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Abstract

The present thesis investigates the effects of electroactive morphing for smart
wing designs. Morphing concepts are adopted for future aircraft configurations,
targeting increased aerodynamic performance, “greener” air vehicles and efficient
air transport. Morphing airfoils and wings are investigated by means of numerical
simulation and the physical mechanisms of morphing are analyzed.

The hybrid, partly bio-inspired electroactive morphing is examined. The hy-
brid concept entails the combination of different classes of electroactive actuators
that yield turbulence modifications at multiple scales when realized simultaneously.
Shape Memory Alloys (SMA) providing large-amplitude low-frequency deforma-
tions and piezoactuators providing low strains at higher frequency are introduced.
High Reynolds number calculations around supercritical wings in low-subsonic
and transonic regimes are performed and experimental results are employed for a
detailed physical analysis. The flow simulations are carried out using the NSMB
(Navier Stokes MultiBlock) solver and efficient turbulence modelling approaches,
allowing for a physically correct development of related instabilities and coherent
structures.

In this context, the Organized Eddy Simulation (OES) approach has been
improved to account for upscale energy transfers in strongly sheared flow regions
through re-injection of turbulence. This novel approach, based on stochastic forcing
of the turbulence transport equations, is extended in the present thesis to three-
dimensional flows and applied to the study of the transonic flow. The approach is
also examined in the context of Detached Eddy Simulations (DES). The stochastic
forcing is proven to inhibit excessive turbulence diffusion effects. As a result, the
transonic buffet and the Shock Wave Boundary Layer Interaction (SWBLI) are
better captured with this approach. An increase of lift and a decrease of drag are
obtained and the force predictions are improved as shown through comparisons with
experimental results.

The stochastic forcing effects can be practically realized with the introduction
of higher-frequency vibrations and low-amplitude deformations in the near trailing
edge region of wings via piezoactuators. The morphing effects are examined on
an A320 wing at a Reynolds number of 1 Million in the low-subsonic regime,
corresponding to take-off/landing flight phases. The simulations used the OES
approach and the analysis employed a large experimental database, obtained in
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x ABSTRACT

the context of the “Smart Moprhing and Sensing for Aeronautical configurations”
(SMS) H2020 No 723402 European Research program. It is shown that electroactive
morphing has the capacity to enhance the aerodynamic performance through lift
increase and drag reduction. The aerodynamic enhancement is obtained as a result
of the manipulation of turbulence interfacial dynamics interacting with the structure
of the wing. Through an extensive parametric study, optimal frequency-amplitude
combinations have been determined, able to increase the lift-to-drag ratio.

Furthermore, the present thesis discusses shape control with the use of SMA,
introduced to morphing structures inspired by the wings of large-span hunting birds.
SMA-based actuators are employed to produce large continuous deformation at
low frequencies (order of Hz), adapting the aerodynamic profiles to different flight
conditions. The thesis proposes an efficient methodology that allows design smart
deformable aeronautical structures, able to achieve pre-defined target shapes. A
novel robust algorithm for predicting the nonlinear response of the SMA-structure
interaction problem has been developed and validated. The solver is coupled with
a method that predicts the optimal structural and operational design parameters to
produces safe and “green” morphing structures.



Résumé

La présente thèse étudie par simulation numérique et analyse physique les effets
du morphing électroactif pour le design des ailes du futur permettant de réduire
l’impact environnemental et d’accroître l’efficacité du transport aérien. La thèse
examine les effets du morphing électroactif hybride. Ce concept consiste en une
association de diverses classes d’actionneurs électroactifs opérant à des échelles de
temps et de longueur multiples, en accord avec la dynamique du spectre turbulent et
dans un contexte de bio-inspiration concernant l’actionnement des ailes, ailerons et
plumes de grands oiseaux prédateurs. Le morphing électroactif hybride crée des
modifications de la turbulence à de multiples échelles dans les zones cisaillées et le
sillage proche et crée l’augmentation des performances aérodynamiques par l’action
de mécanismes de rétroaction.

La thèse effectue des simulations numériques à nombre de Reynolds élevé
autour de configurations de profils d’aile et d’ailes d’avion supercritiques dans les
régimes du bas subsonique correspondant aux phases du décollage et atterrissage,
et transsonique correspondant au vol de croisière. Toutes les simulations sont
effectuées par le code NSMB (Navier Stokes MultiBlock), en utilisant des approches
de modélisation de la turbulence efficaces, permettant de prédire en accord avec les
expériences physiques, le développement d’instabilités et de structures cohérentes
gouvernant la dynamique des écoulements.

Dans ce contexte, l’approche « Organized Eddy Simulation » (OES) a été
employée et améliorée par des concepts de cascade inverse utilisant de la réinjection
de la turbulence dans les zones fortement cisaillées. Cette méthode, basée sur un
forçage stochastique des équations de transport turbulent a été étendue dans la
présente thèse aux trois dimensions et ses bénéfices ont été quantifiés concernant
l’évaluation des efforts aérodynamiques et le développement d’instabilités fluide.
Les avantages de cette approche, qui a été introduite par ailleurs au sein de la « De-
tached Eddy Simulation », ont été étudiés concernant la prédiction du tremblement
en régime transsonique et de l’interaction choc-couche limite.

Les régimes du bas subsonique concernent les écoulements autour de profils
et d’ailes de type A320 en configurations statiques et en morphing et sont étudiés
en utilisant l’approche de modélisation OES également. Le morphing de la ré-
gion proche du bord de fuite à l’aide de faibles déformations et de vibrations de
fréquences dans le rang de 100-400 Hz a été étudié en synergie avec des résultats
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xii RÉSUMÉ

expérimentaux du projet Européen H2020 N° 723402 SMS : « Smart Moprhing
and Sensing for Aeronautical configurations ». A l’aide d’une étude paramétrique
détaillée, il a été mis en évidence que des combinaisons optimales de fréquence-
amplitude de ces actionnements fournissent une augmentation drastique de la finesse
aérodynamique. Ces effets ont été obtenus à l’aide de manipulation de la dynamique
des interfaces « Turbulent - Non Turbulent » (TNT) et des interactions avec les
interfaces « Turbulent-Turbulent » (TT).

De plus, cette thèse a développé un modèle structural efficace permettant le
contrôle de forme par des Alliages à Mémoire de Forme (AMF). Ces actionneurs
permettent d’obtenir de grandes déformations à de basses fréquences en appliquant
une grande cambrure de l’aile pour augmenter la portance et pour adapter la forme
de l’aile aux différentes sollicitations aérodynamiques. La présente thèse propose un
modèle efficace pour obtenir des formes-ciblées de configurations aérodynamiques
utilisant des AMF embarqués. Un nouvel algorithme robuste a été développé et
validé pour prédire la réponse non-linéaire de l’interaction AMF-structure. Cet
algorithme a été couplé avec une méthode de prédiction de la structure et des
paramètres opérationnels optimaux pour le design, fournissant ainsi des architectures
de morphing plus performantes et réduisant l’impact environnemental.
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Chapter1
State of the art

– Complicated problems have... smart solutions –

1.1 Morphing

The present thesis investigates the effects of electroactive morphing for smart wing
design. Morphing concepts are adopted for future aircraft configurations, target-
ing increased aerodynamic performance, “greener” air vehicles and efficient air
transport. In this thesis, morphing is defined as an efficient multi-point adaptability
[MWH+02] with a possible dynamic adaptation in real-time. They idea of morph-
ing is not new. A detailed historical review of morphing applications and recent
developments is included in [CL18]. The wing was born as a flexible element, able
to deform itself in order to adapt to the different flight stages. The first flying device
constructed by Clément Ader and tested on 9 October 1890, was a bat-like design
made of linen and wood. A later version of his flying machine, AVION1 III, is
shown in Fig. 1.1. However, as the operational velocities of the aircrafts increased,
the wing became stiffer and these basic capabilities were abandoned. The major
question arising: the smart structure paradox where any deformable structure should
be designed to be flexible, but also able to sustain large external loads [CL18]. The
available technologies in the previous years led to simpler solutions that abandoned
the idea of morphing wings. Modern scientific developments, however, along with
the leveling of the aircraft performance, have enabled to reconsider morphing as one
of the main solutions that can be used to improve the capabilities of aeronautical
configurations and bring the flexible wings back.

1“Appareil Volant Imitant Oiseau Naturel”, Clément Ader introduced the term “AVION” (aircraft),
coming from the latin word “avis” (bird)
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When examining adaptive structural systems, special attention is devoted to
the actuators utilized. An extensive overview of the morphing aircraft can be found
in [BSFA+14] and a complete review of the historical evolution of the morphing
wing technology in [CL18]. A first NASA report [Fer77] referenced morphing
parts and concepts targeting the improvement of commercial aircraft performance.
The Preliminary Design Department of Boeing later published a study [BHCS80]
regarding the introduction of systems that would vary the wing camber smoothly
and continuously in order to optimize the performance for civil aircrafts. This
study examined the design, the aerodynamic gains and the possibility of integrating
systems that would “morph” parts of the wing during selected flight phases, in
addition to the already existing high-lift configurations i.e. slats and flaps. A
first direct link with the expected benefits that innovative morphing systems can
have, from an industrial point of view, is given in [SH88]. The study focused
on advances concerning transonic variable camber airfoils, shock-boundary layer
control, laminarization techniques and new propulsion systems targeting a novel
passenger plane.

Figure 1.1: Clément Ader’s AVION III displayed at the Musée des Arts et Métiers
in Paris; photograph ©2011 SA Sharat Ganapati via Flickr.

The transonic wing and flow control solutions were also the focus of the ADIF
project [SMKR14] that tackled various aerodynamic problems. For the first time,
systems that incorporated more than one actuation components were designed,
and exhibited an enhanced performance when all the components were working
simultaneously. Later, the F-111 Mission Adaptive Wing (MAW) research program
[Har83] adapted a military aircraft with wings equipped with hinge-less devices
and whose camber could be modified continuously by hydraulic actuators. Direct
measurements of the aerodynamic efficiency were performed and the morphing
systems surpassed existing solutions. However, increased weight and the overall
complexity of the morphing system almost overshadowed the aerodynamic benefits
[CL18]. Later, NASA published a new analytic investigation [BG99] in which an
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algorithm for computing optimal shape control was introduced and wind tunnel
testing of deformable models was carried out. The authors demonstrated gains in
the aerodynamic performance at all points in the flight envelope of a civil aircraft.
Nevertheless, the difficulties associated with the technology readiness, the com-
plexity of the proposed actuation systems and often with cost, weight and space
limitations, prevented any real morphing application from being implemented.

1.1.1 Shape Memory Alloys

The design of motor-based actuation systems was one of the first approaches ex-
amined for a fully deformable wing. These systems were strong enough to sustain
the external loading and achieve the pre-described deformations. However, they
also came with sizing and weight penalties especially for distributed actuating
systems, i.e. configurations where multiple actuators were employed to deform
large parts of the structure. Advances in material technology offered however a
possible solution to counter many of the drawbacks of past morphing concepts. New
breakthroughs in the Shape Memory Alloy (SMA) research area emerged. The
SMAs had been discovered for a long time and their thermo-mechanical behavior
is well documented. Due to their unique material properties, SMAs initiated the
discussion around the possibility to use “smart” materials in order to construct smart
deformable structures. Upon cooling, or under the application of stress (or both),
SMAs undergo a change in their crystal structure reaching a pseudo-plastic limit
and presenting a residual strain when the load is removed. When these alloys are
heated, they are able to recover their original shape. By positioning suitably pairs of
SMA actuators within the structure, it is possible to apply large forces by adjusting
the temperature of every actuator. SMAs are quite efficient since they produce large
(large maximum stress capacity - order of 350MPa for Nickel titanium compounds)
and they can fully recover from large strains. As transformations occur due to the
intrinsic properties of the material, SMAs can be used directly as actuators and
any use of external apparatuses becomes redundant, making the actuating system
safer and lighter. Such systems of actuation can have many applications as they can
offer simplicity in the design, greener solutions and address safety and certification
issues.

Industrial applications started quite early [HH75] and SMAs have been in-
volved over the years in patents in various fields of engineering, particularly in
automotive, aerospace, robotics, civil and biomedical engineering. SMA-based
systems were first developed by NASA for space deployable systems where usually
small forces are present. The book of [LA14] is a detailed reference on the use of
SMAs that includes not only relevant applications but a detailed analysis on the
phenomenology of the material and models describing their behavior. SMAs incor-
porated in cars, function either as linear actuators (e.g. rear-view mirror folding,
climate control flaps adjustment and lock/latch controls) or as active thermal actua-
tors (e.g. engine temperature control, carburetion and engine lubrication, powertrain
clutches), significantly reducing the scale, the weight and the cost of automotive
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components and providing substantial performance, in comparison to conventional
actuators. In civil structures, SMAs are used in braced frames to morph energy
dissipation systems, due to their hysteretic behavior and superelasticity. Isolation
SMA-based devices and SMA dampers are also very promising applications in
seismic engineering. In addition, SMAs are used extensively in structural connec-
tions either in steel structures or in reinforced concrete frames, mainly because of
their superelastic capacity. Finally, self-rehabilitation using SMA wires has been
also considered as a very promising application. Shape memory applying heating,
is used in order for a great strain - due to an earthquake [FL11] or other type of
failures - to be fully recovered. The materials are quite promising for biomedical
applications as well, but in that context they mostly function as a support and not as
actuators. SMAs fit the stress-strain behavior of human body parts and this favored
medical developments [BVW03].

The use of SMAs in the field of aeronautics was delayed until the 90s. This was
mainly due to the fact that impressive developments in the classical electromechani-
cal actuators have led to significantly compact devices [CL18]. These devices were
often preferred with respect to SMA-based systems not yet fully certified or even
characterized at operational flight conditions (e.g. vibrating environment). This is
expected to change as the needs of aircraft manufacturers grow and the necessity
for novel multi-actuated architectures will emerge. However, based on a general
understanding, the use of SMAs will soon be realistic at an industrial level, mainly
for devices operating at a low frequency range. This will answer to the industrial
demands for innovative morphing designs heading towards highly efficient green
aircrafts. A considerable nujmber of projects were (and still are) devoted in the
research of more compact, even simpler solutions that will be smoothly integrated
and have a minimal impact on the shape of the aircraft in order to avoid important
aerodynamic penalties.

The “Smart Wing” program carried out under the Defense Advanced Research
Projects Agency (DARPA) examined the use of SMAs in the development of de-
formable wings [Kud04]. From numerical calculations, ground and wind tunnel
tests performed the authors demonstrated an aerodynamic performance enhance-
ment. Many critical issues were addressed in the systems integrated and the general
assessment postponed any exploitation to a full-size aircraft [CL18]. Elzey et al. in
[ESW03] developed an agonist-antagonist concept with elements that could rotate
relative to one another and SMA sheets that induced curvature due to heating. The
actuating system allowed not only to generate a 2D deflection but could also control
the twist of wing sections if they were actuated asymmetrically. A similar system
has also been developed in [SEW08] to create two-way SMA actuators using a
one-way shape memory effect. The “Hingeless Wing” [CL18] led by CIRA, investi-
gated the adaptability of aeronautical structures and developed compact actuators
based on SMAs. For the first time it was concluded that an adaptive structure
should be designed from the beginning, as a novel system as SMAs could only
deform continuous structures that were flexible enough and common architectures
were too stiff for these purposes. The same team worked on the re-designing of
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a real flap configuration [PBC+11]. Examining various designs and through an
extensive experimental and numerical analysis, the authors demonstrated positive
results concerning the reliability and the feasibility of morphing concepts utilizing
SMA actuators.

More recently, the multidisciplinary team composed by IMFT and LAPLACE
laboratories studied the cambering ability of a plate equipped by SMA in inter-
action with the turbulence structure at Reynolds number 200000 by means of
Time-Resolved Particle Image Velocimetry (PIV) [CRD+14] in the context of the
research project EMMAV, supported by the STAE2 Foundation. This study put
in evidence the ability of a significant bending by an order of 10% of the chord
and discussed the validity of the quasi-static hypothesis. This study quantified
the modification of the turbulence stresses for different electrical intensities of the
actuations corresponding to different cambered positions. It was demonstrated that
morphing has the capacity to attenuate the shear-layer mode and the overall spectral
energy at the most deformed position.

1.1.2 Piezoactuators

SMAs transform heat into mechanical energy due to their intrinsic properties. How-
ever, this process is slow, rendering SMAs as an unacceptable solution only for
control devices with an expected slow - quasistatic - response (e.g. flaps, ailerons,
rudders, brakes). Magnetic SMAs on the contrary have a faster response. These
systems however are significantly heavier and their prominent nonlinear behavior
can cause compatibility issues with the other systems and complicates their char-
acterization in a flight environment. A viable solution for morphing systems with
higher-frequency response appears in the form of piezoelectric actuators. These type
of actuators utilize the piezoelectric effect which describes the capacity of materials
to transform mechanical energy into an electric charge (direct piezoelectric effect).
It is the reverse transformation however that finds a special application in actua-
tion systems (inverse piezoelectric effect). Based on this effect, the piezoelectric
actuators can transform an electric charge in order to produce large stresses at very
low strains, with a low power consumption and at actuation frequencies that can
reach up to several hundreds of kHz. Controlling applications utilizing piezoelectric
materials mainly incorporate the use of piezoelectric ceramic stacks (piezo-stacks)
and Macro Fiber Composites (MFC) [WPIW02].

Similar to the SMAs, the piezoactuators offer the possibility of a direct ac-
tuation. This has a significant impact on the complexity of the actuation system,
with beneficial consequences on the weight and the safety of the morphing designs.
Mainly due to the levels of strain and stress that the piezoactuators are capable of
producing, they find extensive use in Unmanned Air Vehicles (UAVs). In these
morphing and flow control applications, the energy output of the actuation is usually
sufficient for the investigated physics. Vos et al. [VBBT07] proposed a new class of

2Sciences et Technologies pour l’Aéronautique et l’Espace, http://www.fondation-stae.
net.

http://www.fondation-stae.net
http://www.fondation-stae.net
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flight control actuators using piezoelectric elements which was then improved in
[BV08]. In order to achieve higher deflections compared to conventional methods,
the researchers applied an axial compression to the piezoelectric actuators. The
actuators were modelled and then employed in a deformable wing structure of UAV
to modify its camber distribution. The prototype was tested in a wind tunnel for
various airspeeds. Testing demonstrated that high deflections could be maintained
even at high flight speed while neither flutter nor divergence phenomena appeared.

Similarly, O. Bilgen and I. Friswell [BF14] studied the use of surface-bonded
piezoelectric actuators for fixed-wing aircrafts operating at low Reynolds numbers.
The partially active surface designed, employed a continuous boundary conditions
for chordwise variations of the camber, demonstrating the feasibility of piezoelectric
actuated surfaces for UAVs. The experimental evaluation showed the capacity
of the structure to support the aerodynamic loads during actuation and sustain
its shape. Due to the actuation, he wing was also capable of controlling the lift
and drag in real time and achieve a desired aerodynamic response. In [LI14],
the authors examined the application of MFC to be used in active flight control
on a forward swept Micro Air Vehicle (MAV). The wing incorporated composite
material as a passive load-alleviation system, and two MFC actuators for the roll
and pitch moment control. This investigation evaluated the performance of the
actuators and demonstrated the capacity of proposed design to maximize curvature
and load bearing. Along with the aerodynamic performance, the controllability of
the aircraft was also increased. Finally, MFC were also employed by Debiasi et al.
[DBLR13] to be used for the shape modification of the upper and lower surfaces
of a symmetric airfoil. The authors discussed the creation of morphing surfaces,
targeting improved aerodynamic performance, enhanced maneuverability and active
flow control. In their design, the authors integrated in parts of the skin the thin
piezoelectric actuators and performed wind-tunnel measurements in different flow
regimes in order to assess the dynamic shape variation and the gains in performance.

The small deformations provided by the piezoelectric materials do necessarily
restrict their application to reduced scale aircrafts. In practice, in civil and military
aeronautics, the piezoelectric-based actuators find extensive application due to their
high frequency bandwidth. A review discussing typical applications of piezoelectric
- among others - actuators in aircrafts can be found in [CGC+08]. The piezoelectric
actuation allows for controlling the ailerons on rotating blades or actively damping
external disturbances. In general, piezoelectric smart materials are capable of
controlling smaller scale physical instabilities and, as a result, are widely used in
noise cancelling application and on the attenuation of vibrations. In the context of
dynamic flow control, an active “smart” skin for turbulent drag reduction in realistic
flight conditions was presented by Rediniotis et al. [RLMK02]. Recent advances on
SMAs and piezoelectric-based actuators were capitalized in this work and various
designs were examined. The active skin, made out of electroactive materials, would
generate spanwise traveling waves, optimal in terms of amplitude, wavelength and
frequency, in order to reduce the skin friction through interactions with the boundary
layer. Based on computational evidence, the authors proposed a flow control
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technique that introduced micro-scale wave amplitudes and energy in the flow,
and was be able to produce significant benefits. An active flow control technique
was also proposed in [OLI14] where multilayer piezoelectric tabs distributed on
a cylinder were employed to delay the flow separation and reduce the drag. The
actuators were equidistant along the span of the cylinder and placed at various angles
with respect to the upstream flow. Several control parameters concerning the applied
dynamic forcing (e.g. frequency, amplitude) were evaluated at different Reynolds
number regimes and were found to have a large influence on the performance of
the piezoelectric actuation. The authors performed measurements of the pressure
distribution around the cylinder in order to estimate the drag, and demonstrated
a reduction of 30% in the pre-critical regime, while achieving at the same time a
suppression of the vortex shedding and a reduce of the energy content due to the
forcing.

In the context of the DYNAMORPH research project, supported by the STAE
Foundation, the small deformation – higher-frequency vibrations obtained by
piezoactuators were proved to have major effects on the flow instabilities, on the
wake’s structure and on the aerodynamic forces. In this research project, the study
by [CSR+13] designed a push-push actuator adapted in the rear part of a NACA0012
wing. This study investigated by means of TRPIV the effect of different actuation
frequencies in low amplitudes on the turbulence structure and determined optimal
frequency ranges in which a considerable attenuation of the shear-layer mode and
of the turbulence stresses was obtained through vortex breakdown mechanisms.
Scheller [Sch15] studied the effect of Macro-Fiber Composite (MFC) actuators dis-
posed along the span of a NACA4412 morphing wing able to apply simultaneously
high-deformations in very low frequencies and higher-frequency low-amplitude
vibrations, giving birth to the “hybrid electroactive morphing” [SJR+16]. This
concept “imitates” the actuation of the wings, ailerons and feathers of large-span
hunting birds at different length and time scales. This kind of morphing realized
on wing prototypes for the first time in the state-of-the-art by the present studies,
was proven fully adequate for manipulation of the turbulence spectrum containing a
multitude of modes and legth scales. These studies had shown that optimal frequen-
cies of the piezoactuators were able to considerably attenuate the wake’s width, by
producing eddy-blocking effects.

1.2 Bio-inspiration

A key challenge in the design of morphing structures [LDW13] is to create systems
that are able to deform the controlled surface continuously, to carry significant
prescribed loading and, at the same time, have a minimal impact on the controlled
geometry. The potential gain in the capabilities of future vehicles is broad due to the
recent developments in smart materials - such as the ones previously examined - as
they provide a continuous multi-point change in shape with no distinction between
the structure and the actuation system [BSFA+14]. In addition to this, compliant
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structures are needed in order to maintain the actuation forces in low levels and
avoid introducing discontinuities in the aerodynamic profile which can affect the
aerodynamic performance in a detrimental way. To this end, designs inspired by
efficient natural architectures, systems and processes can be proven suitable in
developing flexible bio-inspired structures.

Indeed, bio-inspired technologies and designs have been considered in various
morphing applications. A clear demonstration of bio-inspiration can be found in the
work of Woods et al. [WF12], [WBF14]. The authors presented an experimental
investigation on a constructed Fish Bone Active Camber morphing wing which
displayed an enhanced aerodynamic performance. This biologically inspired con-
cept consisted of a compliant skeletal structure covered by a composite skin and
an antagonistic pair of actuators acting as tendons and deforming the wing. The
proposed morphing architecture was able to produce large deflections in order to
provide a continuous cambering.

As previously mentioned, a breakthrough in the bio-inspired electroactive
morphing technology was achieved by the studies of the multidisciplinary team
IMFT-LAPLACE Laboratories through three federative research projects funded by
the STAE Foundation: EMMAV, DYNAMORPH and the platform SMARTWING3.
The hybrid electroactive morphing concept provided wing prototypes able to manipu-
late different classes of turbulent vortices which in turn produce optimal interactions
with the actuations and create a suitable fluid-structure interaction system, able
to increase the aerodynamic performance. In these studies, it is worth noticing
that the bio-inspiration is only partial, because an airplane flies in much higher
speeds than a bird. Only the first phases of take-off and the very last phases of
landing can be comparable with the speeds of flight of rapacious. The electroactive
morphing concepts that have been studied were adapted in higher speeds, including
the transonic regimes. The aforementioned studies led to an extended investigation
in collaboration with Airbus “Emerging Technologies and Concepts Toulouse” -
ETCT, through two collaborative projects, towards full - scale design on the purpose
of applying these concepts in real flight in the next years [JMS+17]. This objective,
together with a thorough investigation on closed-loop controllers and sensor systems
gave birth to the European research project “Smart Morphing and Sensing (SMS)
for aeronautical configurations”.

1.2.1 The SMS project

The electroactive morphing is currently being studied in the context of the H2020
European research program “Smart Morphing & Sensing (SMS) for Aeronauti-
cal configurations”4. The project was born from the collaboration between the
IMFT and LAPLACE laboratories that introduced the hybrid, partly bio-inspired,
electroactive morphing concept ([SCR+15], [SJR+16], [JMS+17]). The hybrid
concept, inspired by the large-span wings of hunting birds, entails the combination

3The reader can visit www.smartwing.org
4Project N° 723402, the reader can refer to: www.smartwing.org/SMS/EU

www.smartwing.org
www.smartwing.org/SMS/EU
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of different classes of electroactive actuators that yield turbulence modifications
at multiple scales when realized simultaneously. This produces interactions with
the actuations and creates a fluid-structure interaction system, able to increase the
aerodynamic performance.

Hybrid morphing enables the manipulation of turbulence and its interaction
with the morphing structure, enhancing the amplification of smaller structures in
the wake and attenuating natural flow instabilities. The first realization of hybrid
morphing was carried out by Scheller et al. [SJR+16] who studied the effect of
MFC patches disposed along the span of a morphing wing in combination with SMA
actuators. The actuation system was able to apply simultaneously high-deformations
in very low frequencies and higher-frequency low-amplitude vibrations, giving
birth to the hybrid electroactive morphing. In this realization, the electroactive
patches correspond to the action of bird feathers which passively vibrate at higher
frequencies and are able to produce significant vortex breakdown, beneficial for the
aerodynamic performance. The cambering of the wing through SMA actuators is
inspired by the continuous deformation of the large-span wings of hunting birds. The
bio-inspired morphing allows for a “smart wing design through turbulence control”
and a clear demonstration on how “science imitates nature”. This was shown in the
annual scientific exhibition of the Royal Society of 2014, where the interdisciplinary
team IMFT-LAPLACE was honorifically invited to present the hybrid electroactive
morphing wing. An implementation of the hybrid electroactive morphing approach
was also achieved in the design and construction of an electroactive Morphing Wing
Prototype which will be denoted as “MWP” in the present thesis.

1.2.2 Electroactive Morphing Wing Prototype

The considered prototype is a reduced scale design of a hybrid electroactive morph-
ing wing. It is equipped with both a camber control system and High-Frequency
Vibrating Trailing Edge (HFVTE) actuators. The baseline airfoil is the wing section
of A320, with a chord of 700mm and a span of 590mm. The SMA-based camber
control actuators were sized and implemented on a length covering the last 30%
of the chord, corresponding to the actual flap placement; the HFVTE actuation
employs Macro Fiber Composite (MFC) piezoelectric patches. The area close to
the leading edge was retained hollow to provide the space to contain all electronics
and tubing necessary for temperature, pressure and position transducers as well as
actuator interfaces. A schematic representation of the MWP is illustrated in Fig. 1.2
where both families of actuators used in the context of the hybrid electroactive
morphing concept are observed.

The working principle of the camber control relies on distributed structure-
embedded actuators. SMA wires are placed under the upper and lower sides of the
aluminum sheets constituting the skin of the wing. The selected SMA wires were
made of Nickel-Titanium alloys and their properties are controlled by a change
in temperature [CRD+14]. When electrically charged, the wires are heated and
are able to recover part of the strain by which they have been previously trained.
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(a) 3D view; upper skin removed on the deformable part of
the wing.

(b) Side-view; both families of actuators.

Figure 1.2: CAD of electroactive the Morphing Wing Prototype (MWP) designed
and constructed by LAPLACE/IMFT.

They are capable of generating intense stress (larger than 600MPa) under large
deformation levels (order of 25−30% of the chord) and can be respectively cooled
down by forced air to bring the wing back to the initial neutral position. In this
prototype, the actuation of the wires on the suction side causes bending of the
trailing edge towards higher cambered shapes (i.e. downwards). On the contrary,
the actuation of the wires on the pressure side skin causes a decrease in camber (i.e.
upward deformation).

The HFVTE actuators are composed of metallic substrates positioned in be-
tween the MFC patches. The MFC, first developed by NASA Langley Research
Center [WHB02], include lead-zirconate-titanate (PZT) piezoelectric fibers and
electrode networks, encapsulated within epoxy. When supplied by a voltage, the
patches stretch out and generate bending. The Multi-Fiber composite piezoelectric
actuators were glued on both sides of a metallic substrate and placed in the trailing
edge region. The whole ensemble is covered by a flexible molded silicon in order to
retain the trailing edge shape and limit the impact on the actuator’s performance.
The active chord-wise length of the HFVTE is 35mm. This implementation allows
for quasi-static tip deformation amplitude of 0.3− 1mm, and the piezoactuators
are able to vibrate with large enough amplitudes up to 500Hz. For further details,
related to the design and the electromechanical characterization of the electroactive
morphing wing the reader is invited to refer to [GSR+15].
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1.3 Ouline of the thesis

Having introduced the background and context of the present thesis, the outline
of the chapters that follow is presented. Morphing airfoils and wings are investi-
gated by means of numerical simulation and the physical mechanisms of morphing
are analyzed. High Reynolds number calculations around supercritical wings in
low-subsonic and transonic regimes are performed and experimental results are
employed for a detailed physical analysis. The flow simulations are carried out using
the NSMB (Navier Stokes MultiBlock) solver and efficient turbulence modelling
approaches.

The following chapter (Chapter 2) is split into two parts. The first one includes
all the essential elements concerning Computational Fluid Dynamics (CFD) that are
referenced throughout the thesis and were utilized in the flow simulations. Special
attention has been given to the turbulence modelling employed in the following
studies. The second part briefly goes over the basics on Computational Structural
Mechanics (CSM) and the relevant works on which the development of a Finite
Element (FE) code was based. Nonlinear mechanics are extremely relevant when
examining controlled (morphed) structures and thus, various aspects and emerging
nonlinearities are discussed.

In Chapter 3, an advanced turbulence modelling approach with re-injection of
turbulence in sheared regions is examined. The approach is extended in the present
thesis to three-dimensional flows and applied to the study of a transonic flow around
a “laminar” wing in order to investigate the buffet instability. The method consists
of the addition of stochastic source terms in specifically confined regions that in
return force the turbulent variables in order to model interfacial shear dynamics
and upscale energy transfers. The methodology is examined on its effectiveness
to enhance the predictive capabilities of the modelling for complex flows with
significant detachment and increased Reynolds number. In this chapter, the effect of
turbulent transition and the state of the incoming boundary layer on the suction side
of the wing is also evaluated.

Figure 1.3: Development of interfaces and vortices in the wake; an illustration of
the morphing effects.

In Chapter 4, the stochastic forcing effects are realized with the introduction of
high-frequency low-amplitude vibrations (HFVTE) near the trailing edge of wings.
This HFVTE actuation introduces locally in the flow small-scale fluctuating energy
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that interacts with the existing flow dynamics. This morphing strategy is examined
via extensive numerical simulations and Time-Resolved Particle Image Velocimetry
(TRPIV) measurements. In the context of hybrid morphing, the lower-frequency
actuation via SMAs is then examined in Chapter 5. In this chapter, we focus on the
development of an efficient methodology that accurately predicts the response of the
solid structure due to the thermo-mechanical SMA actuation. The proposed method
is an efficient way to determine the working capabilities of controlled aeronautical
configurations and serves as a design tool for future “smart” wings.

Finally, the conclusions are included in Chapter 6; perspectives regarding
future developments and investigations are drawn.
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Chapter2
Numerical approach

2.1 Computational Fluid Dynamics

The advent of large supercomputers together with the rapid development of numeri-
cal schemes in the last two decades have stimulated research towards solving the
complete set of Navier-Stokes equations numerically. At the present, numerical
solutions are available for a considerable number of complex flow problems around
real configurations. An extensive and comprehensive reference to Computational
Fluid Dynamics (CFD) theory and practice can be found in the book of C. Hirsch
[Hir07]. The present thesis the NSMB (Navier-Stokes MultiBlock) code; NSMB
is the fruit of a European Consortium consisting of multiple research institutes
strongly collaborating with the main European aeronautical industries. The NSMB
code solves the compressible Navier-Stokes equations and is also adapted for low
Mach aerodynamics. It employs a wide range of advanced turbulence modelling ap-
proaches for non-equilibrium turbulent flows, high-order schemes and grid-handling
methods (e.g. multigrid, chimera grids) for moving/deformable structures and large
scale complex configurations. The present section follows closely the book of
K. J. Blasek [Bla01] and the utilization handbook of the NSMB (Navier-Stokes
Multi-Block) code [HPV+16].

2.1.1 Governing equations

The Navier-Stokes equations in three-dimensional (3D) Cartesian coordinates, for a
viscous perfect gas with no external sources can be expressed in conservative form
as:

∂

∂ t
(W )+

∂

∂x
( f − fv)+

∂

∂y
(g−gv)+

∂

∂ z
(h−hv) = 0 (2.1)

17



18 2. NUMERICAL APPROACH

where t denotes time. The state vector W is given by:

W = (ρ ρu ρv ρw ρE)T

and the convective fluxes are defined as:

f =


ρu

ρu2 + p
ρuv
ρuw

u(ρE + p)

 , g =


ρv
ρvu

ρv2 + p
ρvw

v(ρE + p)

 , h =


ρw

ρwu
ρwv

ρw2 + p
w(ρE + p)


where ρ the density, u, v, w the Cartesian velocity components, p the pressure and
E the total energy. The viscous fluxes are defined:

fv =


0

τxx

τxy

τxz

(τU)x−qx

 , gv =


0

τyx

τyy

τyz

(τU)y−qy

 , hv =


0

τzx

τzy

τzz

(τU)z−qz


The τ the shear tensor is given by:

τxx =
2
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− ∂v
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∂ z
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∂y
+2

∂w
∂ z

) , τzx = τxz = µ(
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∂ z

)

where the Stokes hypothesis (λ + 2
3 µ = 0) has been employed, with µ the molecular

viscosity. The viscous dissipation in the energy equation is calculated from:

(τU)∗ = τ∗xu+ τ∗yv+ τ∗zw

The heat flux q∗ due to conduction is calculated according to Fourier’s law q∗ =
−k∂T/∂ (∗) with T the temperature and k the heat conductivity. For a caloric
perfect gas flow, Sutherland’s law for air at standard atmosphere states:

µ

µ∞

=

(
T
T∞

)3/2 (T∞ +110.3)
(T +110.3)

where µ∞ the viscosity at the reference temperature T∞. Assuming a constant Prandtl
number (Pr) the heat conductivity is found by k = µcp/Pr. The specific heat at
constant temperature and at constant volume can be calculated for a caloric perfect
gas as cp = γcv and cv = R/(γ−1) where γ the heat capacity ration (1.4 for air) and
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R the gas constant (equal to 287J/kgK for air). The system of equations is closed
by relating the pressure to the state vector. For a caloric perfect gas, the constitutive
gas relationship writes:

p = ρe(γ−1) = ρcvT (γ−1) = ρRT

where e =CvT the internal energy for a calorically perfect fluid, related to the total
energy by: e = E− 1

2(u
2 + v2 +w2).

Finite volume formulation

The cell centered finite volume method is used for the spatial discretization of the
Navier-Stokes equations. Starting from the Navier-Stokes in conservative form
(Eq. 2.1) and using a direct discretization of the integral form of the conservation
laws, it has been proven that the mass, momentum and energy will remain conserved
by the numerical scheme on the grid. This ensures automatically that the discretized
equation are able to capture discontinuities that often arise when solving the Navier-
Stokes for compressible flows. The approach is deals with arbitrary complex
geometries. The computational domain is subdivided into a number of grid cells
with unique (i, j.k) coordinates. Integrating Eq. 2.1 over a volume Ω yields:∫

Ω

∂W
∂ t

dΩ+
∫

Ω

div(F̄)dΩ = 0 (2.2)

where F̄ = ( f − fv,g−gv,h−hv) is the flux tensor. Applying the Gauss divergence
theorem gives: ∫

Ω

∂W
∂ t

dΩ+
∮

∂Ω

F̄ ·~ndS = 0 (2.3)

with~n the unit normal vector, always pointing in the outward direction of the ∂Ω

boundary of Ω. Eq. 2.3 states that the time rate of the change in W inside the
domain Ω should equal the sum of the fluxes entering or leaving the boundaries of
the domain. For a structured grid, if Ωi, j,k the cell volume and Wi, j,k the approximate
average value of W in this cell, located at its center for cell-centered schemes.
Eq. 2.3 can be approximated as:

d
dt
(Ωi,i,kWi, j,k) =−Ri, j,k (2.4)

where we use the residual term Ri, j,k to denote every term on the right hand side
of the equation. This term includes the discretization of source terms. However,
when no source terms are taken into account the term Ri, j,k is the net flus leaving
and entering the cell from each face, i.e.:

Ri, j,k = ri+1/2, j,k− ri−1/2, j,k + ri, j+1/2,k−
ri, j−1/2,k + ri, j,k+1/2− ri, j,k−1/2 = ∑

NF
m=1 Fm∆Sm

with NF the number of control volume faces, Fm the flux projected on the surface
and ∆Sm = ||~Sm|| the area of the face with surface vector ~Sm = (Sm

x ,S
m
y ,S

m
z ).
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2.1.2 Flux calculation

To approximate the flux tensor F at each surface, a distinction is made between
the inviscid and the viscous part (F = F I +FV ) of the fluxes. In the following, we
focus on the numerical schemes used in the present studies.

Central scheme

Starting with the inviscid fluxes, in the cell-centered central scheme [JST81], the
flux F I at the m surface is calculated using the arithmetic average of the state vector
W at this cell side from the conservative variables on both side of the face. As
an example, for the (i−1/2, j,k) face of the control volume (i, j,k) the respective
convective flux with a second-order of accuracy scheme can be built as:

F I
i−1/2, j,k = F I(Wi−1/2, j,k) with Wi−1/2, j,k =

1
2
(Wi, j,k +Wi−1, j,k)

This evaluation is generally used for steady state solutions. Instead of averaging the
state variables, another approach can use the average of the flux tensors. Following
[RS14], the 3D Navier-Stokes equations can be re-written in a skew-symmetric
form as:
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Therefore, an equivalent formulation for the nonlinear tensor:

F =
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can be used in calculating each component of the flux tensor from the computed
state vector from a direct discretization. This approach adds stability in the central
scheme.

Artificial dissipation

The central scheme needs to be augmented by the addition of artificial viscosity.
Following [ST87], second and fourth order differences of the state vector - multiplied
by a scaling factor and weights - are added to the central fluxes. The second order



2.1. COMPUTATIONAL FLUID DYNAMICS 21

artificial viscosity term is used near discontinuities for stability while the fourth
order dissipation term to suppress odd/even decoupling of the solution. After
addition of the dissipative terms, Eq.2.4 writes:

d
dt
(Ωi,i,kWi, j,k) =−Ri, j,k +Di, j,k (2.5)

with D the dissipation operator. Analogous to the discretization of the convec-
tive fluxes, the dissipative fluxes are introduced for each equation to preserve the
conservative form of the discretized equation. The operator is split as:

Di, j,k = di+1/2, j,k−di−1/2, j,k +di, j+1/2,k−
di, j−1/2,k +di, j,k+1/2−di, j,k−1/2

(2.6)

For the (i−1/2, j,k) face of the control volume (i, j,k) the respective dissipative
flux can be calculated:

di−1/2, j,k = Λi−1/2, j,k

[
ε
(2)
i−1/2, j,k(Wi, j,k +Wi−1, j,k)−

ε
(4)
i−1/2, j,k(Wi+1, j,k−3Wi, j,k +3Wi−1, j,k−Wi−2, j,k)

]
where Λ a scaling factor used to relate the dissipative flux to the magnitude of the
convective flux through the cell side. Performing the addition in Eq. 2.6 only second
and fourth order differences are produced. The coefficients ε(2) and ε(4) are used to
locally adapt the dissipative fluxes. It is desirable for the second order dissipation
term to be small except in regions of large pressure gradients. In addition, the fourth
order difference should be used everywhere except in regions where the second
order dissipation term is large, in order to disappear in the vicinity of a discontinuity.
The ε(2) coefficient is directly related to the normalized pressure gradient through:

µi, j,k =

∣∣∣∣ pi+1, j,k−2pi, j,k + pi−1, j,k

pi+1, j,k +2pi, j,k + pi−1, j,k

∣∣∣∣
with which the sensor νi+1/2, j,k = max(µi−1, j,k, µi, j,k) adjusts the values of the
coefficients as:

ε
(2)
i−1/2, j,k = k(2)νi+1/2, j,k

ε
(4)
i−1/2, j,k = max(0, k(4)− ε

(2)
i−1/2, j,k)

Typical values for the constant parameters are 0.5≤ k(2) ≤ 1 and 0.01≤ k(4) ≤ 0.05.
For subsonic flows, the second order artificial dissipation is set to zero. The scaling
factor can be estimated by evaluating the spectral radius of the Jacobian matrix
Ac = ∂ (F̄ I ·S)/∂W as:

Λi−1/2, j,k = λ
i
i−1/2, j,k +λ

j
i−1/2, j,k +λ

k
i−1/2, j,k

with:
λ

m
i−1/2, j,k =

1
2
(λ m

i−1, j,k +λ
m
i, j,k)
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and:
λ

m = |Sm
x u+Sm

y v+Sm
z w|+ c

√
(Sm

x )
2 +(Sm

y )
2 +(Sm

z )
2

where c the speed of sound. In order to switch of the artificial dissipation terms in
viscous region, a damping function can be included:

di−1/2, j,k =

(
V
||~U∞||

)2n

di−1/2, j,k

with n= 1,2 or 3, V = sqrt(u2+v2+w2) and ||~U∞|| the magnitude of the freestream
velocity.

Roe’s upwind scheme

The flux-difference splitting schemes evaluate the convective fluxes at a face of the
control volume from the left and right state by solving the Riemann problem. The
two states are in general discontinuous and the flux-difference splitting computes
the intermediate flux according to the propagation of wave components (both the
direction and the information itself). In Roe’s scheme, an approximate Riemann
solver is used. In this section, the second order Total Variation Diminishing (TVD)
[Har83] version of Roe’s scheme is presented. The Monotone Upwind Schemes for
Conservation Laws (MUSCL) extrapolation [Yee97] is also applied. The inviscid
flux at the (i+1/2, j,k) cell face of the control volume (i, j,k) reads:

F I
i+1/2, j,k = 1

2

(
F I(W L

i+1/2, j,k)+F I(W R
i+1/2, j,k)

)
−

1
2

∣∣∣Āroe(W L
i+1/2, j,k,W

R
i+1/2, j,k)

∣∣∣(W R
i+1/2, j,k−W L

i+1/2, j,k

)
where W L

i+1/2, j,k and W R
i+1/2, j,k the values of the conservative variables at the left

and right state extrapolated on the cell side. The Āroe matrix is Roe’s approximate
Riemann solver and is derived directly from the convective flux Jacobian Ac =
∂F I/∂W (see Appendix B.1) when the flow variables are replaced by the averaged
values:

ρ =
√

ρRρL

u j = [(u j
√

ρ)R +(u j
√

ρ)L]/(
√

ρR +
√

ρL)

H = [(H
√

ρ)R +(H
√

ρ)L]/(
√

ρR +
√

ρL)

with H = E + p
ρ

the total enthalpy. Since Āroe(W L,W R) has a complete set of real
eigenvalues and eigenvectors, the |Āroe| is calculated from:

|Āroe|= T̄ |Λ̄roe|T̄−1

where T̄ and T̄−1 the right and left eigenvectors of Āroe and Λ̄roe the diagonal matrix
of its eigenvalues (see Appendix B.1). These can be evaluated from the averaged



2.1. COMPUTATIONAL FLUID DYNAMICS 23

values. The absolute eigenvalues are redefined to avoid the violation of the entropy
condition due to shock expansion:

|λ̄ k
roe|=


|λ̄ k

roe| i f |λ̄ k
roe| ≥ ε

1
2ε

[
(λ̄ k

roe)
2 + ε2

]
i f λ̄ k

roe ≤ ε

where ε is scaled with the free stream velocity, the speed of sound and the surface
vector at the interface as: ε = ε0(U∞ + c∞)|s|. The left and right states at the (i, j,k)
cell interfaces are derived from the MUSCL interpolation:

W L
i+1/2, j,k = Wi, j,k +

(
1+Φ̄

4 ∆̄i+1/2, j,k +
1−Φ̄

4 ∆̄i−1/2, j,k

)
W R

i−1/2, j,k = Wi, j,k−
(

1+Φ̄

4 ∆̄i−1/2, j,k +
1−Φ̄

4 ∆̄i+1/2, j,k

)
The parameter Φ̄ controls the accuracy of the TVD upwind scheme. Using Φ̄ =−1
results in a second order fully upwind scheme and Φ̄ = 1/3 in a scheme based on a
third-order scheme for the scalar convection. The limited slopes can be calculated
as:

∆̄i+1/2, j,k = minmod
[
Wi+1, j,k−Wi, j,k,ω(Wi, j,k−Wi−1, j,k)

]
∆̄i−1/2, j,k = minmod

[
Wi, j,k−Wi−1, j,k,ω(Wi+1, j,k−Wi, j,k)

]
with 1 ≤ ω ≤ (3− Φ̄)/(1− Φ̄) a compression parameter. Practically, the upper
limit of ω is always used. The minmod function is defined as:

minmod(u,v) =


u i f |u|< |v| and uv > 0
v i f |u|> |v| and uv > 0
0 i f uv < 0

Viscous fluxes

The control volume for the viscous fluxes FV is set the same as for the inviscid
fluxes. Similarly to the convective fluxes using a second-order central scheme, the
viscous fluxes through the (i−1/2, j,k) face of the control volume (i, j,k) are:

FV
i−1/2, j,k = FV (Wi−1/2, j,k) with Wi−1/2, j,k =

1
2
(Wi, j,k +Wi−1, j,k)

where the viscous flux tensor is given by F̄V = ( fv,gv,hv). The values of the
velocity components, the viscosity and the heat conduction coefficient are linearly
interpolated at each face. The evaluation of the temperature and velocity gradients
is done using Green’s theorem. By shifting the control volume appropriately, we
define a new domain with its faces passing through the cell centers of the discretized
domain. To calculate the gradients of a value φ at the center of this shifted control
volume:

∇φ =

∫
Ω̃

∇φΩ̃∫
Ω̃

dΩ̃
=

1
Ω̃

∫
∂ Ω̃

φdS̃ (2.7)
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with Ω̃ the shifted control volume and dS̃ the face pacing through the cell centers.
At the cell corners, i.e. the rest of the faces of the shifted control volume, the average
values of the variables are used. The contributions of the viscous fluxes can be
summed up, completing the spatial discretization.

2.1.3 Temporal discretization

The separate temporal and spatial discretization of the governing equations leads for
a control volume I ≡ (i, j,k) to a system of coupled ordinary differential equations
to be integrated in time:

d(ΩW )I

dt
=−RI

Assuming a static grid, the time derivative can be approximated [CS88] by the
following linear two-step method:

(1+ξ )Ω
∆W n

∆tn −ξ Ω
∆W n−1

∆tn−1 =−
(
θRn+1 +(1−θ +β )Rn−βRn−1) (2.8)

where ∆W n = W n+1−W n. For simplicity the cell indices are omitted here. For
constant time step, the time increment is ∆tn =∆tn−1 =∆t. For the family of implicit
schemes (θ 6= 0) the condition for second-order accuracy in time is β +θ = ξ +1/2
and the additional condition for third-order accuracy is ξ = 2θ −5/6. For unsteady
flows, the second-order implicit backward-difference scheme is derived with θ = 1,
ξ = 1/2 and β = 0 for a constant time step. For the first time step, since W−1 is not
available, the backward Euler scheme can be used, derived by setting ξ = 0. Since
this scheme is only first order accurate, the procedure might require the reduction of
the first time step.

Dual time stepping

The dual time-stepping technique is based on the second-order time accurate version
of Eq. 2.8. We start by building the unsteady residual R as:

R(W n+1) = (1+ξ )Ωn+1 ∆W n

∆t −ξ Ωn ∆W n−1

∆t +θRn+1 +(1−θ +β )Rn−βRn−1

= θRn+1 +(1+ξ )Ωn+1 W n+1

∆tn +Q
(2.9)

where all the terms constant during the time-stepping are gathered in the source
term Q. The following system of ordinary differential equations can be solved:

d(Ωn+1U)

dt ′
+R(U) = 0 (2.10)

where U ≈W n+1 and t ′ a fictitious time. Integrating Eq. 2.10 until a steady state
is reached will provide a solution for each ∆t time step. In the case of mov-
ing/deformable grids, the Ωn+1 has to satisfy the Geometry Conservation Laws



2.1. COMPUTATIONAL FLUID DYNAMICS 25

(GCL). Any appropriate (explicit or implicit) time integration method can be used
for the solution of Eq. 2.10. The implementation for an implicit scheme for the
solution is examined. Linearization of the unsteady residual reads:

R(U l+1)≈R(U l)+
∂R

∂U

∣∣∣∣
l
(U l+1−U l) (2.11)

and the the flux Jacobian defined from Eq. 2.9:

∂R

∂U
= θ

∂R
∂W

+(1+ξ )
(Ωn+1)

∆t
¯̄I

with ¯̄I the identity matrix. Formulating Eq. 2.10 as an implicit scheme:

d(Ωn+1U l)

dt ′
=−R(U l+1) (2.12)

and combining with Eq. 2.11 and 2.1.3 gives:(
Ωn+1

∆t ′
¯̄I +(1+ξ )

Ωn+1

∆t
¯̄I +θ

∂R
∂W

∣∣∣∣
l

)
︸ ︷︷ ︸

implicit operator

∆U l =−R(U l) (2.13)

where ∆U l = U l+1 −U l . The above written equation can be solved with any
methodology employed for a steady state problem.

Implicit time integration for steady state problems

The implicit operator is a sparse, nonsymmetric block matrix with a dimension
equal to the total number of cells. It only affects the convergence rate of the scheme
and has no influence on the accuracy of the steady state solution which depends only
on the explicit operator on the right hand side of Eq. 2.13. The solution of Eq. 2.13
requires the inversion of the implicit operator. Iterative methods are employed
in practical problems to limit the amount of memory and the computational cost
needed in this procedure. In the absent of source terms, the Jacobian flux reads:

∂R
∂W

=
NF

∑
m=1

∂ (F I)m

∂W
∆Sm−

NF

∑
m=1

∂ (FV )m

∂W
∆Sm

The derivative of the fluxes at the face m = i+1/2 can be written:

∂ (F I,V )i+1/2, j,k
∂W = ∂

∂W

{
1
2

[
F I,V (W n

i+1, j,k)+F I(W n
i, j,k)

]}
= 1

2

[
(Ac,v)i+1, j,k +(Ac,v)i, j,k

]
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where Ac,v the convective/viscous Jacobian flux. Equation 2.13, for θ = 1 and
constant volume, after linearization of the numerical fluxes, ca be re-written in a
diagonally dominant form as: [

ΩI 1
∆t ′ +ΩI (1+ξ )

∆t

]
∆Ui, j,k+[

A+
i+1/2−A−i−1/2 +A+

j+1/2−A−j−1/2 +A+
k+1/2A−k−1/2

]
∆Ui, j,k+

A−i+1/2∆Ui+1, j,k +A−j+1/2∆Ui, j+1,k +A−k+1/2∆Ui, j,k+1−

A+
i−1/2∆Ui−1, j,k−A+

j−1/2∆Ui, j−1,k−A+
k−1/2∆Ui, j,k−1 = R(U)i, j,k

where the split Jacobian matrix in the term A−i+1/2 is evaluated at the cell side i+1/2
from the state in cell (i+1, j,k), the term A+

i−1/2 at the cell side i−1/2 from cell
(i−1, j,k) etc. Following Yoon and Jameson [YJ86], the approximation used:

A± =
1
2
(A± rAI) with rA = κmax(|λAc |)

where λAc the eigenvalues of Ac. The convergence and stability properties can be
controlled through κ . The implementation of the Lower-Upper Symmetric Gauss-
Seidel (LU-SGS) method is presented by decomposing the implicit operator into a
sum of three matrices:

(L +D +U )∆U =−Rn (2.14)

with

L ≡ −(A+
i−1/2)i−1, j,k− (A+

j−1/2)i, j−1,k− (A+
k−1/2)i, j,k−1

D ≡ Ωi, j,kI 1
∆t ′ +Ωi, j,kI (1+ξ )

∆t +(
A+

i+1/2−A−i−1/2 +A+
j+1/2−A−j−1/2 +A+

k+1/2A−k−1/2

)
i, j,k

U ≡ (A−i+1/2)i+1, j,k +(A−j+1/2)i, j+1,k +(A−k+1/2)i, j,k+1

The matrix L contains the lower triangular part, U the upper triangular part and
D the main diagonal of the implicit operator. The system can be inverted using
a Symmetric Successive Over Relaxation (SSOR) method which sweeps through
the mesh on planes with constant i+ j+ k (oblique planes). The SSOR method
performs two seeps per iteration, one forward and one backward as:

(L +D)∆U p+1/2 = −Rn−U ∆U p

(U +D)∆U p+1 = −Rn−L ∆U p+1/2



2.1. COMPUTATIONAL FLUID DYNAMICS 27

In this way, the off-diagonal terms U ∆U p and L ∆U p+1/2 become known from the
previous part of the sweep and can be added to the right hand side. The LU-SGS
method is obtained by factorizing the left hand side of Eq. 2.14 as:

(L +D)D−1(D +U )∆U =−Rn

The scheme is inverted by a forward and a backward sweep:

(L +D)∆U∗ = −Rn

(U +D)∆U = D∆U∗

The LU-SGS method corresponds to the SSOR method if only one iteration is
performed. Increasing the number of iterations - i.e. the number of forward and
backward sweeps - improves the convergence rate particularly for high-aspect
ratio cell grids. As the time step increases, the LU-SSOR method reduces to an
approximate Newton’s method and increases the dependence of the convergence
rate on the initial solution.

Implicit treatment of the viscous terms

The contribution of the viscous terms should also be taken into account to ensure
the stability of the LU-SGS method. The viscous flux vector FV , being a function
of the state vector and its gradients, can be linearized as:

∆FV =
∂FV

∂Ux
∆Ux +

∂FV

∂Uy
∆Uy +

∂FV

∂Uz
∆Uz +

∂FV

∂U
∆U (2.15)

where U∗ the (∗) spatial derivative of the state vector. This can be simplified by
expressing the state vector in primitive variables Wp = (ρ,u,v,w, p)T as:

∆FV =
∂FV

∂ (Wp)x

∂Wp

∂U
∆Ux +

∂FV

∂ (Wp)

∂Wp

∂U
∆Uy +

∂FV

∂ (Wp)z

∂Wp

∂U
∆Uz (2.16)

where the last term of Eq. 2.15 is neglected. The derivation of the transformation
matrix ∂Wp/∂U between primitive and conservative variables is straightforward.
Performing a transformation to curvilinear coordinates:

∆Uκ =
∂ (∆U)

∂ξ

∂ξ

∂κ
+

∂ (∆U)

∂η

∂η

∂κ
+

∂ (∆U)

∂ζ

∂ζ

∂κ

for κ = x1,x2,x3(= x,y,z). The cross derivatives can be neglected and only deriva-
tives normal to the surface are considered. Applying this to Eq. 2.16 for the viscous
flux at the i+1/2 cell side gives in one dimension:

∆FV =
∂FV

∂ (Wp)xi

∂ξ

∂xi

∣∣∣∣
i+1/2

∂Wp

∂U

∣∣∣∣
i+1/2

(∆Ui+1−∆Ui) = B(∆Ui+1−∆Ui)
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where all the terms can be evaluated at the cell surfaces using linear interpolation.
The viscous Jacobian matrices with respect to primitive variables can be easily
derived (see Appendix B.2). The metrics can be calculated as:

∂ξ

∂κ

∣∣∣∣
i+1/2

=
1
Ω̃

Si+1/2
κ

where Ω̃ = 1/2(Ωi+1 +Ωi) denotes the shifted control volume.

LU-SGS version for Roe’s upwind scheme

Linearization of the numerical flux based on Roe’s upwind scheme results in a
diagonally dominant - but not overstabilized - linear system where the left hand side
better matches the explicit residual. For one dimension1, the linearization leads to
the following scheme: [

ΩI 1
∆t ′ +ΩI (1+ξ )

∆t

]
∆Ui +

1
2 α
[
|(Āroe)i+1/2|+ |(Āroe)i−1/2|

]
∆Ui +

1
2 α

[
A(UR

i+1/2)−|(Āroe)i+1/2|
]

∆Ui+1 −

1
2 α

[
A(UL

i−1/2)−|(Āroe)i−1/2|
]

∆Ui−1 = R(U)upw
i

(2.17)

where |Āroe| has been assumed to be constant and α a factor resulting from the
upwind extrapolation when the limiters are neglected. Finally, the inclusion of the
viscous fluxes in the linearization gives:[

ΩI 1
∆t ′ +ΩI (1+ξ )

∆t +Bi+1/2 +Bi−1/2

]
∆Ui +

1
2 α
[
|(Āroe)i+1/2|+ |(Āroe)i−1/2|

]
∆Ui +[

1
2 αA(UR

i+1/2)−
1
2 α|(Āroe)i+1/2|−Bi+1/2

]
∆Ui+1 −

[
1
2 αA(UL

i−1/2)−
1
2 α|(Āroe)i−1/2|+Bi−1/2

]
∆Ui−1 = R(U)upw

i

(2.18)

LU-SGS version for the central scheme

In order to use a central scheme for the discretization of the convective fluxes, the
implicit operator has to be modified. The fourth-order artificial dissipation terms
have to be included for numerical stability. The same structure as in Eq. 2.17 is kept

1For ease of notation.
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but the Roe matrices are replaced by the convective Jacobian Ac calculated with the
arithmetic average of the state vector at the cell face. Once more, after linearization,
the implicit operator for the central scheme can be written in one dimension as:[

ΩI 1
∆t ′ +ΩI (1+ξ )

∆t

]
∆Ui + ε

(4)
i+1/2∆Ui+2 + ε

(4)
i−1/2∆Ui−2 +

[
1
2

(
|Ai+1/2|+ |Ai−1/2|

)
+3(ε(4)

i+1/2 + ε
(4)
i−1/2)I

]
∆Ui +

[
1
2 A(Ui+1)− 1

2 |Ai+1/2|− (3ε
(4)
i+1/2 + ε

(4)
i−1/2)I

]
∆Ui+1 −

[
1
2 A(Ui−1)− 1

2 |Ai−1/2|+(3ε
(4)
i−1/2 + ε

(4)
i+1/2)I

]
∆Ui−1 = R(U)cent

i

(2.19)

The fourth-order dissipation coefficient is calculated as presented in Section 2.1.2.
The resulting pentadiagonal (in 1D) block system is solved using the LU-SGS
method. The viscous fluxes can easily be included in the linearization as in Eq. 2.18.

Convergence criterion

The L2−norm of the residual is used as a measure of the rate of convergence. For
implicit time stepping methods, the L2−norm of the residual is calculated as:

||Resn||L2 =
1

∑Ωi,i,k

√√√√
∑

(
R2

i, j,k

Vi, j,k

)
(2.20)

with R the explicit residual.

2.1.4 Boundary conditions

Boundary conditions are imposed using ghost cells, added outside the computational
domain. The values of the state vector W are calculated from the prescribed
boundary conditions. It is possible to fill the ghost cells with physical values only
for the free-stream boundary condition; for a solid wall, no physical values exist. It
is necessary to use extrapolation techniques that have correct damping properties, do
not produce a false entropy layer on the wall and work independent of the flow case.
Finally, for a multiblock strategy is, the block connectivity boundary conditions are
introduced. Across the block boundary interfaces, the values of the state vector in
the ghost cells are taken directly from the neighboring block.

For a multiblock strategy, the convergence rate degrades with the number
of blocks, and the number of time steps needed to obtain a steady state solution
increases significantly, especially for subsonic flows. To improve convergence and to
avoid stability problems related to the large number of blocks, the LU-SGS method
can be modified so that an update of the block connectivity boundary conditions
is performed between each Gauss-Seidel sweep. Performing several sweeps can
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help to better propagate information from one block to the other. The modified LU
scheme converges to the singleblock solution of the linear system, the computational
efficiency, however, is reduced due to the increase of the performed operations.
Using the update between sweeps for a large number of blocks leads to a higher
computational efficiency than the pure explicit coupling.

Wall boundary conditions

For an inviscid (slip) wall condition, the velocity vector must remain tangent to the
surface. This translates to~u ·~n = 0. The vector of convective fluxes reduces to:

F I
∣∣
wall = [0 nx pwall ny pwall nz pwall 0]T

with pwall the wall pressure and n∗ the unit normal vector components of the wall
surface. The wall pressure is extrapolated from the interior of the computational
domain using a two-point:

pwall =
1
2
(3p1− p2)

or a three-point extrapolation formula:

pwall =
1
8
(15p1−10p2 +3p3)

with pi the pressure value of the ith from the wall cell. To account for the stretching
of the grid, the exact shell distance can be used to replace the constant coefficients
in these expressions. The state vector values in the ghost cells can be calculated
from the interior as:

W0 = 2W1−W2

W−1 = 3W1−2W2

where 0 and −1 the first and second ghost cells inside the wall region and 1,2 and 3,
the first cell points just above the wall.

For a viscous flow over a solid wall, the nonslip boundary condition should be
enforced. For a stationary wall this translate to u = v = w = 0 at the surface. The
wall pressure and the convective fluxes are treated in the same was as before. For
completing the state vector in the ghost cells:

ρ0 = ρ1 , ρ−1 = ρ2 , E0 = E1 , E−1 = E2

~u0 =−~u1 , ~u−1 =−~u2

for an adiabatic wall. For a given wall temperature, the pressure is prescribed as
p−1 = p0 = p1 and the temperature can be linearly interpolated. The density and
the total energy are evaluated from the interpolated values.
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Characteristic boundary conditions

The size of the physical domain is, in general, infinite. In the finite computational
domain, artificial far field boundaries are introduced to prevent waves leaving the
domain from being reflected. To this end, the physical variables are extrapolated
using the characteristic variables. As the wave propagation is connected to the
convective part of the Navier-Stokes, only the convective flux Jacobian Ac has to
be considered. Depending on the sign of the eigenvalues of Ac, the information
can be travelling towards (for positive eigenvalues) or outwards with respect to the
computational domain. The number of conditions imposed outside the boundary is
equal to the number of positive eigenvalues. The rest are determined from inside
the domain.

For a supersonic inflow, all the conservative variables on the boundary are
determined from the freestream values. Likewise, in a supersonic outflow, all the
conservative variables at the boundary must be calculated from the solution inside
the domain. However, for a subsonic inflow, only four characteristic variables are
prescribed based on the freestream values and one should be extrapolated from the
interior of the computational domain. This leads to:

pboundary = 1/2{pa + pin−ρ0c0 [~n · (~ua−~uin)]}
ρboundary = ρa +(pboundary− pa)/c2

0
~uboundary = ~ua−~n(pa− pboundary)/(ρ0c0)

where the index 0 refers to the reference state, the in to the interior point and a to the
point outside the boundary. The unit normal vector~n = [nx ny nz]

T of the boundary
surface points always out of the domain.

Subsonic inlet & outlet

As mentioned, one characteristic variable has to be interpolated from inside the
computational domain for the subsonic inlet case. The speed of sound at the
boundary is calculated from:

cboundary =
−H −(γ−1)

(γ−1)cos2θ +2

1+ cosθ

√
[(γ−1)cos2θ +2]c2

0
(γ−1)(H −)2 − γ−1

2


where H the outgoing Riemann invariant:

H − =~uin ·~n−
2cin

γ−1

c0 the stagnation speed of sound and θ the flow angle relative to the boundary.
The static temperature, pressure, density and velocity magnitude at the inlet are
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calculated from:

Tboundary = Tt0

(
c2

boundary

c2
0

)

pboundary = pt0

(
Tboundary

Tt0

)γ/(γ−1)

ρboundary =
pboundary

RTboundary

||~uboundary||2 =
√

2cp(Tt0−Tboundary)

The index t here refers to total quantities. The velocity components at the inlet are
obtained for the prescribed flow angles. The subsonic outlet boundary can be treated
similar to the outflow boundary condition previously examined, by replacing the pa

ambient value with a prescribed static pressure at the outlet.

2.1.5 Preconditioning method

Solving the compressible equations for very low Mach numbers can significantly
increase the computational cost until convergence is reached. Preconditioning
methods are implemented to control the eigenvalues of the system and maintain
effective convergence rates at low Mach numbers by changing the differential
equations to be solved. Preconditioning methods are applicable to all Mach numbers
making the solution of the compressible Navier-Stokes the best approach to examine
high-speed flow cases with regions of low velocity or low-speed flows with density
changes due to heat sources.

Here, the preconditioning method developed for the Euler equations is ex-
amined. The method can be directly applied to the full Navier-Stokes equations
by adding the inviscid, viscous and artificial fluxes and multiply them with the
preconditioning matrix. In 3D Cartesian coordinates, the unsteady compressible
Euler equations in conservative form are written:

∂W
∂ t

+
∂ f
∂x

+
∂g
∂y

+
∂h
∂ z

= 0 (2.21)

where:
W = (ρ ρu ρv ρw ρE)T

and

f =


ρu

ρu2 + p
ρuv
ρuw

u(ρE + p)

 , g =


ρv
ρvu

ρv2 + p
ρvw

v(ρE + p)

 , h =


ρw

ρwu
ρwv

ρw2 + p
w(ρE + p)
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the convective fluxes. The preconditioned Euler equations are written:

P−1 ∂W
∂ t

+
∂ f
∂x

+
∂g
∂y

+
∂h
∂ z

= 0

where:

P−1 =



(γ−1)V 2

2β 2
(γ−1)u

β 2
(γ−1)v

β 2
(γ−1)w

β 2
(γ−1)

β 2

u (γ−1)V 2

2β 2 −1 (γ−1)u2

β 2 +1 (γ−1)uv
β 2

(γ−1)uw
β 2

(γ−1)u
β 2

v (γ−1)V 2

2β 2 −1 (γ−1)uv
β 2

(γ−1)v2

β 2 +1 (γ−1)vw
β 2

(γ−1)v
β 2

w (γ−1)V 2

2β 2 −1 (γ−1)uw
β 2

(γ−1)vw
β 2

(γ−1)w2

β 2 +1 (γ−1)w
β 2

(θ+2)(γ−1)V 2

2 − γE uψ vψ wψ ψ +1


with ψ = (γ − 1)(θ + 1), θ = (ρE + p)/(ρβ 2)− 1, V 2 = (u2 + v2 +w2) and β

a free parameter. For the solution of the system, only the spatial derivatives are
multiplied with the preconditioning matrix. The solution is no longer time-accurate,
the stationary solution however remains the same. A new set of eigenvalues and
eigenvectors are derived that correspond to the matrix PAc with Ac = ∂F I/∂W ,
F I = ( f ,g,h). The new eigenvalues are:

λpre = [U U U λ+ λ−]
T

with

λ± =
1
2
(ζV ±

√
ζ 2V 2 +4β 2(1− V 2

α2 ))

and ζ = 1+β 2/α2. The parameter β 2 should be proportional to V 2 and is typically
expressed as: β 2 = max(V 2,K) where K is a constant that depends on the inflow
conditions and the number of mesh nodes. For the artificial compressibility method,
the parameter can be computed as:

β
2 = max(K||~U∞||,CV 2)

with C a constant for the local velocity. The preconditioning matrix is added in
the calculation of the residual. The new eigenvalues are included in the numerical
scaling of the artificial dissipation and the characteristic boundary conditions.

2.1.6 Arbitrary Lagrangian Eulerian method for deformable grids

In order to take into account the mesh deformation in time, the Arbitrary Lagrangian
Eulerian (ALE) formulation is introduced in the Navier-Stokes system of equations.
The formulation is based on the spatial discretization of the moving fluid. A system
of mixed coordinates is used, expressed by:

~ξ = ~ξ (~x, t)
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where ~ξ = (ξ1,ξ2,ξ3) the coordinates of a point P in an arbitrary domain of volume
Ω′ and~x = (x,y,z) = (x1,x2,x3) a point P0 in a the reference domain with Ω0. The
determinant of the transformation Jacobian between the two domains is:

J =

∣∣∣∣ ∂ξi

∂x j

∣∣∣∣
with J satisfying the following equations:

dΩ
′ = J(~x, t)dΩ0 and

∂J
∂ t

∣∣∣∣
~x
= J(∇~ξ

· ~ug)

where ~ug = ∂ξi/∂ t the velocity of the point P with respect to the reference domain.
A physical variable φ at the point P can be expressed in the reference domain as:

φ(~ξ (~x, t)) = φ̂(~x, t)

Multiplying by J and applying a derivation in time gives:

∂ (Jφ̂)

∂ t

∣∣∣∣
P0

=
∂ (Jφ)

∂ t

∣∣∣∣
P
+

∂ (Jφ)

∂ξi

∂ξi

∂ t
= J

[
∂φ

∂ t

∣∣∣∣
P
+∇~ξ

· (φ~ug)

]
Applying this to the state vector written in the reference domain and integrating:∫

Ω0

∂ (JŴ )

∂ t
dΩ0 =

∫
Ω0

J
[

∂W
∂ t

+∇~ξ
· (W ~ug)

]
dΩ0

In the same manner, the numerical fluxes can be expressed as:∫
Ω0

∇~x
ˆ̄FdΩ0 =

∫
Ω0

J∇~ξ
F̄dΩ0

As a result, Eq. 2.2 can be written:∫
Ω0

J
[

∂W
∂ t

+∇~ξ
· (W ~ug)

]
dΩ0 +

∫
Ω0

J∇~ξ
F̄dΩ0 = 0

∫
Ω′

[
∂W
∂ t

+∇~ξ
· (W ~ug)

]
dΩ
′+
∫

Ω′
∇~ξ

F̄dΩ
′ = 0

∂

∂ t

∫
Ω′

WdΩ
′+
∫

Ω′
W

∂ (dΩ′)

∂ t
+
∫

Ω′
∇~ξ
· (F̄−W ~ug)dΩ

′ = 0

and applying the Gauss divergence theorem:

∂

∂ t

∫
Ω′

WdΩ
′+
∫

∂Ω′
(F−W ~ug) ·~n(t)dS′ = 0 (2.22)

where the temporal variation of the domain has been eliminated. It can be seen that
Eq. 2.22 which is the expression of the Navier-Stokes equations for a arbitrarily
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moving grid is identical to the formulation derived for fixed grids. As a result, the
solving procedure demonstrated up to now is directly applicable to the solution of
the moving grid. The mesh movement is taken into account through a flux term
to be added to the convective fluxes. The fluxes through a moving face can be
expressed as:

F̃ = F− (W ~ug) ·~n

Geometric Conservation Laws (GCL) can be added to preserve the conservative
properties of the numerical schemes used and avoid the apparition of numerical
discontinuities. In [ZRTC93] a Volume Conservation Law (VCL) and a Surface
Conservation Law (SCL) methodology can be found.

Modification of Roe’s upwind scheme

We will examine the modifications of Roe’s upwind scheme in the context of an
ALE formulation. By replacing the inviscid fluxes with F̃ containing the mesh
movement fluxes, we get at the (i+1/2, j,k) cell face of the control volume (i, j,k):

F̃i+1/2, j,k = 1
2

[
F I(W L

i+1/2, j,k)+F I(W R
i+1/2, j,k)−

(~ugi+1/2, j,k ·~S
i+1/2, j,k)(W L

i+1/2, j,k−W R
i+1/2, j,k)

]
−

1
2

∣∣∣Āroe(W L
i+1/2, j,k,W

R
i+1/2, j,k)−

(~ugi+1/2, j,k ·~S
i+1/2, j,k) ¯̄I

∣∣∣(W R
i+1/2, j,k−W L

i+1/2, j,k

)
with ¯̄I the identity tensor. The grid movement adds a term in the flux calculation
and results in the modification of the eigenvalues used in the calculation of the Roe
matrix. The calculation now writes:

| ˜̄Aroe|= T̄ |Λ̄roe− (~ugi+1/2, j,k ·~S
i+1/2, j,k) ¯̄I|T̄−1

2.1.7 Turbulence modelling

The Navier-Stokes equations for a compressible Newtonian fluid are written without
source terms:

∂ρ

∂ t
+

∂

∂xi
(ρui) = 0

∂

∂ t
(ρui)+

∂

∂x j
(ρu jui) =−

∂ p
∂xi

+
∂τi j

∂x j
(2.23)

∂

∂ t
(ρE)+

∂

∂x j
(ρu jH) =

∂uiτi j

∂x j
+

∂q j

∂x j

The viscous stress tensor τi j is defined as:

τi j = µ(
∂ui

∂x j
+

∂u j

∂xi
)− 2µ

3
∂um

∂xm
δi j = 2µsi j−

2µ

3
∂um

∂xm
δi j
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with δi j the Kronecker delta and si j the strain-rate tensor. Considering the Reynolds
ensemble averaging on a flow quantity φ :

φ̄ = lim
N→∞

1
N

N

∑
m=1

φm

and the Favre (mass) ensemble averaging:

φ̃ =
1
ρ̄

lim
N→∞

1
N

N

∑
m=1

φm

the various flow quantities are decomposed into a mean and a fluctuating part as:

ρ = ρ̄ +ρ
′ , p = p̄+ p′ , qi = q̄i +q′i

ui = ũi +u′′i , H = H̃ +H ′′ , E = Ẽ +E ′′

where the Reynolds decomposition is employed for the density, pressure and the
heat flux vector and the Favre decomposition for the velocity, the total enthalpy and
the total energy. The mass averaged conservation equations are written:

∂ ρ̄

∂ t +
∂

∂xi(ρ̄ ũi) = 0

∂

∂ t (ρ̄ ũi)+
∂

∂x j
(ρ̄ ũ jũi) = − ∂ p̄

∂xi
+ ∂

∂x j
(τ̃i j− ρ̄ ũ′′j u

′′
i )

∂

∂ t (ρ̄Ẽ +
ρ̄ ũ′′j u′′i

2 )+ ∂

∂x j
(ρ̄ ũ jH̃ + ũ j

ρ̄ ũ′′i u′′i
2 ) = ∂

∂x j
[ũi(τ̃i j− ρ̄ ũ′′j u

′′
i )]

+ ∂

∂x j
(q̄ j− ρ̄ ũ′′j H ′′+ τ̃i ju′′i −

1
2 ρ̄ ũ′′j u

′′
i u′′i )

with P̄ = ρ̄RT̃ and ρ̃ui = ρ̄ ũi. The Favre-averaged Reynolds stress tensor is defined
as:

ti j =−ρ̄ ũ′′i u′′j

and the turbulent kinetic energy per unit volume (i.e. the kinetic energy of the
turbulent fluctuations) as:

ρ̄K =
1
2

ρ̄ ũ′′i u′′i

The turbulent transport of heat is given from:

qti = ρ̄ ũ′′i H ′′

The term τ̃i ju′′i corresponds to the molecular diffusion of the turbulent kinetic energy

K and the term 1/2ρ̄ ũ′′j u
′′
i u′′i to the turbulent transport of K. To derive the K transport

equation, the primitive-variable form of the momentum equation is multiplied by
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u′′i and the average is taken. After proper mathematical manipulations, the exact
equation writes:

ρ̄
∂K
∂ t + ρ̄ ũ j

∂K
∂x j

= ti j
∂ ũi

∂x j︸ ︷︷ ︸
production

−
˜
τi j

∂u′′i
∂x j︸ ︷︷ ︸

dissipation rate

− ũ′′i
∂ p̄
∂xi︸ ︷︷ ︸

pressure work

+
˜
p′

∂u′′i
∂xi︸ ︷︷ ︸

pressure dilatation

+ ∂

∂x j
( τ̃i ju′′i︸︷︷︸

molecular diffusion

− ρ̄ ũ′′j K︸ ︷︷ ︸
turbulent transport

− p̃′u′′j︸︷︷︸
pressure diffusion

)

The equation for the complete Reynolds stress tensor can be derived in the same
manner and assumes a similar form. We denote the production term as P and
the dissipation rate is written as ρ̄ε . It should be noted that both the pressure
work and the dilatation terms vanish for incompressible flows. The whole set of
Favre-averaged equation in conservative form is summarized:

∂ ρ̄

∂ t +
∂

∂xi(ρ̄ ũi) = 0

∂

∂ t (ρ̄ ũi)+
∂

∂x j
(ρ̄ ũ jũi) = − ∂ p̄

∂xi
+ ∂

∂x j
(τ̃i j + ti j)

∂

∂ t (ρ̄Et)+
∂

∂x j
(ρ̄ ũ jHt) = ∂

∂x j
[ũi(τ̃i j− ti j)]

+ ∂

∂x j
(q̄ j−qt j + τ̃i ju′′i − ρ̄ ũ′′j K)

ρ̄
∂K
∂ t + ρ̄ ũ j

∂K
∂x j

= P− ρ̄ε− ũ′′i
∂ p̄
∂xi

+ p̃′ ∂u′′i
∂xi

+ ∂

∂x j

(
τ̃i ju′′i − ρ̄ ũ′′j K− p̃′u′′j

)
with Et = Ẽ +K and Ht = H̃ +K. As the P and the ρ̄ε terms describe inter-
scale energy transfers, they should cancel out, leaving only two terms of turbulent
spatial transfers (i.e. the molecular diffusion and the turbulent transport of K) in the
conservation of energy equation.

Modelling closure

Based on the Boussinesq hypothesis, the Favre/Reynolds stress tensor can be rewrit-
ten as a linear function of the mean strain rate, in analogy to the shear tensor for the
laminar flow. This reads:

ti j = 2µt s̃i j−
2
3

(
µt

∂ ũm

∂xm
δi j− ρ̄K

)
δi j

where µt stands for the eddy viscosity that depends on local flow conditions and
expresses the proportionality between the Reynolds stresses and the strain rate. The
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turbulent heat-flux vector can be set proportional to the mean temperature gradient
as:

qti =−
µtCp

Prt

∂ T̃
∂xi

=−kt
∂ T̃
∂xi

with kt the turbulent thermal conductivity coefficient and Prt the turbulent Prandtl
number, assumed to be constant. The molecular diffusion and the turbulent transport
of K can be grouped together and approximated as:

τ̃i ju′′i − ρ̄ ũ′′j K = (µ +
µt

σK
)

∂K
∂x j

with σK a constant balancing the effects of turbulent and molecular viscosity on the
diffusion of the turbulent kinetic energy. The dissipation rate is written according to
the turbulent kinetic energy as:

ρ̄ε =
˜
τi j

∂ui

∂x j

Concerning the remaining terms (i.e. pressure dilatation, diffusion and work), there
is a lack of a generally accepted modelling approach. These terms are often ignored
for incompressible flows while various (non-universal) empirical proposals exist for
compressible flows, depending on the turbulent modelling approach followed.

First-order closures: K− ε model

The K− ε model introduces two transport equations, one for the turbulent kinetic
energy and one for the dissipation. Inherently, it is a model well adapted to high
Reynolds number flows. The Navier-Stokes equations for turbulent flows for a
viscous, perfect gas can be written for the averaged variables and with the addition
of a source term:

∂

∂ t
(W )+

∂

∂x
( f − fv)+

∂

∂y
(g−gv)+

∂

∂ z
(h−hv) = S (2.24)

where W is given by:

W = (ρ̄ ρ̄ ũ ρ̄ ṽ ρ̄w̃ ρ̄Ẽ ρ̄K ρ̄ε)T

The convective fluxes are:

f =



ρ̄ ũ
ρ̄ ũ2 + p∗

ρ̄ ũṽ
ρ̄ ũw̃

ũ(ρ̄Ẽ + p∗)
ρ̄ ũK
ρ̄ ũε


, g =



ρ̄ ṽ
ρ̄ ṽũ

ρ̄ ṽ2 + p∗

ρ̄ ṽw̃
ṽ(ρ̄Ẽ + p∗)

ρ̄ ṽK
ρ̄ ṽε


, h =



ρ̄w̃
ρ̄w̃ũ
ρ̄w̃ṽ

ρ̄w̃2 + p∗

w̃(ρ̄Ẽ + p∗)
ρ̄w̃K
ρ̄w̃ε
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where p∗ = p̄+2/3ρ̄K. The viscous fluxes and the source term are defined as:

fv =



0
δτxx

δτxy

δτxz

(δτŨ)x−δqx +σK
x

−σK
x

−σ ε
x


, gv =



0
δτyx

δτyy

δτyz

(δτŨ)y−δqy +σK
y

−σK
y

−σ ε
y



hv =



0
δτzx

δτzy

δτzz

(δτŨ)z−δqz +σK
z

−σK
z

−σ ε
z


, S =



0
0
0
0
0

SK

Sε


with δτi j = τ̃i j + ti j, δqi = q̄i + qti, σK

i = −(µ + µt
σK

∂K
∂xi

) and σ ε
i = −(µ + µt

σε

∂ε

∂xi
).

The source terms are treated differently in the various model versions. The low-
Reynolds version of the model requires the addition of damping functions to stay
valid through the viscous sublayer up to the wall boundary. These should ensure that
K ∼ y2

w and ε/K ∼ 2ν/y2
w as yw→ 0, with yw the normal wall distance. However,

the addition of damping functions results in stiff source terms that requires high
grid resolution close to the wall boundaries and implicit time-stepping schemes.

Chien’s low-Reynolds number model

Chien’s version of K− ε model [Chi82] employs low-Reynolds number turbulence
damping towards the wall. It differ from the standard version in the form of
the source terms, the values of the closure coefficients and the surface boundary
conditions. Two dimensionless parameters are introduced:

Ret =
K2

νε
and y+ =

uτyw

ν

where Ret the turbulent Reynolds number and uτ =
√

τ̃w/ρ̄ the friction velocity
with τ̃w the shear stress on the wall. The source terms are written as:

SK = P− ρ̄ε− 2µK
y2

w

Sε =Cε1 f1
ε

K
P−Cε2 f2ρ̄

ε2

K
− 2µε

y2
w

e−0.5y+

The damping function employed by Chien were:

fµ = 1− e−0.0115y+ , f1 = 1 and f2 = (1−0.22e−
Re2

t
36 )
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and the closure coefficients:

Cµ = 0.09 , Cε1 = 1.35 , Cε2 = 1.8 , σK = 1.0 and σε = 1.3

The boundary conditions at the solid wall for the turbulent kinetic energy and the
dissipation rate are K = 0 and ε = 0. This implies that µt = 0 at the wall as the
turbulent viscosity is calculated from:

µt =Cµ fµ ρ̄
K2

ε

At the inflow boundary, K and ε can be computed from pre-described values of the
turbulent intensity Tu and the length scale lt as:

K∞ =
3
2
(Tu||~U∞||)2 and ε∞ =

CµK3/2
∞

lt

Organised Eddy Simulation

The Organised Eddy Simulation (OES) approach enhances the physically correct
development of flow instabilities and coherent structures in the high Reynolds
numbers, especially in regions of non-equilibrium turbulence where the efficiency
of traditional statistical models degrades. For non-homogeneous turbulent flows,
the turbulent spectrum in the inertial range takes a different form, compared to
equilibrium turbulent flows. This was shown experimentally by rapid Particle Image
Velocimetry (PIV) measurements in [BPH06] and consequently, these modifications
should be taken into account by the turbulence modelling. In OES, the decomposi-
tion of a variable u(x, t), based on the ensemble (phase) averaging of the flow, takes
the form:

u(x, t) =< u(x, t)>+u′(x, t) (2.25)

where < u(x, t) >= u(x)+uc(x, t) the ensemble average value which is a sum of
a temporal mean u(x), and coherent (resolved) fluctuations uc(x, t). This decom-
position reduces to a phase-averaging if only one periodicity is pronounced. The
approach splits the turbulence energy spectrum in two parts as shown in Fig.2.1.
The first, regroups all the organized (coherent) in space and time motions to be
resolved, and the second, the chaotic turbulence motion to be modelled. The present
approach does not differentiate vortex structures according to their size, as in the
Large Eddy Simulation (LES) approach, but instead, according to their organised or
chaotic character. The chaotic part of the turbulence spectrum is extended over all
the wavenumbers as in statistical modelling approaches. In OES however, the turbu-
lence stresses are modelled by re-evaluating the length and time turbulence scales,
to account for the modifications occurring on the inertial range of the turbulent
spectrum [PCC+07].

This non-intrinsically 3D approach targets the treatment of non-equilibrium
and near-wall turbulence. Traditional turbulence modelling approaches based on the
Reynolds/Favre averaging of the flow (URANS2) relate the unresolved turbulent

2Unsteady Reynolds Averaged Navier-Stokes
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stresses to the velocity deformations through the eddy viscosity. In regions of non-
equilibrium turbulence, it has been found that strong misalignments appear between
the principal axes of the turbulent stresses and the local strain rates. This stress-
strain misalignment due to non-equilibrium turbulence and the existence of coherent
structures has been experimentally investigated by Bourguet et al. [BBPH07]. The
effect of turbulent stresses is not purely dissipative and these non-equilibrium effects
should be appropriately modelled.

Figure 2.1: Turbulence energy spectrum split in OES: the organized motions to
be resolved, and the chaotic motion to be modelled; κc the wavenumbers of the
coherent processes.

This modification of the structural properties of turbulence due to the devel-
opment of coherent structures were modelled by Y. Hoarau [Hoa02] for strongly
separated flows around wings. The cross-term of the turbulence anisotropy tensor
was found to increase in the near-wall regions for adverse pressure gradient bound-
ary layers. As a result, a reduced Cµ value has been derived through DNS studies
and second-order model closures, and was adopted in the OES approach. The
non-constant behavior of the turbulence cross-stress u′v′/K had also been evaluated
in non-equilibrium turbulent boundary layers by Bourdet et al. [BBH+07] and
was found to retain lower values when compared to measurements in equilibrium
boundary layers.

The modelling of the stress-strain misalignment gave birth to the anisotropic ex-
tension of the OES approach developed in [BBHEA08]. A tensorial eddy-viscosity
model was adopted to capture the stress-strain misalignment and the complete set
of equations derived from second-order closure modelling was presented in detail.
This formulation led to a directional Cµ coefficient which admitted the equilib-
rium turbulence value (0.09) in flow regions where turbulence production is equal
to the dissipation, and lower values (0.02− 0.03) in flow regions deviating from
equilibrium. Furthermore, the Improved OES (IOES) approach was developed in
[SGJG+15] where a reinjection of small scale turbulence through stochastic source
terms led to mitigation of the excessive (due to the downscale assumptions) turbu-
lence diffusion in shear layers and provided improved predictions. This approach is
examined in detail in the following section.

For the simplified OES version, the transport equations produced via the
ensemble (phase) averaging take the same form with Eq. 2.24 previously examined,
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where the Reynolds/Favre averaged quantities are replaced by the ensemble (phase)
averaged ones and the turbulent stresses are expressed:

ti j = 2µt < si j >−
2
3

(
µt

∂ < um >

∂xm
δi j− ρ̄K

)
δi j

i.e. in relation to the ensemble averaged quantities. This simplified version of the
OES has been adopted in the present study and implemented based on Chien’s
version of the K− ε model. In order to account for non-equilibrium turbulence and
the modifications on the continuous part of the (modelled) spectrum, OES consists
of a reconsideration of the closure constants and an adapted eddy-viscosity damping
towards the wall:

fµ = 1− e−0.0002y+−0.000065(y+)2
, f1 = 1 and f2 = (1−0.22e−

Re2
t

36 )

Cµ = 0.02−0.04 , Cε1 = 1.35 , Cε2 = 1.8 , σK = 1.0 and σε = 1.3

where a reduced Cµ value is adopted in accordance with what has been previously
examined. The improved damping function fµ , introduced in [JB94], has been
proposed in order to provide a milder attenuation of the eddy viscosity towards the
wall, compared to RANS modelling for turbulence flows in statistical equilibrium.

Stochastic forcing

The decomposition in Eq. 2.25 can be further expanded by splitting the turbulent
fluctuation as follows:

u′(x, t) = û(x, t)+ ǔ(x, t)

where the downscale û(x, t) part of the turbulent fluctuations, responsible for the
direct energy cascade (forward scatter), was separated from the upscale ǔ(x, t) part,
responsible for the backscatter of the turbulent energy. The direct turbulent energy
cascade assumption, where energy flows from larger structures to smaller ones,
and the upscaling, where the reverse energy transfer is observed, will be discussed
in more detail in Chapter 3. The additional decomposition results in multiple
second-order correlation terms to be modelled; the ûi(x, t)ǔ j(x, t), û j(x, t)ǔi(x, t)
and ǔi(x, t)ǔ j(x, t) tensors are introduced.

In the approach here presented, all the additional terms appearing in the turbu-
lent transport equations are regrouped and their effect is accounted for through a
reinjection of turbulence. The turbulence reinjection is introduced by forcing terms
added in the transport equations of turbulence kinetic energy and dissipation. These
terms act as production terms and represent the effects of small scale fluctuations
that produce upscale energy transfers (back-scatter) in the case of inhomogeneous
turbulent flows. They are included in the turbulent transport equations in order
to limit the effects of turbulent diffusion which is a product of the direct cascade
assumptions. The direct cascade is widely employed in the majority of turbulence
modelling approaches and may provide excessive turbulence diffusion rates which
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is detrimental to the force prediction. The present approach can mitigate this incon-
venience without significantly increasing the grid size to prohibitive - in the context
of industrial applications - levels.

The stochastic terms are built from low energy high-order modes educted from
a Proper Orthogonal Decomposition (POD - see Appendix A) of the flow. In this
way, the regions of intense shearing can be identified. In these regions, the small
scale turbulence kinetic energy is then reinjected, modifying the local turbulent
length scales. The stochastic nature of the upscaling dynamics can be represented
with a random variation of the forcing in time. The approach was developed first in
[SGJG+15] (IOES) for 2D simulations and it was extended in the present thesis to
three-dimensional flows. The K− ε−OES model can be rewritten with the addition
of the stochastic forcing terms:

∂ (ρ̄K)
∂ t + ∂

∂x j
(ρ̄ ũ jK) = ∂

∂x j

[(
µ + µt

σK

)
∂K
∂x j

]
+ ti j s̃i j− ρ̄ε− 2µK

y2
w
+SPOD

∂ (ρ̄ε)
∂ t + ∂

∂x j
(ρ̄ ũ jε) = ∂

∂x j

[(
µ + µt

σε

)
∂ε

∂x j

]
+Cε1 f1

ε

K ti j s̃i j−Cε2 f2ρ̄
ε2

K

− 2µε

yw
e−0.5y+ +

Cε2S2
POD

K∞

where the source terms, after a dimensional analysis, take the following form:

SPOD = r̃Cµ ρ̄
K2

∞ +K2
POD

νt∞

with νt∞ the upstream turbulent viscosity, Cµ the coefficient calibrated by the OES
approach and r̃ a randomly generated number varying in the interval [0,1]. The
KPOD is calculated from the time average of the POD reconstructed velocity field:

KPOD =
1
2
(u′2recon + v′2recon +w′2recon)

These source terms can be added to the right hand side of the turbulent equations
and be treated as constants in the linearization of the source terms, as it will be
presented in the following section.

Treatment of the source terms

The turbulent transport equations can be decoupled from the system and be solved
separately. Freezing the eddy viscosity, the mean flow is updated. Then, turbulence
is calculated in the next time step. The numerical schemes adopted for the discretiza-
tion of the convective and viscous fluxes apply for the turbulent equations as well.
In practice however, various discretization approaches dedicated to the turbulent
equations have been developed and can be found in the literature [Wil06]. In this
section, only the treatment of the source terms is examined. For implicit schemes,
the source terms should be evaluated at the n+1 time step:

S n+1
K = S n

K +
∂SK

∂ (ρ̄K)

[
(ρ̄K)n+1− (ρ̄K)n]+ ∂SK

∂ (ρ̄ε)

[
(ρ̄ε)n+1− (ρ̄ε)n]
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S n+1
ε = S n

ε +
∂Sε

∂ (ρ̄K)

[
(ρ̄K)n+1− (ρ̄K)n]+ ∂Sε

∂ (ρ̄ε)

[
(ρ̄ε)n+1− (ρ̄ε)n]

The source Jacobian matrix is written:

J =
∂S

∂U
=

[
∂SK

∂ (ρ̄K)
∂SK
∂ (ρ̄ε)

∂Sε

∂ (ρ̄K)
∂Sε

∂ (ρ̄ε)

]

The term ε/K = µt/(ρ̄K), remains constant over a time step. Same goes for the y+

value as τw varies slowly per iteration. As mentioned, the stochastic forcing terms
is set constants during the times step. Finally, the term P/(ρ̄K) associated with
the turbulent production is treated as constant as well. Using these assumptions and
after linearization, the terms of the source Jacobian matrix can be estimated from:

∂SK

∂ (ρ̄K)
=

P

ρ̄K
− 2ε

K
+

2µ

ρ̄y2
w

and
∂SK

∂ (ρ̄ε)
= 0

∂Sε

∂ (ρ̄K)
= 0 and

∂Sε

∂ (ρ̄ε)
=Cε1 f1

P

ρ̄ε
−Cε2 f2

3ρ̄ε

2K
− 2µ

ρ̄yw
e−0.5y+

From these terms, only the negative part of the Jacobian (i.e. when dissipation
exceeds production) are treated implicitly in order to ensure diagonal dominance.

Hybrid turbulence models

Advanced turbulence modelling approaches have been developed to perform as a
hybrid between the conventional Favre-Reynolds statistical treatment of turbulence
(RANS) and the Large Eddy Simulation (LES) approach. The Hybrid RANS-LES
turbulence models had been derived in order to increase the predictive capability of
the turbulence modelling at high-Reynolds number flows around bodies, especially
for industrial applications.

The LES methodology solves only for the larger structures in the flow that
carry most of the energy and models smaller scale structures that are expected to
present a homogenous and universal character. LES is based on a spatial filtering
procedure of the Navier-Stokes equations through which the filtered (resolved) part
of the flow is acquired and the sub-filter (sub-grid) resulting terms remains to be
closed by appropriate methodologies. The latter, usually takes into account the
local geometric grid properties. The mesh size requirements however, significantly
increase with the Reynolds number, especially close to wall regions. As a result,
LES is limited to moderate Reynolds numbers since it remains costly for full scale
industrial applications. On the other hand, the (U)RANS system of equations offers
robustness and efficiency in capturing near-wall physics in high Reynolds numbers.
However, the URANS approach offers poor predictive efficiency in outer flow
regions because of the excessive turbulence diffusion arising from the direct cascade
assumption. To this end, in the second half of the ’90s, novel approaches were
proposed, in which the calculation resolution is adapted to the level of discretization:
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(U)RANS computations are adopted close to the wall and LES in the outer flow
regions (e.g. [Spe98a], [Spe98b])

The Detached Eddy Simulation (DES) proposed by Spalart et al. [SJSA97] is a
hybrid approach that employs the traditional statistical treatment (RANS) in regions
close to the wall and an LES approach for the calculation of eddies in the outer flow.
For this switch, a characteristic length is introduced to identify the mode in which
DES performs. For the K− ε formulation, the DES length scale is calculated from:

lDES = min(lKε ,CDES∆) (2.26)

where ∆ the largest dimension of the control volume calculated as ∆=max(∆x,∆y,∆z)
and CDES a constant equal to 0.61 (for K− ε). The lKε length scale is calculated
from lKε = K3/2/ε .

To adress the shortcomings of the DES approach, the Delayed Detached Eddy
Simulations (DDES) [SDS+06] was later proposed. DDES is employed to preserve
the Favre-Reynolds (RANS) calculation mode throughout thick boundary layers
and shallow separation regions. In DDES, the lDDES is calculated from:

lDDES = lKε − fdmax(0, lKε −CDES∆)

with fd = 1−tanh[(8rd)
3] a delaying function varying between 0 (for a DDES mode)

and 1 (for a K− ε mode). In practice, the methodology delays the transitioning to a
DES mode in order to maintain a appropriate approach close to the wall. The fd
function is calculated from:

rd = (µ +µt)
κ2

max(
√

δu,1010)y2
w

with κ = 0.41 the Karman constant and δu given from:

δu =

∣∣∣∣∣∣∣∣(∂u
∂x

∂v
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∂w
∂x

)∣∣∣∣∣∣∣∣
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+

∣∣∣∣∣∣∣∣(∂u
∂y

∂v
∂y

∂w
∂y

)∣∣∣∣∣∣∣∣
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+

∣∣∣∣∣∣∣∣(∂u
∂ z

∂v
∂ z

∂w
∂ z

)∣∣∣∣∣∣∣∣
2

The modification on the turbulent kinetic equation are observed in the following
equation:

∂ (ρ̄K)

∂ t
+

∂

∂x j
(ρ̄ ũ jK) =

∂

∂x j

[(
µ +

µt

σK

)
∂K
∂x j

]
+P− ρ̄K3/2

lD(D)ES
−SK

with lD(D)ES = lKε = K3/2/ε , the dissipation rate reduces to −ρ̄ε and the turbulent
kinetic energy equation takes a form identical to the statistical modelling. In region
where the mesh is sufficiently fine compared to the turbulent length scales (e.g. away
from the solid boundaries) the dissipation rate becomes grid-dependent. As the
dissipation term grows, the effective turbulent viscosity decreases. At equilibrium,
i.e. where turbulent production and dissipation are equal, the model reduces to a
Smagorinski-like subgrid-scale model used in LES [SSST08].
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An Improved DDES (IDDES) approach was proposed in [SSST08]. IDDES
includes empirical functions that, depending on the flow, activate either the DDES
branch of the model or the Wall-Modelled LES (WMLES) branch to ensure a
physically correct solution. The DES approach and its improved versions have
been widely investigated in recent years in European Research projects with strong
industrial interest [HBR09a], [HBR09b]. Furthermore, in the context of DES/DDES,
the RANS part can be replaced by the OES approach which better captures the
non-equilibrium and near-wall turbulence as mentioned before. This approach,
namely DES/DDES-OES, has been proven highly efficient for complex flows with
strong flow detachment [BBHEA08]. Finally, it is mentioned that the stochastic
forcing methodology previously described can be directly added to the right hand
side of the DES/DDES equations.
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2.2 Computational Structural Mechanics

In this second part of the present chapter, the principles of modelling and solution
procedures for structural mechanics are presented. We closely follow [Bat96] and
[ZTF05] in deriving the basic formulations of a Finite Element (FE) analysis for
steady state elastic equilibrium problems. Some axes of nonlinear analysis are also
examined.

2.2.1 Field equations & boundary conditions

In this section only elastic materials are discussed. For the exact solution of the
structural problem, an equilibrium of forces must be satisfied. This is expressed in
general steady 3D analysis as:

∂σi j

∂x j
+ f b

i = 0 (2.27)

inside the body, where fff b the body (inertial) forces and σ̄ the (Cauchy) stress tensor
given from:

σ̄ =

 σxx τxy τxz

τyx σyy τyz

τzx τzy σzz


The equilibrium on the surface boundaries of the body requires:

σi jn j = f S
i on S f

where S f part of the surface where forces are applied and n j the unit vector normal
to the surface. Inside the body, the strain-displacement relation writes:

εi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
for small deformations (i.e. |εi j|<< 1), with ε̄ the strain tensor and uuu the displace-
ment vector. Similar to stress boundary conditions, the compatibility requires that
the deformations are continuous and equal to the ones imposed on the boundaries,
i.e.:

ui = uS
i on Su

where Su part of the body surface with no common points with S f (S = S f ∪Su the
complete boundary). The material behavior is described by constitutive equations.
For elastic materials, the stress-strain relation relates the stresses to the arising strain
as:

σi j =Ci jkl(εkl− ε
0
kl)

where ε0
kl the strain resulting from initial conditions or other source (e.g. thermal

strain). In terms of notation, since both the stress and strain tensor are symmetric
they can be rewritten as:

σσσ = [σxx σyy σzz τxy τyz τxz]
T
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and
εεε = [εxx εyy εzz γxy γyz γxz]

T

with γi j = 2εi j. This consequently leads to rewriting the strain-displacement rela-
tions as:

εεε = S̄ uuu

with S̄ the strain operator, and the constitutive relation as:

σσσ = D̄(εεε− εεε
000)

with D̄ the stress-strain material matrix.

Principle of virtual displacements

For a linear analysis, we assume that the displacements are infinitesimal and D̄
does not depend on the stress state. Let us consider any arbitrary (large or small)
continuous virtual displacement field that satisfies ũ = 0 on Su. Then from Eq. 2.27
we have: ∫

Ω

(
∂σi j

∂x j
+ f b

i

)
ũidΩ = 0

which can be rewritten as:∫
Ω

[
∂ (σi jũi)

∂x j
−σi j

∂ ũi

∂x j
+ f b

i ũi

]
dΩ = 0

∫
Ω

[
−σi j

∂ ũi

∂x j
+ f b

i ũi

]
dΩ+

∫
S
(σi jũi)n jdS = 0∫

Ω

σi j
∂ ũi

∂x j
dΩ =

∫
Ω

f b
i ũidΩ+

∫
S f

f S
i ũS

i dS f

with Ω the body volume. Since:

σi j
∂ ũi

∂x j
= σi j

1
2

(
∂ ũi

∂x j
+

∂ ũ j

∂xi

)
= σi jε̃i j

due to the symmetry of the stress tensor, we can write:∫
Ω

σi jε̃i jdΩ =
∫

Ω

f b
i ũidΩ+

∫
S f

f S
i ũS

i dS f (2.28)

for the virtual strain field ε̃εε calculated from the virtual displacements. Equation 2.28
is the expression of the virtual work principle, expressed through the equivalent
principle of virtual displacements3 in a weak form, which states that the internal
virtual work is equal to the external virtual work. Consequently, the stresses and
forces are in equilibrium if and only if the principle of virtual work is satisfied. We
can rewrite Eq. 2.28 with the addition of p concentrated loads as:∫

Ω

ε̃εε
T

σσσdΩ =
∫

Ω

ũuuT fff bdΩ+
∫

S f

(ũuuS)T fff SdS f +∑
p
(ũuup)T fff p (2.29)

3This directly relates to the principle of stationarity of the total potential.



2.2. COMPUTATIONAL STRUCTURAL MECHANICS 49

2.2.2 Finite Element formulation

The body is approximated by dividing the domain in discrete finite elements con-
nected with each other at nodal points. The continuous displacements for each m
element, measured in a local coordinate system ξξξ = (ξ ,η ,ζ ), can be written as a
function of the displacements of the element nodal points. This reads:

uuu(m)(ξξξ ) = N̄(m)(ξξξ )ÛUU

where N̄(m) the displacement interpolation matrix and ÛUU the vector with every
displacement component for all the element nodes. The construction of N̄ depends
on the type of elements chosen for the solution. For iso-parametric elements, the
same shape functions (matrix N̄(m)) are used for the interpolation of the coordinates
xxx = (x,y,z) of the element.

xxx(m)(ξξξ ) = N̄(m)(ξξξ )X̂XX

The corresponding strains are taken from the strain-displacement relation:

εεε
(m)(xxx) = B̄(m)(xxx)ÛUU

where B̄(m) is obtained by differentiating N̄(m) according to S̄ (m). This procedure
uses the derivatives of the shape functions:

N̄(m)

∂xxx
= J̄−1 N̄(m)

∂ξξξ
with J̄ =


∂x
∂ξ

∂y
∂ξ

∂ z
∂ξ

∂x
∂η

∂y
∂η

∂ z
∂η

∂x
∂ζ

∂y
∂ζ

∂ z
∂ζ


The element stresses are related to the element strains from:

σσσ
(m) = D̄(m)(εεε(m)− εεε

(m)
000 )

Let us rewrite Eq. 2.29 in the context of finite elements, as a sum of integrations:

∑m
∫

Ω(m)(ε̃εε
(m))T σσσ (m)dΩ(m) = ∑m

∫
Ω(m)(ũuu(m))T fff b

(m)dΩ(m)

+ ∑m
∫

S(m)
f
(ũuuS)(m)T fff S

(m)dS f

+ ∑p(ũuup)(m)T fff p
(m)

(2.30)
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where S(m)
f the surfaces of the element that are also part of the body surface. Substi-

tuting in Eq. 2.30 the interpolations for the virtual displacements and stresses:

˜̂UUUT

∑m

∫
Ω(m)

(B̄(m))T D̄(m)B̄(m)dΩ
(m)︸ ︷︷ ︸

K̄(m)

ÛUU = ˜̂UUUT

∑m

∫
Ω(m)

(H̄(m))T fff b
(m)dΩ

(m)︸ ︷︷ ︸
RRR(m)

b

+ ∑m

∫
S(m)

f

( ˜̄NS)(m)T fff S
(m)dS f︸ ︷︷ ︸

RRR(m)
S

+RRRp

+ ∑m

∫
Ω(m)

(B̄(m))T D̄(m)
εεε
(m)
000 dΩ

(m)︸ ︷︷ ︸
−RRR(m)

0


Assembling all the elements results in:

K̄ÛUU = RRR (2.31)

with RRR = RRRb +RRRS +RRRp−RRR0 the force vector and K̄ the stiffness matrix of the
structure. The solution of the above written equation satisfies simultaneously both
element and nodal point equilibrium.

2.2.3 Nonlinear analysis

In the previous section we derived the finite element equilibrium equation for static
linear analysis. Several assumptions have entered the derivation of Eq. 2.31. If
the boundary conditions change during loading (e.g. contact between elements,
following force) or if the displacements are large, several of the assumptions used
for the evaluation of K̄ and RRR fail. The nonlinear analysis is introduced to solve
the structural problem. In the general case, the relation between external loads and
displacements can be nonlinear as the stiffness matrix can vary with displacements,
i.e. K̄ = K̄(ÛUU). The most common approach to handle nonlinear problems is the
introduction of the Newton-Raphson methodology.

Newton-Raphson method

The basic problem is to identify the equilibrium for a body under externally applied
loads. This is expressed as:

RRR = PPP

with PPP the vector of internal forces, calculated from the deformed state of the
structure by integrating the stresses over the whole volume. Starting from a point of
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equilibrium i we can apply a load increment ∆RRR so that RRRi+1 = RRRi +∆RRR. For static
analysis, the load increment can represent solely the passage to the final deformed
equilibrium state (moving from i = 0 to i = 1) or a pseudo-time marching to achieve
numerical convergence. Searching for the new equilibrium point we can write:

RRRi+1 = PPPi+1 = K̄(UUU i+1)UUU i+1

where UUU ≡ ÛUU . Linearizing the PPPi+1
4 term gives:

PPPi+1 = PPPi +
∂ K̄
∂UUU

∣∣∣∣
i
∆UUU = PPPi +(K̄t)i∆UUU

with K̄t the tangent stiffness matrix. The equilibrium is written:

(K̄t)i∆UUU = RRRi+1−PPPi

where UUU i+1 =UUU i +∆UUU . The above written equilibrium stands if the load increment
is small. If this is not true, additional iterations should be performed within each
load increment:

(K̄t)
n−1
i+1 ∆UUUn = RRRi+1−PPPn−1

i+1 (2.32)

with UUUn
i+1 =UUUn−1

i+1 +∆UUUn, to be repeated until Ri+1 = RRRi+1−PPPn−1
i+1 = 0. In practice,

a common convergence criterion can be:

||RRRi+1−PPPn
i ||

||RRRi+1||
< etol

with etol a small number (order of 10−3 to 10−5). When the pseudo-time steps are
omitted in the above described approach, we retrieve the pure Newton-Raphson
procedure. Otherwise, the incremental Newton-Raphson methodology is followed.
The latter provides a quadratic rate of convergence meaning that only a few iterations
per time step are required. However, building and inverting a new stiffness matrix
at each iteration can significantly increase the computational cost for large systems.
The modified Newton-Raphson approach only uses the stiffness matrix calculated
at the first iteration. In principle, the choice of the stiffness matrix only affects
the convergence rate of the solution as accuracy is related to the calculation of the
internal forces5.

Principle of virtual work in nonlinear mechanics

We can write the principle of virtual work at a time t +∆t at which the body is in an
equilibrium state. The difference with the procedure examined in a linear analysis is
that the current configuration is now unknown. Then, Eq. 2.28 can be rewritten as:∫

Ω|t+∆t
σi j|t+∆tδεi j|t+∆tdΩ|t+∆t =

∫
Ω|t+∆t

f b
i |t+∆tδuidΩ|t+∆t

+
∫

S f |t+∆t
f S
i |t+∆tδuS

i dS f |t+∆t = R|t+∆t

(2.33)
4The subscript i used here refers to a time-marching increment.
5See also remark for the solution of the equations of a dynamic fluid system in Section 2.1.3.
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where we changed the notation for the virtual displacements and strains to δu and
δε to associate the virtual work principle with the variational formulation. All
the derivatives and integrations in Eq. 2.33 are carried out in the current (latest)
configuration. The calculation of the stresses and strains must take into account the
deformation of the body. In the analysis, we will adopt a Lagrangian formulation,
following the body during its deformation. We define the deformation gradient as:

F̄T =

 ∂x
∂X

∂y
∂X

∂ z
∂X

∂x
∂Y

∂y
∂Y

∂ z
∂Y

∂x
∂Z

∂y
∂Z

∂ z
∂Z


where xxx = (x,y,z) the body coordinates at a time t and XXX = (X ,Y,Z) at the time 0.
From large-strain theory, the Lagrangian-Green strain tensor is given from:

ei j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi
+

∂uk

∂xi

∂uk

∂x j

)
where the derivatives are written with respect to the initial configuration. It can also
be expressed as:

δei j = FmiFm jδεmn

where δεmn the variation of the linear strain expressed for the current configuration.
An appropriate stress tensor should be used as well. The second Piola-Kirchhoff
stress tensor reads:

τi j = |F̄ |(F−1)im(F−1) jnσmn

with σmn the stress at the latest configuration. It can be proven [Bat96] that for a
stationary coordinate system, both the Green-Lagrange strain tensor and the Piola-
Kirchhoff stress tensor are invariant under rigid body rotation. This leads into
rewriting Eq. 2.33 as:∫

Ω|t+∆t

σi j|t+∆tδεi j|t+∆tdΩ|t+∆t =
∫

Ω

τmnδemndΩ = R|t+∆t

where the derivations and integrations carried out in the right hand side are per-
formed with respect to the initial (known) configuration. After splitting ei j =
εi j +ni j

6 and linearizing the equations using τi j = Di jmnεmn and δεi j ≈ δei j
7, we

end up with:∫
Ω

Di jmnεmnδεi jdΩ+
∫

Ω

τi jδni jdΩ = R|t+∆t −
∫

Ω

τi jδεi jdΩ

which constitutes the total Lagrangian formulation of the off-balance virtual work.
Due to the linearization, an error is introduced in the calculation of the internal work.

6It can be deduced that ni j =
1
2

∂uk
∂xi

∂uk
∂x j

.
7This is written with respect to the initial configuration.
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Multiple iterations should be executed for the minimization of this error and the
identification of the equilibrium. The above written equation can be modified as:∫

Ω

Di jmn∆εmnδεi jdΩ︸ ︷︷ ︸
linear part

+
∫

Ω

τ
k
i jδ∆ni jdΩ︸ ︷︷ ︸

nonlinear part

= R|t+∆t −
∫

Ω

τ
k
i jδek

i jdΩ (2.34)

with ∆εmn = εk+1
mn − εk

mn and ∆ni j = nk+1
i j −nk

i j, where we assumed that the material
properties do not vary with the deformation. If the applied forces vary with defor-
mation, the external virtual work at k+1 can be estimated from the geometry at
k and then updated at each iteration. The effect of the incremental displacements
should be included in the stiffness matrix. Finally, the FE expression of Eq. 2.34
can be derived following the same procedure examined for linear mechanics. The
direct correspondence between Eq. 2.34 and Eq. 2.32 leads Eq. 2.34 to be written
as:

(K̄k−1
L + K̄k−1

NL )i+1∆UUUk = RRRi+1−PPPk−1
i+1 (2.35)

where K̄L the stiffness matrix coming for the linear part (Eq. 2.34) and K̄NL from
the nonlinear part respectively.

2.2.4 Corotational beam formulation

The corotational concept introduces a local reference frame following the translation
and rotation (rigid body) movement of the element. In this way, only the strain
that produces deformation at a local (element) level remains. The strain is directly
related to the internal forces induced in the beam element. In this section, we follow
[BCRV12] in deriving a 2D corotational beam element using Kirchhoff theory.

Figure 2.2: Initial (L0) and deformed (L) configuration of a 2D corotational frame
element.



54 2. NUMERICAL APPROACH

The 2D frame element in Fig. 2.2 at its initial and deformed configuration is
considered. The beam undergoes a translation (due to ddd1 and ddd2) and a rotation
(from β0 to β ) with respect to the global (X ,Y ) reference system. At its final
position, the local (x,y) reference system is introduced. The flexural deformations
θ1 and θ2 are measured in the local coordinate system. The local extension is
calculated from:

ue = L−L0 =
L2−L2

0
L+L0

were the latter expression is adopted to avoid a ill-conditioned formulation. The
length of each configuration is calculated from:

L0 =
√

(X2−X1)2 +(Y2−Y1)2

and
L =

√
[(X2 +u2)− (X1 +u1)]2 +[(Y2 + v2)− (Y1 + v1)]2

where the indices 1 and 2 denote the nodes as shown in Fig. 2.2 with ddd1 = (u1,v1),
ddd2 = (u2,v2) the deformation vectors. The current angle of the corrotating frame
with respect to the global coordinate system can be calculated from:

β = atan
[
(Y2 + v2)− (Y1 + v1)

(X2 +u2)− (X1 +u1)

]
while

β0 = atan
[

Y2−Y1

X2−X1

]
The induced axial strain is assumed constant and calculated from ue/L0. The axial
force in the frame is given from:

N = EA
ue

L0

The flexural deformations are given from:

θ1 = θg1−β +β0 = β1−β and θ2 = θg2−β +β0 = β2−β (2.36)

where θg1, θg2 the deformation with respect to the initial configuration in the global
coordinate system. In practice, to allow the rotations to take arbitrarily large values,
the calculation uses:

θ∗ = atan
(

cosβ sinβ∗− sinβcosβ∗
cosβcosβ∗+ sinβ sinβ∗

)
Following the beam-theory, the local end moments are linked to the local nodal
rotations with: {

M1
M2

}
=

2EI
L0

[
2 1
1 2

]{
θ1
θ2

}
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The shear forces at the two nodes are calculated from:

V1 =−V2 =
M1 +M2

L

In this way, a relation between the local forces pppl = (N M1 M2)
T and the local

strain inducing deformations is established.

Virtual local displacements

We define c = cosβ and s = sinβ . For a small movement δddd12 (see Fig. 2.3) from
the current configuration defined as:

δddd12 =

{
δu2−δu1
δv2−δv1

}
we can express the small local extension as:

δue = c(δu2−δu1)+ s(δv2−δv1) = [−c − s 0 c s 0]︸ ︷︷ ︸
rrrT

δqqq

where we denote with qqq = (u1 v1 θg1 u2 v2 θg2) the nodal displacement vector.
The small rigid rotation δα (see Fig. 2.3) from the current configuration results in

Figure 2.3: Infinitesimal deformation.

an arc length change given from:

Lδα =−s(δu2−δu1)+ c(δv2−δv1) = [s − c 0 − s c 0]︸ ︷︷ ︸
zzzT

δqqq
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Differentiating Eq. 2.36 gives:

δθθθ =

{
δθg1 +δβ0−δβ

δθg2 +δβ0−δβ

}
=

{
δθg1−δα

δθg2−δα

}
as δβ0 = 0 and δβ = δα . We can write:

δθθθ g =

[
0 0 1 0 0 0
0 0 0 0 0 1

]
δqqq

and finally:

δθθθ =

([
0 0 1 0 0 0
0 0 0 0 0 1

]
− 1

L

[
zzzT

zzzT

])
︸ ︷︷ ︸

ĀT

δqqq

The complete vector of local displacements is summarized:

δqqql =


δue

δθ1
δθ2

=

[
rrrT

ĀT

]
δqqq = B̄δqqq

Virtual work principle

The virtual work can be expressed as:

δqqqT ppp = Nδul +M1δθ1 +M2δθ2 = δqqqT
l pppl = δqqqT B̄T pppl

As this expression holds for arbitrarily large virtual deformations, it is deduced:

ppp = B̄T pppl (2.37)

Differentiating Eq. 2.37 leads to:

δ ppp = B̄T
δ pppl +δ B̄T pppl

For linear material behavior, we can write:

B̄T
δ pppl = B̄T D̄δqqql = B̄T D̄B̄δqqq = K̄Lδqqq

where

D̄ =
1
L0

 EA 0 0
0 4EI 2EI
0 2EI 4EI


The geometric stiffness matrix comes from:

δ B̄T pppl = Nδ rrr+
M1 +M2

L2 (Lδ zzz+ zzzδue) =

[
N
L

zzzzzzT +
M1 +M2

L2 (rrrzzzT + zzzrrrT )

]
︸ ︷︷ ︸

K̄NL

δqqq

The complete tangent stiffness matrix is given by:

K̄t = K̄L + K̄NL
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2.2.5 Nonconservative forces

The analysis previously examined does not take into account the variation of bound-
ary conditions during loading. In general, as the body deforms, the externally
applied forces vary with the displacement. This dependency of the forces to the
degrees of freedom should be included in the nonlinear analysis. In this section,
we follow J. H. Argyris and S. Symeonidis [AS81] in deriving a finite element
formulation that accounts for nonconservative forces.

Starting from the term R|t+∆t in Eq. 2.34, the virtual work of the nonconserva-
tive forces is written:

δWnc = R|t+∆t = δuuuRRRnc|t+∆t

where for each element:

RRRnc = RRR(m)
b +RRR(m)

S +RRR(m)
p −RRR(m)

0

The linearization of the forces reads:

RRRnc|t+∆t = RRR|t +
∂RRRnc

∂UUU
∆UUU

and this leads to:

∆(δWnc)≈ δuuu
(

RRR|t +
∂RRRnc

∂UUU
∆UUU
)

Consequently, Eq. 2.35 is augmented as:

(K̄k−1
L + K̄k−1

NL )i+1∆UUUk = RRRk−1
i+1 +

∂RRRnc

∂UUU

∣∣∣∣k−1

i+1︸ ︷︷ ︸
K̄NC

∆UUUk−PPPk−1
i+1

(K̄k−1
L + K̄k−1

NL − K̄k−1
NC )i+1∆UUUk = RRRk−1

i+1 −PPPk−1
i+1

Newton-Raphson iterations are performed to minimize the error introduced due to
linearization. The matrix K̄NC is obtained by differentiating the force expression.
This procedure is straightforward in the case of point loads for which:

K̄NC = ∑
m

∂RRR(m)
nc

∂UUU (m)

Circulatory distributed loading

For distributed loads, the derivation of the stiffness correction matrix becomes
more complicated. In this section we will examine linearly varying distributions on
straight 2D beams. We follow [AS81] where the generalized displacement vector ρρρ

is introduced:
ρρρ = {ρρρ0|ρρρN}= āUUU (2.38)
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Figure 2.4: Beam element under distributed nonconservative loading.

The local beam movement UUU = (u1 v1 θ1 u2 v2 θ2)
T (see Fig. 2.4) into rigid

body (ρρρ0) and natural (ρρρN) modes. In two dimensions, the matrix ā writes:

ā =



1/2 0 0 1/2 0 0
0 1/2 0 0 1/2 0
0 1/L 0 0 −1/L 0
−1 0 0 1 0 0
0 0 −1 0 0 1
0 2/L −1 0 −2/L −1


with L the beam element length. In 2D, for the nonconservative distributed loading
qqqnc = (qx,qy), the mean mid-point values and the differences of the nodal values
are introduced:

q∗m =
1
1
(q2
∗+q1

∗) and q∗d = q2
∗−q1

∗

At the undeformed position:
qqq0

nc = qqqm +ξ qqqd

where
qqqm = (qxm,qym) , qqqd = (qxd ,qyd) and ξ = x/L

The nonconservative loading vector can be expressed as:

qqqnc(ρρρ) = T̄ (ρρρ)qqq0
nc

where T̄ a nonlinear function of the displacement. It is proven in [AS81] that the
current load vector can be written as:

qqqnc = qqq0
nc +[C̄0 C̄N ]

[
ρρρ0
ρρρN

]
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where

C̄0 =

 0 0 py

0 0 0
0 0 −py

 and C̄N =

 0 ξ py (1
4 −3ξ )py

0 0 0
0 −ξ py (1

4 −3ξ )py


The equivalent nodal forces are expressed as:

PPPnc =

(
L
∫ L/2

L/2
H̄T (ξ )[C̄0 C̄N ]dξ

)
︸ ︷︷ ︸

k̄NC

ρρρ

with

H̄(ξ ) =

 1 0 0 x/L 0 0
0 1 −1 0 −(x2/2L−L/8) (x3/L2− x/4)
0 0 1 0 x/L −(3x2/L2−1/4)


It can be deduced that:

k̄NC =
∂PPPnc

∂ρρρ
=

[
k̄00 k̄0N

k̄N0 k̄NN

]
with:

k̄00 =

 0 0 pymL
0 0 −pxmL
0 0 pxdL2/12

 , k̄0N =

 0 pydL/12 0
0 −pxdL/12 0
0 pxmL2/12 −pxdL2/60



k̄N0 =

 0 0 pydL/12
0 0 −pxmL2/12
0 0 pxdL2/120

 , k̄0N =

 0 pymL/12 −pzdL/60
0 −pxdL2/240 −pxmL2/120
0 pxmL2/120 −pxdL2/1680


Finally, to move from the generalized back to the local Cartesian displacement
vector, it suffices that:

K̄NC = āT k̄NCā

2.2.6 Contact condition

The contact between two or more bodies manifests a boundary nonlinearity where
both the displacement and the forces developed at an interface are unknown. A
detailed analysis determines: (a) the region of contact, (b) the pressure developed
between the bodies, and (c) whether the contact interface moves. The slave-master
concept is introduced for the implementation of the contact solution. The deformable
body is set as a slave body to the master rigid body. For a flexible-flexible contact
interface8, since both bodies can deform, this choice is made arbitrarily. In the

8No rigid bodies are involved.
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general case, the contact algorithm determines for each slave node the contacting
master segments. The contact condition imposed that the slave body cannot penetrate
into the master body.

This procedure is examined Fig. 2.5. The contact pair {xxxS,xxx1,xxx2} involves a
slave node and its closest master segment i.e. the segment that includes its normal
projection xxxC. The impenetrability condition states that:

gN = (xxxS− xxx1)nnn = ggg ·nnn≥ 0

with nnn the normal unit vector of the master segment. If gN < 0 a contact condition
should be imposed. Penalty-based contact forces Fc = KNgN are applied at the
contact pairs for every violated segment. The penalty parameter KN controls the
allowed penetration.

Figure 2.5: Contact schematic.

Formulation of contact problems

In this section we will follow Zavarise et al. [ZDLT12] in deriving the contact
contribution to the stiffness and the residual forces. We will only examine friction-
less (slip) contact constrains. The contact constraints can be imposed through a
penalization of the potential energy. The penalty functional added takes the form:

Πc =
1
2

∫
Sc

KNg2
Nd§c

where Sc the contact boundary. For active contacts, the variation of this potential
yields:

δΠc =
∫

Sc

KNgN︸ ︷︷ ︸
Fc

δgNdSc (2.39)
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This expression is nonlinear with respect to the deformation vector:

UUU = (us vs u1 v1 u2 v2)
T

The linearization of Eq. 2.39 gives:

∆δΠc =
∫

Sc

KN∆gNδgNdSc +
∫

Sc

KNgN∆δgNdSc

As the linearization introduces an error in the estimation, Newton-Raphson iterations
are introduced to solve the set of equations:∫

Sc

KN∆gNδgNdSc +
∫

Sc

KNgN∆δgNdSc =−
∫

Sc

FcδgNdSc (2.40)

where we can further expand the terms:

δgN = δggg ·nnn+ggg ·δnnn (2.41)

∆gN = ∆ggg ·nnn+ggg ·∆nnn (2.42)

∆δgN =��
�*0

∆δggg ·nnn+δggg ·∆nnn+∆ggg ·δnnn+ggg ·∆δnnn (2.43)

where higher-order terms are cancelled out.

Finite element formulation

IN 2D, the unit tangent and normal vectors of the master segment of length L are
defined as:

ttt =
xxx2− xxx1

L
and nnn = ttt× kkk

where kkk the unit vector orthogonal to the plane. The non-dimensional position of
the projection xxxc of the slave point xxxS (see Fig. 2.5) is defined as:

ξ =
(xxxS− xxx1)

T

L
ttt

with 0≤ ξ ≤ 1. It can be proven [ZDL09] after some detailed derivation that we
can rewrite Eqs. 2.41-2.43 in a matrix form as:

δgN = δUUUT NNNS

∆gN = NNNT
S ∆UUU

∆δgN =−1
L

δUUUT
(

NNN0TTT T
S +TTT SNNNT

0 +
gN

L
NNN0NNNT

0

)
∆UUU

with:

NNNs =


nnn

−(1−ξ )nnn
−ξ nnn

 , NNN0 =


0
−nnn
nnn

 , TTT s =


ttt

−(1−ξ )ttt
−ξ ttt
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This allows us to rewrite Eq. 2.40 as:

δUUUT (K̄M + K̄G)︸ ︷︷ ︸
K̄c

∆UUU =−δuuuT RRRc

where we set:
K̄M = KNNNNSNNNT

S

K̄G =−Fc

L

(
NNN0TTT T

S +TTT SNNNT
0 +

gN

L
NNN0NNNT

0

)
and

RRRc = FcNNNS

This leads in adding the following terms in the Newton-Raphson procedure given
by Eq. 2.32:

(K̄t + K̄c)
n−1
i+1 ∆UUUn = RRRi+1−PPPn−1

i+1 − (RRRc)
n−1
i+1 (2.44)

Equation 2.44 is the final complete Newton-Raphson formulation for large strain
deformation of structures under nonconservative forces and includes cocntact non-
linearities.

Bibliography

[AS81] J. H. Argyris and Sp. Symeonidis. Nonlinear finite element analysis
of elastic systems under nonconservative loading-natural formulation.
part I. Quasistatic problems. Computer Methods in Applied Mechanics
and Engineering, 26(1):75–123, April 1981.

[Bat96] K. J. Bathe. Finite Element Procedures. Prentice-Hall, Englewood
Cliffs, 1996.

[BBH+07] S. Bourdet, M. Braza, Y. Hoarau, R. El Akoury, A. Ashraf, G. Harran,
P. Chassaing, and H. Djeridi. Prediction and physical analysis of un-
steady flows around a pitching airfoil with the dynamic mesh approah.
European Journal of Computational Mechanics, 16(3-4):451–476,
January 2007.

[BBHEA08] R. Bourguet, M. Braza, G. Harran, and R. El Akoury. Anisotropic
Organised Eddy Simulation for the prediction of non-equilibrium
turbulent flows around bodies. Journal of Fluids and Structures,
24(8):1240–1251, November 2008.

[BBPH07] R. Bourguet, M. Braza, R. Perrin, and G. Harran. Anisotropic eddy-
viscosity concept for strongly detached unsteady flows. AIAA Journal,
45(5):1145–1149, 2007.



BIBLIOGRAPHY 63

[BCRV12] R. Borst, M. Crisfield, J. Remmers, and C. Verhoosel. Non-Linear
Finite Element Analysis of Solids and Structures: Second Edition.
John Wiley & Sons, Ltd, 2012.

[Bla01] J. Blazek. Computational Fluid Dynamics: Principles and Applica-
tions. Elsevier Butterworth-Heinemann, third edition edition, 2001.

[BPH06] M. Braza, R. Perrin, and Y. Hoarau. Turbulence properties in the
cylinder wake at high Reynolds numbers. Journal of Fluids and
Structures, 22(6):757–771, August 2006.

[Chi82] K.-Y. Chien. Predictions of channel and boundary-layer flows with a
low-Reynolds-number turbulence model. AIAA Journal, 20(1):33–38,
1982.

[CS88] I. J. D. Craig and A. D. Sneyd. An alternating-direction implicit
scheme for parabolic equations with mixed derivatives. Computers &
Mathematics with Applications, 16(4):341–350, January 1988.

[Har83] A. Harten. High resolution schemes for hyperbolic conservation laws.
Journal of Computational Physics, 49(3):357–393, March 1983.

[HBR09a] W. Haase, M. Braza, and A. Revell. II presentation of modelling ap-
proaches. In DESider – A European Effort on Hybrid RANS-LES Mod-
elling. Notes on Numerical Fluid Mechanics and Multidisciplinary
Design, volume 103. Springer, Berlin, Heidelberg, 2009.

[HBR09b] W. Haase, M. Braza, and A. Revell. IV applications - test cases. In
DESider – A European Effort on Hybrid RANS-LES Modelling. Notes
on Numerical Fluid Mechanics and Multidisciplinary Design, volume
103. Springer, Berlin, Heidelberg, 2009.

[Hir07] C. Hirsch. Numerical Computation of Internal and External Flows:
The Fundamentals of Computational Fluid Dynamics. Butterworth-
Heinemann, Amsterdam, 2 edition, June 2007.

[Hoa02] Y. Hoarau. Analyse physique par simulation numérique et modéli-
sation des écoulements décollés instationnaires autour de surfaces
portantes. Phd thesis, INPT, 2002.

[HPV+16] Y. Hoarau, D. Pena, J. B. Vos, D. Charbonier, A. Gehri, M. Braza,
T. Deloze, and E. Laurendeau. Recent Developments of the Navier
Stokes Multi Block (NSMB) CFD solver. American Institute of Aero-
nautics and Astronautics, 2016.

[JB94] G. Jin and M. Braza. Two-equation turbulence model for unsteady
separated flows around airfoils. AIAA Journal, 32(11):2316–2320,
1994.



64 2. NUMERICAL APPROACH

[JST81] A. Jameson, W. Schmidt, and E. Turkel. Numerical solution of the
Euler equations by finite volume methods using Runge Kutta time
stepping schemes. In 14th Fluid and Plasma Dynamics Conference.
American Institute of Aeronautics and Astronautics, 1981.

[PCC+07] R. Perrin, E. Cid, S. Cazin, A. Sevrain, M. Braza, F. Moradei, and
G. Harran. Phase-averaged measurements of the turbulence properties
in the near wake of a circular cylinder at high Reynolds number by
2c-PIV and 3c-PIV. Experiments in Fluids, 42(1):93–109, January
2007.

[RS14] J. Reiss and J. Sesterhenn. A conservative, skew-symmetric finite
difference scheme for the compressible Navier–Stokes equations.
Computers & Fluids, 101:208–219, September 2014.

[SDS+06] P. R. Spalart, S. Deck, M. L. Shur, K. D. Squires, M. Kh. Strelets, and
A. Travin. A New Version of Detached-eddy Simulation, Resistant
to Ambiguous Grid Densities. Theoretical and Computational Fluid
Dynamics, 20(3):181, May 2006.

[SGJG+15] D. Szubert, F. Grossi, A. Jimenez Garcia, Y. Hoarau, J. C. R. Hunt,
and M. Braza. Shock-vortex shear-layer interaction in the transonic
flow around a supercritical airfoil at high Reynolds number in buffet
conditions. Journal of Fluids and Structures, 55:276–302, May 2015.

[SJSA97] P. Spalart, W.-H. Jou, M. Strelets, and S. Allmaras. Comments on the
Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach.
In Advances in DNS/LES: Direct numerical simulation and large eddy
simulation. Greyden Press, Louisiana Tech University, 1997.

[Spe98a] C. G. Speziale. A Combined Large-Eddy Simulation and Time-
Dependent RANS Capability for High-Speed Compressible Flows.
Journal of Scientific Computing, 13(3):253–274, September 1998.

[Spe98b] C. G. Speziale. Turbulence modeling for time-dependent rans and
vles: A review. AIAA Journal, 36(2):173–184, 1998.

[SSST08] M. L. Shur, P. R. Spalart, M. Kh. Strelets, and A. K. Travin. A
hybrid RANS-LES approach with delayed-DES and wall-modelled
LES capabilities. International Journal of Heat and Fluid Flow,
29(6):1638–1649, 2008.

[ST87] R. Swanson and E. Turkel. Artificial dissipation and central difference
schemes for the Euler and Navier-Stokes equations. In 8th Computa-
tional Fluid Dynamics Conference. American Institute of Aeronautics
and Astronautics, 1987.



BIBLIOGRAPHY 65

[Wil06] D. Wilcox. Turbulence Modeling for CFD. DCW Industries, Inc.,
third edition edition, 2006.

[Yee97] H. C. Yee. Explicit and Implicit Multidimensional Compact High-
Resolution Shock-Capturing Methods:Formulation. Journal of Com-
putational Physics, 131(1):216–232, February 1997.

[YJ86] S. Yoon and A. Jameson. A multigrid LU-SSOR scheme for approx-
imate newton iteration applied to the euler equations. NASA-CR-
179524, 1986.

[ZDL09] G. Zavarise and L. De Lorenzis. The node-to-segment algorithm for
2d frictionless contact: Classical formulation and special cases. Com-
puter Methods in Applied Mechanics and Engineering, 198(41):3428
– 3451, 2009.

[ZDLT12] G. Zavarise, L. De Lorenzis, and R. L. Taylor. A non-consistent start-
up procedure for contact problems with large load-steps. Computer
Methods in Applied Mechanics and Engineering, 205-208:91–109,
January 2012.

[ZRTC93] H. Zhang, M. Reggio, J. Y. Trépanier, and R. Camarero. Discrete
form of the GCL for moving meshes and its implementation in CFD
schemes. Computers & Fluids, 22(1):9–23, January 1993.

[ZTF05] O.C. Zienkiewicz, R. Taylor, and D. Fox. The Finite Element Method
for Solid and Structural Mechanics. Elsevier Butterworth-Heinemann,
2005.



66 2. NUMERICAL APPROACH



Chapter3
Turbulence modelling with stochas-
tic forcing

Thin moving interfaces developed in high-Reynolds number flows significantly
affect the large scale dynamics by locally sheltering sheared regions. Advanced
turbulence modelling approaches should account for these interactions in order to
accurately simulate high-Reynolds turbulent flows. The stochastic forcing approach
examined in the present work consists of a re-injection of turbulence in sheared
flow regions to account for upscale energy transfers. The addition of source terms
in the turbulent transport equations causes local variations of the eddy viscosity
and effectively reduces the excessive rate of turbulent diffusion which occurs in
turbulence modelling apporaches assuming a downscale cascade. The method
is extended here for three-dimensional flows and employed for a transonic flow
to investigate the buffet instability. An enhanced prediction of the aerodynamic
forces is demonstrated and the effect of the state (laminar/turbulent) of the incoming
boundary layer is discussed.

3.1 Introduction

A great deal of fully developed inhomogeneous turbulent flows have been found
to be bounded by thin layer-like structures that separate the turbulent and non-
turbulent (or weakly turbulent) regions of the flow. Boundary layers, turbulent
wakes and jets, all exhibit these type of interfaces and have been studied extensively
by means of numerical simulations and experimental measurements. Furthermore,
coherent interfacial layers have been identified inside turbulent homogeneous jets
and wakes or in near-wall regions (wall-bounded turbulence). The dynamics of these
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moving interfaces significantly affect the large scale flow dynamics and vortical
interactions [HEW08] acting as barriers between the different flow regions, blocking
individual perturbations and sheltering locally the sheared regions. It is important
for advanced turbulence modelling approaches to account for these interactions
in order to accurately predict high Reynolds turbulent sheared flows where these
interfaces become too thin to be resolved at a realistic computational time.

3.1.1 Interfacial dynamics

The concept of shear sheltering is examined in [JD98]. The authors demonstrated
that this procedure is indeed an intrinsic property of the linearized Navier-Stokes
equations in high-shear regions. In these regions, the freestream turbulent distur-
bances are blocked, remain confined outside the shear layers, unable to penetrate
them. As a result, boundary layers and wakes are shielded from external disturbances
and the authors found a correlation between the penetration depth, the Reynolds
number and the frequency of the disturbance. The authors in [HD99] examined
sheltering phenomena in shear layers through some simplified mathematical models.
They studied various cases of interactions between disturbances in external flows
and adjacent vortical flows. They established the conditions (e.g. travelling speed,
length scales) for which the blocking of turbulent perturbations takes place across
the interface of the different flow regions. The authors demonstrated a stretching
of the perturbations which was attributed to the creation of thin vortical interfacial
layers at the edges of the shielded flow regions.

These interfaces were experimentally studied by Westerweel et al. [WFPH09].
The authors performed combined Particle Image Velocimetry/Laser Induced Flu-
orescence (PIV/LIF) measurements and validated the existence of thin interfacial
shear layers on the boundaries of jets. These turbulent/non-turbulent (TNT) inter-
faces between rotational and irrotational parts of the flow presented small peaks of
conditionally averaged vorticity on the rotational part of the interface. The length
of this thin region was of the order of Taylor microscale and was found to produce
local mixing phenomena at a small scale and interact with the turbulent large scales.
The TNT interfaces have been identified also in [WZN18] through Direct Numerical
Simulations (DNS). In this work, the characteristics and conditional statistics of
interfaces developed at the edges of boundary layers and planar jets were examined.

However, thin interfacial shear layers have been found inside turbulent flows
as well. At high Reynolds number turbulent flows, Ishihara et al. [IGK09], [IKH13]
observed sharp velocity jumps across thin internal layers. Through DNS of homo-
geneous isotropic turbulence, the authors identified coherent layer-like structures
containing vortices ten times larger than the Kolmogorov micro-scale with span-
wise widths of the order of the integral length scale. In these regions the turbulent
flow was found to be strongly anisotropic and significant inertial energy transfers
(both forward and backward) took place. In addition, these turbulent/turbulent
(TT) interfaces produced intense energy dissipation, much larger than the mean
dissipation rate, and acted partly as (decorrelation) barriers to the outer fluctuations,
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much like the TNT interfaces.
An important review of interfacial processes has been published in [HESW11].

It includes an extensive literature review concerning TT and TNT interfaces and
an important discussion around interfacial dynamics and applications in practical
problems. The authors note that conventional turbulence modelling approache fail to
accurately predict flows where interfacial shear layers appear as they do not represent
correctly the internal small scale dynamics and their interactions with larger scale
(coherent) structures. They introduced a new concept in which an intermediate
scale velocity field could be added in computations close to the interfaces through
an inhomogeneous stochastic field. This addition assists the numerical analysis
to predict thin turbulent regions for high Reynolds numbers by reproducing shear
sheltering effects and mimic the upscale energy transfers (i.e. energy transfers from
small to large structures) with the generation of local intermediate eddies. Even
though various upscale (backscatter) models have been developed over the previous
years, they lack this explicit connection with the interfacial dynamics involved.

3.1.2 Backscatter phenomena

Small scale and interfacial dynamics that act in a non-resolved (for a calculation)
scale, even though not strictly random in nature, they are motions with a large
number of degrees of freedom. As a result, they cause mean flow effects that can
appear stochastic in nature. Traditional turbulence modelling approaches relate the
unresolved turbulent stresses to the large scale velocity deformations through an
eddy viscosity. It has been proven however that these stresses only weakly correlate
with the local strain rates at best. Zones in the flow where misalignments between
the stresses and the strain rates appear [BBHEA08], indicating that the small scale
fluctuation effect cannot be purely dissipative.

As a matter of fact, the energy exchange between large and small scale struc-
tures in the flow is bidirectional. Contrary to the direct cascade assumption where
energy only cascades from larger eddies to smaller ones, energy is also transferred
in the opposite direction. This reverse flow of energy, namely backscatter [LQ79],
has been clearly demonstrated by J. R. Chasnov [Cha91] in the study of freely de-
caying turbulence. Through DNS, he linked the rate of the evolution of the turbulent
kinetic energy in time in smallest resolved wave-numbers with a backward energy
transfer. The Partcile Image Velocimetry wind tunnel measurements of Perrin et
al. [PCC+07] for a strongly detached unsteady flow past a circular cylinder showed
flow regions with negative tuebulence production which illustrated how inverse
turbulence cascade is linked to relaminarisation processes.

There is a plethora of studies dedicated on the introduction of backscattering in
numerical models to enhance the predictive capabilities of Large Eddy Simulations
(LES) and hybrid (see Section 2.1.7) turbulence approaches. The dynamic extension
of the Smagorinksy Sub-Grid Scale (SGS) model by Germano et al. [GPMC91] is
considered able to account for part of the backscatter phenomena in regions where
the eddy viscosity is reduced, provided that the grid is designed accordingly. Even
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then however, strong backscatter events could lead into regions of negative eddy
viscosity, endangering the numerical stability of the solution. In general, determin-
istic approaches do not mimic directly the random nature of the backscattering and
lack the stochastic character of these events [SL95].

Stochastic modelling seems to be a more physical approach based on the
nature of backscatter processes. J. P. Bertoglio [Ber85] was the first to introduce
stochastic force terms via a spectral model in the analysis of isotropic turbulence
to simulate backscatter effects. A simpler methodology was later proposed by
C. E. Leith [Lei90], applicable in flows of higher complexity. It comprised the
introduction of random accelerations in the momentum equations - in addition to
the Smagorinsky SGS model - in the form of spatially and temporally uncorrelated
divergent-free turbulent stresses. His method was then extended in [MT92]. Both
of these studies demonstrated that the stochastic excitation not only assisted the
transition into turbulence but also predicted solutions in better agreement with the
experimental observations, especially in regions close to the wall boundaries. A
similar approach was followed also in [SL95] where stochastic fluctuations with
appropriate time-scale correlations were added directly in an eddy-viscosity model
and significantly improved predictions when tested in computations of isotropic
turbulence.

A stochastic SGS model with reduced computational cost from the ones men-
tioned above has been proposed in [MBJ07]. The authors applied stochastic varia-
tions of the eddy viscosity and compared the approach against DNS results. This
approach however led to the appearance of regions with negative viscosity due to
the forcing, that could lead to instabilities at large time scales. Based on a scale-
similarity model, L. Davidson created a SGS model in which he included only
the terms corresponding to the backscatter procedures in the momentum equation
[Dav09]. In this mixed-model, Davidson’s formulation resulted in a counter-gradient
diffusion term that was acting opposing the dissipative counterparts of the equations.
The methodology was tested in the context of hybrid turbulence approaches and
was found capable of forcing the generation of instabilities when passing from an
LES to a URANS mode. A similar direction was followed in [Kok17] where the
stochastic backscattering of energy was employed to generate 3D instabilities and
enable the grey-area mitigation in the context of Detached Eddy Simulation (DES).

The stochastic forcing approach examined in the present work was tested for the
first time in [SGJG+15] for 2D high-Reynolds transonic flows, in combination with
the Organized Eddy Simulation (OES) approach. The method developed (IOES)
consists of a re-injection of chaotic turbulence in sheared flow regions through the
addition of forcing terms in the transport equations of turbulent kinetic energy and
dissipation rate. The forcing yields variations of the eddy viscosity which result
in fluctuations of the turbulent stresses in the momentum equations and inhibit
excessive turbulence diffusion effects. The re-injection of turbulence reproduces the
generation of intermediate eddies caused from upscale energy transfers. The forcing
is calculated (see Section 2.1.7) based on the turbulent kinetic energy of the smaller
resolved motions that are expected to be self-similar to the largest unresolved ones
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[Dav09]. The flow is predicted first by an initial, unforced simulation. The small
scale motions are identified and reconstructed from high-order low-energy modes
educted via a Proper Orthogonal Decomposition (POD - see Appendix A) of the
velocity flow field of the unforced simulation. Based on these small scale turbulent
motions, the forcing terms are built. A random number generator provides a decor-
relation of the forcing in time, imitating the stochastic nature of the backscattering
due to the small scale motions.

With the proposed approach, the spatial non-uniformity of the forcing field is
physically appropriate as it is contained well inside sheared regions identified from
the POD, modelling small scale interfacial dynamics and without affecting irrota-
tional areas of the flow. Using a reconstructed turbulent kinetic energy ensures that
spots of negative turbulent eddy viscosity do not appear to endanger the numerical
stability of the methodology. No filtering of the fluctuations is required as these
remain independent of the computational grid and the dissipation rate towards the
wall remains valid. The POD procedure requires the solution of an initial - unforced
- flow field which can increase the cost of the method. It is possible however to apply
a lower fidelity approach (e.g. URANS) for the initial estimation of the solution and
the POD approach remains valid even for small variations of the initial and boundary
conditions. During the forcing simulations, no additional fields are computed, and
as a result the computational cost does not increase. The method is extended in the
present work for three-dimensional flows and examined along the OES and a hybrid
turbulence approach. Nevertheless, this method can be applied in any turbulence
modelling approach (e.g. URANS, LES, hybrid RANS-LES). In the present work,
the novel turbulence modelling approach developed will be examined in the context
of high-Reynolds transonic flows for high angles of attack. The prediction of the
buffet instability is studied here; the buffet causes large regions of separation and
zones of significant shearing, governed by small scale dynamics. The study will be
focused on the laminar supercritical V2C wing, designed and tested in the TFAST
project.

3.1.3 The TFAST project

The TFAST1 project (Transition Location Effect on Shock Wave Boundary Layer
Interaction) was a four-year (2012-2016) European project on propulsion and flight
physics, focusing especially on the shock wave/boundary layer interaction (SWBLI)
and its control for laminar wings. The demands for emission reduction and more
efficient air transport systems puts a continuous challenge for aircraft manufacturers.
These demands require increased loads on wings and engine components while
greener designs call for a reduction of drag and losses. Under this context, the
main objective of the TFAST project was to study the effect of transition location
on the shock wave appearing due to transonic flow conditions, which is inherently
connected to increased loads. Wing drag reduction is directly related to fuel con-

1http://tfast.eu/

http://tfast.eu/
http://tfast.eu/
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sumption and can be obtained by keeping the boundary layers of lifting parts of
the airplane laminar. The laminar boundary layer in return interacts with the shock
wave and can lead to significant flow separation, which is detrimental to aircraft
performance and can cause safety issues. It is important, therefore, to maintain the
turbulent character of the SWBLI in order to diminish the shock induced separation.

The TFAST experimental and numerical investigations were focused on this
type of interaction in the wing design process. A significant part of the project was
also focused on numerical models aiming at the accurate prediction of the flow
phenomena. Basic flow configurations and appropriate flow control methods were
investigated and characterized in controlling the location, interaction, the induced
separation and the flow unsteadiness. A supercritical laminar wing profile - the
V2C wing - was designed by Dassault Aviation and was set as the principal case
study. Experimental measurements of the flow field and the transition mechanics
were carried out by the department of engineering of Cambridge University and the
Institute of Aviation of Warsaw. The profile allows the boundary layer to remain
laminar up to the shock foot even for increased angles of attack. The TFAST project
contributed in providing reliable methods applicable to unsteady compressible
flows and in extending the expertise around the buffet instability, and the transition
location effect and the control of the SWBLI.

3.1.4 Buffet instability

Under specific flight conditions in the transonic regime and due to aerodynamic
excitation caused by random loading variations on the wing, the interactions between
the shock front and the separated shear layer can lead to large amplitude, low
frequency, self-sustained oscillations of the shock [MLD76]. This instability, known
as transonic buffet, is the origin of large pressure fluctuations that can render the
aircraft uncontrollable and be detrimental to its structural integrity as it occurs in
frequencies close to the structural ones. As a result, the flight envelope of airplanes
is limited in order to avoid conditions that could provoke shock buffeting and
an important amount of research has been focused on studying the underlying
mechanics of this complex phenomenon.

It has been observed that the appearance of the shock causes a separation over
supercritical wing profiles that increases the width of the effective obstacle that the
flow encounters, and consequently the width of the wake. This - initially - steady
flow field gradually develops unsteadiness as it was demonstrated experimentally in
[JMD+09]. The authors described through measurements the periodic oscillation
of the velocity field; the coupled interaction and phase-locked motion of the shock
and the boundary layer were visualized during the whole buffeting motion. A
detailed physical analysis of the buffet onset and the related interactions between
shock and vortices was carried out numerically in [BB03a], [BB03b]. The authors
identified four successive stages in the transition of the unsteady viscous transonic
flow around a symmetric airfoil by solving the 2D time-dependent Navier–Stokes
equations for a compressible fluid. A buffet instability emerged in a specific Mach
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number range (M = 0.7−0.8) due to unsteady wake dynamics acting as a global
oscillator for the flow. The authors analyzed the interaction between the buffet
mode and the wake dynamics, governed by the von Kármán mode and the near-
wake unsteadiness. Furthermore, the three-dimensional transition to turbulence
in this transonic range was studied by DNS and stability analysis in [BBBT03].
The onset of the buffet instability was also studied in depth by Crouch et al. in
[CGM07]. Using stability theory to enhance the physical understanding of the
underlying mechanisms involved, they focused on the transition of a marginally
stable flow towards an unsteady solution. Their findings around the buffet boundaries
were in good agreement with previous experimental studies. The same authors
provided further evidence connecting the buffet phenomenon to a global instability
emerging in the flow in [CGMT09]. The buffeting was found to be consistent
with a supercritical Hopf bifurcation and the whole global-instability approach was
deemed capable of providing an accurate prediction of the buffet onset.

Grossi et al. [GBH14] carried out numerical simulation of the transonic buffet
over a supercritical profile utilizing both URANS and hybrid turbulence approaches.
The authors provided a detailed description of the flow statistical properties and
the buffet limit cycle, based on the interactions of the shock with the unsteady
wake. These interactions and the importance of feedback effects, arising from shear
layers and vortex dynamics in the wake and in the near-trailing edge region of a
suprecritical profile, have been analyzed by Szubert et al. [SGJG+15]. The same
aerodynamic profile and the unsteady interactions were also studied in great detail
in [SMS15]. The authors remarked that the buffet frequency depended only on
the Mach number characterizing the flow, signifying that the size of the separation
region was not of key importance to the phenomenon. This was also suggested
in [KYTK20] where the authors performed a resolvent analysis of the flow to
identify the origin of two-dimensional transonic buffet. They suggested that the
buffet amplification mechanism is present in the global dynamics and the origin of
the forcing causing the instability comes from the shock foot. Perturbations from
inside the boundary layer and close to the trailing edge were amplified to produce
low amplitude oscillations. This study suggested that trailing edge buffet control
mechanisms could be proven effective to this end. This is supported by the findings
in [TSM+19]. This numerical investigation, carried out in the context of the SMS
European project, examined the actuation in the near-trailing edge region in order
to exploit the importance of feedback mechanics. It was shown that vibrations and
low-amplitude deformation of the trailing edge region were able to considerably
modify the SWBLI. Based on this study, a “Transonic Reduced Scale Prototype”
was constructed and investigated through a detailed experimental campaign carried
out by IMP-PAN2, partner of the SMS project.

Detailed RANS and DDES calculation were also on carried by F. Sartor and
S. Timme [ST15], [ST17]. They studied the emerging instability on a half wing
aircraft configuration were additional parameters guide the flow mechanics. In

2Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdańsk,
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the present work however, we will only focus on the governing dynamics of the
buffet instability of 2D-like bodies, i.e. for wings for which the chord does not
vary along the span. For constant chord wings, the studies of [Dec05] and [GD10]
proved that scale-resolving simulations significantly affect the flow prediction and
the shock properties, as it was also supported by Grossi et al. [GBH14]. Hybrid and
scale-resolve approaches tend to overpredict the pressure fluctuations and the shock
travelling distance at high incidence angles. Nevertheless, these approaches still
offer a deep insight on the turbulence properties of such flows and it is important to
find ways to aplly them properly. Small scale dynamics play an important role in
high Reynolds numbers flows. Interfacial turbulent regions that appear in parts of
the flow where shearing is important, become considerably thin and they cannot be
- still - realistically resolved in the context of industrial applications. Their effect
and modifications on the large scale dynamics should be adequately modelled in
order to be taken into account. The re-injection of turbulence by stochastic forcing
presented here and in Chapter 2 will be evaluated to this end.

3.2 Numerical approach for transonic simulations

The compressible time-dependent Navier-Stokes equations, within the OES and
DES framework, have been solved under for the transonic flow in a 3D finite-volume
structured grid formulation, using the NSMB (Navier-Stokes Multi-Block) code
[HPV+16]. The computational domain is subdivided into hexahedral grid cells of
constant size in time and the multi-block strategy is followed in accordance to the
parallelization procedure of the code. A third-order upwind Roe scheme with a
MUSCL interpolation and slope limiters was used for the spatial discretization of
the convection terms; a second-order central scheme was employed for the diffusion
terms. For the temporal discretization, a dual time-stepping with a second order
implicit backward difference scheme is utilized3. The physical time-step was kept
constant in all the computations at 10−6 giving a CFL ranging between 10 and
30. A total of 100 inner iterations were carried out for each time-step to reach
convergence. An additional 50 inner iterations were added to achieve convergence
for the stochastic forcing calculations, without affecting the rest of the numerical
parameters. The increased number of iterations was mainly due to the stiffness of
the turbulent equations, especially when the stochastic terms were included. Only a
few sweeps were carried out per iteration.

The C-type mesh around the V2C laminar wing profile illustrated in Fig. 3.1,
used in [SAG+16] in the context of the TFAST European project, is adopted in
this study. The mesh was constructed by adding in the streamwise direction 426
points on the wing surface (including both the upper and the lower surface) and 192
points in the wake. Along the spanwise direction 59 points were added resulting
in a total mesh size close to 9.65 million finite volume cells. The average y+

value, corresponding to the height of the first cell (order of 10−7) above the wall

3See Chapter 2 for an explicit presentation of the schemes used.
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(a) Multi-block description of the computational do-
main.

(b) 3D surface meshing of the wing. (c) 2D slice of the mesh.

Figure 3.1: Meshing of the computational domain around the V2C wing.

surface, was around 0.3 over the whole wing. Freestream boundary conditions
have been chosen for both the inlet and the outlet of the computational domain
as the boundaries had been placed sufficiently far (80× c). A no-slip condition
(zero velocity at the wall) has been given to the wing’s surface and a symmetry
condition on the planes perpendicular to the span direction. The block connectivity
was updated between every sweep of the solution procedure.

The present study will be focused only on a single flow configuration of the
V2C wing for which various turbulent modelling approaches will be examined. The
K− ε−OES approach has been employed for the turbulent flow (see Section 2.1.7)
as it allows coherent structures and their related instabilities to develop in the high
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Reynolds numbers and is well adapted for highly detached flows [Hoa02]. In
addition, the DES approach, in combination with OES (DOES), is also employed.
Both of these modelling approaches are also examined with the addition of the
stochastic forcing (OES+F and DOES+F). The stochastic source terms are treated
explicitly in the computations. Ambient terms [SR07] have been added in all
four case with a freestream turbulence intensity Tu < 0.1%. A Delayed Detached
Eddy Simulation (DDES) approach has been also carried out, employing the OES
approach for the RANS part.

3.3 Highly detached transonic flow

In the present section, the V2C laminar wing is studied at a Mach number M = 0.7
and a 7° angle of attack. The specific configuration for a Re/c ≈ 13 · 106 per
meter - where c = 0.25m the chord of the profile - was inside the region where the
buffet phenomenon is fully established. A constant wing section was tested with
spanwise lengthb = c/3. The total temperature at the inlet was set at 290K and total
pressure at 105Pa in order to achieve the specific flow conditions. The viscosity
was calculated from Sutherland’s law. For the simulations, the streamwise direction
is that of the x axis and the vertical direction (with respect to the wing’s chord) is
that of the z axis, leaving y axis along the span of the wing. The X/c = Z/c = 0
correspond to the position of the leading edge of the wing’s profile.

Due to the transonic flow conditions, the acceleration over the wing leads to
the apparition of a shock. At such a high angle of attack and in this specific M
and Re number range [SML78], this marginally stable global flow mode gradually
becomes unstable [CGMT09]. The interaction of the shock with the detached
boundary layer and the unstable wake region results in a buffet instability. The
buffet cycle describes the self-sustained phase-locked motion of the shock and
the separated boundary layer, characterized by a low frequency (buffet frequency
fb = 1/Tb). The shock travels over the wing around and moves around a fixed
position periodically. The shock movement during a buffet period is illustrated
from the surface pressure distribution on the wing in Fig. 3.2, calculated with OES.
The shock starts from its most downstream position (Fig. 3.2b)towards its most
upstream position (Fig. 3.2f) and then moves backwards again (Fig. 3.2h). The
shock almost reaches the leading edge of the profile which is surprising even at
this high incidence angle. A visualization of the 3D flow structures are shown in
the same figure (Fig. 3.2 - left). The spanwise vorticity ωy iso-surface depicts the
turbulent vortical structures generated due to the separated boundary layer, starting
from the foot of the shock; this is clearly illustrated by the M coloring of the surface.
This iso-vorticity layer presents spanwise undulations that give birth to smaller scale
chaotic-like structures further downstream.

The 2D slice at the mid-span section y = b/2 in Fig. 3.3 is used to demonstrate
the shock movement via the visualization of the M field, calculated from OES. The
movement of the shock front is associated with the progressive thickenning of the
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(a) t = 0 (b) t = 0

(c) t = Tb/4 (d) t = Tb/4

(e) t = Tb/2 (f) t = Tb/2

(g) t = 3Tb/4 (h) t = 3Tb/4

Figure 3.2: Variation of the flow field over one buffet period Tb with OES. Left,

the y−wise vorticity iso-surfaces for ωyc/U∞ =±5.5, colored by M; on the right,

the surface pressure coefficient distribution.
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(a) t = 0 (b) t = 0

(c) t = Tb/4 (d) t = Tb/4

(e) t = Tb/2 (f) t = Tb/2

(g) t = 3Tb/4 (h) t = 3Tb/4

Figure 3.3: Variation of the M number (left) and the gradient density magnitude

(right) over one buffet period Tb on the mid-span xz section with OES.
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(a) t = 0 (b) t = 0

(c) t = Tb/4 (d) t = Tb/4

(e) t = Tb/2 (f) t = Tb/2

(g) t = 3Tb/4 (h) t = 3Tb/4

Figure 3.4: Variation of the turbulence eddy viscosity νt (left) and the turbulent

length scale lt = k3/2/ε (right) over one buffet period Tb on the mid-span xz section

with OES.
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(a) t = 0 (b) t = 0

(c) t = Tb/4 (d) t = Tb/4

(e) t = Tb/2 (f) t = Tb/2

(g) t = 3Tb/4 (h) t = 3Tb/4

Figure 3.5: Variation of the DES flag (left) and the gradient density magnitude

(right) over one buffet period Tb on the mid-span xz section with DOES; DES mode

for f lag = 1 and OES mode for f lag = 0.
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separated shear layer and follows the periodic movement described before. The
detached zone increases in size as the shock (and the separation position) moves
upstream and reduces as the shock moves backwards. Consequently, the thickness
of the wake region is phase locked with the whole process. During the buffet
period the separated boundary layer never reattaches to the wing’s surface. The
SWBLI can be efficiently visualized through the magnitude of the density gradient,
illustrated also in Fig. 3.3 (right) for a buffet period. This type of visualization
(equivalent to Schlieren’s visualization) reveals the λ−shock (bifurcated) structure.
The Mach compression waves collapse on the front leg of the shock (oblique shock)
causing the initial separation of the boundary layer. Over the detached zone and
due to the acceleration of the flow, the rear shock leg appears. The two legs meet
with the normal shock at a higher position (triple-point). Due to the continuous
expansion and acceleration of the flow, the detached zone increases in size and a
secondary weaker λ−shock appears further downstream, relatively close to the
first one. The shock structure prevails up until the shock reaches the leading edge
where it collapses, then progressively redevelops as the separation point moves
downstream and becomes fully established before a new cycle begins. The density
variations also highlight the Kelvin-Helmholtz vortices of the detached shear layer,
both on the suction and the pressure side of the wing.

The turbulent properties of the flow are included in Fig. 3.4 on the mid-span
section, calculated with OES. The turbulence eddy viscosity νt =CµK2/ε (left) and
the modelled turbulent length scale lt = K3/2/ε (right) contours are plotted over one
buffet period. The turbulence eddy viscosity field is contained well inside the sepa-
ration region and the wake, following the dynamics of these two regions. The flow
presents an apparent laminar character in the upstream region up to the shock foot.
The turbulent motion is generated due to the SWBLI further downstream, where
turbulent interactions are prevalent. The whole turbulent region is contained inside
two thin layers of reduced turbulent length scale lt , indicating strong dissipation
layers that highlight rotational/irrotational (turbulent/non-turbulent) interactions.
Detached organized eddy simulations (DOES) have been also carried out the current
case study. The DES flag illustrated in Fig. 3.5 (left) underlines the regions where
the calculation enters a DES mode ( f lag = 1→ CDES∆ < lt) and an OES mode
( f lag = 1→CDES∆ > lt) respectively. The calculation presents multiple regions
where it retains the OES mode due to the grid spacing and the reduced turbulent
viscosity produced by the OES approach. The OES mode is activated in the outer
region and close to the wall boundaries (viscous region), but also in the region
just after the shock where the flow is detached. In the latter, the turbulent length
scale is reduced implying that the mesh could be refined for a more efficient DES
mode calculation. The DES mode is well activated both upstream of the shock
(Euler region) and well inside the separation zone (LES region). The shock structure
(Fig. 3.5 on the right) is similar to the one predicted by the OES and the turbulent
interactions in the separation zone are slightly enhanced.

The difference between the two approaches is examined through Fig. 3.6
where the temporal variation of the aerodynamic force (lift and drag) coefficients is
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(a) Lift coefficient. (b) Drag coefficient.

Figure 3.6: Temporal variation of aerodynamic force coefficients; comparison
between the OES and the DOES solution.

plotted. Both approaches predict a “saw tooth” shaped oscillatory behavior with
sharp peaks. The time averaged values are quite close and slightly higher for the
OES approach, while the rms (root-mean-squared) values match completely. This
behavior has also been reported from DDES calculations carried out in the TFAST
project [SAG+16]. The evaluation of the buffet frequency fb from the aerodynamic
coefficients is quite close for the two approaches as well. The pure OES predicts an
fb ≈ 92Hz→ St = 0.1 based on the chord (c = 0.125m), while the DOES approach
gives an fb ≈ 95Hz.

The averaged longitudinal velocity profiles calculated by both turbulent ap-
proaches are compared in Fig. 3.8. The non-dimensional extracted positions are
illustrated in Fig. 3.7. Figures 3.8a-3.8c include the boundary layers on the second
half of the wing. The two approaches predict almost similar profiles, especially in
Fig. 3.8a where the DOES calculation runs in an OES mode. In this region, the
boundary layer are detached and a shear layer develops above the suction side of
the wing. In Figs. 3.8d-3.8e the wake velocity profiles are presented. The two
approaches predict profiles that are close but present some slight differences in
terms of their maximum deficit and slope.

3.3.1 POD-based turbulent kinetic energy

The POD [BHL93] is applied on the results of a URANS computation, available
from the studies in the TFAST project [SAS+18]. The URANS (K−ω SST ) simu-
lation had provided relatively accurate results in terms of force prediction and shock
dynamics. The Snapshot POD (see Appendix A) is applied here on the velocity
field and therefore, the total energy represented by the eigenvalues corresponds to
the turbulent kinetic energy of the flow, integrated over the computational domain.
The sampling rate was constant (10−3sec - an order of magnitude higher than the
time step used in the computation) and a series of successive snapshots (597 in
total) was used to construct the POD data matrix. The total time duration of the



3.3. HIGHLY DETACHED TRANSONIC FLOW 83

Figure 3.7: Contour of averaged longitudinal velocity and positions of the ex-
tracted velocity profiles.

(a) x/C = 0.56 (b) x/C = 0.76 (c) x/C = 0.88

(d) x/C = 1.08 (e) x/C = 1.28 (f) x/C = 1.48

Figure 3.8: Averaged longitudinal velocity profiles; comparison between the OES
and the DOES solution.

sampling covered about six periods of the buffet phenomenon. The flow field is split
in spatial modes and temporal coefficients sorted by their relative energy in the flow;
the higher the order of the mode, the lower its energy content. The tempo-spatial
evolution of the flow velocity uuu(x, t) = (u,v,w) is approximated as:

uuu(xxx, t) =UUU1(xxx)+
NPOD

∑
n=2

αn(t)UUUn(xxx) (3.1)
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i.e. as the summation of the decoupled temporal coefficients an and spatial modes
UUUn = (Un,Vn,Wn) over a finite number of NPOD modes. The first POD mode
represents the time averaged (mean) velocity field. This is illustrated in Fig. 3.9
where the longitudinal and vertical components of the first POD mode are included.
The remaining terms (i.e. the summation) correspond to the fluctuating part of the
flow variable.

(a) U1 (b) W1

Figure 3.9: First POD spatial mode for the longitudinal (left) and vertical (right)
velocity components, computed from URANS simulations; the first mode corre-
sponds to the mean (time averaged) flow.

Selected lower and higher order fluctuating spatial modes are presented in
Figs. 3.10 and 3.11 respectively. Different contour levels are used in these figures
to account for the decreasing flow energy as the order increases. The second
mode (Figs.3.10a-3.10b) corresponds to the buffet instability and highlights the
shock movement and the detachment of the boundary layer. The fourth POD
mode (Figs.3.10c-3.10d) underlines the unsteady wake region through a von-Kármá
alternating vortex pattern. The modes that follow (Figs.3.10e-3.10f and Figs.3.10g-
3.10h) present increased intensity close to the shock’s foot, providing a link between
the unsteadiness of the shock with the instabilities appearing in the wake. The
buffet limit cycle is sustained through this interaction between these two regions.
As the order of the modes increases, the flow structures become increasingly less
coherent and smaller. Layer-like [IKH13], irregular vortex patterns appear inside
regions of intense shearing. These small scale low-energy vortices are associated
with turbulent-turbulent (TT) interactions which take the form of thin interfaces
[IOH15]. In turbulent flows, these interfaces have been found to act as decorrelation
barriers between the different flow regions, shielding the individual structures on
either side. In the energy spectrum this translates to an upscale energy transfer
(backscatter), moving energy from lower scales to larger ones, thus altering the
direct energy cascade.
The velocity field can be approximated from Eq. 3.1. Based on this equation, we
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(a) U2 (b) W2

(c) U4 (d) W4

(e) U6 (f) W6

(g) U8 (h) W8

Figure 3.10: Lower POD spatial modes for the longitudinal (left) and vertical

(right) velocity components, computed from URANS simulations; indices refer to

the order of the mode.
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(a) U16 (b) W16

(c) U32 (d) W32

(e) U48 (f) W48

(g) U64 (h) W64

Figure 3.11: Higher POD spatial modes for the longitudinal (left) and vertical

(right) velocity components, computed from URANS simulations; indices refer to

the order of the mode.
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(a) (b)

Figure 3.12: Turbulent kinetic energy (a) reconstructed from (b) high-order low-
energy POD modes, enclosed in the rectangle.

can build the fluctuating velocity field from:

uuu′′′(xxx, t) = uuu(xxx, t)−UUU1(xxx) =
NPOD

∑
n=2

αn(t)UUUn(xxx)

To build the stochastic forcing term, we need to calculate a kinetic energy distri-
bution. The low-energy turbulent kinetic energy can be built after separating the
high-order POD modes from:

KPOD =
1
2
(u′2recon + v′2recon +w′2recon)

where the ∗ denotes a time-averaging procedure and only higher (NPOD ≥ 60) modes
were chosen for the reconstructed fluctuating velocity field:

uuu′′′recon =
NPOD

∑
n=60

αn(t)UUUn(xxx)

The limits used for the reconstruction (see Fig. 3.12b) were chosen qualitatively
in order for the highlighted zone to remain localized within the shock region and
the wake (see Fig. 3.12a) and retain small values with respect to the mean flow.
In addition, the temporal coefficients that corresponds to modes higher than 60
present an incoherent, chaotic-like spectral content. These small resolved motions
should be self-similar to the largest unresolved [Dav09] ones and provide a good
representation of the small scale dynamics.

3.3.2 Effects of the stochastic forcing

The inhomogeneous stochastic forcing term is built from the reconstructed turbulent
kinetic energy KPOD (see Section 2.1.7). This enables the approach to stay within the
shear layers where small scale dynamics take place without affecting the irrotational
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regions. The forcing term will act as an energy transfer from the smaller scales to
larger ones and limit the turbulent diffusion effect due to the direct energy cascade
modelling assumptions. The stochastic character of these interactions will be
considered through the random number generator that guides the dynamic evolution
of the forcing within the regions of interest.

The introduction of the stochastic forcing increases locally the dissipation rate.
In Fig. 3.13, the OES calculations with and without stochastic forcing are compared
over one buffet period. The dissipation ε of the turbulent kinetic energy is increased
within the regions where the inhomogeneous forcing is applied. The detachment
zone is contained in a less wide region signifying a reduced shock movement and
production of ε downstream of the shock. The distribution of the turbulent kinetic
energy does not present any significant change. The forcing terms in the transport
equations of K seems to balance the increase of turbulent dissipation and leaves
the production of kinetic energy unaffected. Consequently, the effects of turbulent
diffusion are reduced as expected resulting at fluctuating turbulent stresses in the
momentum equations. The eddy turnover time ts = K/ε is consequently reduced
signifying an acceleration of the direct energy cascading procedure.

In Fig. 3.14, the calculated turbulent viscosity νt (left) and the variation of
the turbulent length scale lt (right) are presented for the OES+F calculation. The
turbulent viscosity is contained inside the detachment zone close to the wing. The
regions were the forcing is applied present reduced turbulent viscosity which is
coherent with the dynamics in such a high Reynolds number. The altered (reduced)
turbulent stresses is equivalent to local accelerations added in the momentum con-
servation equations. The predicted turbulent length scale is also reduced for the
whole area downstream of the shock. Due to the ambient terms added in the forcing
terms (see Section 2.1.7) and the shearing caused by the presence of the shock, the
layered zones of low turbulent length scale originally predicted without the stochas-
tic forcing (see Fig.3.4) disappear. From the turbulent viscosity prediction, a few
isolated zones where turbulent interactions take place are identified. The decrease of
the modelled length scale significantly affects the DOES+F approach. The regions
were the DES mode is activated become smaller (see DES flag on Fig. 3.15); the
simulation operates in OES mode inside the wake and over a significant area of
the suction side of the wing. As a result, the two approaches do not present large
differences when the stochastic forcing terms are activated.

The dynamic behavior of the flow is altered as well due to the stochastic forcing.
The general shock structure remains unchanged as it is illustrated in Fig. 3.16
(right). The shock movement however is significantly affected by the modifications
associated with the turbulence variables: (i) The travelling length that the shock
covers is reduced along with the intensity of the pressure fluctuations, (ii) the point
around which the shock oscillates is moved downstream, (iii) the detachment of
the flow becomes less pronounced as the shock never reaches the leading edge, (iv)
the width of the wake is consequently reduced, and (v) the whole buffet limit cycle
is slightly more stable. The DOES+F approach (see Fig. 3.15) predicts a similar
behavior, supporting the results discussed for the OES+F approach.
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(a) t = 0 (b) t = 0

(c) t = Tb/4 (d) t = Tb/4

(e) t = Tb/2 (f) t = Tb/2

(g) t = 3Tb/4 (h) t = 3Tb/4

Figure 3.13: Variation of turbulence dissipation ε over one buffet period Tb on
the mid-span xz section; comparison of OES (left) and OES+F (right), i.e. without
and with stochastic forcing.
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(a) t = 0 (b) t = 0

(c) t = Tb/4 (d) t = Tb/4

(e) t = Tb/2 (f) t = Tb/2

(g) t = 3Tb/4 (h) t = 3Tb/4

Figure 3.14: Variation of turbulence eddy viscosity νt (left) and the turbulent

length scale lt = k3/2/ε (right) over one buffet period Tb on the mid-span xz

section with OES+F.



3.3. HIGHLY DETACHED TRANSONIC FLOW 91

(a) t = 0 (b) t = 0

(c) t = Tb/4 (d) t = Tb/4

(e) t = Tb/2 (f) t = Tb/2

(g) t = 3Tb/4 (h) t = 3Tb/4

Figure 3.15: Variation of the DES flag (left) and the gradient density magnitude

(right) over one buffet period Tb on the mid-span xz section with DOES+F; DES

mode for f lag = 1 and OES mode for f lag = 0.
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(a) t = 0 (b) t = 0

(c) t = Tb/4 (d) t = Tb/4

(e) t = Tb/2 (f) t = Tb/2

(g) t = 3Tb/4 (h) t = 3Tb/4

Figure 3.16: Variation of the M number (left) and the gradient density magnitude

(right) over one buffet period Tb on the mid-span xz section with OES+F.
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3.3.3 Modification of the coherent dynamics

Various monitoring points were placed along the surface of the wing to record the
pressure variation in time. The points illustrated in Fig. 3.17 are selected to be
presented here as they cover the chord length and are sufficiently spaced between
them. The signals for the pressure difference with respect to the freestream pressure
and the power spectral density (PSD) of the signals are included in Fig. 3.18.
The signals from the OES and OES+F calculations are examined together for
comparison; the DOES and DOES+F provide almost identical results. The periodic
oscillations of the signal clearly indicate the buffeting motion along the suction
side. The peak values correspond to the phase where the shock moves to its most
upstream position while the valleys correspond to the shock’s most downstream
position. The superimposed higher-frequency oscillations at the crests of the signal
correspond to the boundary layer detachment and transition (St number order of 1).
This underlines the interaction of the shock with the boundary layer.

Figure 3.17: Positioning of surface pressure monitors on the wing.

The first point (Point 1) examined shows that the stochastic forcing prevents
the shock from reaching the leading edge of the wing. For the position further
donwstream and inside the area of the buffeting motion, the frequency is modulated
(slightly reduced). The extreme peaks occuring in the case of standard OES are
significantly reduced as well. The buffeting motion is contained in a narrower
area (see Points 1 and 6) and the intensity of pressure fluctuations is weakened.
Consequently, the mean pressure values are slightly reduced and an increase of the
aerodynamic lift is to be expected. In the more downstream positions (Points 4-6)
the time duration of the crests is longer, and the nonlinear interactions and smaller-
scale effects are enriched. These remarks are supported by the PSD of the pressure
signals as well. The buffet frequency is moved to a slightly lower value and the
nonlinear interactions between its harmonics and higher frequencies are modified.

These modulations are directly affect the temporal evolution of the aerody-
namic forces. The time variation of the lift and drag coefficients is shown in Fig.3.19
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(a) Point 1 (b) Point 2 (c) Point 3

(d) Point 4 (e) Point 5 (f) Point 6

Figure 3.18: Comparison of surface pressure temporal variation with OES and

OES+F.

for the OES/OES+F (Figs. 3.19a-3.19b) and the DOES/DOES+F (Figs. 3.19c-3.19d)

approach. Both methods present qualitatively identical results. The regular “saw

tooth” shaped oscillations, that were predicted without forcing due to the strong suc-

tion effects, are replaced by a more irregular pattern with less sharp - more physical

- variations. The modulations are even more prominent in the drag evolution which

displays lower amplitudes and rms levels, and could be attributed to the stochastic

local acceleration of the flow due to the forcing. The mean values are also modified

as expected. A slight increase of the lift coefficient and a simultaneous decrease of

the drag is predicted with the stochastic forcing. The statistics of the evolution of



3.3. HIGHLY DETACHED TRANSONIC FLOW 95

(a) Lift coefficient (b) Drag coefficient

(c) Lift coefficient (d) Drag coefficient

Figure 3.19: Temporal variation of aerodynamic force coefficients with OES(+F)
(top) and DOES(+F) (bottom).

the forces are summarized in Table 3.1 along with the experimental measurements
(EXPE) [IoA20]. The experiments were carried out by the Institute of Aviation
(IoA), Warsaw, partner of the TFAST project. The mean values calculated with the
stochastic forcing are closer to the experimentally measured values. A significant
decrease of the excessive root-mean-square value of the force variation is achieved
with the new approach. Finally, the frequency modulations reduce the Strouhal
number (based on the chord) which also correlates well with the one estimated by
experimental unsteady pressure measurements.

3.3.4 Mean flow field

The time averaged boundary layers and velocity profiles in the wake are illustrated
in Fig. 3.20 for the longitudinal (Uav) and in Fig. 3.21 for the vertical (Wav) velocity
component. The comparison is made for the OES/OES+F calculations but the same
trends have been observed from the DOES/OES+F. The reader can refer to Fig. 3.7
for the X/c streamwise positions used for the extraction of the velocity profiles.

Moderate modifications are present in the velocity profiles in the sections
above the wing surface (Figs.3.20a-3.20c and 3.21a-3.21c). The profiles reach the
upstream value more abruptly; the boundary layer thickness is slightly reduced
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CL

√
(CL−CL)2 CD

√
(CD−CD)2 Stb

EXPE 1.077 – 0.0748 – 0.09

OES 1.046 0.171 0.0885 0.0259 0.10
OES+F 1.067 0.105 0.0802 0.0128 0.08
DOES 1.036 0.171 0.0884 0.0256 0.11

DOES+F 1.057 0.105 0.0795 0.0128 0.09

Table 3.1: Comparison of force prediction; the experimentally measured values
(EXPE) for final (v2) polished clean prototype. Strouhal number based on the
chord.

and the turbulent flow does not contaminate (upper) regions where the flow should
stay irrotational. The detached zone is slightly thinner and the vertical velocity
component is reduced as the recirculation zone becomes smaller. In the wake
(Figs.3.20d-3.20f and 3.21d-3.21f), the velocity profiles are significantly affected.
The shearing mechanism is intensified, resulting in a sharper slope for the longitu-
dinal velocity profiles and a higher velocity deficit due to the fluctuating turbulent
stresses. The velocity profiles reach the upstream values more abruptly and the
wake thickness is reduced signifying a consequent reduction of the entrainment
velocity. The wake seems to be shielded from the outside perturbations and, at the
same time, the irrotational regions are less contaminated. Therefore, the reinjection
of turbulence meets the objectives of shear sheltering processes mentioned in the
beginning of this chapter.

(a) x/C = 0.56 (b) x/C = 0.76 (c) x/C = 0.88

(d) x/C = 1.08 (e) x/C = 1.28 (f) x/C = 1.48

Figure 3.20: Averaged longitudinal velocity profiles; comparison between OES
and OES+F.
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(a) x/C = 0.56 (b) x/C = 0.76 (c) x/C = 0.88

(d) x/C = 1.08 (e) x/C = 1.28 (f) x/C = 1.48

Figure 3.21: Averaged vertical velocity profiles; comparison between OES and
OES+F.

3.3.5 Tripped transition

The OES+F and DOES+F approaches yield an improved prediction of the experi-
mentally measured aerodynamic forces as it was discussed in a previous section.
However, the intensity of the pressure fluctuations - even if reduced with the forcing
- is still quite large due to the long distance that the shock covers as it travels along
the wing’s surface. Whether this is physical needs to be investigated. In this section
we will examine the physical procedures that strongly affect the prediction and
are responsible for the dynamics captured. In terms of numerical parameters, we
will evaluate the effects of the turbulence transition of the boundary profile on the
suction side of the wing, which was found to greatly alter the the flow prediction.
In the present simulations, we account for the 3D transition with the addition of a
plane (2D) that numerically suppresses the generation of turbulence by replacing
the turbulent source terms with a zero matrix, imposing a zero eddy viscosity on
the domain that precedes the plane. The stochastic forcing terms are only activated
inside the domain downstream of the transition plane. The discussion here included
is based on the average pressure profiles over the wing’s surface. The time averaged
pressure distribution on the wing’s surface (Fig. 3.23) is examined on the mid-span
section illustrated in Fig. 3.22.

The (non-dimensional) pressure coefficient is plotted for several of the cases
examined. The studies carried out in the present work are completed by experimen-
tal measurements carried out by the Institute of Aviation (IoA) and DNS by the
University of Rome La Sapienza (URMLS), both partners in the TFAST project.
The measurements for the final (v2) version of the wing without tripping (CLEAN)
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are examined here. A second prototype of the final wing was constructed with better
geometry accuracy that resulted in reduced surface roughness (POLISHED) and is
also investigated. Two cases for the DNS calculations are presented here as well,
both carried out on a fine mesh with Nx ·Ny ·Nz = 2560 ·512 ·768 grid points. The
first one (DNS) examines the purely laminar interaction on the V2C airfoil where
the term laminar refers to the state of the incoming boundary layer until it reaches
in the proximity of the shock foot. In this case, the transition to turbulence takes
place due to the strong pressure gradient in this region. In the second case (DNS
TRIP) a numerical tripping of the boundary layer was added at X/c = 0.1 on the
suction side of the wing in order to initiate the transition to turbulence. The tripping
was achieved by a roughness element placed along the span and resolved with an
immersed boundary approach.

Figure 3.22: Mid-span section on the wing’s surface.

In Fig. 3.23a, a comparison is made between the experimental pressure mea-
surements and the DNS. There is an apparent qualitative agreement overall between
the two investigations. The “laminar” DNS predicts a shock position at X/c≈ 0.4
which is really close to the one measured on the polished profile. The polished
V2C design is able to sustain a laminar boundary layer up until the shock foot, in
accordance with the laminar wing concept. Downstream of the shock, the sudden
decrease of the pressure coefficient marks the transition to turbulence and the steep
slope signifies that the shock remains quasi-steady. On the contrary, the shock
position moves upstream when the non-polished profile (CLEAN) is examined.
Due to the increased roughness, the transition to turbulence is hastened and the
decrease in the slope of the pressure coefficient illustrates a shock unsteadiness.
The buffeting motion covers a long distance over the surface and the tripped sim-
ulation (DNS TRIP) predicts an almost identical behavior. The tripping initiates
the turbulent transition which takes place at X/c≈ 0.3 and consequently the shock
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(a) Comparison of DNS with experiments. (b) Various modelling approaches.

(c) Effect of the transition planes. (d) With and without stochastic forcing.

Figure 3.23: Averaged surface Cp distribution on the mid-span section; exper-
imental measurements on the final (v2) clean and polished clean prototype by
IoA, URANS carried out by IMFT and DNS, DDES by URMLS during the TFAST
project.

movement reaches this point. Additional experimental measurements with tripping
of the boundary layer on the suction side support these remarks; when the transition
to turbulence is initiated through tripping, the shock becomes more unstable and
its travelling reaches more upstream positions. It should be mentioned that, even
though the DNS predicts a dynamic response for the shock in agreement with the
experimental measurements, the two investigations produce differences in the pres-
sure distribution on the pressure side of the wing and downstream on the suction
side.

Various turbulence modelling approaches are compared in Fig. 3.23b. The
pressure distribution predicted with the OES approach in the current work is shown
along with the previously mentioned DNS results. In the same figure, the DDES
studies carried out by URMLS are also included. The Spalart-Allmaras (SA) model
was employed for the RANS-mode calculations of the DDES approach. Finally,
past URANS simulations carried out by IMFT, utilizing the k−ω model, were
added [SAG+16]. All the approaches present identical results on the pressure side
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of the wing and on the downstream part of the suction side. The OES and DDES
approaches predict a similar behavior with the OES yielding a higher pressure
coefficient in the shock travelling region. The shock presents intense unsteadiness
and covers a wide distance over the surface of the wing reaching up until the
leading edge. It had been demonstrated by subsequent studies of URMLS that the
spanwise length does not contribute to this prediction. This large shock travelling
area was also observed in the contours presented in previous section for the OES
approach. As it has been demonstrated (Fig. 3.4), turbulence is generated at the
vicinity of the shock foot. Close to the surface, due to the low-Mach number in
the boundary layer region, the turbulent field contaminates upstream regions. The
adverse pressure gradient pushes the detachment forward until it reaches the trailing
edge. The URANS approach presents a more stable solution compared to the OES
and the DDES. This was expected since statistical approaches provides a higher
disspipation rate level than the OES and the DDES. The stochastic forcing (OES+F)
based on the URANS modes leads to an improved behavior (see Fig. 3.23d). The C̄p

moves towards the DNS tripped simulation and presents an overall better tendency.
However, it can be seen that the stochastic forcing on its own does not alleviate the
intense shock unsteadiness.

Subsequent studies have been carried out with the addition of the aforemen-
tioned transition planes. In Fig. 3.23c, the pressure distribution is illustrated for
the OES+F computations without and with transition planes (w TRANS) at three
positions X/c = 0.2/0.3/0.4 based on the chord of the wing. It is demonstrated
that the suppression of turbulence source terms upstream of the transition plane,
blocks the shock from moving towards upstream regions, supporting the previous
analysis. The pressure plateau is established and the pressure levels are in very
good agreement with the DNS with and without tripping with the plane placed at
X/c = 0.3 and X/c = 0.4 respectively. In the shock travelling region, the current
approach predicts a small acceleration zone that corresponds to the secondary shock
previously observed and is responsible for a slight bump in the C̄p distribution.
These regions do not appear in the DNS predictions and according to the author’s
understanding it can be attributed to an insufficient mesh refinement for the present
simulations. This is also supported by the remark made for the DOES calculation
in which the simulation worked in an OES mode in the region downstream of the
shock. Nevertheless, the current investigation mainly examines the parameters that
affect the prediction of the shock position and studies on a finer mesh could be the
subject of a future study. To conclude this analysis, it should be mentioned that the
use of transition planes reduces the apparent effects of the stochastic forcing in the
pressure distribution. This is shown in Fig. 3.23d where the two approaches are - as
expected - identical in the region upstream of the plane where no turbulent source
terms are accounted for. In addition, minor differences in the region downstream
of the shock are observed and the stochastic forcing does produce improvements
on the flow prediction since the pressure distribution approaches the DNS results
slightly better.



3.4. CONCLUSION 101

3.4 Conclusion

In the present chapter we examined a stochastic forcing turbulence modelling
approach. The method was first examined in [SGJG+15] for a 2D transonic flow in
combination with the OES approach. It consists of turbulence re-injection which
models upscale energy transfers causing the generation of intermediate eddies. The
forcing terms are built from turbulence kinetic energy reconstructed from low-
energy POD modes and a random number generator that accounts for the stochastic
nature of the backscattering. In the present work, the method was extended for three-
dimensional flows to be used in the investigations on the transonic flow around the
laminar V2C wing designed and studied by in the context of the TFAST European
project.

The methodology was examined along the OES and a DES approach and ap-
plied for the prediction of the buffet instability. The forcing increased the dissipation
rate locally, inside the sheared regions identified from the POD, reducing the turbu-
lence eddy viscosity. The flow field, the SWBLI and the buffet limit cycle prediction
have been analyzed with the stochastic forcing. The general shock structure was
not affected but the travelling length of the shock was reduced and the buffet cycle
was slightly more stable. The detachment of the flow became less pronounced and
consequently the width of the wake was also reduced.

The evaluations of the dynamics showed a reduced buffet frequency which
correlated better with the experiments, and higher-frequency modulations of the
pressure signals. The extreme peaks and the mean pressure values were reduced and
the intensity of pressure fluctuations was attenuated. These modifications resulted
in a force prediction that was closer to the experimentally measured values. The
effects of the turbulence transition of the boundary profile on the suction side of
the wing were also considered. We demonstrated that the suppression of turbulence
source terms upstream of the shock stabilized the flow, prevented the shock from
reaching the leading edge and a pressure plateau was established in very good
agreement with the past DNS results. Subsequent studies on a refined mesh in
the region after the shock front should follow. This investigation will be focused
mainly in the region right after the shock front in order to evaluate the prediction
of the narrow acceleration zone due to the secondary shock. This will also allow
to perform DDES-OES calculations which were not examined in the present study
since the simulations perfomed in an OES mode for this specific grid.

Overall, the proposed methodology succeeds in representing the TNT and TT
interfaces and the effects that the modelled small scale dynamics were expected to
cause by predicting a sharper slope for the axial velocity profiles. The wake was
shielded from the outside perturbations; a thinner wake was predicted suggesting
reduced entrainment velocity. The addition of the stochastic forcing also yielded
an increase of the lift and simultaneously decrease of the drag. It is of interest to
investigate whether the same type of effects can be achieved by employing elec-
troactive morphing strategies targeting the control of the TT and TNT interfaces. In
the following chapter, we will examine a morphing application in which we enhance
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the aerodynamic performance via a high-frequency low-amplitude actuation near
the trailing edge region of a wing, introducing in the flow small scale fluctuations
that actively modify the wake dynamics.
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Chapter4
Wing morphing via near-trailing
edge actuation1

This chapter examines the morphing effects due to the trailing-edge low-
strain vibration on the aerodynamic forces and the turbulent structures
in the wake of a supercritical wing. The actuation is produced with
piezoactuators placed in the trailing edge region of the wing. The study is
carried out in the low subsonic regime (Reynolds number ∼ 1 Million)
corresponding to take-off/landing flight phases. It is shown that the elec-
troactive morphing has the capacity to produce an enhanced aerodynamic
performance. Optimal frequency/amplitude ranges for the vibrations are
quantified.

4.1 Introduction

The state and the governing dynamics of wake regions downstream of hydrodynamic
bodies has been the subject of multiple investigations. The instabilities emerging
in the wake provoke the generation of vortices that significantly affect the flow
and performance of aerodynamic surfaces through feedback mechanisms. The
characteristic flow patterns developed around a symmetric airfoil at a low Reynolds
number have been experimentally studied in [HL95]. The boundary layer on the
suctions side of the wing was found to be strongly correlated to the unstable shear
layers developed in the flow around the wing. The authors examined the relation
between shear layer instabilities and the emerging vortex shedding behind the airfoil

1The work presented in this chapter has led to a journal [SJM+19] and a conference [SDJ+19]
publication
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and analyzed the shedding characteristics as a function of the Reynolds number and
the angle of attack.

The work of Hoarau et al. [HFB+03] further analyzed the three-dimensional
transition of the flow around the same symmetric geometry. The authors performed
Direct Numerical Simulations (DNS) at a low Reynolds number as well. Besides the
interaction between the shear layer and the shedding modes appearing in the wake,
the authors emphasized the importance of three-dimensional modes in the spanwise
direction that were found to guide the passage towards turbulence. The coherent
structures developed around airfoils was also the subject of the experimental study
in [YSK06] and [YSK09] for higher Reynolds number (order of 104−105). This
investigation examined flow characteristics such as separation bubbles, separated
boundary layers and turbulent vortex shedding in the wake. The authors analyzed
the amplification and growth of disturbances inside the boundary layers along with
the roll-up and vortex merging mechanisms, all of which govern the transitional
wake dynamics in the respective Reynolds number range.

All the above studies were focused on the governing dynamics of flows around
wings and demonstrated the importance of vortex interactions and flow conditions.
They created a solid background on which flow control techniques that manipulate
the emerging instabilities could be developed based on the physical processes
involved.

4.1.1 Forced wakes & shear layers

D. Oster and I. Wygnanski [OW82] investigated the sensitivity of turbulent shear
layers to small amplitude two-dimensional perturbations. A moving flap was set
at the trailing edge of a splitter plate in order to introduce sinusoidal oscillations
at the origin of the shear layer. The oscillations were found to cause significant
modifications of the development of the shear layer by reinforcing existing natu-
ral flow instabilities, without greatly affecting the initial velocity profiles. They
attributed the energy transfer from the natural modes to the actuating ones to a
collective interaction of shedding vortices that coalesce (pair) together to form
larger structures. In that way, the forcing only redistributed the flow energy. Later,
Kourta et al. [KBCH87] numerically studied the successive zones of transitioning
shear layers. The authors applied a forcing to study the pairing mechanics and
the nonlinear interactions caused from actuation at an incommensurate frequency.
The observations were in agreement with previous studies and experimental mea-
surements. These transitional zones of shear layers were also analyzed in more
detail in [WW88] through experimental measurements and numerical tools. Flow
visualizations, a stability and a spectral analysis were employed to investigate the
amplification of phase-locked perturbations added in a shear layer.

The effect of sinusoidal oscillations, introduced on the wake of a flat plate via
a trailing edge flap, on the growth of a turbulent wake was examined by [MCW92].
They introduced in the flow travelling waves of various amplitudes and frequencies
and demonstrated important variations of the spreading rate of the wake, linked to
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the turbulent stresses. They observed that the perturbations added to the flow were
initially amplified by draining energy from the mean flow. At a second stage, and
after the development of larger coherent structures, the energy of the flow is mainly
distributed towards the mean turbulent flow at the expense of the motions linked to
the perturbations. N. Reau and A. Tumin developed a numerical model based on the
triple decomposition of the flow field [RT02] in order to analyze the introduction of
harmonic perturbations in a turbulent mixing layer. Their numerical approach was
found to be in good agreement with previous experimental measurements. They
examined the nonlinear interactions between coherent and turbulent stresses and
proposed a new approach for the accurate prediction of the shear layer spreading.
The authors observed the thinning of the shear layer when the perturbations were
introduced, and concluded that the same mechanics could guide the development of
active flow control strategies.

Forced nonlinear interactions have been also analyzed in the wakes of aerody-
namic profiles. The authors in [WCM86] have expanded their previous studies; they
investigated the forced development of instabilities in small deficit turbulent wakes
of bluff bodies. n this study, they examined the two-dimensional development of
turbulent structures due to the interaction of shear layers of opposite vorticity. The
work of [Koo89] examined experimentally the vortex patterns generated in the wake
of a pitching airfoil. The authors investigated harmonic and stochastic oscillations
of the symmetric airfoil profile and analyzed the vortex interactions and wake pat-
terns for various actuation frequencies and amplitudes. They concluded that this
type of excitation was able to produce larger scale modifications when compared
with traditional flow control techniques. Experimental measurements were also
carried out by M. Gharib and K. Williams-Stuber [GWS89] on the forced wake of
airfoils . The authors equipped the examined wing geometry with strip-heaters in
order to locally alter the flow and effectively change the wake development. They
demonstrated that the flow was more receptive to actuations close to the natural
frequencies while for larger amplitudes the receptivity range - namely locking range
- was expanded. The authors achieved the cancellation of the wake unsteadiness by
symmetrically actuating the strip-heaters on both sides of the airfoil and attributed
the changes in the aerodynamic performance to the additional thrust generated from
the actuation. Through a stability analysis they demonstrated the amplification of
the natural frequencies due to the forcing as the wake was found to be adjusting
through variations of the mean profiles. The same authors expanded their studies in
[WSG90] where they examined the actuation with multiple frequencies. The wake
was find to pass into a chaotic state after three different frequencies were applied
simultaneously due to the nonlinear dynamics involved. Both studies however were
carried out at low Reynolds numbers.

4.1.2 Electroactive morphing

The effect on the wake dynamics and the aerodynamic forces due to an electroac-
tive actuation close to the trailing edge of a wing was studied in great detail in
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[SCR+15]. The authors developed and tested a morphing prototype where the
actuation was introuced with a piezoelectric push-push mechanism that imposed
low-amplitude, high-frequency vibrations of the trailing edge. The system was
integrated in a symmetric airfoil and the flow was examined through Particle Image
Velocimetry (PIV) measurements. The authors demonstrated that the actuation had
a considerable impact on the shear-layer vortices and suggested that through the
same mechanisms it is possible to attenuate structures that are detrimental to the
aerodynamic performance. Via a Proper Orthogonal Decomposition (POD) analysis
they highlighted the influence of the low-amplitude piezoelectric actuation on the
temporal and spatial modes and achieved a reduction of the predominant shear-layer
frequencies.

The experimental study of Jodin et al. [JMS+17] examined a hybrid morphing
wing prototype where the trailing edge actuation was achieved directly from piezo-
electric patches incorporated into a silicon trailing edge (see Section 1.2.2). This
article presented a first analysis of the morphing effects due to the high-frequency
actuation applied close to the trailing edge of an A320 wing at a high Reynolds
number and angle of incidence. In the present work, the study of [JMS+17] is
extended; we examine the morphing effects on the aerodynamic performance by
means of both numerical simulation and experimental investigation, an original
element in the state of the art. Both the Reynolds range and the angle of attack
for the configuration examined here correspond to take-off/landing flight phases.
The flow in the supercritical Reynolds range presents complex vortex dynamics
and interactions with the solid structure, calling for specific attention in order to
produce successful morphing effects. As a result, high Reynolds dynamics change
the general flow behavior and both the morphing practices and targets. In this
context, the electroactive morphing is a more general strategy than standard flow
control techniques as it creates interactions among the structural dynamics and
turbulent flow field.

4.2 Experimental procedure

The hybrid morphing wing prototype embeds both camber control and Higher-
Frequency Vibrating Trailing Edge (HFVTE) actuators. In this chapter, only the
electroactive morphing effects of the HFVTE actuation are examined. This will
highlight the effects coming from the actuated trailing edge in the context of the
hybrid morphing. The large-scale deformation at low frequencies achieved with the
Shape Memory Alloy (SMA) actuators will be studied in a following chapter of the
thesis (see Chapter 5).

The present study follows the experimental work of G. Jodin et al. [Jod17]
for a Reynolds number of 1 million. The measurements and the numerical studies
will be compared against each other in order to validate both approaches. The
wing prototype with a chord c = 0.7m is examined at an incidence angle of 10°.
Time Resolved Particle Image Velocimetry (TRPIV) measurements were carried
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Figure 4.1: Schematic representation of the experimental test section of the S4

wind tunnel of IMFT (left) with the A320 wing (right) mounted on [JMS+17]; the

prototype bears the HFVTE actuators on the trailing edge along the span.

out in the subsonic wind tunnel S4 of IMFT. The test section has width w = 592mm

and height h = 712mm (see Fig. 4.1). The measurement of the unsteady velocity

fields has been realized with the contribution of the Signal and Image processing

service of IMFT. The post-processing of the raw PIV results was carried out with

the CPIV-IMFT open-source software, developed by the Software Services of IMFT,

for parallel (MPI) post-treatment of the results in supercomputing architectures.

CPIV-IMFT is a multiplatform (Windows/Linux) software, based on a multi-grid

iterative algorithm with image distortion [TTS+10]. It is capable of computing large

sets of images efficiently in terms of computational time, significantly shortening

the post-treatment duration for large-size results. For a more detailed presentation

of the software the reader can refer to the CPIV Software description online 2. In

the present study, the CALMIP supercomputing center has been used for the data

analysis.

The measurements were carried out at an ambient temperature (295K). For the

TRPIV, smoke particles of 3.4µm diameter were introduced in the airflow, giving a

Stokes number Stk = 5 ·10−4; Stk << 1 indicates that the particles follow consis-

tently the motion of the fluid. Particle images are recorded during the experiments

using the digital high-speed camera Phantom V1210. Regarding the depth of the

field, the camera was focused in the mid-section. The sampling rate was about

10KHz. The laser sheet representation in the mid-span region is shown in Fig. 4.1,

placed in the stream-wise direction. Each image is divided into interrogation win-

dows of 16X16pixel2 size, which corresponds to 3.4X3.4mm2, with an overlap

of 75%. The thickness of the laser sheet was 2.5 mm. The laser pulsations are

generated by a two cavity Nd:YLF (527 nm) laser (Photonics Industries Interna-

tional Inc. DS-527-60) and they were redirected using mirrors to light the wake

2http://www.smartwing.org/SMS/EU/CPIV_description

http://www.smartwing.org/SMS/EU/CPIV_description
http://www.smartwing.org/SMS/EU/CPIV_description
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region downstream of the wing. For a more detailed description of the experimental
equipment and procedure the reader should refer to [Jod17].

Acquisitions of 50000 images has been proven sufficient to obtain a statistical
convergence of the results. The most probable displacement of the particles between
two consecutive images is obtained from the cross-correlation of consecutive images.
The velocity variation evaluated over multiple experiments was estimated to be
below 1.5% while the blockage ratio was found to be acceptable as long as the focus
is the relative effects of the morphing application. The experimental benchmark was
also equipped with an aerodynamic balance in order to measure the lift and drag
forces. However, the quantification of lift and drag was far from trivial in this study
since the measurements were significantly affected by the trailing edge vibration.
As a result, only qualitative comparisons concerning the morphing effects will be
included in this chapter.

4.3 Numerical approach for subsonic flow

The time dependent Navier-Stokes equations have been solved under the con-
servative form in a finite-volume structured grid formulation, using the NSMB
(Navier-Stokes MultiBlock) code [HPV+16], in two and three dimensions. The
computational domain is subdivided into a number of quadrilateral (2D) and hexa-
hedral (3D) grid cells resulting in a structured mesh. The multi-block strategy is
followed in accordance to the parallelization procedure of the code. A separate
discretization of the equations in space and time is applied. Finite volume cells
of constant size in time are considered for the discretization in space. A fourth
order central skew-symmetric spatial scheme with second and fourth-order artificial
dissipation terms is used for the convection terms and a second-order central scheme
for the diffusion terms. For the temporal discretization, dual time-stepping with a
second-order implicit backward difference scheme is performed (see Chapter 2).
The artificial compressibility method for the preconditioning of the flow was chosen
after various numerical investigations, in order to enhance the convergence of the
computations in the low subsonic regime.

Following the experimental studies, computational grids were constructed
depicting faithfully the geometry of test section (see Fig. 4.1). Two meshes (M1
and M2) have been used for the 2D computations. The grid sizes were selected
after thorough numerical studies. The M1 includes 300000 finite volume cells.
Its refined version, M2 grid, contains 500000 finite volume cells. The additional
points were added in the streamwise direction, both on the wing surface and in the
wake region. For the 3D computations, the M1 grid was extruded in the spanwise
direction leading to a total mesh size slightly higher than 10 million (M3). The y+

values, corresponding to the first grid spacing above the wall, were below 1 for all
the grids considered. The three grids are summarized in Table 4.1.

The physical time-step was kept constant in all the computations at 10−5,
giving a CFL number around 50. Additional simulations with a Courant number
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(a) Multi-block description of the computational domain.

(b) M3 surface mesh of the A320 wing. (c) M1 mesh around the A320 wing.

Figure 4.2: Meshing of the computational domain.

around 5 (∆t = 10−6) have been also performed and the results compared well
with the present studies. About 60− 80 inner iterations were carried out at each
time-step. The increased number of iterations is justified from the low-Mach
aerodynamics simulated in the cases following. For the upper and lower walls of
the tunnel, both non-slip (zero velocity at the wall) and slip (velocity tangent to the
surface) boundary conditions were considered; after numerical tests that indicated
no considerable effect on the wake development due to the respective boundary
condition, the simulations were carried out assuming slip boundary conditions
which provided a slightly better agreement with the experimental results. A velocity
inlet and a pressure outlet were used in the respective boundaries of the domain.
The boundary conditions and the computational parameter has been chosen after
various numerical tests. In the present work the Organized Eddy Simulation (OES)
approach (Section 2.1.7) has been employed for the turbulent flow.

Grid Simulation Cells
M1 2D 300K
M2 2D 500K
M3 3D 10M

Table 4.1: Grids developed for the numerical analysis.

For the morphing cases studies, the unsteady Arbitrary Lagrangian-Eulerian
methodology [DGH82] is utilized for the calculations in the moving grid. The
displacement of the trailing edge region follows exactly the second-order polyno-
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mial deformation applied on the reduced scale prototype with the actuation. The
frequency of the vibration fa and the amplitude Ao of the sinusoidal time variation
are imposed in each case. The time-dependent vertical deformation dz for every
surface point along the streamwise x direction, is given in Eq. 4.1.

dz = Ao[
2

3Lp
2 (x− xo)

2 +
1

3Lp
(x− xo)]sin(2π fa) (4.1)

for every x > xo, where xo = c− Lp with c the chord of the airfoil and Lp the
piezoelectric patch length. The amplitude Ao corresponds to the displacement
of the trailing edge tip end. In the tests following, the feedback effect of the
aerodynamic forces on the vibrational behavior of the piezoactuators has not been
taken into account (i.e. one-way fluid-structure interaction) as it had been evaluated
as negligible in [GSR+15].

4.4 Aerodynamic evaluation without morphing

In this section, both numerical and experimental results for the non-morphed wing
are examined. For all the results following, the wing is mounted at an incidence
angle of 10°. The chord of the prototype was constant and equal to 0.7m. The
incoming velocity was held constant (21.5m/s); for the reference temperature
(293K) and pressure (101325Pa) values, the Reynolds number is Re≈ 1 ·106. The
turbulence intensity of the inlet section of the wind tunnel was estimated at about
0.1% of the free stream velocity; for the numerical simulations, a higher value
(1%) was used. Due to the turbulence dissipation, a significant decay of turbulent
kinetic energy occurs from the inlet towards the computational domain. Increasing
the freestream turbulence intensity ensures comparable - with the experiments -
turbulent intensities around the body, and a significant distance between the inlet
boundary and the body. This allows for a more faithful representation of the
experimental test section.

4.4.1 Time Resolved PIV results

The instantaneous velocity field measured by means of TRPIV is presented in
Fig. 4.3. The plane presented in this figure is the one downstream of the wing, as
shown in 4.1. The streamwise direction for the measurements is that of x axis and
the vertical direction is that of y axis. The x/c = 1, y/c = 0 position corresponds to
the trailing edge. Points were added numerically in post-processing to follow the
velocity vector measured at each time-step, allowing for a streakline visualization.
The color of each “particle” represents its initial position. With the streakline
visualization, the coherent and chaotic turbulent structures developed in the wake
are highlighted, providing a view of the dynamic behavior of the wake. The turbulent
wake is restrained in between two thin shear layers, the Turbulent/Non-Turbulent
(TNT) interfaces [HESW11], examined in more detail in Chapter 3. Inside the
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wake region, additional Turbulent/Turbulent (TT) interfaces develop [IOH15]. The
interfaces are illustrated clearly in Fig. 4.3, captured by TRPIV measurements, and
indicated with the respective notation. The time-averaged longitudinal velocity field
from TRPIV measurements is shown in Fig. 4.4a.

Figure 4.3: Instantaneous velocity field from the TRPIV measurements, streakline
visualization for Re = 1M, angle of attack ao = 10°; the color of each particle
represents its initial positions. Trailing edge marked with a triangle.

To investigate the dynamics in the static configuration case (i.e. when no
morphing is applied), time signals of the vertical velocity component have been
extracted in selected positions downstream of the trailing edge; the corresponding
Fast Fourier Transform (FFT) for these signals has been calculated. Plots of the
Power Spectral Density (PSD) are presented in Fig. 4.4b and Fig. 4.4c for two points
selected in the near wake region (see Fig. 4.4a). The predominant frequency bump
shown in these spectra corresponds to an alternating shedding mode developed
downstream. The existence of this bump is representative of a coherent pattern
smeared by chaotic turbulence motion due to non-linear interactions between the
coherent vortex shedding and the finer-scale chaotic turbulent motion. This irreg-
ular formation of large scale structures is characteristic of the supercritical flow
developed in this Reynolds range.

The characteristic frequency of the Kármán instability is found to be around
254 Hz as indicated by the signal acquired from monitor points 2 and 3. This
frequency corresponds to a Strouhal (St = f L/U∞) number between 0.4−0.5, for
a characteristic length equal to the initial wake’s width. This estimation is in
agreement with measurements for circular cylinders close to the same Reynolds
number [Ros61]. The instability is a result of the interactions between the lower
and upper shear layers, developed from the respective unstable boundary layers.
Traces of these shear layer instabilities are seen in the spectra. The lower shear
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(a) Contour of time-averaged longitudinal velocity from TRPIV measurements;
position of the monitor points along the wake; the trailing edge is marked with a
symbol.
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(b) Spectrum from monitor point 2.
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(c) Spectrum from monitor point 3.

Figure 4.4: Spectral content of the vertical velocity component in the near wake
region; TRPIV results for the static case.

layer instability is placed in a higher frequency range (> 330Hz) while the upper
shear layer seems to be placed around 150− 170Hz. A detailed analysis of the
PIV measurements by a Proper Orthogonal Decomposition (POD) is included in
[JMS+17].

4.4.2 Numerical study

Numerical simulations have been carried out respecting the aforementioned experi-
mental conditions. For the numerical simulations, the streamwise direction is on the
x axis and the vertical direction is that of the z axis, leaving y axis along the span-
wise direction. This is the reference system that will be used for the comparison of
the computations with the experimental results. Unlike the experimental reference
system, the x/c = 0, z/c = 0 position corresponds to the leading edge.
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(a) Velocity magnitude on a plane section. (b) y−vorticity component on a plane sec-
tion.

Figure 4.5: 3D simulation for Re = 1M, angle of attack ao = 10°; wing is colored
by time-averaged surface pressure.

Figure 4.5 provides a global view of the solution over the computational
domain, acquired by means of numerical simulation with the M3. The flow coming
from the inlet moves downstream from left to right. In Fig 4.5b the plane used
for the PIV measurements is noted with a rectangular box and is used for all
comparisons between computed and measured data. A small detachment at the
trailing edge of the wing is shown through streamlines in Figs. 4.6 and 4.8b. The
detachment causes the unstable wake region following downstream and results to a
thicker effective body. The upper and lower shear layer instabilities interact with
each other giving an irregular alternating shedding further downstream. This gives
birth to secondary three-dimensional instabilities by mechanisms examined in low
Reynolds numbers around a wing in [HFB+03]. Figure 4.6 illustrates the formation
of undulated vortex rows along the span, displaying large-scale wavelengths. The
coherent vortices develop spanwisely counter-rotating cells according to a secondary
instability amplification [BFP01] and become undulated displaying predominant
wavelengths that are fractions of the chord. This can be seen from the spanwise
velocity fluctuations shown in Fig. 4.7 in the region downstream of the wing. The
velocity is plotted along lines in the spanwise direction drawn for constant x/c
values. Despite this three-dimensionnality, the initial development of vortices, i.e.
near-wake region close to the trailing edge of the wing, presents a quasi-2D behavior.

Contours of the time-averaged velocity magnitude and the instantaneous
(ensemble-averaged) turbulent kinetic energy K calculated by means of numer-
ical simulation with M1, are presented in Fig. 4.8. The regions close to the leading
(Figs. 4.8a and 4.8c) and trailing edge (Figs. 4.8b and 4.8d) are zoomed respec-
tively. The quasi-steady detachment begins after x = 0.55 which corresponds to
an x/c≈ 79%. Close to the leading edge, the appearance of a laminar separation
bubble causes the local detachment and then re-attachment of the flow; this mecha-
nism guides the transition to turbulence as depicted in Fig. 4.8c. The production
of turbulent kinetic energy starts at x = 0.03, i.e. where the bubble ends, which
corresponds to an x/c = 4.3% and as a result, the boundary layer is turbulent when
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Figure 4.6: Results from the 3D simulation for Re = 1M, angle of attack ao = 10°;

birth and evolution of primary and secondary instabilities in the wake. Iso-lines of

span-wise (y) vorticity along (middle), Q criterion iso-surfaces (top-right) colored

by longitudinal vorticity ranging from [−2] (blue) to [+2] 1/s (red).

Figure 4.7: Spanwise velocity component along the wake by means of numerical

simulation; the 3D effects result to spanwise predominant wavelengths that are

fractions of the chord.

it reaches trailing edge and separates. Furthermore, the unstable upper and lower

boundary layers can be seen in Fig. 4.8d. The undulations of the turbulent kinetic

energy suggest that the two shear layers present instabilities with different length
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scale and are prone to interact with each other.

(a) Time averaged velocity magni-
tude close to the leading edge.

(b) Time averaged velocity magni-
tude close to the trailing edge.

(c) Ensemble-averaged turbulent ki-
netic energy close to the leading
edge.

(d) Ensemble-averaged turbulent ki-
netic energy close to the trailing
edge.

Figure 4.8: Contours of velocity and turbulent kinetic energy, 2D simulation with
M1 grid for Re = 1M, angle of attack ao = 10°. The detachment is shown by
streamlines close to the trailing edge.

It has been shown (Fig. 4.6) that the flow has a pronounced 3D character. It was
mentioned however, that the initial development of the vortical patterns in the wake
has a strong apparent two-dimensional behavior. As a result, the main large scale
coherent flow dynamics involved in the near-wake development can be accurately
captured even by the standard 2D mesh (M1) and are in good agreement with the
experimental ones. Figure 4.9 attests to this. The PSD of the vertical velocity signals
are superimposed with the experimentally measured signals, for two positions in
the wake shown in Fig. 4.9a. The frequency range of the spectral bump is well
captured by the numerical simulation, both close to the trailing edge and further
downstream in the wake where the alternating shedding is fully developed. Spectral
peaks underline the main instabilities in the wake and present larger amlitudes in
the simulations.

The vortex structure dynamics and their non-linear interactions are visualized
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using streaklines in the wake, pictured in Fig.4.9a. The unstable shear layers develop
predominant frequencies close to the trailing edge. As seen in the experiments,
the lower and upper shear layers interact with each other yielding a von Kármán
vortex street further downstream. The vortex shedding is placed around 214 Hz,
which compares well with the value obtained from the experiments. The unstable
upper shear layer seems to present oscillation around 170 Hz while the lower shear
layer is characterized by a higher frequency (above 370 Hz), also in relatively good
agreement with the PIV measurements. All the above mentioned frequencies will
be referred to from hereby and after as natural frequencies as they correspond to
instabilities that appear naturally in the flow. These mechanisms are also highlighted
by the POD performed on the computational results and presented in a later section
of this chapter.

(a) Position of the monitor points in the computational domain;
streaklines where the color of each particle represents its initial
positions. Trailing edge tip at x = 0.69, z =−0.12;
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(b) Spectrum from monitor point 5.
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(c) Spectrum from monitor point 6.

Figure 4.9: Spectral content of the near wake region, comparison between com-
putational results for the M1 grid and experiments, Re = 1M, angle of attack
ao = 10°.

Comparisons of the time-averaged velocity profiles along the wake are shown
in Fig. 4.10; here, only the longitudinal velocity component is shown for com-
parison. The velocity profiles are extracted from the simulations in various x/c
streamwise locations illustrated in Fig. 4.11a. Comparisons between the 2D and
the 3D simulations with the experimentally measured velocity profiles are carried
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out. It is recalled here that the reference system used for the comparisons is the
one adopted in the simulations. It is demonstrated that the agreement between the
measured and computed profiles is quite satisfactory for all the grids tested. Despite
the aparent three-dimensional character of the flow, the 2D simulations accurately
predict the flow field. The wake expansion is well captured and only at the latest
position the velocity deficit is slightly overestimated. With this comparison it is
evidenced that besides the dynamic flow behavior, the mean flow is well captured
even with the M1 grid.

(a) x/c = 1.1 (b) x/c = 1.2

(c) x/c = 1.3 (d) x/c = 1.35

Figure 4.10: Comparison of longitudinal time-averaged velocity profiles along
the wake for Re = 1M, angle of attack ao = 10°; computations with the M1 mesh
(2D), the refined M2 mesh (2D-REFINED) and the M3 mesh (3D) are compared
with the TRPIV results (EXPE).

In Figs. 4.11b and 4.11c, characteristic wake values are compared for the
various numerical tests and the experiments. The calculation for the displacement
δ ∗ and momentum thickness θ in the wake are calculated from:

δ
∗ =

∫ zup
99%

zlow
99%

(1− u
u99%

)dz (4.2)

and:

θ =
∫ zup

99%

zlow
99%

u
u99%

(1− u
u99%

)dz (4.3)
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where u99% = 0.99 ·Uinlet and z∗99% the vertical positions along the wake where
u99% is found. The superscript low and up refer to the lower and upper shear layer
position respectively. The displacement thickness δ is accurately predicted with
the three different grids as shown in Fig. 4.11b. The momentum thickness which is
closely related to the forces is shown in Fig. 4.11c. A better agreement is observed
for the refined mesh M2 but overall all the computations present a reasonable
agreement.

(a) Time-averaged longitudinal velocity profiles; comparison
between the computations for the M1 grid and the experimental
results. Trailing edge marked with a hollow circle.
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(b) Displacement thickness.
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(c) Momentum thickness.

Figure 4.11: Quantitative comparison of the computations for the M1 mesh
(STATIC), the refined M2 mesh (STATIC-REFINED) and the M3 mesh (STATIC
3D) with the TRPIV results (STATIC EXPE).

For the validation of the static case (i.e. when no morphing is applied), 2D and
3D simulations were carried out with the M1, M2 and M3 grids. In the sections
that follow, morphing tests are carried out. The HFVTE actuation is examined in
this chapter of the thesis. A two-dimensional multi-parametric study is carried out,
in order to assess the optimal frequency and amplitude ranges - with respect to
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the aerodynamic performance - at a moderate CPU time. As it was demonstrated,
the comparison between 3D and 2D simulations justify using a two-dimensional
parametric study in order to describe the morphing effects. The 3D morphing effects
are also discussed.

At a given camber, the vibrating trailing edge is expected to create small-scale
turbulent eddies and add kinetic energy in the wake, which in return causes interac-
tions in the upper and lower shear layer. This aims at enhancing the supercritical
character of the flow and produce an eddy-blocking effect constricting and strength-
ening (shielding) the shear layers in order to achieve narrower wakes [JMS+17].
This eddy-blocking concept was first put into evidence experimentally in [SCR+15].
This shear sheltering effect produced, leads to a considerable thinning of the sepa-
rated shear layers, as shown in [SGJG+15]. The thinning of the wake region as well
as feedback effects through vorticity, enable an increase of lift and the attenuation of
noise sources. In the present study the same phenomena will be examined, achieved
by the HFVTE morphing actuation.

4.5 Electroactive actuation of the trailing edge

The HFVTE system on the prototype is designed to reach amplitudes up to one
millimeter. The technical characteristics for the electro-active hybrid morphing
actuation are extensively described in [SCR+15] and [GSR+15]. For more details
the reader can also refer to Section 1.2.2. The motion and low-strain deformation
of the near-trailing edge region due to the Lp = 35mm long MFC piezo-actuators
vibrating is also applied in the numerical simulations. This section includes both ex-
perimental and computational results in that order, following a similar organization
to the previous section.

4.5.1 Experimental analysis of the morphing

For the investigation of the morphing results, a different window for the TRPIV
measurements will be studied. The image acquisition takes place at a more upstream
area, in a region that includes the trailing edge. The morphing frequency is increased
progressively and the modifications in the dynamics are then qualitatively compared
with the numerical investigations that follow. Visualizations by steaklines are
examined in Fig. 4.12 to highlight the different flow structures witnessed due
to the high-frequency vibration applied on the trailing edge. As mentioned in a
previous section, the streaklines are produced by numerically adding points in
post-processing; this time, blue seeds are emitted from the pressure side while red
ones from the suction side covering the respective boundary and shear layers. Black
colored seeds used in the first and last figure are placed close to the separation point
in order to highlight possible sharp TT interfaces. The results presented in Fig. 4.12
correspond to a Re = 500000 allowing only for a qualitative comparison with the
numerical computations which are carried out for a higher Reynolds number.
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The non-actuated case (Fig. 4.12a) serves as a reference; then the morphing

frequency is varied taking increasingly larger values (i.e. 0 < f1 < f2 < f3). The

frequencies presented in Figs. 4.12b-4.12d are sufficiently spaced and each one of

them is specifically selected as it prompts different effects in the wake. Starting

at a low actuation frequency f1 = 55Hz, no apparent effects in the coherent wake

dynamics are visible. A higher frequency f2 = 110Hz leads to a change in the

modes in the wake (Fig. 4.12c) as the natural shedding frequency is approached. An

alternating pattern is formed and a von Kármán sheet is shaped downstream of the

wing, tracking the actuation frequency. Finally, applying an even higher frequency

f3 = 220Hz, the dynamics change once more. The lower shear layer instability

gets reinforced as its natural frequency is approached by f3 and is locked to the

actuation frequency as it can be seen in Fig. 4.12d. Smaller energetic vortices are

convected downstream and the upper shear layer instability seems to be blocked

from the lower shear layer as they no longer strongly interact with each other. The

wake remains thin as it depends on the size of the newly created turbulent structures.

These mechanics will be observed also in the simulation in the following sections;

the actuation frequencies will be shifted however to higher values, conformal to the

increase of the natural frequency due to the higher Reynolds number (1 million in

the simulations).

(a) No Morphing (b) f1 = 55Hz

(c) f2 = 110Hz (d) f3 = 220Hz

Figure 4.12: Development of vortices in the wake, visualization with streaklines,

TRPIV measurements for various actuation frequencies.

Black color seeding has been added in Fig. 4.12a for the non-morphed and in

Fig. 4.12d for last actuation case in order to suport the explanation of the mechanisms

involved. As the upper and lower seeding highlight the TNT interfaces, the black

seeding seems to follow an existing TT interface developed between the two. The

latter interface is created due to the shear caused by the detachment of the flow.

This interface is manipulated by the morphing applied on the trailing edge and

could possibly act as a thin layer that de-correlates the two TNT interfaces. It

has been proven in [IOH15] that interfacial shear layers tend to act in this way.
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It is also hypothesized that this interface strengthens the low shear layer with
which it correlates since the actuation frequency is high enough. As a result, it
blocks the interactions and perturbations coming from the upper shear, it shields
the lower-shear vortices which are reinforced and keeps them unaltered as they
propagate downstream. This could as well be a clear manifestation of eddy blocking
phenomena taking place and preventing the generation of larger turbulent structures
in the wake, as seen for example in the static case.

(a) No Morphing (b) fa = 60Hz

(c) fa = 200Hz (d) fa = 300Hz

Figure 4.13: Development of vortices in the wake by means of numerical simula-
tion, visualization with streaklines; the color of each particle represents its initial
positions. The amplitude is 0.35mm for every actuating frequency.

4.5.2 Numerical investigation of wake dynamics

The same analysis is carried out here for the numerical simulations. Morphing has
prominent effects on the development of vortices in the wake. In this first part of the
analysis, the amplitude of the vibration was held constant at 0.35mm while different
values for the actuation frequency fa were tested. This amplitude value was chosen
as it was the largest one to be tested during the first series of experiments with
this specific morphing implementation. The actuation patch length was also held
constant at Lp = 35mm, equal to the length of the actual piezoelectric patches used
in the experiments. A complete parametric study of the morphing effects that these
characteristic length scales (i.e. amplitude and patch length) have will be examined
in a following section. In this section, only the M1 grid is examined as it has been
proven to provide results that compare well with the experimental data. This will
enable a multi-parametric study with reduced computational cost and provide a
complete image over the morphing effects achieved with the HFVTE system. The
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Reynolds number for the numerical investigation of the morphing effects was 1
million.

(a) (b)

(c) (d)

Figure 4.14: Spectra of the vertical velocity profile in the wake by means of
numerical simulation; the case where no morphing is applied (STATIC) is plotted
versus various actuating frequencies.

Visualizations by streaklines, created in the same manner with the experiments,
are presented in Fig. 4.13. The effects due to the sinusoidal actuation (figures
4.13b- 4.13d) are compared with the (static) case where no morphing was ap-
plied (Fig. 4.13a). Respectively, in Fig. 4.15 contours of the ensemble-averaged
y−vorticity (axis vertical on the illustrated plane) show the morphing the modifi-
cations of the wake dynamics for various frequencies. For frequencies lower than
the ones related to the shear layer instabilities and the alternating shedding (e.g. for
fa = 60Hz in Fig. 4.13b, for fa = 100Hz in Fig. 4.15b), the flow coherent dynamics
seem unaffected by the perturbation travelling at a much lower propagation speed,
in accordance with the experimental investigation. The irregular character of the
flow is still prevailing. For an actuation close to the von Kármán shedding frequency
( fa = 200Hz), resonance phenomena take place. As seen also in Fig. 4.12c, the
alternating vortex shedding “locks” onto the morphing frequency, non-linear inter-
actions are suppressed and large, coherent, highly energetic structures are developed
creating a vortex sheet. This was first suggested in [GWS89] where the receptivity
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of the flow in the wake of an airfoil was studied. It was proven that for a frequency
range (namely the “locking range”) close to the natural frequency, the measured
velocity signals presented a uniform time series, a suppression of irregularities and
an energy increase of the fluctuations. The width of this range was dependent on
the amplitude of the input power for the forcing. In our numerical experiments,
this dependency was not observed. By further increasing the actiation frequency
( fa = 300Hz), smaller vortices are generated in the lower shear region and are
convected further downstream. These high-momentum vortices are reinforced and
shielded due to the morphing and as a result they tend to remain intact ignoring the
influence of the upper shear layer. The interaction with the latter is downgraded re-
sulting to the suppression of the alternating sheading until way further downstream,
in accordance with the TRPIV results. The forced lower shear layer undergoes a
merging process that leads to the halving of its frequency and an alternating pattern
is emitted at this halved frequency after x = 1.4m. As a result, the wake regions
remains much thinner for a longer distance downstream of the wing.

(a) No Morphing (b) fa = 100Hz

(c) fa = 150Hz (d) fa = 200Hz

(e) fa = 300Hz (f) fa = 370Hz

(g) fa = 450Hz (h) fa = 510Hz

Figure 4.15: Development of vortices in the wake by means of numerical simula-
tion, visualization with the ensemble-averaged y−vorticity. The amplitude is set at
0.35mm for every actuating frequency.

This behavior is highlighted in the spectra plotted in Fig. 4.14 where the Fast
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Fourier Transformation (FFT) of the vertical velocity signals is computed. The
signals are acquired for the same point in the wake for various morphing cases
and are compared to the signal acquired for the static case. For lower actuating
frequencies (figures 4.14a and 4.14b) the spectral content of the non-morphed case
seems almost unaffected. The frequencies naturally existing in the flow continue to
guide the formation of vortices. The energy of the actuation is not receipted by the
flow and the power of the morphing frequency remains in low levels. In contrast, for
the higher frequencies tested (figures 4.14c and 4.14d) the wide bump seen in the
static case is replaced by a redistribution of the energy of the flow in the harmonics
of the actuation frequency. The natural frequencies are suppresed and replaced by
these harmonics.

A complete image on the morphing affects with respect to the wake dynamics
is deducted considering Fig. 4.15. Snapshots of the ensemble-averaged y−vorticity
contours are extracted to highlight the vortex interactions in the wake. Due to the
nature of the turbulent spectrum, it is interesting to go over the morphing effects by
sweeping over a wide range of frequencies. For fa = 100Hz no apparent effect in the
dynamics is visible. Supporting the remarks previously made, the irregular character
of the flow is prevailing. Applying the morphing at fa = 150Hz (see Fig. 4.15c) and
approaching the spectral bump (i.e. the upper shear layer instability), the actuation
frequency becomes enhanced and takes over the shear layer development, leading
to a regular alternating pattern immediately after in the wake. The flow dynamics
track the forcing frequency, irregularities are suppressed and the upper shear layer
is reinforced. Increasing the fa further, and moving away from the spectral bump
of natural frequencies, weakens the “locking mechanism” and irregularities start
to reappear closer to the wing (see Fig. 4.15f). Actuating at fa = 450Hz brings
back the “lock-in” phenomena since it acts as the harmonic of a natural frequency.
For this frequency however, the wake region remains thinner as smaller, faster
structures are developed. Further increasing the frequency once again leads to a
change in the flow mode, the low shear layer gets mainly affected and guides the
wake development.

POD analysis

The Snapshot POD (see Appendix A) is applied here on the computational results
for the two components (longitudinal and vertical) of the velocity field. By using the
velocity field for the POD, there is a direct correspondence between the eigenvalues
provided by the method and the kinetic energy of the flow. Two cases are examined
here: the static one where no morphing is applied and the actuation at 300Hz where
prominent effects in the wake development were observed and a change in the nature
of the flow modes. In both cases the sampling rate was taken constant (10−4sec) and
a series with the same number of successive snapshots (619) was used to construct
the POD data matrix, providing a time duration that covers multiple periods of the
principal flow phenomena.

In Fig. 4.16a the eigenvalues of the respective modes are plotted for the two
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(a) Sorting of eigenvalues. (b) Cumulative fluctuating energy.

Figure 4.16: Eigenvalues of the modes sorted by the method (left) and relative
cumulative energy (right) corresponding only to the fluctuating part of the flow,
predicted by means of numerical simulation.

cases. The first mode corresponds to the mean flow and exhibits the highest values
since it represents the biggest portion of the flow’s kinetic energy. Higher-order
modes have smaller relative importance and they represent an increasingly dimin-
ishing part of the energy of the flow. Taking into account the modes corresponding
only to the fluctuating part of the flow, Fig. 4.16b is recreated. It can be deduced
that less than 60 modes cover 98% of the fluctuating energy. Due to the high
Reynolds number and the irregular flow dynamics, the energy is spred over multiple
modes. The energy levels of the first few fluctuating modes are increased with the
morphing and the slope of the cumulative fluctuating energy is reduced, attesting
to the weakening of flow irregularities and the reinforcement of the first modes.
While the energy of the mean modes is in the same level (less than 1% difference)
between the two cases, the total fluctuating energy is significantly increased with
the morphing since highly energetic modes are developed due to the receptivity of
the flow to the morphing.

The spatial as well as the temporal behavior of the modes is significantly
different between the two cases as it was expected from previously discussed results.
This is exhibited in figures 4.17 and 4.18 where the spatial distribution of selected
modes is plotted in the wake region. The modes coming from the horizontal and the
vertical velocity components are noted as Un and Wn respectively, where n denotes
the order of the mode. Alongside, the FFT of the respective temporal coefficient an

is also presented of each mode to provide a correspondence to the frequency analysis
that preceded. For the case where no morphing is applied (Fig. 4.17), the modes
2 (coupled with mode 3) and 4 (coupled with mode 5) correspond to the initial
instability and the alternating shedding respectively, as they have been evaluated in
the spectral analysis. The coupling of the modes in pairs is due to the use of both
velocity components in the POD calculation. Mode 6 presents modulations of the
shedding due to non-linear interactions and irregularities. Higher modes (ommitted
here) also correlate with modulations and low frequency feedback effects. Mode
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(a) U2 (b) W2 (c) a2

(d) U4 (e) W4 (f) a4

(g) U6
(h) W6 (i) a6

(j) U27 (k) W27 (l) a27

Figure 4.17: Spatial modes computed with the POD of the two velocity compo-

nents and FFT of the respective temporal coefficients. Indices provide the order of

the mode. Case without morphing by means of numerical simulation.

27 indicates the low shear layer instability pattern. A frequency close to 350Hz is

prominent in this region and interacts with the shedding frequency also visible in

the spectrum. This instability could be related to a separation bubble created on

the pressure side, close to the trailing edge, due to the (supercritical) shape of the

A320 wing. Modes of even higher order (above 50) are related to smaller scale

fluctuations in the wake that present a more chaotic - less coherent - nature.

Considering the morphing case (Fig. 4.18), modifications are present. Mode

2 (coupled with mode 3) corresponds to the reinforced shear layer close to the

trailing edge. The temporal coefficient presents a variation locked to the actuating

frequency (300Hz) while the spectrum of mode 4 (coupled with mode 5) relates to

the secondary instability (after merging) that takes place at a frequency with half of

this value. In this case, the von Kármán shedding takes over further downstream and

is contained to a less wide region as the whole wake becomes thinner. This change
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(a) U2 (b) W2 (c) a2

(d) U4 (e) W4 (f) a4

(g) U6 (h) W6 (i) a6

(j) U41 (k) W41 (l) a41

Figure 4.18: Spatial modes computed with the POD of the two velocity compo-
nents and FFT of the respective temporal coefficients. Indices provide the order of
the mode. Morphing case at 300Hz by means of numerical simulation.

in the wake form is directly associated with the enhancement of the aerodynamic
performance analysed in a following section. Modulations of the instabilities
occur, indicating however a move to different and narrower frequency range (Mode
6) while harmonics of the actuation frequency appear as well in higher modes
(ommitted here) causing further interactions. In mode 41, a structure resembling
the one of mode 27 of the non-morphed case appears, attesting to the displacement
of irregularities to lower energy ranks. As the energy of the fluctuations increases,
previous modes are shifted in regions of relatively lower order. The predominant
frequency at 350Hz appearing previously has vanished as it was replaced by the
actuation that has moved to a higher modal rank.

Using the modal shapes and the temporal coefficients it is possible to recon-
struct portions of the flow corresponding to different instabilities (see Eq. A.1 in
the Appendix). This will assist this study as it provides a direct correspondence
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(a) Mode 2 & 3 (b) Mode 2 & 3

(c) Mode 4 & 5 (d) Mode 4 & 5

(e) Higher Modes (f) Higher Modes

Figure 4.19: Development of vortical structures in the wake by means of numerical
simulation, visualization with streaklines; the color of each particle represents its
initial positions. Reconstruction from POD modes along with mean for STATIC
(left) and 300 Hz (right).

between the modes and the nature of the vortical structures in the wake, supporting
the previous remarks. The eddy blocking procedure can be highlighted through
the change in the modal dynamics. It will also provide an overview of how flow
instabilities are born and develop in space and time. In Fig. 4.19 a reconstruction
was carried out using specific modes added to the first one representing the mean
flow. This recreates the flow development in the wake. The static flow case (left
column) is examined along with the morphing case (right column). In Fig. 4.20, a
cumulative reconstruction is presented where the addition of more high-order modes,
i.e. additional irregular flow phenomena, results in a more accurate representation
of the flow .

In figures 4.19a and 4.19c the reconstruction of the modes provides a repre-
sentation of the von Kármán and the upper shear layer instability respectively for the
case where no morphing is applied. The signature of the von Kármán is prominent
close to the wing. Undulations resulting from the unstable upper layer are convected
downstream and influence the alternating pattern. Higher-order modes (above 20)
are presented in Fig. 4.19e; they recreate the low shear layer instability. Applying
morphing at an actuation frequency 300Hz changes completely the first pair of
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(a) 10 first modes (b) 10 first modes

(c) 40 first modes (d) 40 first modes

Figure 4.20: Development of vortical structures in the wake by means of numerical
simulation, visualization with streaklines; the color of each particle represents its
initial positions. Reconstruction from POD modes for STATIC (left) and 300 Hz
(right).

modes. A low shear layer develops (Fig. 4.19b) and is convected downstream. The
wake regions remains thin. The instability tracks perfectly the actuation frequency,
something that can also be evidenced in Fig. 4.19f from the disappearance of the
low shear layer previously disposed in higher modes. The vortex pairing mechanism
seems to take place after x = 1.2m as it can be seen in Fig. 4.19d where the halving
of the frequency takes place. This results to an alternating pattern that develops
further away from the wing and is absolutely locked to the half of the actuation
frequency. The effects of the modal changes and the mechanisms described are
highlighted in the collective reconstructions presented in Figs.4.20a and 4.20b.
Figures 4.20c and 4.20d add the high-order irregular phenomena in the flow. As it
was mentioned reviously, the flow dynamics are represented effectively even with a
reduced number of modes.

Mean wake analysis

In this section, a comparison through time-averaged results is carried out. In
Fig. 4.21 the mean longitudinal velocity profiles are plotted along the wake for
various x/c streamwise positions (previously illustrated in Fig. 4.11a). It it recalled
here that the z/c = x/c = 0 position corresponds to the leading edge of the wing. It
is observed that for frequencies lower than the ones naturally existing in the flow
(e.g. for 60Hz and 100Hz), only minor changes are visible in the profiles and mostly
at early x/c stages, i.e. really close to the trailing edge. For an actuation frequency
close to the natural one (200Hz), the wake is slightly displaced downwards and
becomes wider. For a higher frequency (300Hz), a much thinner wake is visible. As
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(a) U2 (b) W2 (c) a2

(d) U4 (e) W4 (f) a4

(g) U6 (h) W6 (i) a6

(j) U41 (k) W41 (l) a41

Figure 4.18: Spatial modes computed with the POD of the two velocity compo-

nents and FFT of the respective temporal coefficients. Indices provide the order of

the mode. Morphing case at 300Hz by means of numerical simulation.

in the wake form is directly associated with the enhancement of the aerodynamic

performance analysed in a following section. Modulations of the instabilities

occur, indicating however a move to different and narrower frequency range (Mode

6) while harmonics of the actuation frequency appear as well in higher modes

(ommitted here) causing further interactions. In mode 41, a structure resembling

the one of mode 27 of the non-morphed case appears, attesting to the displacement

of irregularities to lower energy ranks. As the energy of the fluctuations increases,

previous modes are shifted in regions of relatively lower order. The predominant

frequency at 350Hz appearing previously has vanished as it was replaced by the

actuation that has moved to a higher modal rank.

Using the modal shapes and the temporal coefficients it is possible to recon-

struct portions of the flow corresponding to different instabilities (see Eq. A.1 in

the Appendix). This will assist this study as it provides a direct correspondence
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The wake width is calculated from:

b95% = zup
95%− zlow

95% (4.4)

where z∗95% the position for which the u∗95% = 0.95 ·Uinlet in the upper and lower
shear layers respectively. The spreading rate is defined here as the distance from
the position where the halving of the inlet velocity is achieved (z∗50%) for each
shear layer as well. The momentum thickness θ is computed using eq. 4.22c pre-
sented previously while the shearing coefficient r for each shear layer is calculated
according to:

r∗ =
u∗95%−u∗50%
z∗95%− z∗50%

(4.5)

where as before, z∗95% and z∗50% the positions for which u∗95% = 0.95 ·Uinlet and
u∗50% = 0.50 ·Uinlet respectively.

(a) (b)

(c) (d)

Figure 4.22: Comparison of the wake characteristics for various actuating fre-
quencies; numerical simulation. (a) Width of the wake (b) Spreading of upper
(Sup) and lower (Sbottom) shear layer (c) momentum thickness and (d) shearing co-
efficient r; the amplitude is set at 0.35mm for every morphing application besides
the 300Hz-LA (lower amplitude) where a value of 0.15 mm was used.

In Fig. 4.22a the thinning of the wake is observed and it is attributed to the
suppression of the shedding. Only minor variations are present for the actuation
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frequency of 60Hz. A linear expansion of the wake is achieved for the 300Hz
actuation frequency, for both amplitudes tested; this linear expansion suggests more
self-similar profiles. Increasing the frequency to even higher values (i.e. 370Hz)
weakens this shedding delay and the expansion returns to what has been seen for
lower frequencies. This was expected from examining the dynamic response of the
flow in this morphing actuation. Figure 4.22b shows the decrease of the spreading
of the upper shear layer for 300Hz. The upper shear gets overpowered by the
strengthened lower one and the interactions between them are suppressed. The
resulting shedding mechanism is delayed as it has been previously shown. Same
as before, this mechanism does not exist for the lower frequencies tested and is
weakened for the 370Hz. The results for each shear layer are in good agreement
with the investigations in [WW88]. Finallt, the r coefficient presented in Fig. 4.22d
exhibits only slight changes while the momentum thickness is always increased
since more energy is introduced in the flow.

(a) Lift coefficient

(b) Drag Coefficient

Figure 4.23: Effect on the aerodynamic forces. Frequency variations with a con-
stant amplitude of 0.35mm; zero values for frequency imply absence of morphing.

4.5.3 Morphing benefits

The effect on the aerodynamic forces is evaluated in this section. The lift and drag
coefficients are compared in Fig. 4.23. In Fig. 4.23a and 4.23b the effect of the
actuation frequency is presented for a constant amplitude of 0.35mm. Actuating
in the region around the natural shedding frequency and the upper layer instability
(i.e. 150Hz− 200Hz) presents a prominent increase in both lift and drag mean
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values. This is accompanied by a significant increase in the fluctuations if the forces
as indicated by the root-mean-squared (rms) values. This attests to the resonance
observed in the previous section and is also in agreement with the experimental
studies included in [GWS89]. Acting with frequencies outside this region still
provides an increase in lift and in some cases a decrease in drag. More importantly
however, it retains the rms in low - acceptable - levels.

Approaching the region of the first harmonic of the shedding frequency, the
resonance phenomena reappear. The increase of the rms values can be exhibited
through distinct peaks that are especially prominent in the drag evolution and clearly
indicate the regions where reasonance takes place. The aerodynamic efficiency,
expressed by the cL/cD ratio is always increases with the morphing. The flapping of
the trailing edge increases the energy attributed to the flow and produces a higher-
incidence effect resuling to the lift increase. These frequency ranges are related to
the Re number of the flow; the morphing range should take into account the flow
regime and adapt accordingly. Finally it should be mentioned that in all morphing
cases, the increased aerodynamic performance could not be achieved with a static
deformation of the trailing edge at the maximum displacements, attesting to the fact
that the dynamic nature of the morphing application is responsible for the effects on
the forces.

(a) 100Hz (b) 300Hz

Figure 4.24: Comparison of mean longitudinal velocity profiles along the wake
for patch lengths Lp = 35mm (P35), Lp = 70mm (P70) and Lp = 120mm (P120);
the amplitude effect is also examined with Ao = 0.35mm (A035), Ao = 0.6mm
(A06) and Ao = 1mm (A1).

4.5.4 Morphing Length Scales

In this section, the effects of the characteristic length scales involved in the morphing
are analyzed. The amplitude Ao and the length of the actuating patch Lp were
examined separately and in combination in regards to the effects they produced at
specific actuation frequencies. It is reminded that the amplitude corresponds to the
maximum displacement, i.e. the displacement of the end tip of the trailing edge. Two
frequencies are examined here, at values both below (100Hz) and above (300Hz)
the natural shedding frequency. The reference case P35, for which Lp = 35mm as
in the experiments, was compared with cases where the patch length was increased.
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For fa = 100Hz, an Lp = 120mm is tested (P120). Two amplitudes Ao = 0.35mm
(A035) and Ao = 1mm (A1) are considered. A lower value of 70mm (P70) for the
patch length is examined for the frequency fa = 300Hz. The effect of the amplitude
is also examined with Ao = 0.35mm (A035) and Ao = 0.6mm (A06).

(a) Spectrum from point 5. (b) Spectrum from point 6.

Figure 4.25: Spectral content of vertical velocity, actuation at 100Hz for Re= 1M,
angle of attack ao = 10°, M1 grid; comparing P35 with A035 (C1), P120 with
A035 (C2), P120 with A06 (C3) and P120 with A1 (C4) and no morphing (STATIC).

(a) Spectrum from point 5. (b) Spectrum from point 6.

Figure 4.26: Spectral content of vertical velocity, actuation at 300Hz for Re= 1M,
angle of attack ao = 10°, M1 grid; comparing P35 with Ao = 0.35mm (C1), P35
with Ao = 0.35mm (C2), P70 with Ao = 0.6mm (C3) and P70 with Ao = 0.6mm
(C4).

As it is observed in Fig. 4.24, the effect that the patch length has on the mean
velocity profiles in the wake region is minimal. Only minor changes are exhibited
as the dynamics remain mainly unaffected by the change in the patch length, at least
when the actuation amplitude remains the same. Higher actuation amplitudes cause
an increased velocity deficit in more downstream positions. In Figs. 4.25 and 4.26
the spectral content in the wake region is examined. An FFT was performed on
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the vertical velocity component in the two points mentioned in Fig. 4.9a and the
amplitude of the fourier modes is presented. For the lower frequency, the combined
patch - amplitude increase seems to intensify the chaotic nature of the flow which
receives the whole amount of energy added with the actuation. The amplitude
of the frequency bump is increased while the frequency range is not modified.
The static case where no morphing was applied is also included in Fig. 4.25 as a
reference. The coherent picks identified in the static case are always present in the
spectrum for 100Hz. For the higher actuation frequency, practically no effect is
exhibited in the wake dynamics due to the change of the patch - amplitude length
scales used in the morphing. The vortex dynamics and the changes examined in
the previous section seem depend only on the actuation frequency. Similar to the
analysis previously presented, the energy of the flow reorganises in harmonics of
the actuation frequency.

(a) Lift coefficient (b) Drag coefficient

Figure 4.27: Effect on the mean aerodynamic forces versus amplitude variations
for 60Hz (dashed line), 100Hz (dotted line) and 300Hz (solid line) with P35
(•), P120 (�), P45 (N) and P70 (I); zero values amplitudes imply absence of
morphing.

The effect of the patch length and the amplitude variation on the aerodynamic
forces is examined in Fig. 4.27. The patch length seems to provide only minor
changes for each frequency while the actuation amplitude is increased. The evolution
of the forces presents a non-linear behavior with the increase of the amplitude.
The lift coefficient increases up to a point and then starts decreasing again. The
maximum lift value depends on the actuation frequency and this value gets a
higher as the frequency increases. The drag coefficient initially decreases for the
lower frequencies and then starts to increase again. After a specific amplitude, the
value of the drag seems to be practically constant for the amplitudes examined
in this investigation. It is expected however to continue increasing if even higher
amplitude values are examined. Whether this plateau is higher or lower than the
initial drag value without morphing correlates with the frequency of the actuation.
Consequently, it seems as an optimal frequency-amplitude combination exists for
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(a) Lift rms (b) Drag rms

Figure 4.28: Effect on the aerodynamic forces fluctuation versus amplitude varia-
tions for 60Hz (dashed line), 100Hz (dash-dot line) and 300Hz (dotted line) with
P35 (•), P120 (�), P45 (N) and P70 (I); zero values amplitudes imply absence
of morphing.

which a maximum lift - minimum drag ratio can be identified. The fluctuation of
the forces is shown in Fig. 4.28. No effect on the rms values is exhibited from
the variation of the patch length. The amplitude causes a linear response: the rms
values increase with the amplitude at a constant rate. The slope of the rms variation
increases with the actuation frequency.

4.5.5 3D Morphing Effects

In this final section the three-dimensional effects of the morphing are analyzed. Only
the case with fa = 300Hz is examined here as it presents prominent modal changes
in the wake region. The deformation of the surface due to the electroactive morphing
application was uniform along the span of the wing. A 3D view of the morphing
effects on the wake can be seen in Fig. 4.29. The Q criterion iso-surface, colored
by Mach, is shown along the wing and in the wake region for the identification of
the vortices. In the same figure, the vortical structures are also highlighted from
streaklines computed on a mid-span slice section.

With the identification of the vortical patterns in the wake it is evidenced
that the two-dimensional behavior of the flow is enhanced. Until way further
downstream, the vortical tubes generated in the flow remain uniform along the span.
The undulated patterns exhibited in the static (non-morphed case) cease to exist and
secondary three-dimensional instabilities are suppressed due to the re-orientation of
the axes of the vortical structures that naturally emerged in the unforced case. The
streamwise vortex tubes - associated with the spanwise velocity fluctuations and
the undulations on the iso-surface - are weakened. As a result, the chaotic wake
image caused by these interactions is eliminated, at least until further downstream.
The new modes emerging in the wake correlate with smaller sized vortices that - as
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(a) Static (b) fa = 300Hz

(c) Static (d) fa = 300Hz

Figure 4.29: Q criterion iso-surface (top) for Q = 1000 colored by the Mach
value along with streaklines (bottom) in the mid-span section; results for the
non-morphing (Static) and the 300Hz cases.

evidenced also in the 2D simulations - keep the wake region thinner (see Figs. 4.29c
and 4.29d). With the application of the morphing, the velocity fluctuations are
suppressed attesting to the two-dimensional behavior witnessed in Fig. 4.29. This is
in aggrement with the observations in [OW82]. The authors noted that the turbulent
intensity due to the actuation was not significantly affected under the infuelnce of
the forcing. On the contrary, the shear layers examined were found to be more
orderly than they were naturally and 2D-like due to the redistribution of energy
from the whole flow to the modes actuated by the forcing.

4.6 Conclusion

In this chapter, the electroactive morphing effects created by Macro-Fiber Composite
piezoelectric patches disposed along the span of an A320 wing have been studied by
means of TRPIV and high-fidelity numerical simulations. These actuators introduce
optimal vibrations and low-amplitude deformations of the trailing-edge region.
Through detailed experimental database and newly acquired computational results,
a combined examination of high Reynolds dynamics in the wake of this supercritical
wing has been carried out, in respect to the aerodynamic performance. The main
flow characteristics have been underlined. Various frequencies and amplitude
combinations have been studied numerically to evaluate the morphing effects in
order to enable future experiments around the same prototype, focusing on the most
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optimal morphing actuations. The actuation frequency has been identified as the
main driving factor for the manipulation of the dynamics in the wake.

The wake dynamics are significantly affected by the application of morphing
when acting in frequencies close or above the natural frequencies of the separated
shear layers. This has been emphasized by the POD analysis. New modes emerge
and take the place of naturally existing ones in positions of higher relative en-
ergy. It was assessed possible to manipulate the interactions between the different
instabilities and control the generation of turbulent structures in the wake. The
investigation of mean wake properties has shown a thinning of the far wake region
and a suppression of the alternating pattern until later downstream regions. At
a given camber, the vibrating trailing edge creates smaller-scale turbulent eddies
and adds kinetic energy in the wake which in turn causes interactions in the upper
and lower shear layer. This enhances blocking effects, constricts and strengthens
the shear layers (shielding), resulting in narrower wakes. The application of the
morphing has be proven to suppress three-dimensional secondary instabilities and
enhance the two-dimensional behavior of the flow. Thanks to proper high-frequency
actuation, suppression of pre-existing predominant instability modes was achieved.

An increase in the aerodynamic performance was achieved through overall
surface pressure modifications. The thinning of the wake region as well as feedback
effects through the vorticity, enables mainly a lift increase. The aerodynamic
performance gets enhanced as the mean value of the lift versus drag is found to be
increased in every morphing case examined. By the present electroactive morphing
concept, an order of 3.2% increase in lift has been achieved and at the same time
a 1% decrease in the drag. The actuations at 60Hz and 300Hz have both achieved
an increase of lift-to-drag ratio of 4%. Optimal frequency ranges were identified
suggesting that morphing can be adapted to the flow conditions and the chord of the
wing. Similar to the actuation produced by the small feathers at the edges of the
wings of the hunting birds, the electroactive morphing is proven capable to achieve
similar effects, inspired from the nature and targeting the design of the future wings.
As in nature however, the aerodynamic performance can be further enhanced by fully
exploiting the hybrid morphing capacities. This entails the combined actuation of
different classes of electroactive actuators that, when realized simultaneously, yield
modifications of turbulence at multiple scales. To this end, in the following chapter
we examine the use of Shape Memory Alloys (SMA) to achieve high deformations
at low frequencies imitating the camber effect of large-span birds.
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Chapter5
Optimal shape control using Shape
Memory Alloys

A novel approach for determining optimal configurations for the shape
control using Shape Memory Alloy (SMA) actuators is proposed. A
robust algorithm is developed and successfully validated to deal with
nonlinear structural problems. The proposed methodology is coupled with
an optimization code to solve the design problems for smart controllable
structures. This problem finds a special application in the morphing of
aeronautical structures that are the focus of the present chapter.

5.1 Introduction

The needs of aircraft manufacturers continuously grow along with the interest on
the design of innovative smart configurations with multiple actuators. To this end,
morphing architectures are widely adopted to maximize the aerodynamic efficiency
by introducing smart material into shape control applications. The use of Shape
Memory Alloys (SMA) will soon be realistic at an industrial level for aircraft
manufacturers as they propose a valid solution coherent with morphing applications
and the concept of a green, more electric aircraft. SMAs are material of high
power effectiveness (i.e. a modest number of actuators is needed) and reduced
volume/weight. There has been a plethora of published works devoted on SMA
constitutive models that describe accurately the thermomechanical behavior of the
material. A quite extensive review of SMA structures published in [Bir97] includes
various model describing the material laws in different levels of fidelity. As a result,
SMAs have already been used in various aspects of engineer applications.

147
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The working principle of an aeronautical morphing configuration that employs
SMA actuators is illustrated in Fig. 5.1. An airfoil is cambered with the aid of
SMA actuators placed on ribs that are connected through hinges with each other.
The SMA “tendons” provide the torgue necessary to rotate the platelets in order
to deform the flexible skin covering the wing, providing the final deformed shape.
Since the SMAs are positioned in pairs in respect to the neutral axis of the structure,
the cambered shape can be moved both upwards and downwards and recover its
neutral shape fast. The SMA actuating systems can be smartly integrated inside the
structure in order to have a minimal impact on the shape of the aircraft and avoid
aerodynamic penalties. It is deduced however that the sizing, the positioning of the
SMAs and the available space are key issues directly related to the overall cost and
the feasibility of the solution. If correctly designed, the SMA actuation results into
efficient and cheap concepts.

Figure 5.1: An airfoil architecture with SMAs: placement of the hinges and of
pairs of SMA tendons to adjust the aerodynamic shape.

In the field of aeronautics however, the SMAs are stil not used at an indurtrial
level, mainly due to the fact that the design of an SMA actuation system is hambered
by conflicting requirements that should be met. For this reason, numerical tools
should be devoted to the optimal preliminary design of such actuating morphing
systems. The design process should be able to attest that the SMA actuators are
able to sustain the external aerodynamic loading and the internal forces developed
and adapt the flexible morphing structures to the different flight phases. This entails
to accurately predict the nonlinear thermomechanical response of the SMAs and
their interaction with the structure. In addition, the limited space constraints, the
number of actuators needed, operational parameters (e.g. available power supply)
and the complexity of the aeronautical geometries should be taken into account.

One of the first works that studied numerically the SMA-structure interaction
problem is the work of Brinson et al. [BHBB97]. The authors present an analytic
nonlinear beam formulation coupled with an SMA actuator. This problem was also
addressed in [SLHW97] using a different SMA constitutive model. Both studies
focus on demonstrating the control efficiency of the SMAs and the predictive capa-
bilities of the constitutive models used, but are limited to simple academic structures.
The coupling with a Finite Element (FE) code for solving more complicated geome-
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tries was discussed in [BSMN06]. The SMAs were modeled as adaptive trusses
and a solution procedure was developed and introduced to a commercial software
code. The authors of [GTBB05] also performed a FE analysis, focused in designing
SMA hybrid composites that could be actuated and adaptively stiffen or change
their shape. These studies however, did not examine the shape control application
of the SMAs.

One of the first works on the latter, is that of Barbarino et al. [BPL+09] who
presented numerical results from a FE analysis for the displacement of a morphing
trailing edge, induced by SMA actuation. Experimental and numerical studies
were also carried out in [BPL+11] for the design of a flap architecture with a
variable-camber trailing edge. The authors considered the reference geometry of a
full-scale wing of a regional aircraft and their approach took into account the SMA
phenomenology, the aerodynamic loading and the structural properties of the wing.
A preliminary design study with finite element simulations is presented by Icardi
and Ferrero [IF11] who have verified that an adaptive wing for a small unmanned
air vehicle (UAV), which is totally driven by SMA devices, could sustain the aerody-
namic pressure under any flight conditions, without weight increase or stiffness loss
compared to other conventional actuators. Solomou et al. in [SMS14] developed
a beam element that incorporates the thermomechanical properties of SMA wire
actuators. The study of [MKK+18] followed these developments, coupled them
with a lower-fidelity fluid solver and performed a fluid-structure interaction (FSI)
study of a hinged-flap configuration and a segmented airfoil to be used in with
turbine applications.

The above works focus on the development of solution strategies for the numeri-
cal prediction of the static/dynamic response of morphed aeronautical configurations.
What it is not explicitely addressed, however, is a way to translate these strategies
into numerical methods that are devoted in the upstream design of configurations
able to achieve a specific target shapes. Model-based methods for the optimal
control of smart structures are extensively examined in the review of [SM04]. The
authors discuss various aspects of modeling and deduct optimal feedback control
methods that account for the nonlinear hysteretic behavior of the SMAs and can be
used in real-time. Experimental and numerical studies in [BBM10] were devoted
in optimizing selectively the offset distance used in controlling a beam, depending
on its flexural rigidity. The work of [ABT+12] was also devoted in optimizing
an SMA system to be integrated within a morphing flap. The authors performed
detailed parametric studies and a heuristic optimization procedure, using however
a simplified model for the latter. A global optimization of the flapping kinematics
applied with a morphing wing was carried out in [GHM+12]. This interesting
publication was focused on parametrizing the morphing deformation and optimizing
the response with respect to the propulsive efficiency.

The aforementioned studies are problem-specific and it is difficult to transpose
the formulations proposed in systems of higher complexity. The present study
is dedicated on the systematic design of optimally controlled configurations. We
discuss the use of SMA-based actuators for the shape control of flexible deformable
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structures with focus on aircraft wings. A numerical method is proposed for the
prediction of optimal smart configurations that are able to achieve pre-described
shapes using SMA actuators. This procedure takes into account constraints imposed
by the limited space, the rigidity of the controllable structure and the necessary
external loading capacity. In order to produce optimally controlled configurations,
the overall cost related to the number of the SMA actuators used and the operational
specifications when calculating the actuation temperature are also considered. The
proposed algorithm can be used in that regard to produce optimal configurations
and greener (in terms of power consumption) solutions.

A properly fast and accurate design solver is developed The approach developed
consists of two parts: (a) a robust algorithm that solves the “control of a structure by
SMAs” problem in the context of a FE analysis, and (b) the coupling of the whole
procedure with an optimization code. The structure is modeled with the FE approach
which allow integrating the various components included in a complex aeronautical
structure. The nonlinear thermomechanical behavior of SMA actuators is then
coupled with the (large) response of the controlled deformable configuration in order
to calculate the internal stresses due the heating and/or cooling of the material. The
optimization process is introduced to determine specific design variables (structural
or operational) leading to optimally functioning configurations, able to achieve the
desired target shapes. This procedure takes into account any structural, geometric
(e.g. limited space) and/or operational (e.g. maximum power supply) constraints
and the external aerodynamic loading specifications. The proposed technique can
be also used in training systems or reduced order models in order to obtain control
laws for controlled cambering in real-time. The latter can be used in determining
according to the working conditions and the operational needs the functioning of
the SMAs included in the smart morphing system.

5.2 Thermo-Mechanical behavior of SMAs

The thermo-mechanical behavior of SMA materials is already well-document. How-
ever, it is here briefly summarized for the sake of completeness, in relation to the
parameters and the assumptions adopted in the examined implementation. SMAs
operate in two states: austenite and martensite; depending on the stress condition,
the martensite phase can be either twinned or detwinned. Austenite is called the
parent phase from which a transformation process occurs into the martensite phase
(product phase). The state of the material depends on its temperature and the applied
mechanical load. In a stress-free state, the SMAs are characterized by four phase-
changing temperatures: As, A f which control respectively the starting and ending of
the austenitic transformation, and Ms, M f for the martensitic transformation. For
temperatures between M f and As no phase changes take place and the material can
exist both in an austenite or a martensite phase. Austenite phase is characterized
by pseudo-elasticity, which refers to the non-existence of residual strains after a
cycle of loading and unloading, at a temperature higher than A f . The shape memory
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effect is linked to the recovery of large residual strains of multi-variant martensite.
After being turned into single-variant martensite due to the application of stress,
the SMA has to be heated at a temperature beyond A f for the residual strain to be
fully recovered. The limit in the maximum recoverable strain ranges from 6% to
10% [Bir97]. The various transformations that SMAs undergo are summarized in
Fig. 5.2.

Figure 5.2: Schematic of the phase-transformation cycle for SMAs.

5.3 SMA constitutive modelling

A number of constitutional relationships have been proposed. Phenomenological
models relate stress, strain and martensite fraction through a kinetic law that governs
the martensitic transformation as a function of temperature and stress. These type
of models are both robust and easily incorporated into a finite element software
producing accurate results for the applications examined in this chapter. The
one-dimensional (1D) models are able to account for every significant feature of
the SMA’s thermomechanical behavior while retaining a simpler formulation and
introducing a modest number of material parameters [LA14]. Various uniaxial
material models for SMAs have been proposed by different research groups. They
can be distinguished to three different families: (a) those based on the Tanaka model
[TKS86] (e.g. Liang-Rogers [LR90], Brinson [Bri93]), (b) models based on the
work of Auricchio and his coworkers [AS97], [ATL97], and (c) models based on
the work of Lagoudas and his co-workers [BL96]. In the present study, we adopted
the Brinson model which is, essentially, an extension of the Liang-Rogers model
that accounts for multi-variant martensite.

All of the Tanaka-based models utilize the same well-known constitutive
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equation that couples the mechanical stress, the thermo-plastic stress and the stress
due to the phase transformation:

σ −σ0 = E(ξ )(ε− ε0)+Θ(T −T0)+Ω(ξ )(ξ −ξ0) (5.1)

where σ the stress in the material, ε the reduced strain, T the temperature, E the
modulus of elasticity while Θ and Ω are respectively the thermal elasticity measure
and the phase change factor. The latter are material characteristics that are measured
experimentally at a zero stress state. The subscript 0 refers to quantities in their
initial state. T0 is the temperature for which the thermal strain is zero. The non-
dimensional quantity ξ (σ ,T ) expresses the martensitic fraction of the material, i.e.
for ξ = 1 the material is in a full martensitic state and for ξ = 0 the material is
austenitic. Both the elastic modulus and the phase change coefficient are functions
of ξ :

E(ξ ) = EA +(EM−EA)ξ , Ω(ξ ) =−εLE(ξ )

where εL is the maximum deformation that can be removed by heating, i.e. the
maximum residual strain that the SMA can support, and is considered constant
for the whole range of temperatures below A f . EA, EM are the austenitic and the
martensitic moduli of elasticity respectively. Brinson introduced a separation of
the volume fraction: ξ = ξT + ξs. The ξT accounts for the temperature-induced
martensite while ξs accounts for the stress-induced percentage. In this way, the
model is able to account for the detwinning of the martensite that is responsible for
the shape memory effect at lower temperatures. It was shown in [Bri93] that Eq. 5.1
can be reduced to a simplified form:

σ = E(ξ )(ε− εLξs)+Θ(T −T0) (5.2)

The transformation equations were modified in [Bri93] to accommondate the sepa-
ration of the volume fraction. Below the Ms temperature, critical stress limits (σ cr

s
and σ cr

f ) apply, guiding the conversion between martensite variants. For higher
temperatures, the stress influence coefficients CM and CA express the dependence of
the transformation temperature on the stress. The phase change equations contain
cosine functions; their arguments are constrained so that a phase change occurs
when the temperature and the stress ranges are within the proper transformation
regions.

When moving from Austenite to detwinned Martensite with cooling or after a
stress increase:

• for T > Ms and σ cr
s +CM(T −Ms)< σ < σ cr

f +CM(T −Ms)

ξs =
1−ξs0

2
cos
{

π

σ cr
s −σ cr

f

[
σ −σ

cr
f −CM(T −Ms)

]}
+

1+ξs0

2

ξT = ξT 0−
ξT 0

1−ξs0
(ξs−ξs0)
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Figure 5.3: Stress-temperature diagram as modeled by Brinson; austenite to
detwinned martensite conersion for T > Ms and σ cr

s +CM(T −Ms)< σ < σ cr
f +

CM(T −Ms); twinned to detwinned martensite conversion for T < Ms and σ cr
s <

σ < σ cr
f ; martensite to austenite conversion for T > As and CA(T −A f )< σ <

CA(T −As).

When moving from twinned Martensite to detwinned Martensite with stress increase:

• for T < Ms and σ cr
s < σ < σ cr

f

ξs =
1−ξs0

2
cos

[
π

σ cr
s −σ cr

f

(
σ −σ

cr
f
)]

+
1+ξs0

2

ξT = ∆T ε −
∆T ε

1−ξs0
(ξs−ξs0)

where if M f < T < Ms and T < T0

∆T ε =
1−ξs0−ξT 0

2
cos [αM(T −M f )]+

1−ξs0−ξT 0

2

else
∆T ε = ξT 0

In the previous, the modification developed in [CHL06] is applied as well. In this
way, regardless of the initial conditions, it is assured that the following conditions
are always satisfied: (i) ξ (σ ,T ) <= 1, (ii) ξs = 1 if σ = σ cr

f and (iii) ξ = 1 if
T = M f . Finally, when moving from Martensite to Austenite with the increase of
temperature:
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• for T > As and CA(T −A f )< σ <CA(T −As)

ξ =
ξ0

2
cos [αA(T −As)+bAσ ]+

ξ0

2

ξs = ξs0−
ξs0

ξ0
(ξ0−ξ ) , ξT = ξT 0−

ξT 0

ξ0
(ξ0−ξ )

where the constants αA, bA are obtained from

αA =
π

As−A f
, bA =−αA

CA

A synopsis of the predicted thermomechanical behavior of the model is presented in
Fig. 5.3. The imposed constraints are also included in the caption of the Fig. 5.3.

5.4 Structural control using SMAs

The shape control of an aeronautical configuration equipped with SMAs manifests
a complicated problem. The shape control refers to the identification of equilib-
rium points between the deformation capacity of the structure and the working
range of the SMA actuator. The working range of the actuators depends on the
thermomechanical properties of the material. The solution requires the coupling
of the thermomechanical behavior of the SMAs with the structure’s response to
any temperature change in the actuators. The coupling is accomplished through an
iterative solving procedure since the complete system is material nonlinear due to
the presence of SMAs and geometrically nonlinear due to the large displacements
that the morphing structure typically undergoes. It is important for a shape control
algorithm to accurately predict the points that determine the working capabilities of
the whole controlled configuration.

If the controlled structure is expected to reach specified target shapes (e.g.
various wing shapes adapted at the different flight phases) the whole configration
should be optimally designed to meet the specified necessities. The design should
be able to produce configurations that can achieve desirable shapes. The procedure
should respect the (a) geometric and structural constraints posed by the controlled
structure and the (b) external loading specifications. Referring back to Fig. 5.1, the
preliminary design should predict the operational temperatures and the positioning
for each actuator that results in a best-fitted shape with respect to the target. For
optimally designed configurations, the available power supply should be also taken
into account when solving for the design variables. As the number of SMA actuators
and the degrees of freedom of the structure increase, so does the complexity of the
design problem.

The solution of the preliminary design problem follows a two-step procedure.
The first step necessitates the accurate prediction of the structural response under
the control of SMAs. To this end, the NonLinear-Builds (NLB) code has been
developed to introduce the SMAs in a FE framework. The second step adresses the
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coupling of the shape-control solver to an optimization tool in order to predict the
design that best produces the desired shape. These two steps are discussed in the
sections that follow.

5.4.1 Structure-SMA interaction

Aeronautical configurations are often complicated geometries with various structural
parts to be modeled. To this end, it is important to develop any methodology in a
FE analysis framework to be able to predict accurately the strucural response. This
allows to take into account the specified structural rigidity, boundary conditions and
the inclusion of composite materials that usually coincide with flexible deformable
structures (e.g. skin of the aerodynamic surface). The non-conservativity of the
aerodynamic loading is also taken into account by the solver. In this context,
appropriate constitutive relations of the thermomechnical SMA behavior are coupled
with the structural response.

The proposed methodology is nested in an iterative algorithm that determines
for a given temperature history and initial conditions the displacement of a structure
and the stresses developed inside the SMA actuators, induced by the structure’s
reaction to any temperature variation of the actuator. The SMA properties are
adjusted through temperature and calculated by the constitutive material law. The
coupling of the two is achieved by considering the forces acting on either side: (a)
the structure “sees” the SMA actuators only through equivalent “external” following
forces, and (b) the actuators receive the reactive stresses in the opposite direction.
The reactive forces alter the SMA thermomechanical behavior of the actuator and
this necessitates the adjustment of the forces on the structure. Hence the iterative
procedure. The fulfillment of the deformation compliance criterion is required for
the identidfication of an equilibrium point and for the iterative process to end. The
NLB algorithm is outlined below step-by-step:

Initialization of the problem

• The FE model of the structure is built. The nodes to which the SMA wire
elements are connected are defined for the coupling.

• The SMA actuators are introduced in the FE model as tension-only trusses;
each SMA element denoted as k = 1 , 2 , ... , m , ... is connected to one
common node.

• For the mth actuator, the strain εm
str is calculated from the nodal displacement of

the structure and the strain εm
SMA is calculated by the constitutive relationship

(see Section 5.3).

• For the mth SMA actuator, the initial states ξ m
s0, ξ m

T 0 and the temperature T0 are
derived from the intial stress/strain conditions; the SMAs can be pretrained
and/or under stressed due to their connection to the structure.
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• For each m SMA actuator a starting length Lm
SMA,0 is defined corresponding to

the initial phase for which no prestrain/prestress has been imposed and zero
residual strain is accounted for. This length Lm

SMA,0 differs from Lm
0 since the

latter is the initial element length after it has been mounted on the structure.

Temperature increment ∆T m
i in the ith pseudo time-step:

• For the mth SMA actuator, the thermal loading ∆θ m = Θ(T m
i −T0) is applied

with the variation of the temperature.

• Stresses σ
m,o
i are taken from the previous pseudo time-step σ

m,n
i−1 ; the expo-

nents o, n refer to “old” or “new” values respectively.

• An iterative procedure follows until convergence, i.e. until the strains con-
verge:

– The states ξ m
s , ξ m

T , ξ m are calculated from the phase changing model.

– The strains εm
SMA are derived with ξ m

s , σ
m,o
i and the thermal loading

∆θ m.

– The norm of the force Fm = σ
m,o
i ASMA is calculated, where Am

SMA is the
cross section area of the truss element.

– The equivalent nodal forces for the structure are calculated from Fm

after they are transformed from the local SMA coordinate system to
the global system. The nodal displacements are updated with a new FE
analysis applying the equivalent nodal forces.

– From the updated displacements of the SMA (common) nodes, the new
effective length Lm,n

SMA is calculated for each SMA actuator.

– The strain εm
str is updated for the mth SMA actuator from:

ε
m
str =

Lm,n
SMA−Lm

SMA,0

Lm
SMA,0

– The derivative ∂σ

∂ε

∣∣∣m
Ti

is analytically derived from the constitutive law and

the transformation equations and calculated for a specific temperature.

– The stresses in the mth SMA actuator are updated as:

σ
m,n
i = σ

m,o
i − (εm

SMA− ε
m
str)

∂σ

∂ε

∣∣∣m
Ti

Note that if σ
m,n
i < 0 we set σ

m,n
i = 0 since tension-only trusses cannot

react to compression and yield after they reach a zero residual strain.

– The stress values are updated with σ
m,o
i = σ

m,n
i and the error is calcu-

lated:

error ≈
|εm

SMA− εm
str|

εm
SMA
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– Return.

• After the convergence for an increment, the same procedure is repeated for
every pseudo time-step until the desired temperature history is applied; the
exact same procedure can be followed for the reverse (cooling) procedure
where a thermal unloading takes place.

5.4.2 Design of an optimized morphed configuration

The second part of the preliminary design consists of coupling the NLB solver to an
optimization tool. The efficiency and robustness of NLB render the code adaptable
to any optimization technique for the pre-design of controlled configurations. The
optimization procedure is used to calculate the design variables for a controlled
configuration that is able to achieve a pre-defined shape target. In the present work,
the code is evaluated coupled with a stochastic optimization algorithm, appropriate
for strongly nonlinear structural optimization problems where the number of design
parameters is modest.

The Genetic Algorithms (GA) are probably the most widely used category of
Evolutionary Algorithms (EA). The GA begins by creating a first set of random
candidates. At each step (generation), the method uses the current individuals
(population) in order to create the next set of candidates. To create a new population,
each member of the current iteration is evaluated on its fitness value from an
objective function (to be minimized) and is attributed a score. Based on this score,
few of the best members (elites) are directly passed down to the next generation.
From the remaining members, some are selected to be used as parents from which
new candidates (offsprings) will be produced. The offsprings are generated either by
mutation i.e. from stochastic changes over a single parent, or by crossover, where
two parents are combined to produce two children. The procedure is repeated for
the whole sequence of evolving populations that have a progressively better fitness
and from which an optimal solution will be identified.

The formulation of the problem requires first to define the objective function
and chose the design variables.

Design algorithm for shape control through temperature

• For a pre-defined number of SMA actuators, the design variables are chosen;
they could be combination of working parameters (e.g. actuation temperature
in each actuator), geometric (e.g. placement of SMAs, attachment positions
to the structure) or even SMA properties (e.g. size, material properties).

• Any given constraint is included; usually this corresponds to geometric limi-
tation (available space) the structure imposes or working limitations posed by
the actuators (e.g. maximum temperature that can achieved by a system).

• At least one target is specified; if this is a desired shape, the objective is
the minimization of the difference between the target and the deformation
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achieved by the controlled configuration. The objective function can be de-
fined to account for multiple target shape or the electric energy consumption.

• The (stochastic) optimization procedure starts:

– NLB solves the coupling problem (previously described procedure) for
the current values of the design variables

– The objective function(s) are evaluated (e.g. comparing the deformed
and the target shape).

– New values of the design variables are derived by the optimization
method (this step depends on the optimization technique).

– The loop continues until the objective is achieved or the optimization
is stalled, i.e. a better evaluation for the objective function has not be
reached for multiple iterations.

• The final values for the design variables are evaluated.

The optimum design can lead to a solution where some of the SMAs are not actuated,
implying that they are redundant to the specific design. On the other hand, it is
also possible that the distance from the target shape is sufficiently small but can be
further reduced only with the addition of more actuators. More implementations
details are discussed in the cases that follow.

5.5 Case studies

The proposed algorithm is examined through two numerical examples. The flexible
structures considered are geometrically nonlinear and hence, the methodology is
developed within a nonlinear FE analysis framework (see Section 2.2.3) that allows
to capture the significantly higher stresses compared to the linear case. To this
end, NLB is developed to solve for elastic nonlinear truss and frame elements. The
implicit (Newton-Raphson) algorithm developed follows the corotational formu-
lation presented in [FF04] and [Yaw08]. An incremental-loading variation of the
algorithm is also available. The code can also solve for problems with nonconserva-
tive nodal forces and distributed loads (i.e. following force problems). This aspect
is essential for the problems considered as the SMA actuators change orientation
with the deformation of the controlled structure and the forces should account for
this. In addition, when dealing with aeronautical structures specifically, the effect
of the aerodynamic pressure is a clear manifestation of a circulatory distributed
nonuniform loading. Following the work of Argyris et al. [ADS78], [AS81], a
pertinent correction of the tangent stiffness matrix is implemented. The resulting
non-symmetric stiffness formulation slightly increases the computational cost but
stabilizes the the solution and assures convergence.

The FE code has been successfully validated for two flexible structures under-
going large deflection due to nonconservative loading. The cantilever (Figure 5.4a)
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(a) Deformed geometry of beam mid-axis.
(b) Load-displacement diagram of end
point.

Figure 5.4: Large deflection of cantilever under nonconservative transverse tip
load; comparison of the NLB code with numerical results (ARG) from [AS81].

(a) Test case configuration: 1/4 ring. (b) Deformed geometry of ring centerline.

Figure 5.5: Large deflection of circular ring under nonconservative nonuniform
normal pressure (left); comparison of the NLB code with numerical results (ARG)
from [AS81] for different loading amplitudes p̄o = p0r3/EI.

of length Lb = 100mm undergoes large deflection due to a nonconservative point
force that acts at its free end. The ring (Figure 5.5a) of radius R = 100mm is sub-
jected to a inward pressure load that is given by the expression p = p0(1+ cos2θ),
where p0 is the maximum load amplitude and θ the angular coordinate of the ring
geometry. Since the ring is doubly symmetric, only one quarter is considered. The
properties assumed for the two examples are E = 210GPa, Ib = 1.6667cm4 and
A = 20cm2. Ten (10) and eighteen (18) elements have been used for the cantilever
and for the ring problem, respectively.

The deformation and the load-displacement diagrams for the cantilever case are
presented in Fig. 5.4a and 5.4b respectively. It is worth noting that NLB is capable
of predicting deformations up until the stability limit of the elastic beam, granted
that the structure is flexible enough. The calculations are in excellent agreement



160 5. OPTIMAL SHAPE CONTROL USING SHAPE MEMORY ALLOYS

with the results included in [AS81] and denoted as “ARG”. Figure 5.5b presents the
displacement diagram for the 1/4 ring geometry. Same goes for the circular 1/4
ring test case. The code provides results that are in very good agreement with the
reference for all the loading magnitudes examined. It is also demonstrated that NLB
remains robust even for large enough deformations.

5.5.1 Cantilever shape control

In this section, the implementation of the SMA constitutive modelling is evaluated.
The controlled configuration adopted here and shown in Fig.5.6 was first examined
in [BHBB97]. A cantilever of length Lb is equipped with a single SMA actuator is
considered; the actuator is connected under an angle to an offset device d through
which it can regulate and control the beam displacement, without causing any
buckling issues. A rectangular cross-section Ab = Tb×Wb is assumed for the beam.
When the SMA actuator is subjected to a temperature variation, its length changes
and thus imposes a force that deforms the cantilever. This connection results to a
force following the beam as it deforms; due to the displacement, the orientation of
the force vector changes significantly.

Figure 5.6: The elastic beam controlled with an SMA wire; configuration exam-
ined in [BHBB97].

BEAM E (GPa) Lb (mm) Tb (mm) Wb (mm) d (mm)

A 69 400 1 50 5
B 69 400 1 25 5
C 69 300 2 100 5

Table 5.1: Geometric and material properties; d the offset distance.

Three beams are examined in total; the material and geometric properties for
all the beams considered can be found in Table 5.1. For the first two (BEAM A
& B), calculations were carried out without taking into consideration the SMA
actuation as in [BHBB97]. The loading was applied with a weight fixed at the lower
end of a steel wire. The deformation of the beam geometry is illustrated in Fig. 5.7a
for BEAM A. As the weight (i.e. the loading) increases, the wire gets shorter and
deforms the cantilever. In Fig. 5.7b the load-displacement diagrams calculated
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with NLB are presented for both beams. For higher values of loading, a strongly
nonlinear behavior for the beams is observed and is attributed to the nonlinear
kinematics and to the nonconservativity of the applied force. The aggreement with
the results included in [BHBB97] is remarkable.

(a) Deformed geometry of BEAM A mid-
axis.

(b) Load-displacement diagram of end
point.

Figure 5.7: Large deflection of cantilever under nonconservative tension through
a steel wire; comparison of the NLB code with experimental (BR-EXPE) and
numerical (BR-NONL) results from [BHBB97].

BEAM C is then examined under the effect of the SMA actuation; the properties
of BEAM C are also included in Table 5.1. The SMA actuator has diameter
DSMA = 1.3mm and is initially prestrained with strain ε0 = 3% and stress σ0 = 0.
The material properties assumed for the SMA are shown in Table 5.2. A full heating
and cooling cycle for the SMA actuator is computed. The temperature of the actuator
begins from 20°C, then linearly increases up to 80°C and is cooled back down to
20°C. The results obtained are shown in Fig. 5.8; for comparison, the results of the
reference [BHBB97] are also shown with a hollow square marker.

Mf (°C) Ms (°C) As (°C) Af (°C)

9 18.4 34.5 49
EA (GPa) EM (GPa) CA (MPa/°C) CM (MPa/°C)

67 26.3 13.8 8
εL ΘΘΘ (MPa/°C) σ cr

s (MPa) σ cr
f (MPa)

6.7% 0.55 100 170

Table 5.2: SMA material properties [BHBB97] used in the controlled cantilever
example.

In Fig. 5.8a the stress-strain values for the SMA wire are presented. The pre-
dicted working points are placed along the permissible by the structure deformation
line and shown with filled circular markers. The points are contained within the
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(a) Stress-strain diagram for the SMA wire. (b) Stress in the SMA wire with temperature.

(c) Stress induced martensite fraction of the
SMA wire with temperature.

(d) End point vertical deflection of the can-
tilever with temperature.

Figure 5.8: Large deflection of cantilever as controlled by temperature in the SMA
actuator; comparison of the proposed methodology (NLB) with numerical results
(BR-NONL) from [BHBB97].

working range of the actuators which can be observed in Fig. 5.8a with dotted
lines. Each of these points is produced from identifying an equilibrium between
(a) the reactive forces induced from the cantilever to the SMA and (b) the stress-
strain-temperature state of the actuator. The ensemble of points determines the
working capabilities of the controlled configuration. As the temperature increases,
the SMA wire tends to recover the initial strain ε0. Since it remains connected to
the structure, it deforms the cantilever and high levels of stress are produced as
observed in the stress-temperature diagram in Fig. 5.8b. The stress reaches a plateau
at a temperature close to 70°C and the prestrain is almost completely recovered
(Fig. 5.8a). After this temperature, the wire reaches its complete transformation
to an austenitic phase as zero martensitic fraction remains. This is illustrated in
Fig. 5.8c where the variation of stress-induced fraction ξs is shown as function of
the temperature. Further increase of the temperature cannot lead to any additional
transformation and the actuator is not able to retrieve its residual strain completely
(Fig. 5.8a). As a result, the controlled beam reaches its maximum displacement as
observed in Fig. 5.8d, where the end point vertical deflection of the cantilever is
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shown as function of the temperature.
When the temperature is reduced, the displacement is reversed. After a temper-

ature, martensitic fraction develops inside the SMA wire and the stress decreases
along with the beam’s deformation. The martensitic fraction is generated purely
due to the structure which “pulls" back the actuator as it tends to recover its initial
undeformed shape. At 20°C, the whole configuration reaches an equilibrium state
which differs from the initial one (Fig. 5.8d). The whole system balances under a
residual stress (Fig. 5.8b) as a lower martensitic fraction is produced. In conclusion,
the hysteretic behavior of the SMA actuator is well captured by the NLB FE code
and the proposed methodology produced results in remarkable agreement with those
of Brinson et al. [BHBB97].

(a) Controlled configuration and target shape.

(b) Design parameters for the control.

Figure 5.9: Problem definition for the optimization procedure.

5.5.2 Optimal shape control

The second case study demonstrates the capacity of the proposed algorithm to
design a controlled configuration that is able to achieve a pre-defined target shape
by adjusting the temperature of the SMA actuators. One of the main motivations for
the development of the proposed algorithm was the applicability to optimization
problems. A fast and accurate solver coupled with an optimization methodology
provides with a strong preliminary design tool capable of determining optimal
configurations for the control of structures by SMAs. In this context, NLB was used
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along with the genetic algorithm (GA) solver available in the optimization toolbox
of MATLAB® [TM19].

The controlled configuration to be studied is shown in Fig. 5.9a. The structure
is pinned at its left side, while the right end is free to move vertically. For numerical
stability purposes, a low-stiffness spring (kspr = 1000N/m) has been inserted at
the free end. The properties of the beam are: E = 69GPa, Lb = 300mm, Tb = 2mm
and Wb = 100mm. A desirable aerodynamic shape is set as the target shape. The
target shape was produced by a third-order polynomial function in order to create a
realistic convex aerodynamic shape (Fig. 5.9a). This shape which will be obtained by
adjusting the temperature of the four (4) SMA-based actuators, as shown in Fig. 5.9b.
The optimization procedure will be set to determine the actuation temperatures and
an optimal placement of the SMA wires in order to produce this shape as closely as
possible.

The nonlinear optimization problem can be solved through the stochastic
minimization of an objective function. The objective function is the normalized
norm of the distance of each point of the beam structure from the target shape, i.e.:

Fob j =
||xstr−xtar||2
||xund−xtar||2

where xstr = (xstr,ystr) and xund = (xund ,yund) the vectors containing all the nodal
coordinates for the deformed and undeformed configuration respectively; xtar =
(xtar,ytar) the target geometry. The design variables to be identified by the optimiza-
tion process are:

(a) the actuation temperature Ti for each SMA wire with i = 1, . . . ,4, and

(b) the beam node Ni at which each SMA wire should be attached, with i =
1, . . . ,4.

The design variables are bounded:

Ti ∈ [40,250]⊂ Z

Ni ∈ [2,Np]⊂ Z

where NP = number o f elements+ 1, the total number of FE nodes which only
admit integer values. The attachment positions could only be fixed at the available
nodes of the structure. Hence, the integer condition. The temperature was set as an
integer to speed-up the optimization process by limiting the available candidates.
No additional constraints were taken into account for the optimization.

For this morphing example, the total number (here four) of the SMA actuators
was constant. Two of them were placed above the frame (see Figure 5.9b) and
two below. The SMA actuators were pinned on their left side (x = 0) at a fixed
vertical distance±|yd | from the neutral axis of the frame. For the problem examined,
|yd |/Lb = 0.125. The actuators were attached to the structure with the same offset
distance d = 5mm which was also fixed. All the SMA-based actuators were assumed
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to have the same material properties, included in Table 5.3, and a constant diameter
DSMA = 1mm. The actuators start from a fully martensitic state with a stress-induced
fraction ξs = 66% due to a prestrain ε0 = 4% at T0 = 20°C.

Mf (°C) Ms (°C) As (°C) Af (°C)

43.9 48.4 68 73.75
EA (GPa) EM (GPa) CA (MPa/°C) CM (MPa/°C)

31.5 20 6.73 6.32
εL ΘΘΘ (MPa/°C) σ cr

s (MPa) σ cr
f (MPa)

6.1% 0.5 25 78

Table 5.3: SMA properties for the optimization problem.

Various realizations were carried out to establish the existence of a global
minimum. Both a linear (Linear16) and a nonlinear (NLB16) beam were tested for
16 elements along the structure. An additional calculation was carried for a nonlinear
beam with a double number of elements (NLB32) to evaluate the sensitivity of the
prediction to the number of the available attachment nodes. Finally, the x−wise
symmetric target shape case (see Fig. 5.11b) was also examined (NLB16R) for
16 finite elements. The calculations presented hereafter, were carried out for a
population size of 60 for each generation. A Gaussian mutation function was used
for the results following and the elite count was 3 members to be passed down
to the next generation. The rank (position) of each individual, in terms of sorted
evaluations, was used for the scaling of the raw scores since this method removes the
effect of their spread. Due to the integer constraints given to the design variables, no
crossover functions are used by the GA solver of MATLAB®. In every case study,
the optimization procedure terminated after the maximum number of 80 stalled
generations was reached.

(a) Linear16. (b) NLB16.

Figure 5.10: Optimization procedure of the GA coupled with the NLB code; the
Fob j is noted as Best.

In Fig. 5.10, the optimization procedure is presented for the Linear16 and the
NLB16 studies. The dots in this figure monitor the best solution identified from
the optimization procedure while the hollow circular marker the mean solution
predicted at each generation, produced from an average of all the evaluations that
take place. As the evaluation of the mean solution decreases during the optimization,
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the chances to find a better candidate increase with time. Since no better solution
is predicted after 80 consecutive generations, the optimization stops. The linear
structure case terminated after 178 generations predicting an Fob j = 4.7%. A few
more generations (≈ 200) were necessary for the nonlinear case to be terminated.
However, a solution with a slightly lower value for the objective function Fob j =
4.1% is predicted for the nonlinear case. For the NLB32 case study, the calculation
was terminated after 320 generations with an Fob j = 6.9% and for the NLB16R,
after 193 generations with an Fob j = 4.2%. All the deformed shapes produced by the
predicted optimal configurations are illustrated in Fig. 5.11 along with the respective
target shapes. The target is well captured in every case examined as expected from
the low values produced by the evaluations of the objective function. The NLB32
gives a slight upward deformation on the second half of the frame which explains
the higher value for the objective function.

(a) Convex aerodynamic target shape.

(b) Symmetric aerodynamic target shape.

Figure 5.11: Deformed controlled shape after the optimization procedure.

The results of the optimization along with the respective evaluation of the
objective function are regrouped in Table 5.4 for all the cases. The normalized
positions of the attachments xdi/Lb = xd(Ni)/Lb and the actuating temperature Ti

identified are listed for each SMA wire. The martensitic fraction ξ and its stress-
induced component ξs predicted at the deformed configuration for each actuator
are also included. The Linear16 and the NLB16 cases predict the exact same
optimal attachment points (see Table 5.4). However, the temperature prediction is
significantly different. The actuation temperatures for all wires in the linear case
(Linear16) are significantly higher as, for the same deformation to be achieved,
large stresses are developed in the structure. This comes to highlight the importance
of the nonlinear effects in the design process. As a matter of fact, with the nonlinear
approach NLB16, the first SMA which is placed below the structure is not actuated
at all. Examining the ξ and ξs values for this wire, it can be observed that due to
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its temperature and positioning it ends up receiving zero stress (it yields) and does
not partake in the actuation. The design produced a simplified solution that ends up
using less actuators than what was originally conceived for the shape control.

Table 5.4: Optimization results for the different cases; ξ0 = 1.00, ξs0 = 0.66 and
ε0 = 4% at T0 = 20°C, the initial conditions for all the actuators.

NoSMA 1 2 3 4 1 2 3 4

Case Linear16 NLB16

T (°C) 211 250 234 229 67 102 136 89

xd/Lb (%) 94 63 100 38 100 63 94 38

ξξξ (%) 0 0 0 0 100 73 56 69

ξξξ sss (%) 0 0 0 0 66 48 37 45

Fob j 0.0471 0.0408

Case NLB32 NLB16R

T (°C) 50 140 178 86 81 144 107 132

xd/Lb (%) 62.50 59.38 96.88 31.25 31.25 56.25 56.25 93.75

ξξξ (%) 100 50 35 67 70 65 67 58

ξξξ sss (%) 68 33 23 44 46 43 44 38

Fob j 0.0688 0.0420

In the NLB32, almost identical attachment positions are identified even though
the range of available candidates had been doubled. The same wire (first one) is
not actuated but in this case it receives a small amount of stress that produces a
slightly higher stress-induced martensitic fraction. Slight variations in the actuating
temperatures are observed due to the marginal differences between the NLB16 and
NLB32. However, the two cases present reasonable agreement. As expected, the
NLB16R optimization case provided a positioning that was symmetric to the ones
previously examined. The resulting configuration was closer to the one predicted
in the NLB32 case. However, contrary to the previous studies, all the wires are
actuated and end up receiving some portion of the stresses developed. Finally, in
all the nonlinear cases, none of the wires went through a complete transformation
to Austenite as ξ > 0 indicates. As a result, the configurations are able to achieve
even higher deformations and should be tested to this. The solution of the NLB16
case is identified as the optimal one since it produces the target accurately (lowest
Fob j), at lower actuation temperature (reduced energy consumption) and with the
less active actuators than what was initially resulting in a simpler design.
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5.6 Wing shape control

This final study examines the application of the proposed algorithm for the shape
control and re-design of an aeronautical configuration. The present study will be
split into two parts. First, in Section 5.6.1 NLB will be used to solve the structure-
SMA interaction problem for the shape control of the Morphing Wing Prototype
(MWP). The results from this calculation will be compared to past investigations on
the constructed wing [JMS+17]. It will be demonstrated that the solver accurately
predicts the deformation of the electroactive wing and estimates the actuation
temperature. Then, in Section 5.6.2 the proposed algorithm will be adopted in
order to re-design/optimize the actuation system inside the wing. For the given
wing geometry and a desirable target shape, it is examined whether the existing
system can be reconsidered. The target will be to achieve the same pre-described
displacement that the current actuation system is able to produce while consuming
less energy, i.e. at a lower actuation temperature.

Figure 5.12: 3D CAD representation of the MWP constructed by LAPLACE/IMFT;
upper skin removed on the rear/deformable part to reveal the SMA-based actuation
system.

The considered MWP is a reduced-scale design of an electroactive hybrid
morphing wing, equipped with both a camber control system and trailing edge
(HFVTE) actuators [JMS+17, SJM+19]. The morphed wing prototype is shown in
Fig. 5.12 in 3D. A side view of the wing section is illustrated in Fig. 5.13a. The
baseline airfoil for the MWP has a chord cw = 700mm and a span Sw = 590mm. The
camber control system employs SMA actuators that were designed to be inserted
on a length covering the last 30% of the chord (Fig. 5.13) which corresponds to
the deformable part of the wing. Eighteen (18) equidistant pairs of SMA-based
actuators cover the whole span of the wing, acting both on the suction (upper) and
the pressure (lower) side of the wing. The actuators are pinned on their left side to
the fixed (non-deformable) part of the wing and attached either on the upper or the
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lower skin side. When the top actuator from each pair is heated, the wing deforms
downwards, towards higher camber angles. Respectively, when the bottom actuator
is heated, the wing moves upwards. Through this “agonist-antagonist” configuration,
the wing is able to move efficiently in both directions and more importantly, recover
its neutral shape fast if needed. The deformation between the upper and lower skin
side is transmitted through a rigid body part (see Fig. 5.13a) which is attached on
the suction side of the wing and is free to slide along the pressure side of the wing.
Additional information about the construction and the aerodynamic performance of
the MWP can be found in [JMS+17, SJM+19, GSR+15].

(a) Side-view; one of the 18 pairs of the actuator.

(b) FE model on the deformable part of the wing.

Figure 5.13: CAD of the MWP and FE model with respect to the wing geometry.

For the studies following, a two-dimensional finite element model is developed
for the deformable part of the wing, as shown in Fig. 5.13b. The FE model illustrated
in Fig. 5.14 represents only one of the 18 equidistant actuation pairs, acting on a
narrow (spanwise) region corresponding to 1/18 of the total span. Elastic beam
elements clamped on their left side were chosen to represent this narrow aluminum
(E = 69GPa) skin region with thickness Tb = 1.5mm and width Wb = 1/18× Sw.
For the suction and pressure side of the wing, 30 and 34 finite elements have been
used respectively in order to accurately reproduce the curvature of the geometry.
SMA wires made of Nickel-Titanium (Ni-Ti) alloys with diameter DSMA = 1mm
were used in the MWP; the material constants assumed in the modeling are included
in Table 5.5. The SMAs were in a fully martensitic phase and were prestrained
by ε0 = 3%. As in the prototype, the wires are pinned on their left side and
are attached to the wing skin via multiple offsets (Figures 5.13a and 5.14). The
intermediate attachments were modeled to behave like pulley/wire-type of joints,
pulling the respective surface as the wire tends to straighten itself. In order to model
the transmission of the deformation between the upper and lower skin, NLB has
been developed to deal with contact problems based on the work of Zavarise et al.
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[ZDLT12]. The rigid body remains connected to the suction side and slides along
the pressure side of the wing without penetrating it. Frictional and gravitational
forces were not taken into account in the model.

Figure 5.14: FE model and boundary conditions for the SMA actuation on the
deformable part of the MWP.

Mf (°C) Ms (°C) As (°C) Af (°C)

25 65 30 75
EA (GPa) EM (GPa) CA (MPa/°C) CM (MPa/°C)

75 28 10.3 10.3
εL ΘΘΘ (MPa/°C) σ cr

s (MPa) σ cr
f (MPa)

6.7% 0.55 100 170

Table 5.5: Ni-Ti SMA properties as included in [Jod17]; σ0 = 0 and ε0 = 3% the
initial conditions for the wire.

5.6.1 Simulations for the existing design

Two calculations were carried out for the current actuation system previously pre-
sented. The temperature for the upper and the lower SMA cables was respectively
linearly varied, starting from 26°C up to 154°C. When each wire is heated, its
pair (supporting wire) remains at a constant ambient temperature (26°C). In total,
32 (pseudo) time-steps (ts = 1, . . . ,32) were used for the calculations with a tem-
perature increase ∆Ti = 4°C applied in each one. In Fig. 5.15 the results for the
two calculations are regrouped. The left column (Figs. 5.15a, 5.15c) presents the
calculation carried out with heating the upper (top) actuator, while the right column
(Figs. 5.15b, 5.15d) the results from heating the lower (bottom) actuator.
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Figure 5.15c shows the stress variation in both wires due to heating of the upper
actuator while the lower one remains at a constant temperature. The temperature
increases in time resulting in the development of high levels of stress in the upper
wire, which reach a plateau after ts = 24. The wing deforms downwards and the
actuator that is connected on the lower side resists to this shape change. As a
result, stresses develop to the bottom actuator as well. The inverse procedure is
shown in Fig. 5.15d where heating the bottom actuator deforms the wing upwards
and produces large stresses inside the actuating SMA and resulting stresses on the
supporting wire. For the upward movement, larger stresses develope inside both the
actuating wire and its pair in comparison with the downward deformation.

The temperature variation and the increase of the stress prompt changes in the
stress-induced component ξs of the martensitic fraction in each actuator. Both wires
begin at ξs0 ≈ 45% due to the initial prestrain (ε0 = 3%). Figure 5.15e illustrates
the ξs variation in both wires due to heating of the upper actuator. Due to the
temperature increase, the upper SMA undergoes an austenitic transformation which
is concluded at T ≈ 122°C (i.e. for ts = 24) for which ξs = 0. After this point, the
actuator is no longer able to recover more length and consequently cannot deform
the wing further, justifying the plateau observed in the stress diagram. With stress
developed in the lower actuator, the stress-induced component increases as the
material undergoes a twinned→ detwinned martensitic transformation. After the
complete transformation of the upper actuator, the wing will not be further cambered
and both the stress and the stress-induced fraction computed for the lower actuator
stabilize as well. The inverse procedure is shown in Fig. 5.15f where heating
the bottom actuator is examined. The complete austenitic transformation of the
actuating (here lower) wire takes place at a much higher temperature (T ≈ 150°C)
due to the increased stresses which tend to strengthen the martensitic behavior.
Finally, the ξs for the supporting wire (here upper) stabilizes around a higher value
when compared to the downward deformation, due to the increased forces previously
observed (Fig. 5.15d).

Finally, in Figures 5.15a and 5.15b the deformed wing is presented, calculated
with T = 118°C for the upper and T = 98°C for the lower actuation respectively.
In the same figures, the maximum upward and downward deflection that the real
actuation system is able to achieve are superimposed with dotted lines. These
reference shapes were evaluated during the design process and the construction of the
morphing wing (private communication with Dr. G. Jodin). The temperature value
in each case has been evaluated from the working point for which the calculation
arrives at each reference shape. For the cambering of the wing, the reference shape
is reproduced exactly in the simulation (Fig. 5.15a) for an actuation temperature
T = 118°C for the upper wire. This working point is also noted in Figures 5.15c
and 5.15e with a hexagram marker. For this temperature, NLB predicts only a small
reminiscent martensitic fraction (ξ = 0.04), suggesting that the transformation is
almost complete and that the actuator approaches its (lower) working limit. This is
in complete agreement with the working capacities of the real constructed prototype.
Respectively, for the upward deformation, the reference shape is reproduced by
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(a) Deformation with upper actuator, super-
imposed with the reference shape.

(b) Deformation with lower actuator, super-
imposed with the reference shape.

(c) Stress variation for both actuators. (d) Stress variation for both actuators.

(e) ξs variation for both actuators. (f) ξs variation for both actuators.

Figure 5.15: Control of the aerodynamic shape of the MWP with NLB; calculation
heating (a), (c), (e) the upper and (b), (d), (f) the lower actuator respectively.

heating the lower actuator at T = 98°C (Fig. 5.15b). Same as before, the working
point is also noted in Figures 5.15d and 5.15f with a hexagram marker. For this
temperature, a higher reminiscent martensitic fraction is predicted (ξ = 0.13) by
NLB, revealing that the actuator has a slightly wider upper working range. However,
as the stresses significantly increase in the actuator after surpassing this temperature,
it is possible that this upward deflection limit was defined in the design process in
order to protect the constructed prototype from any fracture. Finally, some overall
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differences could be attributed to the modeling hypotheses (e.g. gravity ignored, 2D
wing).

5.6.2 Optimization of the actuation system

In the previous section, the working capabilities of the existing MWP design were
examined. The temperatures, for which the reference downward and upward deflec-
tions are produced, were evaluated. In this section, it will be investigated whether the
actuation system can be re-designed in order to achieve this reference deformation in
a more efficient way. In the present application, the target is to identify an actuation
system capable of producing the same pre-described shape while consuming less
energy i.e. at a reduced actuation temperature. Modifications concerning only the
design of the upper actuator will be discussed. The target shape is the deformed
reference shape of maximum downward deflection examined in the previous section
and illustrated in Fig. 5.16b. It is recalled here that the existing actuation system was
able to produce this deflection for a temperature T = 118°C in the upper actuator. It
will be investigated whether a new design can produce the same deformed shape
for an actuation temperature Tu < TMAX = 118°C. To this end, the proposed design
methodology examined in Section 5.4.2 is employed to revisit the actuation system.

(a) Design parameters for the upper actua-
tor.

(b) Target shape in descend and target
points.

Figure 5.16: Revisiting the actuation system of the MWP; problem definition and
parameters.

The target deformed shape will be imposed in the design process through the
minimization of the distance of selected control points placed on the upper and the
lower skin of the wing from target points (Fig. 5.16b), i.e. the minimization of:

Fdist =
np

∑
k=1

√(
yk

str− yk
tar
)2

where np the total number of selected control points, yk
str the vertical coordinate

of the selected structural control points and yk
tar the vertical target coordinate. In
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order account for the contribution of the temperature, the objective function for the
optimization process is calculated from:

Fob j = Fdist +wg · log
(

10Tu/TMAX
)

where a weight parameter wg and scaling have been employed in order to keep
the contribution of the design variable Tu in a range comparable to Fdist . The
weight parameter has been evaluated through numerical investigations. The design
parameters examined in this application are illustrated in Fig. 5.16a. The same
number (3) of attachments was assumed in the re-design. Besides the actuation
temperature Tu, the design variables to be identified by the optimization process are:

(a) the positions xdi = xd(Ni) of the attachments onto the skin, where Ni the upper
skin beam node with i = 1,2,3,

(b) the offset distance di for each attachment, with i = 1,2,3, and

(c) the vertical distance yd below the upper skin at which the actuator is pinned.

Three optimization cases will be discussed in total. The first two can be summarized
as:

• OPT1: with wg = 1 ·10−3 and np = 2

• OPT2: with wg = 1 ·10−3 and np = 4

In OPT1, only points 1 and 2 from Fig. 5.16b were used for the evaluations of the
Fdis and the objective function. For the OPT2 case, all four points illustrated in
Fig. 5.16b were used in the evaluation of the objective function. In both cases, the
same weight factor has been used. The design temperature was bounded as:

Tu ∈ [40,TMAX ]⊂ Z

with TMAX = 118°C as previously mentioned. Once again, the temperature was set
as an integer to speed-up the optimization process. For the attachments:

Ni ∈ [2,NMAX ]⊂ Z

where NMAX = 24,the latest acceptable FE node for the attachment of the actuator;
after this node, the rigid body is attached. An additional constrain is set for the
attachments:

N1 < N2 < N3

as the order of the connections should be respected for a solution to be valid. The
distance between the upper skin and the position where the actuator was pinned was
bounded as:

yd ∈ [0.005,0.055]⊂ R
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Finally, all the offset distances were set equal d1 = d2 = d3 = d and bounded as:

d ∈ [0.001,0.015]⊂ R

The bounds for the yd and the d were assumed after carefull considerations of the
overall wing geometry. The third and final optimization case is:

• OPT3: for a fixed temperature Tu = 110°C with wg = 0 and np = 4

In OPT3, the actuation temperature is fixed. With a constant value for the Tu, only
the geometric parameters remain to be identified. To negate the contribution of
the temperature in the objective function, the weight factor was set wg = 0 so that
Fob j = Fdist . The same bounds stand for the design parameters except for the Tu

which is no longer a variable. All four points illustrated in Fig. 5.16b were used in
the evaluation of the objective function.

(a) Undeformed configuration.
(b) Deformed configuration.

Figure 5.17: Comparison between OPT1 and the original design (ORG); they
arrive at the target position for different values of temperature. With circles, the
yk

str used in the evaluation of Fob j.

For every calculation, the initial conditions were same with the ones examined
in the previous section, i.e. ε0 = 3%, σ0 = 0, ξs0 = 45% and T0 = 26°C. All the
optimization cases were terminated after the maximum number of 60 stagnated
generations was reached. For OPT1, a total of 255 generations were evaluated
before the calculation was terminated. For OPT2 and OPT3, a total of 200 and
311 generations respectively were evaluated. All the re-designed configurations are
illustrated in Figures 5.17-5.19, both at an undeformed and at a deformed position.
The structural control points, from which the coordinates yk

str are evaluated, are
noted with the circular markers. As a reference, the original configuration examined
in Section 5.6.1 is superimposed in all of these figures with dotted lines and will be
referred to as ORG. The results for all the studies are regrouped in Table 5.6. The
design parameters of the original configuration (ORG) examined in the previous
section are also included for comparison. A characteristic length Lc = 0.1589m
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(Fig. 5.16a) has been used for the normalization of the geometric values. The
attachment positions are calculated as xdi = xd(Ni), where Ni the nodes of the upper
skin beam.

(a) Undeformed configuration. (b) Deformed configuration.

Figure 5.18: Comparison between OPT2 and the original design (ORG); they
arrive at the target position for different values of temperature. With circles, the
yk

str used in the evaluation of Fob j.

(a) Undeformed configuration. (b) Deformed configuration.

Figure 5.19: Comparison between OPT3 and the original design (ORG); they
arrive at the target position for different values of temperature. With circles, the
yk

str used in the evaluation of Fob j.

In Fig. 5.17, the design produced by OPT1 is examined at an undeformed and
at a deformed position. Compared to the original configuration, both of the first two
attachments are moved to the left, towards the front part of the actuator (Fig. 5.17a).
The calculation suggests that these two attachments could be replaced by one,
simplifying the proposed design. The third and final attachment point is displaced
towards the other end of the actuator, at the last acceptable FE node (N3 = 24). To
achieve the deformed shape, the vertical distance yd is significantly increased while
a slight increase for the offset distance is also observed (Table 5.6). Fig. 5.17b
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presents the deformed OPT1 configuration in comparison to the deformed ORG.
The target used in the evaluation of the objective function is sufficiently reached
by the optimized configuration, resulting in a very low Fdist as presented in Table
5.6. The OPT1 produces the necessary deflection at a lower actuation temperature
Tu = 114°C, compared to ORG (Tu = 118°C). However, the overall deformed
aerodynamic profile presents some difference with the one produced by ORG. Due
to the new attachment locations, an induced curvature is observed for the upper skin
side. This is attributed to the fact that only two points were used in the evaluation of
the Fob j and is expected to be alleviated in the following cases where four points
have been used.

ORG OPT1 OPT2 OPT3

Tu (°C) 118 114 113 110
xd1/Lc (%) 33.4 10.4 26.8 36.7
xd2/Lc (%) 60.0 13.7 30.1 73.3
xd3/Lc (%) 70.0 76.6 76.6 76.6
yd/Lc (%) 8.7 24.6 10.4 9.6
d/Lc (%) ≈ 4.5 4.7 5.0 5.6

Fdist/Lc (%) – 0.4 2.2 2.6

Table 5.6: Optimization results for the different cases compared with the original
design (ORG); the temperature Tu was fixed for OPT3. The initial conditions
referenced in Section 5.6.1 have been assumed for the actuator.

In Fig. 5.18, the design produced by OPT2 is shown. The first two attachments
are moved towards the front (Fig. 5.18a), slightly to the left and really close to
the first ORG attachment. Once again, the calculation suggests that these two
attachments could be replaced by one. The third attachment point is also placed
at the last acceptable FE node (N3 = 24). The vertical distance yd predicted is
marginally higher than the value in ORG but the offset distance is further increased,
when compared to OPT1 (Table 5.6). The target shape is sufficiently reached by the
optimized deformed configuration (Fig. 5.18b). The OPT2 produces the necessary
deflection at an actuation temperature Tu = 113°C which is lower, even compared
to OPT1. However, the Fdist is increased (Table 5.6) as the number of the points
used for the evaluation of the objective function is doubled. Regardless, the overall
deformed aerodynamic profile is almost identical to the one produced by ORG
due to the fact that four control points were used in the evaluation of the objective
function.

For the final case, the actuation temperature is fixed at Tu = 110°C and only
the geometric parameters are searched for. The design produced by OPT3 is
illustrated in Figures 5.19a and 5.19b. The first attachment is slightly moved
to the right compared to the ORG configuration, while the two remaining are
displaced at N2 = 23 and N3 = 24 respectively. The calculation supports the previous
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observations that only two attachments are sufficient in producing the deformed
shape. The predicted vertical distance yd is lower than in OPT1 and OPT2 and
almost equal to the ORG (Table 5.6). However, higher offsets are predicted in OPT3
so that the design can achieve the downward deformation with the reduced actuation
temperature. In general, there is great agreement between the OPT2 and OPT3
designs, besides the difference in offset values which is attributed to the different
actuation temperature. In OPT3, the deformed wing (Fig. 5.19b) approaches closely
the target giving a lower Fdist = 4.2 ·10−3 when compared to OPT2. No apparent
differences are observed in the overall deformed aerodynamic shape between OPT3,
OPT2 and ORG. Finally, it should be mentioned that the existing ORG architecture
is well designed as OPT2 and OPT3 demonstrated. Only slight changes on the
attachment connections are needed in order to produce an actuating system that will
consume less energy.

5.7 Conclusion

In the present chapter of the thesis, the use of SMA actuators for the shape control
of flexible deformable aeronautical structures was discussed. The study presented is
dedicated on the design of optimally controlled configurations. A fast and robust
numerical design approach has been developed to be used in the prediction of smart
configurations, able to achieve pre-described shapes under the control of SMA
actuators. The methodology developed has been based on the following steps: (a) a
robust algorithm that solves the “coupled structure-SMA" problem in the context of a
FE analysis by including a 1D constitutive model, and (b) the coupling of the whole
procedure with an optimization code for the design of actuation architectures. In the
context of morphing, the inclusion of flexible deformable structures is extremely
relevant, rendering the inclusion of a nonlinear structural analysis essential.

A first series of simulations examined the control of cantilever beam with an
SMA actuator. The physical processes taking place during one heating-cooling
cycle were analyzed in detail. A strongly nonlinear behavior for the beams has been
ontained, attributed to the thermo-mechanical SMA behavior, the large deformation
of the structure and the non-conservativity of the force. The approach showed a very
good agreement with a reference test case and the hysteretic behavior of the SMA
actuator was accurately captured. The has been used used along with a stochastic
optimization for the design of an actuation system controlling a simplified geometry.
A target aerodynamic target shape was closely captured and there was a reasonable
agreement between the predicted controlled configurations. A significant difference
in the temperature prediction was observed when a linear structure was used for the
FE modelling. The investigation highlighted the importance of nonlinear effects in
the design process. Evaluating the results of the optimization, the design led to a
solution were fewer actuators are needed and the configuration was found capable
to achieve even larger deformation targets. The complete analysis attested to a fast
and robust methodology that provides a design tool capable of determining optimal
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configurations controlled by SMAs.
Finally, the proposed methodology has been also evaluated in the shape control

and re-design of a realistic aeronautical configuration. It has been shown that the
solver predicted the deformation and estimated the actuation temperature for a
morphing prototype. The design methodology was adopted to revisit and optimize
the architecture of the actuation system so that it consumes less energy. Only
the upper actuator, responsible for the downward deformation of the wing was
discussed. Three new designs have been evaluated in the current investigation, all
able to produce the target deformation at a lower actuation temperature compared
to the original actuation architecture. All the designs suggested that the number
of attachments could be reduced and as a result, the proposed systems have had
less complex and more robust architectures. The optimized actuation systems have
provided lower energy consumption while maintaining their functioning capabilities,
which is an important aspect of future “green” aircraft transport.
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Chapter6
Conclusions & Outlook

This chapter presents an overview of the work performed in this thesis.
Perspectives and future investigations are also discussed.

6.1 Conclusions

The present thesis investigated the physical mechanisms related to the flow dynam-
ics around supercritical wings. The investigations were focused on the modifications
caused by the application of morphing, targeting increased aerodynamic perfor-
mance in the context of future wing designs. The numerical studies have been
carried out in high Reynolds numbers employing efficient advanced turbulence
modelling approaches. In this context, a novel approach, based on reinjection of
turbulence in shear layers, has been extended to three-dimensional flows to account
for small scale dynamics that cause energy backscatter. The physical mechanisms
related to interfacial dynamics developed in high Reynolds number flows inside
separated shear layers and wakes were addressed.

Based on this analysis, morphing concepts were employed for the manipula-
tion of the turbulent flow and the enhancement of the aerodynamic efficiency. The
electroactive morphing realized by Macro-Fiber Composite piezoelectric patches
disposed along the span of an A320 wing was investigated. The actuators introduced
higher-frequency vibrations and low-amplitude deformations of the trailing-edge
region. The flow was studied by means of Particle Image Velocimetry measure-
ments and high-fidelity numerical simulations. Finally, in the context of hybrid
electroactive morphing, the use of SMA actuators was also discussed for the shape
control of flexible deformable aeronautical structures. An electrostructural model
has been developed to simulate an SMA-based actuation system able to impose
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large deflections at low actuation frequencies for a morphing wing . A methodology
that allows for the optimal design of configurations able to attain target shapes
utilizing SMA actuators was presented. The main conclusions are outlined in the
following parts; the thesis also led to a series of publications which are listed in
page 189.

Turbulence modelling with stochastic forcing

In Chapter 3, a stochastic forcing turbulence modelling approach was examined.
It consisted of forcing source terms, included in the turbulent transport equations,
causing variations of the eddy viscosity. The forcing was based on the turbulent
kinetic energy reconstructed from high-order low-energy POD modes. It was shown
that this forcing is contained inside the sheared regions, identified from the POD,
without affecting irrotational areas of the flow. The stochastic behavior of the
forcing, linked to the nature of small scale motions, was imposed through a random
number generator. The methodology was examined along the OES and the DOES
approaches for the transonic flow on a supercritical wing.

It was shown that the source terms increased the dissipation rate locally and
therefore, the sheared regions were modelled with reduced effective turbulent
viscosity. This limited the excessive generation of turbulence diffusion which
characterizes standard modelling approaches employing downscale assumptions.
These terms produced fluctuations of the turbulent stresses that cause the generation
of intermediate size vortices. The flow field and the buffet cycle prediction were
examined with the stochastic forcing contribution. The shock structure remained
practically unchanged and the buffet cycle was found to be more stable. The
travelling length of the shock was reduced and consequently the intensity of the
shearing in the separation zones was mitigated. The flow dynamics were evaluated
from signals monitoring the surface pressure on the wing. The buffet frequency was
slightly reduced and the Strouhal number was closer to the experimentally measured
value. The root-mean-square and the mean pressure values were reduced and the
intensity of pressure fluctuations was mitigated.

The flow detachment was attenuated and the width of the wake was reduced
along with the entrainment velocity. Velocity profiles with sharp slopes demon-
strated the thinning of the wake and stronger shearing on the edges of the profiles.
The modelled chaotic dynamics directly affected the prediction of the aerodynamic
forces. An increase of the lift and a decrease of the drag was obtained and the
force predictions were closer to the experimental measurements. The temporal
variation of the forces presented less sharp peaks and a significant decrease of the
root-mean-square value.

Finally, the turbulence transition location was considered in order to examine
the effects on the shock unsteadiness and the intense pressure fluctuations. The sup-
pression of the turbulent source terms was employed to maintain a laminar incoming
boundary layer profile on the suction side of the airfoil. It was demonstrated that the
suppression of turbulence upstream of the shock stabilized the flow and prevented
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the shock front from reaching the leading edge of the wing. A pressure plateau was
established over the first half of the wing which was also in good agreement with the
DNS carried out in the TFAST project. The stochastic forcing in combination with
the transition location produced an improvement of the wall-pressure prediction.

The present study illustrated the influence of the turbulence reinjection on
the shear-layer thinning and consequently on the SWBLI and its upstream regions.
These feedback effects have been used for the design of a transonic morphing
prototype used in the SMS project targeting increased aerodynamic performance in
cruise.

High-frequency low-amplitude morphing near the trailing edge

The present thesis showed that the shear-sheltering effects of the turbulence rein-
jection through stochastic forcing can be materialized with a near-trailing edge
actuation, experimentally realized by MFC piezoactuators. In Chapter 4, the in-
vestigation was focused on a morphing application in which the aerodynamic
performance is enhanced by a high-frequency low-amplitude actuation which in-
troduces small-scale fluctuations in the flow. A large experimental database in low
subsonic regimes was employed to complete the numerical simulations performed
for the analysis of the main flow characteristics and wake dynamics in Re ≈ 106,
corresponding to take-off and landing flight phases. A detailed parametric study of
the vibration frequencies and amplitudes allowed evaluation of optimal ranges in
respect of lift-to-drag ratio improvement.

It was shown that actuation frequencies close to the natural frequencies short-
ened the formation region of the shear layer and led to a reorganization of the wake
through a “lock-in” mechanism. The vibrating trailing edge creates smaller-scale
turbulent eddies and adds kinetic energy in the wake. These smaller-scale eddies
interacted either with the upper or the lower shear layer, depending on the actuation
frequency and the natural shedding frequency of the related instability. It was
shown that this interaction strengthens the respective shear layer (shielding) and
enhances blocking effects, limiting the wake expansion and the entrainment. The
related natural instabilities were “locked-in” with the actuation frequency and as a
result, a suppression of pre-existing predominant instability modes was achieved. A
POD analysis showed that new modes replaced the natural ones in the shear layers
and the velocity profiles showed a thinning of the wake region. The application
of the morphing was also found to enhance the two-dimensional behavior of the
flow. The spanwise velocity fluctuations were reduced implying the suppression of
three-dimensional secondary instability modes. The streamwise vortex tubes were
weakened and the wake became thinner. Uniform spanwise aligned vortex tubes
were generated in the flow and the secondary instabilities associated with spanwise
undulations was practically suppresed.

The effect of the vibration amplitude and the streamwise length of the actuators
were also examined. For actuation frequencies lower than the natural ones, the
combined increase of the patch-amplitude lengths, intensified the chaotic character
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of the flow. The spectral content of the signals in the wake was increased due to the
additional kinetic energy introduced in the flow due to the larger amplitudes/patches.
No breakdown of the natural coherent structures was identified. For the higher
actuation frequencies, neither the amplitude nor the patch length variation had any
considerable effect on the wake dynamics; the frequency was found to be the main
driving factor.

The thinning of the wake region as well as vorticity feedback effects, enabled
a significant increase of the aerodynamic performance through surface pressure
modification. The lift-to-drag was increased in every morphing case examined.
By the present electroactive morphing concept, an order of 3% increase in lift has
been achieved and at the same time a 1% decrease in the drag. Optimal frequency
ranges were identified suggesting that the actuation frequency can be adapted
to the incoming flow conditions and the chord of the wing. The patch length
variation provided only minor changes in the forces but the actuation amplitude had
significant effects. The aerodynamic forces presented a non-linear behavior with the
variation of the amplitude. It was demonstrated that optimal frequency-amplitude
combinations exist for which a maximum lift-to-drag ratio can be identified. The
rms of the force signals was an increasing linear function of the amplitude and the
slope of the rms variation depended on the actuation frequency.

Low-freqeuncy large-deflection morphing

The hybrid morphing concept entails the combined actuation of different classes
of electroactive actuators. To this end, in Chapter 5 the use of SMAs for the
shape control was discussed. The present study was dedicated on a fast and robust
numerical design method of new actuation architectures and optimally controlled
configurations. The physical processes and the hysteretic behavior of the SMA
actuators were analyzed in detail and the approach was validated showing very good
agreement with reference numerical studies.

The proposed method was coupled with an optimization solver for the design
of controlled configurations able to achieve pre-described shapes. A simplified
structure was given a desirable aerodynamic shape and optimal disposition of
the SMA actuators and actuation temperatures were obtained. The analysis put
in evidence that the nonlinear effects are extremely relevant and should always
be accounted for during the design process. The design led to a solution where
less actuators were active, producing a less complex architecture than what was
originally assumed for the shape control. The configuration was also found capable
to achieve even larger deformation targets.

Finally, the proposed methodology was also evaluated in the shape control
and re-design of a realistic morphing wing. It was demonstrated that the solver
was able to predict the deformation and estimate the actuation temperature for the
existing actuation architecture. The proposed methodology was adopted to revisit the
architecture of the actuation system in order to achieve reduced energy consumption.
Three new designs were proposed and proven able to produce the target deformation
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at a lower actuation temperature and utilizing fewer attachments resulting in a more
robust architecture. Compared to the original design, the proposed systems were
greener and safer while maintaining their working capabilities.

The present electrostructural model has been presented to AIRBUS Emerging
technologies and Concepts Toulouse - ETCT(XCT), for the wing morphing of a
large UAV (THOR) to be tested in real flight in 2020.

6.2 Perspectives

After summarizing the main conclusions derived from the present work, future
investigations are discussed in this section. The outlook is split in three parts, fol-
lowing the general outline of the thesis.

Regarding stochastic forcing turbulence model, a few further developments and
investigations are suggested:

• The flow decomposition in the stochastic forcing approach splits the turbulent
fluctuations in a the downscale û(x, t) (direct energy cascade) and an upscale
ǔ(x, t) part (energy backscatter). This decomposition of the flow variables
introduces additional correlation terms to be modelled in the turbulent trans-
port equations. Further refined experiments and a subsequent analysis of the
turbulence interfaces could model the respective correlation terms separately
and according to their physical contribution to the flow dynamics.

Regarding the high-frequency low-amplitude morphing, the results presented offer
the possibility for novel trailing edge actuation approaches and the design of future
morphing prototypes, summarized as follows:

• For a swept wing, the variation of the chord yields a change of the local
Reynolds number along the span. This should cause a shift in the local natural
frequencies, even though in this Reynolds number range (order of millions)
the modulations of the Strouhal number are moderate. It would be interesting
to examine a variable morphing application along the span. Based on the
analysis presented here for a constant actuation frequency, morphing can be
adapted to be applied along the span with respect to the local modulations of
the natural instability frequencies.

• From the investigations presented, new morphing concepts can emerge. The
examined trailing-edge actuation introduced in the flow a sinusoidal oscil-
lation and the dynamic response of the system mostly correlated with the
frequency. Currently, we examine multiple frequencies and stochastic elec-
tric signals for the existing actuation system. By specifically steering the
piezoactuators placed along the span to generate spatial undulations of the
aerodynamic surface, the introduction of spatially travelling waves could also
be examined. As a first step, a numerical analysis could be devoted to the
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investigation and optimization of the parameters (e.g. length and time scales)
of these travelling waves.

Shape control of aeronautical configurations continues to be in the center of interest
of industrial research. Emerging technologies are employed to adapt the aerody-
namic profiles to different flight phases and electroactive morphing is adopted since
it proposes an efficient solution. To this end, SMAs will soon be realistic at an
industrial level for aircraft manufacturers since they are coherent with the concept
of future electric aircrafts. The method developed in the present thesis could be
expanded as follows:

• The design procedure can be applied for 3D configurations were more design
parameters are introduced and the number of actuators and degrees of freedom
increase significantly. To this end, it is essential to couple the propose solver
with a faster optimization method to handle the large size of the problem.

• The coupling of the electrostructural model developed in this thesis with
the CFD solver NSMB is currently examined. Fluid-structure interaction
simulations are essential in order to determine whether the controlled con-
figuration is able to sustain the external aerodynamic loading variations and
simultaneously maintain the target profiles. The methodology can be further
expanded with models describing the electrothermal response of the SMA
material. The complete multi-physical system will provide the framework for
realistic electroactive fluid-structure interaction simulations.

• The methodology developed can be used in training control systems. Multiple
scenarios under aerodynamic loading can be simulated in order to produce
correlations between expected deformations and stress-strain measurements
on the controlled configuration. In this way, control laws can be produced to
be used on the constructed design. As developed in the SMS European project,
the complete morphing approach, besides the use of electroactive material,
also incorporates the sensor-actuation connection and the closed-loop control
laws in order to adapt the smart structures to the response of the complete
dynamic system.
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Appendix A. Proper Orthogonal De-
composition

The Proper Orthogonal Decomposition (POD) is a powerful method applied in the
data analysis of nonlinear phenomena. In the context of fluid mechanics, it is used
in the eduction and study of the coherent structures developed in the flow. The POD
method was introduced first by Karhunen [Kar46] and Loéve [Loè45] and applied
in the context of turbulent flows by Lumley [Lum67] and Berkooz et al. [BHL93].
The method is a linear procedure that creates an orhogonal basis from a collection of
flow data. The decomposition is essentially a procedure that transforms the matrix
that includes the data to be analysed into a canonical form in order to retrieve its
eigenvectors.

The flow field solution can be split in spatial modes and temporal coefficients
sorted by their importance (relative energy) in the flow. The tempo-spatial evolution
of a flow variable u(x, t) can be approximated as:

u(xxx, t) = u(xxx)+u′(xxx, t) = u(xxx)+
N

∑
n=2

αn(t)Φn(xxx) (A.1)

i.e. as the summation of the decoupled coefficients an and Φn varying only tempo-
rally (t) or spatially xxx respectively. This finite sum expression becomes exact as
n→ ∞. The u(xxx) denotes the time averaged u while the u′(xxx, t) corresponds to the
fluctuating part of the flow variable. The POD method proceeds in determining the
base functions Φn(xxx) from data corresponding to the nature of the variable u to be
approximated. For orthonormal bases:∫

Ω

Φn1(xxx)Φn2(xxx)dxxx = δn1n2

with δn1n2 the Kronecker symbol, the calculation of the time functions then follows
as:

αn(t) =
∫

Ω

u(xxx, t)Φn(xxx)dxxx

Searching for optimal basis functions is equivalent to solving the minimization
problem:

min

 M

∑
m=1

(
||u(xxx, tm)−u(xxx)−

N

∑
n=2

αn(tm)Φn(xxx)||2

)2
 (A.2)
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for M ≥ N time instants, were ||yyy||2 =
√

yyyT yyy. In practice, the minimization prob-
lem is solved by constructing the following data matrix including K measurable
locations:

A =


u(x1, t1) u(x1, t2) · · · u(x1, tM)
u(x2, t1) u(x2, t2) · · · u(x2, tM)

...
...

...
...

u(xK , t1) u(xK , t2) · · · u(xK , tM)


and then applying the truncated Singular Value Decomposition (SVD) of length N
on the AK×M matrix. The SVD is a factorization method that lets us write:

A =UΣV+ (A.3)

with UK×K , VM×M unitary matrices, V+ the conjugate transpose of V 1 and ΣK×M a
diagonal matrix with the nonzero singular values (σ1, σ2, ..., σR) ∈ R of A on its
diagonal. With R = min(K, M), the first r columns of U are the left singular vectors
of A and V the right ones. From Eq. A.3 we can write:

A+A =V ΣU+UΣV+ =V Σ
2V+ =V ΛV−1

with Λ = diag(λi, λi, ..., λM) the eigenvalues of A+A, or even:

AA+ =UΣV+V ΣU+ =UΣ
2U+ =UΛU−1

with Λ = diag(λi, λi, ..., λK) the eigenvalues of AA+. The correspondance between
the SVD method and an eigenvalue decomposition is straightforward with λ 2

i = σi.
In practice, solving the eigenvalue problem is generally prefered when dealing with
problem where there is a big difference between the available time instants M and
the spatial positions of measurements K.

A.1 POD formulation

The minimization problem of Eq. A.2 can be expressed as follows:

max
[
< (u, ΨΨΨ)2 >

|ΨΨΨ|2

]
for ΨΨΨ ∈ L2(D) (A.4)

with the constraint:
|ΨΨΨ|2 = 1 (A.5)

were we look for the function that maximizes the mean square projection on the
observations, i.e. the function that best correlates with the measurements uuu(XXX)
with XXX = (xxx, t) ∈ D = R3×R+. The brackets < . > denote a - case dependent -

1for A ∈ R, unitary matrices are orthogonal matrices, i.e. V+ =V−1 =V T
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averaging procedure. The space L2(D) is the collection of all square integrable
functions2 in D. For real functions, the L2−inner product is defined as:

(uuu, vvv) =
∫

D
uuu(XXX) · vvv(XXX)dXXX

and the L2−norm as:
|uuu|2 = (uuu, uuu)

We introduce the operator R : L2(D) 7→ L2(D) as:

RΨΨΨ =
∫

D
R̄(XXX ,XXX ′′′)ΨΨΨ(XXX ′′′)dXXX ′′′

where
R̄(XXX ,XXX ′′′) =< uuu(XXX)uuuT (XXX ′′′)>

We calculate:

(RΨΨΨ, ΨΨΨ) =
(∫

D R̄(XXX ,XXX ′′′)ΨΨΨ(XXX ′′′)dXXX ′′′, ΨΨΨ(XXX)
)

=
∫

D < uuu(XXX)
∫

D uuuT (XXX ′′′)ΨΨΨ(XXX ′′′)dXXX ′′′ > ·ΨΨΨ(XXX)dXXX

= <
∫

D uuu(XXX ′′′) ·ΨΨΨ(XXX ′′′)dXXX ′′′
∫

D uuu(XXX) ·ΨΨΨ(XXX)dXXX >

= < (u, ΨΨΨ)2 >

were we suppode that the averaging and the integration are interchangeable. It is
obvious that the maximation problem of Eq. A.4 can be rewritten as:

max
[
(RΨΨΨ, ΨΨΨ)

|ΨΨΨ|2

]
= λ

which can be solved via an equivalent eigenvalue problem:

RΨΨΨ = λΨΨΨ

or, as a discrete set of equations in 3D:

3

∑
j=1

∫
D

Ri j(XXX ,XXX ′′′)Ψ(n)
j (XXX ′′′)dXXX ′′′ = λ

(n)
Ψ

(n)
i (XXX) (A.6)

with n = 1, 2, ..., NPOD the number of the POD eigenvalues/vectors. The eigen-
functions are orthogonal to one another but can be also chosen orthonormal:

3

∑
i=1

∫
D

Ψ
(n)
i (XXX ′′′)Ψ(m)

i (XXX ′′′)dXXX ′′′ = δnm

2This is particularly interesting in the cntext of fluid mechanics as the kinetic energy should be
finite.
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Among all linear decompositions, the POD is the most efficient as it will always
contain the most information for a given number of modes. The truncation error ε

for using NC out of the NPOD basis function, can be calculated as:

ε = ||uuu(XXX)−
NC

∑
n=1

(uuu(XXX), ΨΨΨ
(n)(XXX))ΨΨΨ(n)(XXX)||2 = ||

NPOD

∑
n=NC+1

(uuu(XXX), ΨΨΨ
(n)(XXX))ΨΨΨ(n)(XXX)||2

with NC < NPOD. In practice, the accumulated error can be estimated from the
percentage of the energy contained in the NC modes from the ratio:

∑
NC
n=1 λ (n)

∑
NPOD
n=1 λ (n)

As R is a self-adjoint non negative matrix, all its eigenvalues λ (n) are real and
positive and the total energy is bounded:

NPOD

∑
n=1

λ
(n) <+∞ (A.7)

A.1.1 Direct POD

We will apply a temporal averaging of the results. This will lead to a spatial
correlation matrix. We will examine the procedure for a one-dimentional domain.
Let us set in the previous XXX =(x, t) with x∈Ω=R. The two point spatial correlation
tensor is defined as:

R(x,x′) =
1
T

∫
T

ū(x, t)ūT (x′, t)dt =
∆t
T

M

∑
m=1

uuu(x, tm)uuuT (x′, tm)

Ri j =
1
M

M

∑
m=1

u(xi, tm)u(x′j, tm) =
1
M

M

∑
m=1

ui(tm)u j(tm)

with M the total number of time steps and uuuT (x, tm) = [u1(tm) u2(tm) ... uK(tm)]
the matrix containing the scalar value field u for the all domain points K at a time
step. The system of equations A.6 can be written:

1
K

K

∑
k=1

Ri jΨ
(n)
j = λ

(n)
Ψ

(n)
i

C̄ΨΨΨ
(n) = λ

(n)
ΨΨΨ

(n)

with ΨΨΨ
(n) the nth eigenfunction, i.e. the nth proper purely spatial mode, and C̄ the

tensor:

Ci j =
1

KM

M

∑
m=1

ui(tm)u j(tm)
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The spatial eigenfunctions result from the complete set of eigenvectors of C̄. If
the velocity field is used to construct the spatial correlation matrix then the total
energy given from Eq. A.7 corresponds to the turbulent kinetic energy integrated
over the flow domain. This also justifies choosing to work in the L2−space for the
derivations presented up to now.

A.1.2 Snapshot POD

If we are working with a number of time steps M << K that are however adequate
in describing the process3, we can alter the method presented in the previous section
so as to work on an eigenvalue problem of size M. The snapshot POD method
introduces a space averaging procedure over the domain Ω. Same as before, the two
point spatial correlation is written:

R(x,x′) =
1
M

M

∑
m=1

uuu(x, tm)uuuT (x′, tm)

Since:
ΨΨΨ

(n)(x) = ū(x, t)aaa(n)(t)

Ψ
(n)
i =

M

∑
m=1

a(n)(tm)u(xi, tm)

the set of equations A.6 can be expressed as:

N

∑
j=1

[
1
M

M

∑
m=1

(∫
Ω

uuu(x, tm)uuuT (x, t j)dx
)

a(tm)

]
u(xi, t j) = λ

(n)
M

∑
m=1

a(n)(tm)u(xi, tm)

It suffices that for each coefficient it stands:

1
M

M

∑
m=1

(∫
Ω

uuu(x, tm)uuuT (x, t j)dx
)

a(tm) = λ
(n)a(n)(t j)

C̄VVV (n) = λ
(n)VVV (n)

with VVV (n) = [a(n)(t1) a(n)(t2) ... a(n)(tM)]T and C̄ the tensor:

Ci j =
1

KM

M

∑
k=1

uk(ti)uk(t j)

Same as before, all the VVV (n) vectors containing the temporal coefficients come from
the eigenvectors of matrix C̄. Due to the orthogonality of the vectors:

1
M

M

∑
m=1

a(n)(tm)a(l)(tm) = λ
(n)

δnl (A.8)

3This could be easily seen for a periodic phenomenon as enough points per period and sufficient
number of periods captured.
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The spatial eigenfunctions can be calculated from:

ΨΨΨ
(n)(x) =

1
Mλ (n)

M

∑
m=1

a(n)(tm)uuu(x, tm) (A.9)

that are also orthonormal.
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Appendix B. Jacobian matrices, eigen-
values and eigenvectors

B.1 Inviscid Jacobian

The three inviscid Jacobian matrices:

Ã =
∂ f
∂W

, B̃ =
∂g
∂W

, C̃ =
∂h
∂W

are given by:

Ã=


0 1 0 0 0

−u2 + γ−1
2 ~u2 (3− γ)u −(γ−1)v −(γ−1)w γ−1

−uv v u 0 0
−uw w 0 u 0

−u[γE− (γ−1)~u2] γE− γ−1
2 (~u2 +2u2) −(γ−1)uv −(γ−1)uw γu



B̃=


0 0 1 0 0
−uv v u 0 0

−u2 + γ−1
2 ~u2 −(γ−1)u (3− γ)v −(γ−1)w γ−1

−vw 0 w v 0
−v[γE− (γ−1)~u2] −(γ−1)uv γE− γ−1

2 (~u2 +2v2) −(γ−1)vw γv



C̃ =


0 0 0 1 0
−uw w 0 u 0
−vw 0 w v 0

−w2 + γ−1
2 ~u2 −(γ−1)u −(γ−1)v (3− γ)w γ−1

−w[γE− (γ−1)~u2] −(γ−1)uw −(γ−1)vw γE− γ−1
2 (~u2 +2w2) γw


The inviscid Jacobian matrix is then calculated at a cell face as: Ac = ÃSx + B̃Sy +

C̃Sz, with ~S the cell surface vector. The Jacobian can then be diagonalized as:
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Λ = T−1AT , where Λ the diagonal matrix of the eigenvalues:

Λ =


~u ·~S · · · ·
· ~u ·~S · · ·
· · ~u ·~S · ·
· · · ~u ·~S+ c||~S||2 ·
· · · · ~u ·~S− c||~S||2


with c the speed of sound. The left eigenvector with respect to the primitive variables
is given from:

T−1
p =


1 0 0 0 −1/c2

0 hx hy hz 0
0 tx ty tz 0
0 nx ny nz 1/(ρc)
0 −nx −ny −nz 1/(ρc)


and the right eigenvector:

Tp =


1 0 0 ρ/(2c) ρ/(2c)
0 hx tx nx/2 −nx/2
0 hy ty ny/2 −ny/2
0 hz tz nz/2 −nz/2
0 0 0 ρc/2 ρc/2


The unit vectors~h and~t are chosen such as they form an orthonormal basis with the
surface normal vector~n. They are given from:

~h =
1√

n2
y +n2

z


0
−nz

ny

 and ~t =
1√

n2
y +n2

z


n2

y +n2
z

−nxny

−nxnz


if |nz|> 0.7, and from:

~h =
1√

n2
x +n2

y


ny

−nz

0

 and ~t =
1√

n2
x +n2

y


−nxnz

−nzny

n2
x +n2

y


if |nz| ≤ 0.7, to avoid division by zero. The left and right eigenvectors with respect
to the conservative variables are obtained from:

T−1 = T−1
p M−1 and T−1 = MTp

where the transformation matrices are given from:

M−1 =


1 0 0 0 0
−u/ρ 1/ρ 0 0 0
−v/ρ 0 1/ρ 0 0
−w/ρ 0 0 1/ρ 0

(γ−1)~u2/2 −(γ−1)u −(γ−1)v −(γ−1)w γ−1
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and

M =


1 0 0 0 0
u ρ 0 0 0
v 0 ρ 0 0
w 0 0 ρ 0

~u2/2 ρu ρv ρw 1/(γ−1)


B.2 Viscous Jacobian

The three viscous Jacobian matrices with respect to the primitive variables:

Ãv =
∂ fv

∂Wp
, B̃v =

∂gv

∂Wp
, C̃v =

∂hv

∂Wp

are given by:

Ãv =


0 0 0 0 0
0 4µSx/3 µSy µSz 0
0 −2µSy/3 µSx 0 0
0 −2µSz/3 0 µSx 0

−kT Sxρ 2µ(2uSx− vSy−wSz)/3 µ(vSx +uSy) µ(wSx +uSz) kT Sx/p



B̃v =


0 0 0 0 0
0 µSy −2µSx/3 0 0
0 µSx 4µSy/3 µSz 0
0 0 −2µSz/3 µSy 0

−kT Syρ µ(vSx +uSy) 2µ(2vSy−uSx−wSz)/3 µ(wSy + vSz) kT Sy/p



C̃v =


0 0 0 0 0
0 µSz 0 −2µSx/3 0
0 0 µSz −2µSy/3 0
0 µSx µSy 4µSz/3 0

−kT Szρ µ(wSx +uSz) µ(wSy + vSz) 2µ(2wSz− vSy−uSx)/3 kT Sz/p


When turbulence modelling is intreoduced in the simulations, the eddy viscosity µt

and the turbulent conductivity kt are added to the molecular ones.
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