OATAO

Open Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte (OATAO)

OATAO 1is an open access repository that collects the work of some Toulouse

researchers and makes it freely available over the web where possible.

This is anauthor's version published in: https://oatao.univ-toulouse.fr/26848

Official URL:

To cite this version :

Perard, Doriane and Goffin, Xavier and Lacan, Jérbme Using Homomorphic hashes in coded blockchains. (2020) In:
SERIAL 20 4th Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers, 7 December 2020 - 11
December 2020 (Delft, Netherlands).

Any correspondence concerning this service should be sent to the repository administrator:

tech-oatao@listes-diff.inp-toulouse.fr

Using Homomorphic hashes in coded blockchains

Doriane Perard, Xavier Goffin, Jérome Lacan
ISAE-Supaero, Université de Toulouse, France
firstname.name@isae-supaero.fr

Abstract—One of the scalability issues of blockchains
is the increase of their sizes which can prevent users
from storing them and thus from contributing to the
decentralization effort. Recent works developed the
concept of coded blockchains, which allow users to store
only some coded fragments of the blockchains. How-
ever, this solution is not protected against malicious
nodes that can propagate erroneous coded fragments.

‘We propose in the paper to add homomorphic hashes
to this system. This allows for instantaneous detec-
tion of erroneous fragments and thus avoids decoding
with wrong data. We describe the integration of this
mechanism in coded blockchains and we evaluate its
complexity theoretically and by simulation.

I. INTRODUCTION

One of the most interesting properties of blockchains
is their decentralized nature, making it possible not to
use central authorities. Usually, each node participating
in the blockchain must maintain it by participating in the
consensus when inserting a new block and by storing the
entire blockchain. However, the success of blockchains such
as Bitcoin or Ethereum has highlighted a scalability prob-
lem. Indeed, the increasing size of these blockchains means
further constraints for medium-capacity nodes, leading to
consequences on the availability and decentralization of
the blockchain.

In order to allow nodes with a limited storage capacity
to participate in the storage of the blockchain, several
works introduced and studied coded blockchains by using
erasure codes or network coding. The main principle is
to store only some coded fragments of each block. These
fragments are obtained by first splitting a block into k
fixed size fragments and then generating linear combina-
tions of these fragments. These linear combinations can
be randomly generated [1] or can follow a structured code
such as Low-Density Parity Check (LDPC) codes [2] or
Fountain codes [3]. The average number of source blocks
included in a linear combination is called the degree d.

When a node wants to join the network, it needs to
download and verify each block of the blockchain, generate
coded fragments, and then delete the original blocks to
keep its coded fragments only. When the node wants to
restore a block, it downloads k(1+€) coded fragments and
then performs the reverse operation. The value of the real
number e can vary from 0 (ideal code) up to 0.5 according
to d and the used code.

However, these propositions do not consider adversarial
nodes that can provide maliciously formed coded frag-

ments and thus prevent the correct decoding of the whole
block.

To detect bad coded fragments, we propose in this paper
to use homomorphic hashing functions that were intro-
duced by [4] and improved by [5] in the context of peer-
to-peer distributed storage systems. The main property of
these hashes is that the hash of a linear combination of
source blocks can be expressed as a function of the linear
combination coefficients and hashes of source blocks. Thus,
if the hashes of the source blocks are public and certified,
any user can verify the validity of a received block by
checking that its hash corresponds to the output of the
verification function.

This paper is structured as follows. Sections[[I] presents a
description of erasure-code based low storage nodes using
homomorphic hashes, the main contribution of this paper.
Afterwards, Sections [[I]] and [[V] present the interest of
our low storage blockchain node and an analysis of the
available parameters of our system. Finally, Section [V]
concludes this paper and exposes ways to further this
topic.

II. INcLUDING HOMOMORPHIC HASHES IN CODED
BLOCKCHAINS

In this article we propose to use homomorphic hashing
functions on coded blockchains in order to detect erro-
neous coded fragments. It will then be possible to replace
them by correct ones, and to list malicious nodes.

Before describing the coding operation, let us first define
some notations. We denote by N the nodes of the
network, where ¢ is an unique identifier characterizing each
node. We denote by BU) the j* block of the blockchain.
We consider that the first block is B(®).

We consider that hashing and coding operations are
done on the finite field Z,, where p is a prime number
of size |p| bytes. Let sp the maximum size of a block of
the blockchain (in bytes). Let us define two integers k and
r respectively corresponding to the number of fragments
of a block and the number of coded fragments stored by
a node. The size of a fragment is denoted by m = sg/|p|.
The choice of the values of system parameters as k, r and
p will be discussed in Section [[V]

A. Coding the data

1) Block Splitting: The block BU) is split into k frag-
ments Fl(])7 with [= 1,...,k . The fragments are them-

selves composed of m finite field elements The elements
of the fragment F(J) are denoted fl ,wherev =1,...,m.

The last fragment can be padded 1f needed, in case of
variations in block size.

2) Homomorphic Hash of the Block: As defined in [4],
we consider that the following public parameters define
the system G = (p,q, g) where ¢ is a large prime number
such that ¢|(p — 1). The vector g is composed of some
elements g; € Zy, for ¢ = 1,...,m. The hash of the block
BY) corresponds to the set of the hashes of its fragments

- W(BD) = (W(FI), W(F), ..., W(F)) where:

[

v=1
3) Coded Fmgments Generation: To build the coded
fragment Su where 0 < uw < r—1, the node considers
the k coefﬁ01ents {ak ’j), . EZ’i)l) u— 1} and computes the
following linear combmatlon

F(J) mod p

50D = ol FY gl

Flgj)
We assume that the values of a,(:_’g) + v can be deduced
from ¢ and j. From a more practlcal oint of view, the
h element of the coded fragment Su) is defined by the
ﬁmte field element fu » computed as follows:

(i,9) — ’J) f(J)

(4,9) ()
: 7+a(k-j§—1).u—1'fk?v

The k coefficients {a,(z"i), e aEZ’]) _,} depend on the

k+1).
chosen erasure code.

(Block BY)) (Fragment)

Coded fragment

o o) o) o)

() (i.3) (J) N Y]
oo ey Qg1

N O}
ﬂkl

Fig. 1: Block coding process

4) Hash of the Coded Fragments: The hash of each of
the r coded fragments is then computed. We denote it by
i) = h(&(f J)). Thanks to the homomorphic property, it
can be proved that

k o
M) = T hp) s)
v=1
5) Storing Data: Finally, the node removes the

block BW) and replaces it by the r coded fragments
Sgl’]), .., %% their r hashes and the k hashes of the
initial fragments.

B. Recovering the data

When a Low Storage node (LS node) wants to recover a
block from coded fragments stored by different LS nodes,
it executes the following steps illustrated on Fig. [2}

N® N©
S [§1’”] 529 [bﬁz’j)]

NG N®
500 [h(l?,)]‘)]) [h 541]')]

Fig. 2: Homomorphic hashes verification

1) Download the Coded Fragments Hashes: As repre-
sented in Fig. l 20 node N® first downloads k(1 + €) hashes
b() from different nodes.

2) Hash Check: The node checks that the downloaded
hashes are correct by verifying Eq.[I] Recall that the values
of a(m) can be deduced from i and j.

3) Download the Coded Fragments: If the hashes are
verified, the node N downloads coded fragments asso-
ciated with the previous hashes (io.) ,...,S i I’J from
several nodes N(0) . N(r-1) Note that it is poss1ble to
request multiple coded fragments from the same node

4) Coded fragment Check: The node hashes each re-
ceived coded fragment to verify that it matches the corre-
sponding received hash.

5) Block Decoding: Once the fragment hashes are ver-
ified, the block can be decoded. After downloading a
sufficient number of coded fragments, the node will have
enough equations to invert the linear system and recover
the k fragments (and thus the block) from the coded
fragments.

III. SECURE LOW STORAGE NODE INTERESTS

The main objective of traditional LS nodes is to allow
any node to contribute to an entire blockchain with a re-
duced storage effort. The addition of homomorphic hashes
increases the security of the distributed coding process and
allows for the identification of malicious nodes.

A. Scalability

1) Storage effort scalability: With traditional coded
blockchain, a node only store r/k data form each block.
Let’s define the compression factor ¢ = r/k.

One of the interests of our system is its scalability.
Indeed, each node can adapt r according to, for example,
the age of a block by simply removing some of its stored
coded fragments without re-calculating them.

Moreover, the number of coded fragments generated and
stored on each node can independently be defined by each
node, and should be adapted according to the desired
storage effort of each node.

2) Availability: One of the main goals of our system
is to improve the global availability and sustainability of
a blockchain. By reducing the storage effort needed to
participate, we expect more participants storing at least
one coded fragment of every block. This means that for a
system with a large amount of nodes, any node can then
leave the system or be unreachable without significantly
impacting the availability.

3) Network improvement: With the increase of the
amount of nodes, we improve the distribution of the
blockchain over the network. Our low storage nodes can
allow for the decongestion of the network.

B. Malicious node identification

With homomorphic hashing, it becomes possible to
identify malicious nodes in the network, providing incor-
rect coded fragments. A simple solution to avoid them is
to locally blacklist them and avoid contacting them in the
future.

But we can also imagine a network level impact, where
cheaters are publicly denounced. An incentive system
can be easily set up, by punishing malicious nodes and
rewarding senders of valid denunciations. It can be done
by using fraud proofs system, as presented in [6].

IV. ANALYSIS OF THE PARAMETERS

One of the challenges is to determine k, r and the
security parameters, with the best compromise between
compression, complexity and security. In this section, we
will present some consequences when varying these param-
eters.

A. Type and size of the finite field

The linear combinations of the code and the hash
operations are performed on finite fields. Practically, the
data of the blocks are grouped into bit vectors of fixed
length which are associated to finite field elements and
processed with the corresponding rules. The homomorphic
property of the hash implies that the code and the hash use
the same finite field. With the considered type of hash, a
finite field of type Z,, where the operations are performed
modulo a large prime number p must be used.

The choice of the finite field impacts the probability of
block recovery from downloaded coded fragments (which
is better with a large finite field) and the encoding and
decoding complexities (which is smaller with a small fi-
nite field). The size of the finite field is also a security
parameter because a minimal value is necessary to avoid
collisions. Under these constraints, the choice of a value of
p with 1024 — bit length is chosen, as suggested in [4].

B. Processing coding complexity

The complexity of encoding consists in multiplying a
k x r-matrix by the k original fragments. Then, there is
dxrxsp/k operations in the finite field, so when d = k, the
encoding complexity is r X sg. So, the encoding complexity
does not depend on k, but only on r.

1073
+File size 1MB, degree k

% 3 i ©oFile size 32KB, degree k

S

'g 9 | ile size 32KB, degree 4

=]

3

a 17

-

] 0 ‘ : =} | | ‘o
0 50 100 150 200 250

k

Fig. 3: Coded fragment time generation, from different size
file and k.

+File size 1IMB

% 10~ + \oFile size 32KB

£

5102

w

3

€ 1073 ¢

o

U i L i i i
0 50 100 150 200 250

k
Fig. 4: Time to hash a fragment

Fig. shows the encoding speeds of 1MB and 32
kB blocks, with different values of degres and k. The
implemented code was run in a Virtual Machine with
operating system Debian 10. This personal computer runs
Windows 10 and is equipped with an Intel Core i5-7300HQ
@2.50GHz with 8GB of RAM. This graph allows to con-
clude that the processing cost is acceptable. Indeed, coding
speed is always around milliseconds.

For decoding, the complexity consists in inverting a
k x k-matrix, and then multiplying it by the k coded
fragments. The pseudo-random matrix inversion has a
complexity in O(k®). So the number of operations is
O(k3) + k% x sp/k= O(k®) + k x sp and thus depends
only on k. If the size of the block is large compared to
k, then the matrix-vector multiplication (kx block size) is
the most complex operation.

C. Homomorphic hashing functions complexity and pa-
rameters

According to [4] and [5], the complexity to hash a m-
element fragment is O(m), and thus a file of k fragments
is hashed in O(k.m). Fig. 4] confirms that, because when k
increases, the fragment size m decreases, and so does the
time.

To check the validity of the hash of a coded fragment
from d source hashes, the complexity is O(m)+0O(d). Fig.
shows us that the fragment size m is not so important

1072
35 +File size IMB, degree k

% oFile size 32kB, degree k
£
‘; -File size 32kB, degree
.0
5
[0}
5 17
o
€
o
O
O @ &% : : : : <]
0 50 100 150 200 250

Fig. 5: Time to generate an homomorphic hash of a coded
fragment from original fragment hashes

k 4 32 64 128 256
r=1 | 0.251 | 0.0355 | 0.0239 | 0.0243 | 0.0369
r=>5 - 0.161 0.0870 | 0.0561 | 0.0529

TABLE I: Values of ¢ for variation of k& and r, with sp =
1MB

comparing to the degree d, in terms of complexity. When
this degree is low, for example 4, the time is low too
(around 0.0004 s). But when it is equal to k (i.e. coded
fragments are composed by linear combinations of every
fragments), the time increases when k does.

The parameters are defined at the system level and are
therefore the same on all nodes. This choice is important,
because it will have a direct influence on the level of
security but also on the complexity of the operations to
be performed.

The time to perform homomorphic hash is independent
of k.

D. Compression factor

With the homomorphic hashes system, the compression
factor ¢ changes. In this system we have to store extra
data : homomorphic hashes of all the original fragments
and homomorphic hashes of all the coded fragments. The
new formula is so:

(k+’/’)><SH C
Sp Tk

To find the optimum of this equation, we can calculate:

C =

(2)

TXSB

- 3)

kopt =

E. Chosing k and r

As described in Section [[I-A] each node, in order to
generate its r coded fragments, will split the initial block
into k fragments. The choice of this parameter can be
different for each blockchain, but it must be the same for
every user of the same blockchain.

When k increases, there is no impact on block hashing
time and encoding speed, but in the end the nodes need
to verify more coded fragments, so it will be longer.

The choice of r is up to the end user and will depend
on the type of user. Choosing a large r will improve block
recovery and reduce network load, as well as improve the
overall blockchain availability as increasing r increases the
storage effort of a node. It also improves the recovery block
speed, because the nodes will verify less (k+ € —r) hashes
and coded fragments. Choosing a small r will reduce cod-
ing complexity and compression factor. Globally r must
be chosen according to the node’s capacities.

If we want a better compression factor, we can use the
formula [3] with » = 1, and we can calculate the optimal k.
If we want an even better compression factor, we can also
increase sg by grouping some blocks before coding them.
But during decoding, we will reconstruct more data than
we need.

The Table. [I] presents some compression factors for
different k£ and r values, for block size equal to 1MB like in
Bitcoin. According to Eq.[3] the higher factor compression
is 0.228, when k = 88 for r = 1, and 0.0512, when k& = 198
for r = 5.

V. CONCLUSION

The main contribution of this paper is to introduce
homomorphic hashes in coded blockchains. We explained
how to compute, store and exchange these hashes in order
to detect erroneous coded fragments. The impact of this
mechanism in terms of additional storage and complexity
was analyzed. A global analysis of the parameters was
proposed in order to determine the parameters of the
system. Future work will focus on the optimization of the
parameters according to the considered blockchains and
the types of nodes in order to find the best compromise
between compression, complexity and security.

REFERENCES

[1] D. Perard, J. Lacan, Y. Bachy, and J. Detchart, “Erasure code-
based low storage blockchain node,” in 2018 Cybermatics, IEEE
Conference on Blockchains. 1EEE, 2018, pp. 1622-1627.

[2] H. Wu, A. Ashikhmin, X. Wang, C. Li, S. Yang, and L. Zhang,
“Distributed error correction coding scheme for low storage
blockchain systems,” IEEE Internet of Things Journal, 2020.

[3] S. Kadhe, J. Chung, and K. Ramchandran, “Sef: A secure foun-
tain architecture for slashing storage costs in blockchains,” arXiv
preprint arXiv:1906.12140, 2019.

[4] M. N. Krohn, M. J. Freedman, and D. Maziéres, “On-the-fly
verification of rateless erasure codes for efficient content distri-
bution,” in Proc. IEEE Symposium on Security and Privacy,
Oakland, CA, May 2004.

[5] C. Gkantsidis and P. Rodriguez Rodriguez, “Cooperative security
for network coding file distribution,” in Proceedings IEEE INFO-
COM 2006. 25TH IEEE International Conference on Computer
Communications, 2006, pp. 1-13.

[6] M. Al-Bassam, A. Sonnino, and V. Buterin, “Fraud proofs:
Maximising light client security and scaling blockchains with
dishonest majorities,” arXiv preprint arXiv:1809.09044, 2018.

	Introduction
	Including Homomorphic Hashes in Coded Blockchains
	Coding the data
	Block Splitting
	Homomorphic Hash of the Block
	Coded Fragments Generation
	Hash of the Coded Fragments
	Storing Data

	Recovering the data
	Download the Coded Fragments Hashes
	Hash Check
	Download the Coded Fragments
	Coded fragment Check
	Block Decoding

	Secure Low storage node interests
	Scalability
	Storage effort scalability
	Availability
	Network improvement

	Malicious node identification

	Analysis of the parameters
	Type and size of the finite field
	Processing coding complexity
	Homomorphic hashing functions complexity and parameters
	Compression factor
	Chosing k and r

	Conclusion
	References

