trendwith respect to design range both for optimized and
nonoptimized configuration [32], but the allowable region is slightly
increased. The average computational time is 35 min per simulation,
and 30–40 iterations are required to reach the convergence.

C. Pareto Front Using Gradient Information

Multiobjective optimization is performed using the OEW and Ec

as objectives to reduce both structural weight and energy consump-
tion, aswell as compute a Pareto front. Both quantities have effects on
costs, and thus this optimization can give some indications on the
points that optimize costs. OEW is preferred to MTOW because the
latter depends directly on fuel (whereas OEW is affected only indi-
rectly), and results can be misleading [44]. Two optimization pack-
ages are used: NSGA-II [86] and SNOPT [84]. NSGA-II is a genetic

algorithm that explores a large number of prescribed points and

automatically computes the sets of optimal points belonging to the

Pareto frontier.
SNOPTonly solves single-objective problems, and so a composite

function that depends on OEW and Ec is defined:

f�x; α� � α
OEW

OEWref

� �1 − α� Ec

Eref

(11)

where α ∈ �0; 1� is varied to obtain the Pareto front. The two quan-

tities are nondimensionalized with respect to reference values.
Just one configuration is considered, corresponding to NEM � 32

and R � 900 n miles. The exploration process done by the genetic

algorithm is shown in Fig. 9: 20,000 points were explored, marked in

green; then, between all these points, it finds the feasible ones that

satisfy the design constraints and finally gets all the nondominated

Fig. 7 Fuel consumption vs range plot for three different hybrid-electric

configurations (NEM � 16, 32, 48) and conventional aircraft with the
same TLARs: EIS � 2035.

Fig. 8 Energy consumption vs range plot for three different hybrid-
electric configurations (NEM � 16, 32, 48) and conventional aircraftwith
the same TLARs: EIS � 2035.

Table 8 Final objective function f⋆ � E⋆
c and norm of constraints for the 10 optimization runs carried

out for hybrid aircraft featuring DEP,NEM � 32, and R � 900 n milesa

Run

1 2 3 4 5 6 7 8 9 10

f⋆ 255,246 255,259 255,231 2,552,283 255,242 255,219 255,220 255,236 255,218 255,262

kck 0 0 0 0 0 0 0 0 0 0

aThe best value obtained is x⋆ � 255218.

Table 9 Quantities of interest for the reference aircraft results:
A320 type resized to match EIS � 2035

Range, n miles

600 900 1200 1500

MTOW, t 56.76 57.89 59.01 60.14

OEW, t 38.58 38.71 38.79 38.84

Wing area, m2 116.21 116.47 116.63 116.76

Maximum LOD 18.47 18.46 18.45 18.44
Fuel mission, t 4.77 5.74 6.77 7.81

CAT.POL.A.410(a)-1 [77], ft∕min 905.76 905.59 904.13 904.48

CAT.POL.A.410(a)-2 [77], ft∕min 308.9 315.24 309.41 300.24

CS-25.119(a) [76], % 17.54 17.61 17.57 17.49
CS-25.121(a) [76], % 4.5 4.29 4.02 3.62
CS-25.121(b) [76], % 6.37 6.14 5.9 5.47
CS-25.121(c) [76], % 6.86 6.72 6.51 6.28
CS-25.121(d) [76], % 7.01 7.03 6.99 6.93

Table 10 Quantities of interest for the optimized hybrid aircraftwith
distributed electric ducted fan:NEM � 16

Range, n miles

600 900 1200 1500

MTOW, t 72.8 74.4 75.8 77.6

OEW, t 55.4 55.5 4504 56.6

Wing area, m2 104.26 106.71 108.18 110.28

Maximum LOD 18.05 18.03 18.04 18.03
Battery volume, m3 1.56 1.67 1.86 1.94

FPR 1.26 1.28 1.28 1.29
Fuel mission, t 4.18 5.78 7.14 8.21

Energy consumption, GJ 204.03 274.47 335.50 381.13

CAT.POL.A.410(a)-1 [77], ft∕min 1438.64 1355.65 1324.17 1193.95

CAT.POL.A.410(a)-2 [77], ft∕min 1312.39 1310.58 1648.61 1307.07

CS-25.119(a) [76], % 12.27 12.25 12.09 12.21
CS-25.121(a) [76], % 24.02 24.76 24.57 24.2
CS-25.121(b) [76], % 2.41 2.46 2.51 2.76
CS-25.121(c) [76], % 24.10 23.73 23.23 23.14
CS-25.121(d) [76], % 10.80 10.80 10.65 10.76



points belonging to the Pareto front. The number of points is chosen

in order to obtain a smooth Pareto front; preliminary results showed
that, with 10,000 or 15,000, the front was not adequately smooth.
Figure 10 shows the comparison between SNOPT and NSGA-II:

visually, it emerges that the two methods are comparable. To better

assess the difference between them, theL2-norm [87] is computed for
the final objective function value f⋆ and the design variables vector
x⋆ in the points in which both the SNOPT and NSGA-II results are
available. Table 13 reports the values: the difference between the two

solutions is lower than 10−3, and thus it is concluded that the two
methods lead to same result, although there is still a small difference
due to numerical approximation that can be neglected.
Nevertheless, NSGA-II takes about 35 h to get the result; mean-

while, using SNOPT, each point is obtained in around 30 min, for a
total of 12 h: with gradient information, the computational cost is
reduced by about 70%.
As expected, when the energy decreases, the OEW increases since

the optimizer uses mainly the aspect ratio to reduce the energy, which
increases thewingweight. However, comparing the designvariables’
values for three different configurations [corresponding to α � 0,
α � 0.5, and α � 1 in Eq. (11), as shown in Table 14], the same
behavior does not apply to the battery volume. Since they strongly
affect the weight, it is expected that their volume is lower when the
OEW is the driven objective. In reality, this is not the case because
there are two opposite effects: the reduction in weight, which is
beneficial; and the worsening of aerodynamics due to the reduction

Fig. 9 NSGA-II exploration points to find the Pareto front with respect
to OEW and Ec, N � 32, and R � 900 n miles. Exploration, feasible,
and optimal points are marked in green, blue, and red, respectively.

Fig. 10 Pareto front with respect to OEWandEc: comparison between
genetic algorithm NSGA-II and gradient-based solver SNOPT, with
NEM � 32 and R � 900 n miles.

Table 13 L2-norm calculation to compare the
two optimizers in terms of optimal objective value

f⋆ and design variables vector x⋆a

Parameter Value

kf�
SNOPT − f�

NSGA−IIk2 2.98 × 10−5

kx�SNOPT − x�NSGA−IIk2 1.52 × 10−4

aThe subscript identifies the method.

Table 14 Comparison between design variables
of three different configurations, chosen from the

Pareto front computed using SNOPT and
corresponding to α � 0, α � 0.5, and α � 1.0a

α � 0 α � 0.5 α � 1

OEW, t 62.48 61.62 60.89

Ec, GJ 255.24 304.09 326.19

ARw 10.82 8.82 8.01

Sw, m
2 122.41 118.9 117.22

τb, m
2 1.67 1.69 1.72

aEleven values of α are considered for the SNOPToptimization

in Eq. (11).

Table 11 Quantities of interest for the optimized hybrid aircraftwith
distributed electric ducted fan: NEM � 32

Range, n miles

600 900 1200 1500

MTOW, t 77.7 78.4 70.1 80.4

OEW, t 59.9 60.3 60.9 61.3

Wing area, m2 119.89 121.26 124.26 128.42

Maximum LOD 17.81 17.82 17.81 17.81
Battery volume, m3 1.55 1.67 1.72 1.92

FPR 1.12 1.12 1.12 1.13
Fuel mission, t 3.91 5.37 6.88 8.39

Energy consumption, GJ 190.67 255.24 322.52 389.20

CAT.POL.A.410(a)-1 [77], ft∕min 1125.10 1175.56 1142.56 1058.09

CAT.POL.A.410(a)-2 [77], ft∕min 1209.61 1267.16 12607 1135.13

CS-25.119(a) [76], % 11.25 11.62 11.61 11.60
CS-25.121(a) [76], % 24.59 24.29 24.29 22.74
CS-25.121(b) [76], % 2.40 2.41 2.51 2.52
CS-25.121(c) [76], % 23.46 23.18 23.18 21.81
CS-25.121(d) [76], % 9.79 10.14 10.14 10.15

Table 12 Quantities of interest for the optimized hybrid aircraft with
distributed electric ducted fan:NEM � 48

Range, n miles

600 900 1200 1500

MTOW, t 80.5 82.4 84.1 83.9

OEW, t 62.5 63.9 64.7 64.2

Wing area, m2 118.26 124.12 129.1 124.08

Maximum LOD 17.49 17.47 17.47 17.45
Battery volume, m3 1.67 1.92 2.13 2.21

FPR 1.34 1.34 1.35 1.37
Fuel mission, t 4.45 6.31 7.36 8.40

Energy consumption, GJ 215.22 296.92 345.54 394.16

CAT.POL.A.410(a)-1 [77], ft∕min 950.35 1028.93 790.61 876.07

CAT.POL.A.410(a)-2 [77], ft∕min 1143.42 1233.99 1063.84 1228.31

CS-25.119(a) [76], % 10.78 11.01 10.78 10.97
CS-25.121(a) [76], % 22.75 22.75 22.27 22.68
CS-25.121(b) [76], % 2.61 2.52 2.84 2.58
CS-25.121(c) [76], % 21.80 21.86 21.13 21.20
CS-25.121(d) [76], % 9.36 9.52 9.38 9.48



of aspect ratio, which is negative. Between the two, the most dom-
inant effect is the second one, resulting in a larger energy consump-
tion. As a consequence, to satisfy the energy constraint, batteries
show a larger battery volume.
A difference is also shown in Fig. 11, in which the three configu-

rations are overlapped. The tails present very small differences, and
the major changes of interest are in the wing, where span increases.

V. Conclusions

This work addresses the problem of designing a hybrid-electric
aircraft. In particular, the scope is to define an overall conceptual
design procedure to deal with this unconventional configuration. The
resulting sizing loop relies on the already existingmodels available in
literature that have been expanded and integrated in a design frame-
work. An approach based on MDO techniques is defined to take
advantage of its features, such as the possibility to capture all the
possible interaction between disciplines: a key point for unconven-
tional configurations that cannot be considered with classical hand-
book methods.
This goal has been achieved through the integration of the sizing

tool FAST and OpenMDAO, which is an open-source optimization
tool. The resulting design process relies on analytic derivatives to
improve the computational efficiency. The advantages of this frame-
work, mainly related to reduced computational cost, are highlighted.
Then, the capability of this code is demonstrated by considering the
test case of hybrid aircraft featuring distributed electric ducted fans.
Three configurations are considered (16, 32, and 48 electric motors),
assuming key technological parameters based on a previous study.
Optimization results show that the hybrid-electric concept is advan-

tageous in a limited region with respect to design range. Specifically,
the concept is better performing against a conventional configuration
for short ranges, where the possibility to have a fully electric segment
counterbalances the increase in weight due to the electric components.
For longer distances, the benefits of hybrid propulsion are less impor-
tant and, finally, a rangewhere the hybrid-electric and the conventional
aircraft have the same performance appears. This is defined as break-
down range and, of course, changes with the configuration. After this
point, the penalties in weight become more and more relevant and the
conventional aircraft shows better performance.
Both fuel and energy consumption are used as objective functions,

and it is found that the fuel consumption may be misleading since it
does not consider the contribution of batteries, which is purely
energy. The latter is more relevant from a design point of view for
a dual-energy-source aircraft. Among the configurations studied, it
emerges that the case with 32 engines performs well in the zone of

interest for design. This case represents a compromise between
aerodynamics and propulsive efficiency. The case with 16 engines
is poorly distributed and the FPR is higher in order to not exceed the
fan size limit, resulting in a low propulsive efficiency. On the other
side, the casewith 48 engines requires one to reduce FPR to locate all
the motors on the wing; moreover, it shows more wetted area, and
thus it is the worst in terms of aerodynamics.
Finally, a Pareto front is obtained using two optimizationmethods:

a genetic algorithm and a gradient-based method. The aircraft empty
mass and energy consumption are the parameters selected for the
multiobjective optimization. Results of the two methods are compa-
rable to each other, but the gradient-based method produces results
faster than the genetic algorithm; in particular, the reduction in
computational time is approximately 70%.
Overall, the capability of the MDO framework to deal with the

hybrid-electric aircraft design problem has been demonstrated. The
possibility to capture interactions between disciplines enables explo-
ration of a large design space and trade studies. As a next step, other
unconventional configurations, such as the blended wing–body, can
be investigated to take advantage of this MDO framework.
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