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A B S T R A C T   

The scope of this paper is to define a methodology for building robust PoD curves from numerical modelling. 
First, an experimental database will be created in a laboratory scenario. A representative sample of inspectors 
with different certification levels in NDT method will be employed. Multiple inspections will be carried out to 
include the human influence in the MAPOD calculation. In addition, this study will take into account the impact 
of using different devices in the High Frequency Eddy Current method (HFEC). Then, a simulation model is 
created taking into consideration the main uncertainties due to human and device factors. These uncertainties 
are identified and quantified by the observation of experimental NDT inspection. Then, statistical distributions of 
these uncertainties are derived and used as inputs of the simulation model. Finally, the simulation PoD model 
will be compared and validated with the experimental results developed in the laboratory scenario. This com
parison provided encouraging results to replace or complete experimental tests by simulation.   

1. Introduction 

NDT reliability [1–5] is a key factor in ensuring the safety of struc
tural components. Currently in the aerospace field, this reliability is 
quantified through the Probability of Detection (PoD) which is the 
probability of detecting a defect as a function generally of its size [6]. 
The PoD curve can also be a function of the defect depth, skew or tilt but 
normally the defect length is the most representative measure [7]. Each 
NDT result is only valid for a geometry, a defect type, an inspection 
system and an associated procedure combination. However, one of the 
largest sources of variability during in-service inspections derives from 
human factors: an inspector performs the NDT calibration, the NDT 
scanning and interprets the signal response provided by the device 
including environmental and organizational factors [4,8,9]. Moreover, 
environmental conditions, protective clothing, time stress and organi
zational structure can affect the inspector’s performance, having an 
indirect impact on reliability [10]. Reliability can be impacted because 
having more NDT variables (environmental conditions, protective 
clothing, time stress and organizational structure) means a greater 
number of inspections have to be performed to observe and evaluate the 
influence of them all, in order to represent reality. Another variability 

source hails from the device used in the NDT inspection and the signal 
response it generates. Therefore, the impact of each variability source is 
crucial in the process of better understanding NDT inspections. 

The experimental determination of PoD curves is challenging due to 
the fact that a large number of tests must be performed in order to 
determine reliable results. A few studies [11,12] recommend the use of 
at least 60 target defects to obtain a robust PoD curve for the High 
Frequency Eddy Current (HFEC) method. In addition, each inspection 
has to be performed by a large number of inspectors under similar 
conditions, which incurs high costs and takes up significant time. 
However, the need for PoD data is becoming considerable since the use 
of probabilistic methods for safety justification is becoming widely 
accepted. 

Today, due to pressure on cost and interval cycles, the aerospace 
industry is trying to replace the experimental data with simulated results 
for estimating PoD curves [13–15]. Several authors refer to the NDT 
simulation concerning PoD curves as MAPOD (“Model Assisted POD”) 
[16,17]. The full-model assisted POD, is a MAPOD approach which uses 
simulated NDT data as input for evaluation of the Probability of 
Detection [18–21]. Papers show examples of full-model assisted PoD on 
eddy currents or ultrasound inspection for artificial cracks using the 
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uncertainty propagation method. The majority of them compute simu
lation models integrating parameters in relation to the defect as the 
width, depth or skew; or in relation to the material as conductivity or 
structural noise [22–24]. Simulated PoD curves can avoid the major 
issue, which is the very high cost of experimental campaigns, which 
require production of a large set of representative defects and a large 
number of inspections of these defects. These PoD models are not 
compared and validated with the experimental database. The statistical 
laws for the uncertain parameters are chosen arbitrarily. There are few 
studies in the literature which analyze the impact of human factors and 
equipment on the reliability of the NDT process. In an experimental 
campaign, inspections not only depend on defect variability and mate
rial heterogeneity but also on the level of expertise of the inspector. This 
impact, which may affect the human operation part of the inspection, is 
indirectly linked to the inspector’s qualitative skills (experience, certi
fication level, mechanical knowledge, etc.). MAPOD studies [14,15] 
have so far generally refrained from incorporating human factors in 
MAPOD due to difficulties to model human behavior, which is always 
noted as a limitation. 

In the approach presented hereinafter, the NDT simulation model has 
integrated human gestures (XYZ axis trajectories during the scanning 
path of the inspection) by modelling inspectors’ movements (probe 
angular positions and scanning increments) and not the human traits 
(experience, certification level, mechanical expertise, etc.). In addition, 
human gestures are impacted by the environment, inspection time (fa
tigue) and other factors. 

In this paper the concept of “Model Assisted POD” is proposed in the 
case of High Frequency Eddy Currents (HFEC) method on artificial fa
tigue cracks. The probabilistic simulation model is used to take into 
consideration uncertainties due to human and device factors. These 
uncertainties are introduced as statistical distributions defined by NDT 
engineer experts and by observation of experimental NDT inspections. 
During this observation, the extended experimental database is devel
oped for two scenarios: same device and device switch. Then, this 
database is used to compare and validate the MAPOD. 

The objectives of this paper are first, to establish a robust construc
tion of an experimental PoD curve applying the Berens Signal Response 
method; second, analyze the impact of different devices and third, define 
a methodology to design a numerical model based and validated using 
the experimental campaign. This numerical model integrates the human 
factors as human gestures (XYZ axis trajectories during the scanning 
path of the inspection) which represent the inspectors’ movements. This 
work aims to develop a simulation model to replace or complete the 
experimental PoD study. Thereby, PoD modelling can be used to reduce 
costs for the NDT reliability assessment. 

This paper is organized as follows; the first section presents the basic 
concepts of Probability of Detection and details the Berens Signal 
Response Method. In section two we first describe the NDT procedure 
associated with eddy current. In the third section we present the eddy 
current simulation model built by CIVA software which uses the elec
tronic penetration theory coupled with boundary element methods. To 
deal with the uncertainties in relation to inspector skills, devices and 
specimen crack length based on engineering judgments, we introduce 
random variables on simulation inputs. Section four gives the experi
mental and simulation PoD results. Then, to see if the simulation can be 
replaced or completed with the experimental tests, we compare the PoD 
curves. Finally, the 6th section draws conclusions and addresses further 
research works. 

2. Probability of Detection (PoD) 

The Probability of Detection is used to determine the reliability and 
the capacity of the inspection device to detect defects according to their 
size for this aeronautical application case. PoD analysis is included in 
but not limited to verifying the reliability of an NDT inspection process. 
In general, such verification is required within the scope of a 

qualification project. One of the most important PoD results is the defect 
size, whose Probability of Detection is 90% at a confidence level of 95%. 
Such a defect size is designated as “a90|95”. In general, the experimental 
verification is considered as passed if the resulting “a90|95” is not greater 
than the relevant size. 

The basis of the PoD procedure is the selection of the method to build 
the PoD analysis [26]. There are several possible methods to perform a 
PoD analysis [27]: 29/29 Method [28], Berens Hit/Miss Method, Berens 
Signal Response Method, Berens Signal Response Method with 
non-central t-distribution [2,29] and other methods. The 29/29 Method 
and the Berens Hit/Miss method are used for binary control data (defect 
detected → one, or defect not detected → zero). These methods are 
mainly used in visual inspection, penetrant tests, magnetic particle tests 
or X-Ray tests. The Berens Signal Response Method is used for amplitude 
control data. These results contain more information than one or zero 
(detect the defect or not) and they are mainly used in eddy currents and 
ultrasound testing. This method takes into account the signal response ba 
(i.e. the signal amplitude) of the detection caused by the defect of size 
“a”. In High Frequency Eddy Current method (HFEC), the type of 
resulting data include amplitude signals, therefore Berens Signal 
Response Method was selected for PoD curve building. In addition, this 
method remains correlated and consistent with the inspector amplitude 
results. This method was recommended by several studies [30–32]. The 
PoD curve was computed through parametric regression using 
maximum likelihood method, as a function of the data type. 

The first steps in experimental or simulation PoD curve, consist of 
obtaining the experimental or simulated results which will feed the 
statistical method. In the experimental case, Fig. 1a shows how to 
construct the defect detections database from experimental samples. 
These results are obtained taking into account the variability due to 
inspector skills, devices and specimen crack. In the simulation case 
(Fig. 1,b1), uncertainties are introduced to compute the simulation 
database depending on the NDT engineering judgement and the obser
vations of experimental NDT inspections. 

Then, the calibration step is performed to obtain the equivalence 
between simulated and detected amplitudes (Fig. 1,b2). Then, in both 
cases, the best linearity transformation is applied before using Berens 
Signal Response Theory to compute the PoD curve and the minimum 
detectable length (a90=95).  

1. Data linearity: linear correlation between the defect detection (ba) 
and the defect size (a). In order to accept the PoD results, this cor
relation must follow the straight line defined by yi ¼ β0 þ β1xi þ εi 
(see Fig. 2).  

2. Homoscedasticity: Signal deviation gaps have to be the same for all 
sizes according to their average defect signal size. The scatter must 
be uniform all along the straight line defined by ba vs a. (see Fig. 2).  

3. Residuals normality: residuals have to converge to their average 
signal according to Gaussian distribution. The errors must be 
(approximately) normal. This condition is always met due to the 
Central Limit Theorem. Exceptions may occur when logarithmic 
transformation is needed to adjust the ba vs a relationship to yi ¼ β0 þ

β1xi þ εi (see Fig. 2).  
4. The observations must be uncorrelated. There should not be any 

influence on ba except the size, caused by, for example, changing 
device settings (e.g. EC probes). 

After implementing the right transformation, the statistical process 
has to be continued with the Berens linearity equation (ba ¼ β0 þ β1*aþ
δ). Actually, it is considered that a defect is detected when signal ba 
exceeds the decision value bath, which enables the Probability of Detec
tion (PoD) to be defined as: 

PODðaÞ¼ pðba> bathÞ (1) 

In practice, β0, β1 and δ are unknown and have to be estimated from 
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experimental data. These estimations can be obtained by maximizing 
the likelihood function L of n independent experiments [2]. Therefore, a 
PoD computation with unacceptable confidence level (e.g.: 95%) has to 
be generated. This defines, 

PODðaÞ95%¼PODða � hÞ¼Φ
�

loga � bμ
br

� h
�

(2)  

Where, 

h¼
�

γ
nk0

�

1þ
ðk0*bz þ k1Þ

2

ðk0*k2 � k1Þ
2

��0:5

and bz¼
loga � bμ

bσ (3)  

γ is the solution of the following non-linear equation 

1
2

�
P
�
x2

2� γ
�
þ 2 * Φ

� ffiffiffi
γ
p �

� 1
�

(4)  

k0, k1 and k2 are deduced from the I ¼ ðbβ0;
bβ1; bσδÞ observed matrix. 

In other words, there is only a 5% chance that the calculated a90=95 is 
non-conservative compared to the unknown true value defect size a90. In 
this study, the PoD curve module developed by Airbus will be used for 
the statistical analysis during evaluation of the Probability of Detection 
(PoD) in different scenarios. 

3. Experimental tests 

3.1. Eddy current NDT procedure 

A development of an adequate procedure describing the instructions 
for determining an experimental PoD curve was established for the NDT 
procedures. This procedure was developed in such a way that it had to be 
representative of an in-service procedure focused on every instrument 
and material. In this paper, we discuss the High Frequency Eddy Cur
rents method. This procedure provides the standard requirements to 
inspect surface breaking cracks in different non-ferrous metals/alloys 
and glare materials. 

In this study, the experimental NDT procedure is applied for poten
tial damage detection (fatigue surface cracks) in a flat plate made of 
titanium beta. This inspection is performed using an absolute mono-coil 
probe as the procedure specifies. This probe is connected directly to the 
device with an accuracy depending directly on each human as a result of 
being an in-service inspection. The eddy current control system com
prises the following:  

- An eddy current generator capable of operating with an absolute 
probe at a frequency of 2 MHz, linked to the inspection (HFEC 
Method). Additionally, all inspection devices have to be internally 
verified (calibrated) in order to ensure proper use.  

- An absolute probe of a fixed diameter (Ø 2 mm) with a general shape 
for suitable detection using the procedure.  

- A calibration block, used for accurate measurement of surface cracks. 
The calibration block has certain dimensions and material specifi
cations similar to the inspection area in maintenance. From basic 
standards, the calibration block contains three different types of 
defects. Each defect consists of an “open” sleeve with three different 

Fig. 1. Determination of the Probability of Detection (PoD) curves from (a) experimental database and (b) simulation database applying Berens Signal Response 
method. To correctly apply Berens Signal Response Method [2], the statistical database must respect the following assumptions. 

Fig. 2. Inspection Data for a statistical analysis following the Berens hypoth
esis [2]. 
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depths respectively, machined by EDM (Electrical Discharge 
Machining) from titanium beta. The sleeve constitutes an infinite 
defect. The calibration block was used to define the structure noise 
threshold (banoise) and the saturation signal (basat). 

Concerning the amplitude signals as inspection results, the defect 
characteristics can be correlated with the peak value of the signal from 
the high frequency eddy currents. Consequently, three areas in the de
vice screen, as a function of the amplitude signal, can be distinguished:  

- First area, small defects in which no significant signal amplitudes are 
shown ðba< bathÞ, where, bath is the threshold signal used to obtain 
valid data. Usually this threshold signal corresponds to the structure 
noise threshold (banoise) or to a close value.  

- Second area, bath < ba < basat , where basat is the saturation signal and is 
directly related to the calibration procedure. In this second area, a 
relationship between the response signal ba and the crack size a is 
expressed.  

- Third area in which the signal saturates. It normally concerns the 
larger and deeper defects ðbasat < baÞ. 

Subsequently following the procedure, one essential and last point is 
the analysis of the tool to build PoD curves. This instrument shall be 
monitored in accordance with the applicable regulations (e.g.: Software 
verification, hardware check and best correlation). 

The calibration step is important in order to properly assess the NDT 
results in each scenario. For this step, the inspector has to adjust the 
instrument parameters of the system to obtain a 100% FSH (Full Screen 
Height) for the NDT device, for the infinite defect at 1 mm depth on the 
calibration block. Then, this value is used to set up the 100% value in the 
PoD process which corresponds to the saturation threshold (basat). The 
other important parameter is the detection threshold (bath) at 10% FSH as 
the NDT HFEC procedure indicates. Actually, this bath is fixed once a 
signal-to-noise ratio study has been carried out. This signal-to-noise 
ratio study allows inspectors to make the distinction between struc
ture noise and defects (acceptance criterion). Finally, the inspector 
passes the probe slowly along the area to inspect and checks that the coil 
scans the whole surface. All vertical indications exceeding bath (in this 
case, 10% FSH) shall be marked as cracks. 

3.2. Database construction 

In this section, an extensive experimental database was set up. The 
objective is to provide a sufficient number of observations to identify 
PoD curves. Particularly in this study, 490 amplitude responses (ba) were 
used. These responses result from the control performed by seven in
spectors inspecting 70 samples. In the following lines, we describe the 
inspection scenarios performed, the samples used and the inspectors’ 
performances. 

3.2.1. Inspection conditions 
Several types and brands of detectors are used during detection op

erations. These different versions of devices can affect the variability of 
the detection results. To analyze these effects, two scenarios were 
considered while using the same samples. In addition, the same exper
imental conditions were applied to the inspectors. In the first scenario, 
the same equipment was used by the seven inspectors. However, in the 
second scenario, five different devices were used by the seven in
spectors: one per inspector. Then, two inspectors used two devices, 
whereas the remaining 5 inspectors each worked with one device. The 
two scenarios are illustrated in the following paragraphs.  

- Same device scenario: This scenario is developed inside the non- 
destructive laboratory, where all specific inspections are performed 
according to facilities’ and device availability. This way of 

performing a PoD curve study is common in the aerospace sector, as 
it is the easiest and quickest process. Inspectors begin their in
spections sitting down in a chair, with a high degree of comfort, 
without surrounding noise (laboratory environment) and standard 
temperature. Each inspector has to follow the NDT procedure, called 
HFEC NDT Instruction for TA6V Beta. This document provides the 
standard requirements for sample inspections in titanium beta alloy 
for the PoD process. Additionally, all inspectors in this case used the 
same device, Mentor EM Portable (noted D6), to only observe the 
human factors effect inside the laboratory scenario. 

- Device switch Scenario: The experimental campaign is also devel
oped inside the non-destructive laboratory, where all specific in
spections are performed, as for the first test campaign. Each inspector 
has to follow the NDT general procedure as in the previous case. The 
difference is that in this analysis case, inspectors were using a 
different device to show the impact of this fact. For this reason, 5 
HFEC devices are used in this scenario (D1 to D5). These devices are 
noted in the following order from D1 to D5; D1 - AeroCheck – 
Sofranel; D2 - Nortec 600 – Olympus; D3 – Elotest M2-Rohman 
GmbH; D4 – Elotest M3 - Rohmann GmbH and D5 – Phasec 2d. 

3.2.2. Samples 
For this study case, the experimental test was run with 70 samples 

enclosing (or not) surface fatigue cracks, non-crossing thickness of a 
length (ls) of between 1 mm and 7 mm and variable depth. Defects 
should be as realistic as possible (fatigue defects) and moreover size 
distribution has been considered depending on the NDT method and the 
PoD scope. The rule is to provide the majority of defects having a size 
which is contained between a lower limit (defect size which can be 
detected with a low occurrence) and an upper limit (defect size which is 
in theory considered as always detected). Notice that samples with de
fects which are never detected and defects which are always detected are 
also needed for the PoD study using Berens Signal Response Method. 
These fatigue cracks are accurately characterized using microscopy to be 
sure of inspectors’ detections and measurements (binocular inspection). 
Fig. 3 provides the lengths (ls) and the depths (ds) measured. 

All inspection samples part of this PoD study are flat plates made of 
titanium beta. The fatigue propagation crack is initiated with artificial 
damage called EDM (Electro-Discharge Machining) followed by appli
cation of a three-point fatigue bending cycle. Once the fatigue defect in 
the surface plate has the desired length, the fatigue test is stopped and 
the sample is ready for trimming and engraving for the final inspection 
during the PoD study. The fatigue defect is the only defect existing for 
the PoD inspection, because the artificial defect was eliminated be
forehand in order to replicate actual in-service inspections (See Fig. 4). 

Fig. 3. Sampling data clasified per defect type (length (ls) and depth (ds) vs. 
sample number). 
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After identifying the defect size as a function of its surface length, 
defects are characterized in 60 specimens (see Fig. 3). Within the 
experiment campaign, each sample has a different defect type to cover 
the PoD scope, except 10 of them, which are free of defects to prevent 
false calls. Probability of False Calls (PoFC) is a key parameter to take 
into consideration as part of reliability in PoD curves [2,12]. In addition, 
from the PoD hypothesis, at least 90% of the sample surface has to be 
free of defects for a correct study [12]. In total, the NDT inspection 
experiment comprises 70 samples manufactured in accordance with the 
design sketches. 

3.2.3. Inspectors 
For both scenarios (same device and device switch), twelve in

spectors in total carried out the HFEC inspections but only 7 per sce
nario. The number of inspectors carrying out the tests is an important 
parameter linked to reliability [33]. Then, the aim was to collect a 
sufficiently large and representative sample for these studies. For that 
purpose, we took 12 inspectors and we used the following parameters to 
explain how representative they are. Table 1 presents the inspector traits 
taken into account for the PoD curve analysis. These data are not used in 
the calculation for the PoD curve. The selected human characteristics are 
based on criteria analyzed in other studies [34] affecting NDT activity:  

- Experience, being an important parameter for manual inspection.  
- Their mechanical expertise implies better understanding of each 

NDT inspection process. Note that the marks assigned to each 
inspector were set up with a survey for this study. 

Furthermore, some human characteristics were added based on 
several experimental studies developed by us where we assumed that the 
following may influence the inspections:  

- Their certification level directly implies experience and knowledge 
on the fundamental parts of the NDT method.  

- Right or left handedness which also has an influence in the probe 
angles due to the view position during the inspection. 

The survey values illustrated in Table 1 were obtained from different 
qualification documents of each inspector and the questions answered 
by them. Their experience and certification level in eddy currents are 
based on inspectors’ answers, however, they were checked against the 
data stored in the NDT database. Mechanical expertise was evaluated 
with annual tests by means of several specific questions and evaluated 
according to a 10-point scale (highest mark). It was performed by Airbus 
to analyze their skills concerning damage propagation and fracture an
alyses. For example, in answer to the question as to their knowledge of 
the most influential parameters in the High Frequency Eddy Current 
method, inspectors will answer the defect parameters (length, depth or 

width). To the same question, but in relation to damage propagation, the 
answer will be the material characteristics (grain, surface or treatment). 
This knowledge is important for the correct interpretation of the signal 
and defect propagation during NDT inspection. These data are only for 
illustrative purposes, to show that the inspector sample used is repre
sentative of a standard NDT maintenance company with all inspectors’ 
experience and level of qualification. Inspector performances and their 
corresponding marks are given in Table 1. Finally, two of them per
formed the test in both scenarios. Then, these inspectors (I4 and I5) used 
two devices (one device per scenario). This clarification is important to 
properly follow the experimental campaign run in both scenarios. 

In-service inspections should take human and environmental factors 
into account to provide reliable PoD curves. The human factors most 
likely to affect a PoD ranges from simple misunderstanding of the pro
cedure by inspectors (including calibration and inspection methods) to 
the decision-making process, where the rejection/acceptance criteria 
are determined and the result recorded. In order to reduce these po
tential discrepancies, firstly, the procedure must be as clear and as un
ambiguous as possible and secondly, defects should not be of common 
knowledge between inspectors before inspecting each sample. Then, the 
set PoD has to simulate a real environment as closely as possible so that 
the inspector can perform the inspection as if they were carrying out his 
daily job inspecting parts [4,34]. In the following paragraph, the 
experimental results will analyzed in-depth. 

3.2.4. Amplitude responses database 
The amplitude database obtained directly from inspectors will be 

presented for each scenario. This analysis has to be performed before 
analyzing the PoD curves with the mathematical process and their sta
tistical parameters. The results from the two scenarios are illustrated in 
Fig. 5. The area in the device switch scenario is larger due to a higher 
variability and less repeatability in terms of amplitudes (Fig. 5b). It can 
be concluded that inspectors are less accurate in terms of detection due 
to the device switch effect. This impact is analyzed in this section in a 
general manner but more in-depth in the following sections and 
compared with the simulation model. 

4. Eddy current NDT simulation modelling 

CIVA NDE 2017 software is used to model the Eddy current NDT 
inspection [35]. This software is an expert digital platform for 
non-destructive testing. The software also provides a statistical analysis 
tool for construction of the Probability of Detection (PoD) curves based 
on the maximum likelihood method. The methodology used to obtain 
variability in inspection results, as in in-service inspections, is based on 
the introduction of uncertainty on different input parameters [36]. 

The High Frequency Eddy Current inspection model is presented in 
this section. In accordance with the experimental data base, the material 
is titanium beta (TAV6 Beta). The simulation geometry shape is a flat 
plate (250 � 40 � 5 mm). A semi-elliptical defect shape was used to 
resemble the experimental samples as closely as possible. In the actual 
samples the defect was characterized by a microscopy inspection and 
fracture analysis in ten titanium samples. The model chosen for the 
corresponding defect mesh will be the BEM (Boundary Element Method) 
because it is more representative of a real defect response (narrow de
fects). Finally, the simulated probe consists of one coil. The model is 
described in Fig. 6. 

To corroborate the correspondence of the simulation model, to
mography was performed to analyze the HFEC probe. Nevertheless, an 
electromagnetic study was performed which confirms correct detection 
in titanium beta. Additionally, the electromagnetic penetration (mm) of 
eddy currents is studied [37]. The effective depth of penetration is the 
point in the material where eddy current strength has decreased to 37% 
of the strength at the surface. The effectiveness of the electromagnetic 
field computed by the CIVA model is close to 0.3 mm surface depth in 
titanium using a frequency of 2000 kHz. This value is similar to the 

Fig. 4. Artificial and fatigue damage in a titanium beta specimen before 
trimming and engraving. 
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penetration depth obtained by the electromagnetic theory applied in 
pure titanium. Then, the simulation model can be considered to be 
similar to an in-service inspection. 

4.1. CIVA model calibration 

The objective of this section is to establish the equivalence between 
the experimental and numerical amplitudes. In the experimental sec
tion, the inspector has to adjust the system instrument parameters to 
obtain a 100% FSH and 10% FSH (Full Screen Height) as indicated in the 
HFEC procedure (described in Section 3). These parameters were called 
saturation threshold (basat) and detection threshold (bath) respectively. 
This last parameter indicates the acceptance criteria. 

The simulation calibration block has the same dimensions and ma
terial specifications as the experimental calibration block. In this 

simulation model, the saturation value (basat) corresponds to a Y-axis 
amplitude response of 1.43 mV (equivalent to 100% FSH in experiment) 
applying the correct phase and gain calibration. This process is similar to 
the inspectors’ experimental acquisitions for their calibrations. Then, 
taking 10% of this value (0,143 mV) we will define the detection 
threshold (bath). 

4.2. Statistical description of CIVA uncertain parameters 

In this section, we try to reproduce, through the simulation model, 
the PoD curve obtained from the experimental campaign, taking into 
account the uncertain parameters linked to the NDT inspection. 

When performing an NDT inspection, the probe signal response 
varies due to an artificial or fatigue defect by mainly three factors, 
related to the inspection procedure specifications (transducer, cable, 
scan plan including transducer angles, electronic device), to the 
inspected part (geometry, material properties, surface treatment) and 
last but not least the defect (size, shape, orientation). Some of these 
parameters may be seen as uncertain if there is insufficient knowledge 
related to them, if they are not well-controlled during the inspection or if 
they imply physical phenomena with inherent randomness. 

Firstly, all inspection parameters which are likely to represent 
sources of variability in the NDT results were identified by engineering 
judgment. Observation of the experimental campaign based on the NDT 
method of the application case enables good identification. A statistical 
description of each uncertain parameter identified must be prepared in 
order to feed the NDT computation model based on the MAPOD 
approach. Then, a sensitivity study was performed in relation to all 
HFEC parameters to quantify variability in terms of amplitude re
sponses. This sensitivity study was carried out using various influential 
parameters at the same time to observe correlations between them. This 
step is essential in terms of obtaining a reliable PoD curve and to know 

Table 1 
Inspectors’ performances in High Frequency Eddy Current inspection.  

Inspector number Exp. Years in EC EC Level Mechanical Expertise (0-10) R/L handed Participant in Same device scenario Participant in Device switch scenario 

I1 5 1 5 R yes no 
I2 26 2 9 R yes no 
I3 26 3 9 R yes no 
I4 10 2 7 R yes yes 
I5 27 2 7 R yes yes 
I6 20 3 7 L yes no 
I7 13 2 6 R yes no 
I8 4 2 5 R no yes 
I9 24 3 10 R no yes 
I10 17 2 10 R no yes 
I11 12 2 5 R no yes 
I12 25 2 8 R no yes  

Fig. 5. Amplitude database areas from (a) same device scenario and (b) device switch scenario.  

Fig. 6. Graphical representation of uncertain parameters in High Frequency 
Eddy Current method based on a reliable database. 
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which parameters principally affect NDT detection. 
For High Frequency Eddy Current (HFEC) method application cases, 

eight parameters have been identified as having a strong influence on 
the signal amplitude response. These eight parameters depend on the 
defect, the material and the inspector. These human parameters are 
identified and quantified in the recorded videos and the experimental 
campaign observation resulting from the inspectors’ movements. The 
movements counted during the HFEC inspections were the probe angles 
and displacements during the whole test, which are the raw data in 
degrees and millimeters. These human parameters are the human ges
tures of the NDT inspection (lift-off, the X and Y scanning increment and 
the X and Y angular position of the probe) integrated in the numerical 
model using the corresponding statistical laws. 

For example, the defect width (Table 2) is one of the parameters 
analyzed which was introduced as a statistical distribution in the nu
merical model. Then, using several experimental specimens observa
tions (Fig. 7a), the representative probability density function (PDF) was 
determined (Fig. 7b). The Henry’s law theory [38] was applied to 
demonstrate that the suppliers’ defect width measurements follow a 
truncated normal distribution in practice (Fig. 7c). The statistical pa
rameters of the truncated normal distribution are x ¼ 0:02 ​ mm and 
σ2 ¼ 0:01 ​ mm. The defect width maximum and minimum correspond 
respectively to 0;04 ​ mm and 0:01 ​ mm. 

Another example is the inspector X rotation (rotation due to the 
inspector movement respect to the long sample axis, see Fig. 8). Several 
video acquisitions concerning the inspector X rotation are analysed for 
the Henry’s law theory which is presented below (see Fig. 9). 

The last example is refers to numerous displacement acquisitions, 
which were obtained from the inspectors’ trajectory videos. For the 
numerical model, the X/Y displacements were indirectly introduced by 
changing the origin of the probe with a constant scanning path of 1 mm 
in each axis (X and Y), as the standard procedure describes. Actually, the 
simulation model gives a signal amplitude computation in each of these 
points for the proposed scanning path. Then, the uncertainty introduce 
through the probe origin (different probe origins) will generate different 
scanning paths and acquisition scanning points which is similar to how 
close the inspector was to the defect during the experimental inspection 
(Fig. 10). 

In the following it can be observed the raw data used during the 
analysis to identify the statistical parameters for the inspectors’ trajec
tories (Fig. 11, Fig. 12 and Fig. 13). 

These statistical laws were identified using the Henry law theory 
[38], which is a graphical method for fitting a series of observations by 
Gaussian distribution. The distributions used as inputs for the simulation 
study are described in Table 3. 

The current numerical model assumes that the human traits (e.g. 
inspector’s experience, mechanical knowledge or procedure accuracy) 
during NDT inspections is globally represented by the human gestures. 
These human gestures modelled by the inspectors’ movements (X and Y 
rotations, X and Y displacements and lift-off) were determined experi
mentally during laboratory inspections using a representative popula
tion of inspectors. 

5. Results and analysis 

In this section, we will present the method we used to prepare the 

data for the analysis, followed by the results and their interpretation. 

5.1. NDT key parameters 

For PoD curves, the parameters selected to analyze the realiability 
and effectiveness of the NDT method and the procedure are the 
following:  

- a50 is the defect length for a 50% of Probability of Detection;  
- a90 is the defect length for a 90% of Probability of Detection; 
- a90=95 is the defect length for a 90% of Probability of Detection ob

tained with a 95% confidence level. 

These parameters are obtained from the inspectors’ detections in the 
two scenarios (same device and device switch) applying the Berens 
Signal Response method described in Section 2. 

Once these statistical parameters are described for an in-depth 
analysis, for confidential reasons these PoD parameters are normalized 
by K. This normalization is also applied in the PoD curve axis. The 
normalized value of a50, a90 and a90=95 will be noted, respectively, a*

50, 
a*

90 and a*
90=95. An example: 

a*
90¼

a90

K
(18)  

Where K ¼ a90=95 ðsame deviceÞ, is the a90=95 obtained from the PoD curve 
(linear-log scale) corresponding to the same device scenario. Addition
ally, the same normalization is applied in the PoD curve axis. This value 
is the baseline which is taken into account in aircraft interval in
spections. Then, PoD parameters can be presented and discussed 
following the example in each scenario. 

5.2. Experimental PoD curves 

In this section, PoD curve development is described step by step. The 
PoD programmer manager has to carefully follow this process to build an 
accurate PoD curve. This process is valid for each scenario previously 
described. In addition, this process will help us to address human ges
tures, environmental and device influence. 

First of all, the NDT general procedure (HFEC inspection) describes 
the component or area to inspect such as fatigue test samples. Secondly, 
this document provides a description of potential damage in the form of 
fatigue cracks starting in the top surface of the fatigue test sample. 
Thirdly, the device and materials needed for inspection are described in 
detail (e.g. instrument, probe, calibration standard, supports, etc.). 
Before starting the inspection, inspectors have to verify the calibration 
date and conformity of the device; identify the area on the fatigue test 
sample to be inspected and check if it is clean and smooth. Another 
inspection is carried out in order to check for the absence of visible 
damage or discontinuities in each sample. In addition, an instrument 
calibration step has to be performed using the probe and the reference 
standard related to the inspection requirements in the general 
procedure. 

5.2.1. Linearity study 
In the following section we look at the linearity hypothesis of ba vs: a. 

Several transformations are used to obtain the correct linearity and 
maintain consistency with the Berens Signal Response hypothesis. In the 
literature, logarithm transformation is the most commonly used (i.e. 
log ðbaÞ vs a, ba vs log ðaÞ or log ðbaÞ vs log ðaÞ). Additionally, different al
ternatives can be proposed as transformations: square, square roots, 
exponential, etc. 

The coefficient of determination is presented with the most relevant 
transformations to analyze the best option which fits with Berens line
arity hypothesis in same device scenario [39]. In addition, the same 
verification was performed in the case of the device switch scenario. 

Table 2 
Defect width corresponding to the experimental specimens.  

Defect Defect 
1 

Defect 
2 

Defect 
3 

Defect 
4 

Defect 
5 

Defect 
6 

Length 
[mm] 

1.85 2.2 2.62 4.3 5.84 6.95 

Width 
[mm] 

0.01 0.02 0.02 0.02 0.03 0.04  
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Finally, the coefficient of determination presented in Table 4 shows the 
best transformation which corresponds to linear-log for both scenarios. 

5.2.2. Data homoscedasticity 
Data homoscedasticity will also be treated as if it is one of the Berens 

hypothesis to be followed when building a reliable PoD curve. Homo
scedasticity consists of reaching the signal average for each defect size 
with an equal deviation. In actual fact, their deviation gap has to be 
uniform for all sizes in relation to their average size defect signal. With 
ba vs: log a transformation, the main parts of amplitude detections are 

inside the zone between the upper and lower deviation boundaries (red 
dotted lines in Fig. 14). 

5.2.3. Residual normality 
There are several methods for performing data normality. In this 

paper the Box-Cox transformation [40] was used to solve the residual 
normality problems. This transformation consists of transforming the Y 
variable, the sample values of which are assumed to be positive, 
otherwise a fixed quantity M is added so that Yþ M > 0. The Box-Cox 
transformation depends on a λ parameter to be determined and which 

Fig. 7. (a) The width measurment (red line) of the specimen defect, (b) the defect width probability density function and (c) width distribution Henry’s line. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 8. (a) Frontal video view of the HFEC inspection and (b) the inspector’s X rotation analysis.  

Fig. 9. (a) X-rotation probability density function and (b) X-rotation Henry’s line.  
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is given by Refs. [41]: 

Z ðλÞ¼

8
<

:

yλ � 1
λ

if λ 6¼ 0

logðyÞif λ ¼ 0

9
=

;
(19) 

If the objective is to transform the data to achieve normality, the best 
method to estimate the λ parameter is that of maximum likelihood. It is 
calculated as follows for different values of λ, 

U ðλÞ¼

8
><

>:

yλ � 1
λ~yðλ� 1Þ if λ 6¼ 0

~yðλ� 1Þ logðyÞif λ ¼ 0

9
>=

>;
(20)  

where ~y ¼ ðy1y2…ynÞ
1=n is the geometric mean of the variable Y. For 

each λ, we obtain the set of values fUðλÞgni¼1 . The likelihood function is: 

LðλÞ¼ �
n
2

ln

 
Xn

i¼1
ðUiðλÞ � UðλÞÞ2

!

(21) 

The bλ parameter is chosen to maximize LðλÞ. In practice, we compute 
LðλÞ in a grid of values of λ that allows us to approximately produce 
function LðλÞ and obtain its maximum. 

~λMV ¼ λ0 ; Lðλ0Þ � LðλÞ; 8λ (22) 

After presenting the results of the BOX-COX transformation with 
their respective λ values in both scenarios (same device and device 
switch), we are able to evaluate whether each transformation will pro
vide a correct answer in terms of residual normality (See Table 5). For 
both scenarios the λ value is close to one, therefore applying the BOX- 
COX method will modify neither the residual nor the data. Finally, 
transformation ba vs log a makes it possible to respect the three previous 
Berens hypotheses (linearity, homoscedasticity and residual normality). 

Finally, note that the BOX-COX transformation which uses the geo
metric mean estimation has advantages and disadvantages [42]. The 
positive point is the simplicity of the calculus of the maximum likeli
hood. However, this rescaling model is not equivalent to the untrans
formed model since the procedure involves more than a unit change. In 
addition, interpretation of the parameters is not clear after such 
rescaling. Nevertheless, this transformation was applied through the 
data obtaining the same outputs. 

5.3. Device switch effect 

The PoD curves in the same device and device switch scenarios are 
computed using the method described in Section 2 and resulting from 70 
samples inspected by seven inspectors (Fig. 15). The same device PoD 

Fig. 10. Two different scanning paths due to the change of the probe starting 
point with the corresponding computation points in the simulation model. 

Fig. 11. (a) X and (b) Y probe trajectory charts during the HFEC inspection.  

Fig. 12. (a) X-displacement probability density function and (b) X-displacement Henry’s line.  
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results are: a*
50 ¼ 0:63, a*

90 ¼ 0:95 and a*
90=95 ¼ 1 (Fig. 15a). The device 

switch scenario PoD results are: a*
50 ¼ 0:56, a*

90 ¼ 1 and a*
90=95 ¼ 1:06 

(Fig. 15b). Analysis of the statistical results allows for differentiation 
between the scenarios performed in the laboratory with the same device 

and device switch. The a*
90=95 difference between scenarios is 6% using a 

different device compared to the optimum case (same device scenario). 
Moreover, this difference is lower in a*

50 and a*
90. To conclude, the use of 

a different device can impact crack detection but not in a substantial 
manner for the current NDT method (High Frequency Eddy Current). 
This difference can also be a consequence of the inspector’s calibration 
which is a key step in the NDT inspection. 

Moreover for two inspectors (Inspector 4 and Inspector 5), the graphs 
(Fig. 16) plot the amplitudes obtained with two different devices (D4/ 
D6 for inspector 4 and D5/D6 for inspector 5), and show that there is less 
dispersion in the case of each inspector using the D6. We firstly conclude 
that this device could provide accurate amplitudes independently of the 
inspector (Fig. 16). However, this conclusion is based only on two ob
servations, therefore more studies are needed to confirm this assump
tion. As it was remarked before, the cause could be how familiar each of 
them are with the device. Calibration can be different even following the 
same procedure, as can device sensitivity in electronically-different 
devices. 

To conclude, the statistical parameters acquired from the individual 
PoD curves (inspector 4 using D4 and D6; inspector 5 using D5 and D6) 
are better from the inspectors using D6 which is mainly related to better 
detection of the defects. These values suggest that even for the same 
inspector and scenario as assessed in Fig. 16 for I4 and I5, results can 
mainly be affected by device technology. As a lesson learned, the same 

Fig. 13. (a) Y-displacement probability density function and (b) Y-displacement Henry’s line in the laboratory scenario.  

Table 3 
Statistical data distributions for uncertain parameters introduced in the model 
for a high frequency eddy current inspection.  

HFEC Parameters Statistical 
distribution 

Statistical data 
parameters 

Inspection Lift-off (μm) Uniform [0 mm,0,5 mm] 
Angular position of the 
probe – Y rotation (�) 

Gaussian [0�, 10�] 

Angular position of the 
probe – X rotation (�) 

Gaussian [0�, 10�] 

Scanning increment – 
Step X (mm) 

Truncated 
Gaussian 

[1 mm, 3 mm] 

Scanning increment – 
Step Y (mm) 

Truncated 
Gaussian 

[1 mm,1 mm] 

Defect Depth (mm) Truncated 
Gaussian 

[1 mm, 0.5 mm] 

Skew (�) Gaussian [90� , 10�] 
Width (mm) Truncated 

Gaussian 
[0.02 mm, 0.01 
mm]  

Table 4 
Proposed transformations following the linearity hypothesis for both scenarios.  

Transformation Same Device Scenario - R2  Device Switch Scenario - R2  

linear-linear 0.6753 0.5402 
linear-log 0.7161 0.5814 
log-linear 0.4289 0.2916 
log-log 0.4716 0.3156 
squareroot-linear 0.7014 0.5655  

Fig. 14. Linear-log transformation of data distribution from NDT inspectors in (a) same device scenario and (b) device switch scenario.  

Table 5 
values and their corresponding BOX-COX transformations for inspector amplitudes in 
(a) same device scenario and (b) device switch scenario.  

Scenario λ  ba Transformation  

Same device 0.98 ba  
Device switch 1.07 ba   
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participants should be used in both scenarios to perform a complete 
comparison and extract global conclusions and not only two. The main 
reason for this limitation was the large amount of time and budget spent 
on performing all these tests in different places. 

5.4. Numerical PoD curves 

For numerical PoD curve development, a methodology will be fol
lowed to reproduce the impact of the variability of each parameter in
side the model. The variability represented on the NDT results from the 
simulation is statistically post-processed and used to calculate the nu
merical PoD curve. This reliable process follows the algorithm with a 
Monte Carlo sampling described in Fig. 17. Then, to construct this PoD 
curve, we need, for several values of ðaRÞi, to apply the procedure 
described in Fig. 17 and then obtain baij. Finally, after repeating this 
procedure N times, the PoD curve is plotted (Section 2) using the defect 
lengths corresponding to the ðaRÞi ði¼1;…;NÞ values and the defect ampli
tudes corresponding to baijði¼1;…;N; j¼1;…;MÞ. 

The simulated detections vs. the artificial fatigue defect are illus
trated in Fig. 18. These results were obtained after introducing the 
variability sources and verifying the calibration step described in Sec
tion 2 and Fig. 1b. The simulation database gives a wider range of de
tections in comparison to the experimental database (illustrated in 
Fig. 5a and b) thanks to the appropriate selection of statistical distri
butions related to uncertainties. Then, this conservative good agreement 
provides encouraging and promising results to replace or complete 
experimental tests. 

Hence as previously, data linearity, homoscedasticity and residual 
normality are verified. The coefficient of determination R2 and λ 
parameter are shown in Table 6. 

After analyzing the hypotheses, the PoD curve is built to obtain the 

corresponding statistical parameters. Finally, the normalized PoD re
sults obtained from the simulation scenario are: a*

50 ¼ 0:73, a*
90 ¼ 1:18 

and a*
90=95 ¼ 1:23. The simulated PoD curve is compared to experi

mental PoD curves in both scenarios (same device and device switch) in 
Fig. 19a. Simulation and experimental statistical parameters can be 
assessed together (Fig. 19b). It should be noted that the simulation 
model produces conservative results compared to different scenarios 
(the minimum detectable length in the simulation is 23% greater than in 
same device scenario and 15% greater than in the device switch sce
nario). One of the main reasons may be that uncertain parameter de
scriptions were accurately selected in the CIVA model. These 
uncertainties are introduced as statistical distributions defined by expert 
NDT engineers and by observation of experimental NDT inspection 
(inspection videos) which are shown in Table 3, after thorough and 
careful analysis. This is a conservative approach as the inspectors’ values 
are usually better than the extreme values of the statistical distributions. 

Fig. 15. PoD curve for a) same device and b) device switch scenario using titanium beta samples.  

Fig. 16. Amplitude data for a) inspector 4 and b) inspector 5 obtained with different devices.  

Fig. 17. Algorithm used to obtain amplitude responses in an NDT inspection.  
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6. Conclusion 

This study proposed a methodology for building robust PoD curves 
from numerical modelling. The application case deals with High Fre
quency Eddy Current based on the Berens methodology. The first step 
concerns experimental data which is used to validate our simulation 
model. Using the engineering judgment of NDT experts and observation 
of experimental NDT campaigns, we identified and quantified un
certainties due to different human gestures and device factors during the 
NDT process. These uncertainties are further characterized as statistical 
distributions. Then, using the Monte Carlo sampling method on these 
uncertainty distributions and running the deterministic numerical 
model we determined the different probabilities of detection lengths a*

50, 
a*

90 and a*
90=95. To compare experimental and numerical results, several 

Berens hypotheses were analyzed from the signal amplitude data such as 
linearity, homoscedasticity and residual normality. The best trans
formation is ba vs: log ðaÞ for both experimental and simulation scenarios. 

The difference between the experimental and simulation results on 
detection lengths a*

50, a*
90 and a*

90=95 never exceeded 23%. The minimum 
detectable length computed by simulation PoD is greater than the 
experimental minimum detectable length. This parameter used for NDT 

reliability in the in-service inspections defines the maintenance interval 
inspections. Using a greater value increases the number of inspections. 
Therefore, the simulation results are conservative in terms of detection 
thanks to the appropriate selection of statistical distributions related to 
uncertainties. 

This conservative good agreement provides encouraging and prom
ising results to replace or complete experimental testing by simulations, 
which are less costly and time-consuming. 

However, using Berens Signal Response method to build the PoD 
requires a good linearity relationship between the defect and detection. 
This hypothesis is debatable. In fact, the coefficient of determination 
(linearity indicator) is not close to the unit, especially in the case of 
simulation PoD studies. Thus, another statistical method should be 
considered [4]. 

In conclusion, the numerical model provides a conservative agree
ment although without taking human fatigue and stress due to 3–6 h of 
NDT laboratory inspection into account. This environment is not 
representative of real in-service inspections. In addition, the human 
gestures during NDT inspections are included with some limitations, 
such as the exact probe angle or position. Hence, further improvements 
can be proposed such as using powerful cameras to film the exact probe 
angle and displacements, or including a few gyroscopes on the probe for 
accurate measurements. Another model limitation is time in the random 
selection of each uncertain parameter computed by the Monte Carlo 
method. For the time being, the model is not able to run several com
putations at the same time. One improvement could be machine learning 
to perform smart random selection in parallel. 

The NDT simulation model has integrated human gestures by 
modelling inspectors’ movements (probe angular positions and scanning 
increments) as the most practical method, extracted directly from the 
inspectors’ trajectories and gestures analyzed during the videos. This 
way of integrating human factors as gestures is new but we must be 
aware that is not a perfect match and that also it is not measured in this 
study. Human factors can have an effect on daily inspections. This is why 
the simulation results are not exactly the same as the experimental re
sults. One study limitation was not using the same inspectors for both 
scenarios (Same Device and Device Switch). The most appropriate 
method will be to use the same inspectors to learn more about the de
vices. In our approach we cannot conclude whether it is the people or the 
device that influence the results. 

Future related work will attempt to extend our approach to broader- 
ranging NDT techniques (Ultrasonic, Radiography, Computed Tomog
raphy, Guide Waves, etc.) and in-service environments (aircraft main
tenance inspections). This research work will also include NDT problems 
where Berens assumptions are not fulfilled. 
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Fig. 18. Variability of the simulated detections corresponding to artificial fa
tigue defects obtained using uncertain parameters. 

Table 6 
values and transformation for the BOX-COX method in the simulation scenario.  

Linearity transformation R2  λ values  ba Transformation  

ba vs log a  0:5208  0:92  ba vs: log a   

Fig. 19. Comparison between experimental and simulated (a) PoD curves and (b) statistical parameters.  
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