View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Memorial University Research Repository

TECHNICAL REPORT #9503

APPLICATION OF TIMED PETRI NETS TO MODELING
AND ANALYSIS OF FLEXIBLE MANUFACTURING CELLS

by

W.M. Zuberek

Department of Computer Science
Memorial University of Newfoundland
St. John’s, Canada A1B 3X5

June 1995

https://core.ac.uk/display/356663622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Department of Computer Science
Memorial University of Newfoundland
St. John’s, Canada A1B 3X5
tel: (709) 737-8627
fax: (709) 737-2009

Copyright (©) 1995 by W.M. Zuberek.
All rights reserved.

The Natural Sciences and Engineering Research Council of Canada
partially supported this research through Research Grant A8222.

MUN-CS Technical Report #9503

APPLICATION OF TIMED PETRI NETS TO MODELING
AND ANALYSIS OF FLEXIBLE MANUFACTURING CELLS

Abstract

Timed Petri nets are proposed as models of simple and composite schedules for
a large class of manufacturing (or robotic) cells. For simple schedules, exactly
one part enters and one leaves the cell in each cycle. Net models of simple
schedules can easily be derived from the sequences of robot actions. For com-
posite schedules, several parts enter and leave the cell in each cycle. It appears
that models of composite schedules can be obtained by composition of simple
schedule. A systematic method of deriving all composite schedules is proposed,
and decomposition of derived composite schedules into simple ones is presented.
It is shown that simple as well as composite schedules can easily be transformed
into timed Petri net models. Invariant analysis of timed net models of sched-
ules is used to derive the cycle times of net models. The solutions are obtained
in analytical (or symbolic) form, so they are applicable to a wide spectrum of
specific cases. Performance characterization (the cycle time or the throughput)
obtained in this way can be used for the maximization of the cell’s performance.
Because the number of different schedules grows very quickly with the number
of machines as well as the length of the (composite) schedule, colored Petri nets
are proposed for a uniform representation and analysis of entire classes of sched-
ules. Simple examples illustrate the proposed approach for a robotic cell with
three machines.

Acknowledgement

Collaboration with Dr. W. Kubiak of the School of Business Administration,
Memorial University of Newfoundland, is gratefully acknowledged.

2 MUN-CS Technical Report #9503

INTRODUCTION

In flexible manufacturing systems, machines are often grouped into manufacturing cells
(or robotic cells), in which a robot performs sequences of pickup, move, load, unload and
drop operations, transporting the manufactured parts from one machine of the cell to an-
other [S3BK92, C183]. The throughput of the cell depends on the sequence of robot activities
as well as on the sequence in which different parts enter the cell [DH90]. Any approach to
maximizing the throughput of a robotic cell must be able to deal efficiently with two issues:
how to generate alternative schedules for a given cell, and how to evaluate these schedules.
Usually the schedules are represented by models which capture the essential characteristics
of the schedule, but which remove all details which are inessential to the evaluation process.

The behavior of manufacturing cells is represented by ‘events’ and ‘activities’; an activity
corresponds to an operation performed by a machine or the robot, and an event corresponds
to any change of the cell’s activities. Different sets of activities determine the ‘states’ of
the system. In each state, several activities can occur concurrently, for example, several
machines can perform their operations simultaneously and the robot can also transport
a part. Petri nets provide a simple and convenient formalism for modeling systems that
exhibit parallelism and concurrency [Mu89, Re85]. In fact, one of the very first applications
of Petri net models was to analyze production schemata [Ha72].

In order to study performance aspects of Petri net models, the duration of activities
must also be taken into account and included into model specifications. Several types of
Petri nets ‘with time’ have been proposed by assigning ‘firing times’ to the transitions or
places of a net. In timed nets, transition firings are ‘real-time’ events, i.e., tokens are
removed from input places at the beginning of the firing period, and they are deposited
to the output places at the end of this period (sometimes this is also called a “three—
phase” firing mechanism). The firing times may be either deterministic or stochastic, i.e.,
described by some probability distribution function. In both cases the concepts of state and
state transitions have been formally defined and used in derivation of different performance
characteristics of the model [Zu91].

Analysis of net models can be based on their behavior (i.e., the space of reachable
states) or on the structure of the net; the former is called reachability analysis while the
latter structural analysis. Invariant analysis seems to be the most popular example of the
structural approach. Structural methods eliminate the derivation of the state space, so they
avoid the ‘state explosion’ problem of reachability analysis, but they cannot provide as much
information as the reachability approach does. Quite often, however, the detailed results of
reachability analysis are not really needed, and some more synthetic performance measures,
that can be provided by structural methods, are quite satisfactory [Hi89]. In particular,
the throughput of a timed net model can easily be determined from the structure of a net
if the net can be decomposed into a set of elementary nets [ZK93].

The steady-state behavior of manufacturing cells is considered for two types of schedules,
the so called simple schedules in which exactly one (new) part enters the cell and one leaves
the cell in each cycle, and composite schedules which deal with several (new) parts in each
cycle. In both cases, timed Petri net models are presented, and are solved using the invariant
analysis. The solutions are obtained in symbolic form which means that the analysis needs to
be performed only once, and then specific values of performance characteristics can easily be

MUN-CS Technical Report #9503 3

obtained by simply evaluating the symbolic solutions for different sets of parameter values.
Examples of simple and composite schedules for a 3—machine cell illustrate the proposed
approach.

Throughput optimization is obtained by systematic analysis of different cell’s schedules
and selection the one, that minimizes the schedule’s cycle time. However, the number of
possible schedules increases rather quickly with the number of machines as well as with the
length of a (composite) schedule. In order to avoid evaluations of large numbers of different
schedules, a uniform approach is proposed which uses colored Petri net models of robotic
cells.

In colored Petri nets [Je87], information can be associated with individual tokens. These
token attributes are called ‘token colors’. Token colors can be quite complex, for example,
they can describe the values of (simple or structured) variables or the contents of message
packages. Token colors can be modified by (firing) transitions and also the conditions
enabling transitions can be different for different colors. The attributes attached to tokens
result in net models that contain much fewer places and transitions than would be required
in ‘ordinary’ (or non—colored) Petri nets.

The basic idea of colored nets is to ‘fold’” an ordinary Petri net. The original set of
places is partitioned into a set of disjoint classes, and each class is replaced by a single
colored place with token colors indicating which of the original places the tokens belong to.
Similarly, the original set of transitions is partitioned into a set of disjoint classes, and each
class is replaced by a single colored transition with the occurrence colors indicating which
of the original transitions the occurrences belong to.

In colored Petri net models of manufacturing cells, colors are used to represent different
schedules of the same cell, so, analyses of several schedules can be performed simultaneously.

TIMED PETRI NETS AND NET INVARIANTS

This section recalls basic concepts of Petri nets timed Petri nets. A more detailed
discussion can be found elsewhere [Mu89, Re85, Zu91].

A place/transition net N is a triple N = (P, T, A) where:
P is a finite, nonempty set of places,
T is a finite, nonempty set of transitions,

A is a set of directed arcs, A C P x TUT x P, such that for each transition there exists
at least one place connected with it.

For each place p (and each transition ¢) the input set, Inp(p) (or Inp(t)), is the set of
transitions (or places) connected by directed arcs with p (or ¢).

A marked Petri net M is a pair M = (N, mg) where:
N is a Petri net, N' = (P, T, A),

mo is an initial marking function, mgy : P — {0,1,...} which assigns a (nonnegative)
number of tokens to each place of the net.

4 MUN-CS Technical Report #9503

Let any function m : P — {0,1,...} be called a marking in a net N' = (P, T, A).

A transition ¢ is enabled by a marking m iff every input place of this transition contains
at least one token. Every transition enabled by a marking m can fire. When a transition
fires, a token is removed from each of its input places and a token is added to each of its
output places. This determines a new marking in a net, a new set of enabled transitions,
and so on. The set of all markings that can be derived from the initial marking is called
the set reachable markings.

A place p is shared iff it is an input place for more than one transition. A net is
free—choice if the input sets of all transitions sharing the same place are identical. A
net is (structurally or statically) conflict—free is it does not contain shared places. It is
(dynamically) conflict—free if for any marking in the set of reachable markings, and for any
shared place, at most one of transitions sharing this place is enabled. Only conflict—free
nets are considered in this report.

A net N is regular if each transition has the same numbers of incoming and outgoing
arcs. Regular net are conservative, i.e., the total number of token in the net is preserved
by (any) firing.

A net N; = (P;,T;, A;) is a Pi-implied subnet of a net N' = (P, T, A), P; C P, iff:
(DT = {teT |3(peP) (pt) €AV (tp) € A},
2) A; = AN(BxTUT x B).

Each place/transition net N'= (P, T, A) can conveniently be represented by a connec-
tivity (or incidence) matrix C : P x T'— {—1,0,+1} in which places correspond to rows,
transitions to columns, and the entries are defined as:

~1, i (pt) € AN (tp) € A,
Vipe P)V(teT) Clp,t]=4 +1, if (t,p) € AN (p,t) & A,
0, otherwise.

If a marking m; is obtained from another marking m; by firing a transition ¢; then (in
vector notation) m; = m; + C[k], where C[k] denotes the k-th column of C, i.e., the column
representing t.

Connectivity matrices disregard ‘selfloops’, that is, pairs of arcs (p,t) and (¢,p); any
firing of a transition ¢ cannot change the marking of p in such a selfloop, so selfloops are
neutral with respect to token count of a net. A pure net is defined as a net without selfloops
[Re85].

A P-invariant (place-invariant) of a net N is any positive (column) vector I which is a
solution of the matrix equation

cl'xI1=0,

where CT denotes the transpose of matrix C. It follows immediately from this definition
that if I; and I, are P—invariants of N, then also any linear (positive) combination of Iy
and I is a P—invariant of \V.

MUN-CS Technical Report #9503 5

A basic P—invariant of a net is defined as a P—invariant which does not have simpler
invariants. All basic P—invariants I are binary vectors [Re85|, I : P — {0,1}.

It should be observed that in a pure net N, each P-invariant I of a net A/ determines
a Pr-implied (invariant) subnet of N, where Pr = {p € P | I(p) > 0} is sometimes called
the support of the invariant I; all nonzero elements of I select rows of C, and each selected
row ¢ corresponds to a place p; with all its input (+1) and all output (1) arcs associated
with it.

Finding basic invariants is a ‘classical’ problem of linear algebra, and there are known
algorithms to solve this problem efficiently [KJ87, MS82].

In timed Petri nets each transition takes a ‘real time’ to fire, i.e., there is a ‘firing time’
associated with each transition of a net which determines the duration of transition’s firings.

A conflict—free timed Petri net 7 is a pair 7 = (M, f) where:

M is a conflictfree marked Petri net, M = (N, mg), N = (P, T, A),

f is a firing time function which assigns the nonnegative (average) firing time f(t¢) to each
transition ¢ of the net, f : T — R®, and R® denotes the set of nonnegative real
numbers.

The behavior of a timed Petri net can be represented by a sequence of ‘states’ where
each ‘state’ describes the distribution of tokens in places and firing transitions of the net;
detailed definitions of states and state transitions are given in [Zu91]. The states and state
transitions can be combined into a graph of reachable states; this graph is a semi—Markov
process defined by the timed net 7. For regular timed conflict—free nets, the reachability
graphs are simple cycles which represent the cyclic behavior of such nets. Each such timed
Petri net contains a basic invariant subnet with the cycle time equal to the cycle time of
the whole net. Moreover, all other basic invariant subnets have cycle times which are not
greater than the cycle time of the net, the cycle time of the net is thus equal to the maximum
cycle time if its basic invariant subnets.

SIMPLE SCHEDULES

For simple schedules of robotic cells, exactly one part enters and one leaves the cell in
each cycle (although the part which leaves the cell may not be the same as the one which
enters the cell). It is known [S3BK92] that for a cell with m machines there are m! different
simple schedules. For m = 3 (Fig.1 shows a sketch of a 3-machine cell), there are six simple
schedules, denoted here as A, B, C, D, E and F.

Assuming, for simplicity, that each part follows the same path from the input (In)
to machine-1 (Mj), to machine-2 (M), to machine-3 (Ms3), and finally to the output
of the cell (Out), the simple schedules can be described by the following sequences of
cell configurations, where each configuration corresponds to a distribution of parts among
the machines of the cell (when the robot does not carry a part); more specifically, each
configuration is described by an m—tuple of machine descriptions:

6 MUN-CS Technical Report #9503

M2

Robot
N /

/
\\\g o
T 1L
In Out

Fig.1. Layout of a three-machine cell.

(k1, ko, .y k)

where each machine description k; is “1” if the machine M; is loaded with a part in this
configuration, and otherwise is “0” (in the case of multiple machines performing exactly
the same operations, the values describing each multi-machine station would assume the
values from “0” to “n” where n is the number of identical machines):

A: (0,0,0) — (1,0,0) — (0,1,0) — (0,0,1) — (0,0,0)
B: (0,0,1) — (1,0,1) — (0,1,1) — (0,1,0) — (0,0,1)
C: (0,0,1) — (1,0,1) — (1,0,0) — (0,1,0) — (0,0, 1)
D: (0,1,0) — (1,1,0) — (1,0,1) — (1,0,0) — (0,1,0)
E: (0,1,0) — (1,1,0) — (1,0,1) — (1,0,0) — (0,1,0)
F: (0,1,1) — (1,1,1) — (1,1,0) — (1,0,1) — (0,1,1)

Each change of configurations corresponds to a part moving from one machine to an-
other, from the input to the first machine, or from the last machine to the output; all
schedules uniformly begin by moving a (new) part from the input to the first machine.

The simple schedules can be generated systematically by applying the following rules,
describing all possible “passages” of parts through the cell:

e a configuration (ki,...,k;, kit1,..., k) derives a configuration (kq,...,k; — 1, k41 +
1, ...k,) if and only if the value of k; is “1” and the value of k;;1 is “07, i = 1,...,m—1;

MUN-CS Technical Report #9503 7

e a configuration (ki, ks, ..., 1) always derives a configuration (ki, k2, ...,0) (this deriva-
tion corresponds to moving a part from the last machine M,, to the output of the
cell),

e it is assumed that each schedule begins by moving a (new) part from the input to the
machine Mj, so the first derivation is always from (0, ko, ...kp,) to (1, k2, ..., km),

e for a cell with m machines, the length of all simple schedules is equal to m + 1 (it
corresponds to a passage of a part, although not necessarily the same, from the input,
through all machines of the cell, to the output).

The six simple schedules of a 3—machine cell correspond to all possible derivations of
configurations described by the above rules, applied to four different initial configurations
of the cell:

(0,0,0) — (1,0,0) — (0,1,0) — (0,0,1) — (0,0,0) — schedule A
1,0) — (0,0,1) — schedule B
1,0) — (0,0,1) — schedule C

,1,1) — (0,1,0) — schedule D
0,0) — (0,1,0) — schedule E

(0,1,1) — (1,1,1) — (1,1,0) — (1,0,1) — (0,1, 1) — schedule F

(0,0,1) — (1,0,1) —

Since parts are transported from one machine (or input) to another (or output) by the
robot, the sequences of robot’s actions can easily be derived from the sequences of con-
figurations by “implementing” the moves of parts corresponding to changes of consecutive
configurations. For example, schedule A begins be transporting a part from the input to
M and loading it; when the first operation is finished, the robot unloads M7, moves the
part to My and loads it there, and so on. The sequences of robot actions are as follows (the
robot moves from X to Y are denoted by X = Y if the robot carries a part and by X — Y
otherwise):

In = M; = My = Mg = Out — In

In= M, = My — M3 = Out — My = M3 — In
In:>M1—>M3:>Out—>M1:>M2:>M3HIn

In= M; — My = M3 — M; = My — M3 = Out — In
In:>M1—>M2:>M3:>Out—>M1:>M2HIn

In= M; — M3 = Out — My = M3z — My = My — In

TEDQEE

Timed Petri net models of simple schedules can easily be derived from the sequences of
robot operations. In timed models, net transitions represent (machine and robot) operations
while net places represent ‘conditions’ (in the most general sense). A Petri net model of
schedule A is shown in Fig.2. The three machines of Fig.1 (or rather machine operations)
are represented by tq, to and t3, each of these transition with its input and output place
(for ‘part loaded’ and ‘machine operation finished’ conditions). The ‘firing times’ associated
with these transitions, f(t1) = o1, f(t2) = 02 and f(t3) = o3, represent the (average) times
of performing the operations on machines M7, My and M3, respectively. It is assumed that
there is always an available part in In and that Out removes manufactured parts sufficiently

8 MUN-CS Technical Report #9503

quickly, so In and Out are not actually shown although they can easily be added to the
model.

p10 . P12 p21 2 p23 p32 B p34
t01/4 E t12 t23 ; \ 134
pl1l p22 p33
- - .
o = I‘
p04 140 p40

Fig.2. Petri net model of schedule A.

The operations of the robot are represented by the cycle to1, p11, t12, P22, t23, P33, t34,
P40, ta0, Poa and tg1, that models the sequence of consecutive steps of the schedule. The
‘interpretation’ of the transitions is as follows:

robot operations execution time
to1 | pick a part from In, move to My and load | u4+w +y
t12 | unload M7, move to My and load v4+w+y
tog | unload M>, move to M3 and load v4+w+y
t34 | unload Mz, move to Out and drop v+z+y
t4o | move from Out to In Y

where the ‘execution times’ (or firing times of transitions) are given assuming that:

u denotes the (average) pickup time,

v — the (average) unload time,

w — the (average) load time,

x — the (average) drop time and

y — the average ‘travel’ time between two adjacent machines (assuming, for
simplicity, that this time is the same for all adjacent machines, and also the
same for M3 to Out, Out to In and In to M; moves).

A Petri net model of schedule E is shown in Fig.3, in which tq, to and t3 represent the
machine operations, as in Fig.2, and the remaining transitions correspond to robot actions:

robot operations time

to1 | pick a part from In, move to M7 and load | v+ w +y
t12 | unload M7, move to M5 and load v+w+y
too | move from Ms to In 2y

to1 | move from M7 to My Y

tog | unload Ms, move to M3 and load v+w+y
t34 | unload M3, move to Out and drop v+z+y
t41 | move from Out to My 2y

MUN-CS Technical Report #9503 9

p10 t1 pl2 p21 t2 p23 p32 t3 p34

t23 t34
- |
p22 p33
t4|1 p4l
-

Fig.3. Petri net model of schedule E.

Evaluation of net models using net invariants is described in [ZK93]. It appears that the
models of simple schedules have only a few invariants subnets, and this invariant subnets
determine the performance of the model. Symbolic formulas for performance characteristics
can easily be derived using the invariant analysis. For example, the net shown in Fig.3
(schedule E) has 5 place invariants:

P-invariant Pio P12 P21 P23 P32 P34 P41 P14 P20 Po2 P11 P22 P33
1 1 1 0 0 0 0 0 0 1 1 0 0 0
2 0 0 1 1 1 1 1 1 0 0 0 0 0
3 0 0 1 1 0 0 1 1 0 0 0 0 1
4 0 0 0 0 1 1 1 1 1 1 1 1 0
5 0 0 0 0 0 0 1 1 1 1 1 1 1
which imply the following subnets (see Fig.3):
P—invariant tl t2 t3 t01 t12 tg() t21 t23 t34 t41
1 1 0 0 1 1 1 o o0 o0 0
2 0O 1 1 0 1 0 0 1 1 1
3 0 1 0 0 1 0 0 1 1 1
4 0 0 1 1 1 1 1 1 1 1
5 0 0 0 1 1 1 1 1 1 1

It should be observed that the set of transitions of invariant (3) is a subset of that of
(2), and that the set of transitions of invariant (5) is a subset of that of (4). Consequently,
the cycle time for this schedule is determined by the maximum cycle time of subnets (1),
(2) and (4):

7o = max(71y, T2, T4)
where:

1 = o1 +u+v+2w+4y,
To 02 4+ 03 + 3v + 2w + x + Sy,
T4 = os+u+3v+3w+x+ Yy

10 MUN-CS Technical Report #9503

A similar analysis can be repeated for other simple schedules.

COMPOSITE SCHEDULES

For composite schedules, several parts enter and leave the cell in each cycle. Models
of composite schedules can be regarded as an interleaved composition of simple schedules,
corresponding to processing of consecutive parts which enter the cell within one cycle and
move from one machine to another in consecutive steps of the schedule. A systematic
generation of composite schedules can be obtained by a simple extension of the procedure
used for generation of simple schedules. Since each composite schedule, which processes n
parts withing a single cycle (so it is called an n—schedule for simplicity), may have similar
part distributions at different stages of the schedule, a notational extension is needs to
uniquely identify all the steps of the schedule. A simple solution is to introduce, in the
description of configurations, a hypothetical “input container”, which for each n—schedule
initially contains exactly n parts, and which must be emptied during the schedule. This
container can be represented by an additional element of configurations, for example, the
initial element, separated from the remaining machine descriptions by a colon (instead of a
comma). So a typical configuration for description of composite schedules of an m-machine
cell is:

(k‘o :]{71, k‘g, ceny k‘m)
The (revised) rules describing changes of configurations are:

e a configuration (ko : ki,..., ki, kir1, ..., ky) derives a configuration (ko : ki,...,k; —
1, ki1 + 1,..ky,) if and only if the value of k; is “1” and the value of k;y; is “07,
k=1,...,m—1;

e a configuration (kg : ki1, ko, ..., 1) always derives a configuration (kg : k1, k2, ..., 0) (this
derivation corresponds to moving a part from the last machine M, to the output of
a cell),

e a configuration (kg : 0, kg, ..., ky,) derives a configuration (kg — 1 : 1, ko, ..., k) if and
only if the value of kg is greater than 0 (this derivation corresponds to moving a part
from the input to the first machine M),

e it is assumed that each schedule begins by moving a (new) part from the input to the
machine M7, so the first derivation is always (ko : 0, ko, ...kp) to (ko —1: 1, ko, ..., k),

o for a cell with m machines, the length of all n—schedules is equal to n * (m + 1).

For a 3—machine cell, there are 34 different 2—schedules, including 6 schedules which are
just simple schedules repeated twice. All 34 2—schedules can be systematically derived by
repeatedly applying the rules to the four initial configurations of the cell. For the initial
configuration (0,0,0), there are five 2—schedules:

MUN-CS Technical Report #9503

(2:0,0,0)
|
(1:1,0,0)
|
(1:0,1,0)
/\
(0:1,1,0) (1:0,0,1)
l /\
(0:1,0,1) (0:1,0,1) (1:0,0,0)
|
(0:1,0,0) (0:0,1,1) (0:1,0,0) (0:0,1,1) (0:1,0,0)
| l | l |
(0:0,1,0) (0:0,1,0) (0:0,1,0) (0:0,1,0) (0:0,1,0)
| l | l |
(0:0,0,1) (0:0,0,1) (0:0,0,1) (0:0,0,1) (0:0,0,1)
| l | l |
0:0,0,0) (0:0,0,0) (0:0,0,0) (0:0,0,0) (0:0,0,0
((1))((2))((3))(())((5))

11

Each of these schedules can be decomposed into a pair of interleaved simple schedules,
for example, schedule (1) is composed of simple schedules A and E:

schedule A schedule E

(0,0,0)
(1,0,0)

(0,1,0) — (0,1,0)

(1,1,0)

(1,0,1)

(1,0,0)

(0,1,0) < (0,1,0)
(0,0,1)
(0,0,0)
schedule (4) is a composition of A and B:

schedule A schedule B

(0,0,0)
(1,0,0)
(0,1,0)

(0,0,1) — (0,0,1)

(1,0,1)

(0,1,1)

(0,1,0)

(0,0,1) < (0,0,1)
(0,0,0)

and schedule (5) is simply a composition of A with itself.

12 MUN-CS Technical Report #9503

All these schedules can easily be translated into sequences of robot actions (as before,
the robot moves from X to Y are denoted by X = Y if the robot carries a part and by
X — Y otherwise):

(1): In= My = My — In= M; — My = M3 = Out — M; = My = M3 = Out — In
(2): In:>M1:>M2—>In:>M1—>M2:>M3—>M1:>M2—>M3:>Out—>

My = M3 = Out — In
(3): In:>M1:>M2:>M3—>In:>M1—>M3:>Out—>M1:>M2:>M3:>Out—>In
(4): In:>M1:>M2:>M3—>In:>M1:>M2—>M3:>Out—>M2:>M3:>Out—>In
(5): In= My = My = M3 = Out — In = M; = My = M3 = Out — In

Timed Petri net models can easily be derived from the sequences of robot’s action. For
example, the net model for schedule (1), i.e., A+E, is shown in Fig.4.

t20° p20°

Fig.4. Petri net model of schedule (1)=(A+E).

The transitions correspond to the following actions for the A and E parts of the schedule:

MUN-CS Technical Report #9503

robot operations

execution time

to1 | pick a part from In, move to My and load | u +w +y
th5 | unload My, move to My and load v+w+y
thy | move from Mj to In 2y

ths | unload Ms, move to M3 and load v+w+y
th, | unload Mz, move to Out and drop v+z+y
tho | move from Out to In y

tor | pick a part from In, move to My and load | u+ w4y
t12 | unload M7, move to My and load v4+w+y
to1 | move from M7 to My Y

tog | unload Ms, move to Mz and load v+w+y
t34 | unload Mgz, move to Out and drop v+ 4y
ta1 | move from Out to M; 2y

13

For composite schedules, the cycle times of schedules can be determined in a similar way
as for the simple schedules. The net shown in Fig.4 has five P—invariants which imply the
following subsets of transitions (all entries equal to 2 correspond to P;—implied subnets in
which the corresponding transitions are implied twice; the implied subnets are free—choice

nets [ZK93)):

P—invariant t1 to i3 t61 t/12 t/20 t/23 té4 tﬁm tor Ti2 o1 toz T3a tao
1 2 0 0 1 1 1 1 1 1 1 1 0 0 0 0
2 0 2 2 1 1 0 1 1 1 0 1 0 1 1 1
3 0 2 0 1 1 0 1 1 1 0 1 0 1 1 1
4 0O 0 2 1 1 1 1 1 1 1 1 1 1 1 1
5 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Since, again, the set of transitions of the P—invariant (3) is a subset of that of (2), and
the set of transitions of (5) is a subset of that of (4), the cycle time for this schedule is:

where:

7o = max(71,72,7T4)

1 = 201 + 2u+ 4v + dw + 9y,

Ty = 209 + 203 + u + 6v + 5w + 2z + 10y,

T4 2(03 + u+ 3v+ 3w+ x + Ty)

For the initial cell configuration (0,0,1), there are 12 different 2-schedules

14 MUN-CS Technical Report #9503

(2:0,0,1)

|

(1:1,0,1)

—

(1:0,1,1) (1:1,0,0)

b

(0:1,1,1) (1:0,1,0)

b1

(0:1,1,0) (1:0,0,1)

| | T

(0:1,0,1) (1:0,0,0) (0:1,0,1)

(0:1,0,0) (0:0,1,1) (0:1,0,0) (0:1,0,0) (0:0,1,1)

l l l l l

(0:0,1,0) (0:0,1,0) (0:0,1,0) (0:0,1,0) (0:0,1,0)

and their corresponding robot’s sequences of actions are:
(6): In:>M1:>M2—>In:>M1—>M3:>Out—>M2:>M3:>Out—>M1:>M2:>
M3—>In
(7): In:>M1:>M2—>M3:>Out—>fn:>M1—>M2:>M3:>Out—>M1:>M2:>
M3—>In
(8): In:>M1—>M3:>Out—>M1:>M2—>In:>M1—>M2:>M3:>Out—>M1:>
My = M3 — In
(9): In:>M1=>M2—>I7‘L:>M1—>M3=>Out—>M2=>M3—>M1=>M2—>M3=>
Out — My = M3 — In
(10) In= M; = My — M3 = Out — In = My — My = M3 — My = My — M3 =
Out—>M2=>M3—>ITL
(11): In:>M1—>M3:>Out—>M1:>M2—>In:>M1—>M2:>M3—>M1:>M2—>
M3:>Out—>M2=>M3—>ITL
(12): In = M; = My — M3 = Out — My = M3 = Out — In = My = My = M3 — In
(13): In= M; — M3z = Out — My = My = M3 = Out — In = My = My = M3 — In
(14)

14): In = M; = My — M3 = Out — My = M3 — In = My — M3 = Out — M =
M2=>M3—>I7‘L

(15): In = My — M3 = Out — My = My = M3 — In = M; — M3 = Out — M =
M2=>M3—>I7‘L

(16): In = M; = My — M3 = Out — My = Mz — In = M; = My — M3 = Out —
My = M3 — In

(17): In= M; — M3 = Out — My = My = M3 — In = M; = My — Mz = Out —
My — M3 = Out — My = Mg — In

Timed Petri net models can be derived for all these schedules in the same way as before.
For example, schedule (9) is a composition of simple schedules B and F:

MUN-CS Technical Report #9503

schedule B

15

schedule F

(0,0,1)
(1,0,1)
(0,1,1)
(0,1,1)

(0,1,1)
(0,1,0)
(0,0,1)

and its Petri net model is shown in Fig.5. The description of transitions is as follows:

robot operations

execution time

t5 | move from My to In

59 | move from M3 to In

tho | move from Out to Mo

to3 | unload Ms>, move to M3 and load

t5, | unload M3, move to Out and drop

to; | pick a part from In, move to M; and load | u +w +y
t15 | unload M;, move to My and load

v+w+y
2y
v+w+y
2y
vt+xT+y

Fig.5. Petri net model of schedule (9)=(B+F).

16

robot operations

MUN-CS Technical Report #9503

execution time

pick a part from In, move to M; and load
unload M7, move to Ms and load

move from M; to Mj

unload M>, move to M3 and load

move from M3 to My

move from My to Mj

unload M3, move to Out and drop

move from Out to My

to1
112
t13
t23
131
132
134
42

The net shown in Fig.5 (composite schedule B+F) has 4
following subnets:

P—invariant | t1

~+

V)
~+

w

t61 t’12 tlzo tl23 téo t§4 ZP I

ut+w+y
v+w+y
2y
v+w+y
Y

Y
v+x+y

2y

P—invariants which imply the

1ty thg thy ts i

t

~+

0 31 l32 t3q lgo
1 2 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0
2 0 2 0 1 1 0 1 1 0 0 0 1 0 1 1 0 0 0
3 0o 0 2 0 0 0 1 0 1 1 0 0 1 1 0 0 1 1
4 0 0 O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
The cycle time is:
To = max(71,72,73,74)
where:
71 = 201 + 2u+4v + dw + x + 13y,
To = 209 +u+4v+ d5w + 9y,
T3 = 203+ 4v + 2w + 2x + 6y,
T4 = 2u+ 6v+ 6w+ 2z + 21y)
There are 12 schedules for the initial configuration (0,1,0):
(2:0,1,0)
(1:1,1,0)
(1:1,0,1)
(1:0,1,1) (1:1,0,0)
(0:1,1,1) (1:0,1,0)
(0:1,1,0) (1:0,0,1)
(0:1,0,1) (1:0,0,0) (0:1,0,1)
(0:0,1,1) (0:1,0,0) (0:1,0,0) (0:1,0,0) (0:0,1,1)

K

MUN-CS Technical Report #9503 17

and another 5 schedules for the configuration (0,1,1):

(2:0,1,1)
(1:1,1,1)
|
(1:1,1,0)
|
(1:1,0,1)
4/\
(1:1,0,0) (1:0,1,1)
l l\~
(1:0,1,0) (1:0,1,0) (0:1,1,1)

(1:0,0,1) (0:1,1,0) (0:1,1,0) (1:0,0,1) (0:1,1,0)

| l | l |

(0:1,0,1) (0:1,0,1) (0:1,0,1) (0:1,0,1) (0:1,0,1)

| | | | |

(0:0,1,1) (0:0,1,1) (0:0,1,1) (0:0,1,1) (0:0,1,1)
(30) (31) (32) (33) (34)
All these schedules can be evaluated using net invariants, and the schedule with the
minimal cycle time is the optimal 2—schedule.

COLORED PETRI NETS

Colored Petri nets and timed colored Petri nets can be considered as an extension of
nets without colors by introducing token attributes called colors. Enabled transitions can
fire for different combinations of token colors (called occurrences of transitions), and firing
transitions can change the colors associated with tokens.

A convenient concept of ‘multisets’ is frequently used in the definitions which follow. A
multiset (or a bag) X over a (nonempty) set A is any function A — N, N = {0,1,2,...}.
Intuitively, a multiset is a ‘set’ which can contain multiple occurrences of the same elements;
if X is a multiset over A, then for each a € A, X(a) denotes the number of occurrences of
ain X.

A colored Petri net is a 5-tuple N' = (P, T, A, C,w) where:
P is a finite (nonempty) set of places,
T is a finite (nonempty) set of transitions,

A is a (nonempty) set of directed arcs which connect places with transitions and transitions
with places, A C P x T UT x P, such that there are no isolated places or transition;
moreover, for each t € T, Inp(t) denotes the set of places which are connected by arcs
directed to ¢, and Out(t) the set of places which are connected by arcs directed from
t; Inp(p) and Out(p) are defined similarly,

18 MUN-CS Technical Report #9503

C'is a finite (nonempty) set of colors,

w is the arc function which associates, with each arc of the net, a function from the set of
(occurrence) colors into a multiset of token colors, i.e., for each arc a € A, a = (p,t)
or a = (t,p), w(a) : C — C — N.

This definition is a slightly modified version of a colored Petri net matrix [Je87]; the
modification is made in order to simplify the definition, and to emphasize the relationship
between colored nets and ‘ordinary’ nets (i.e., non—colored nets [Re85]). It should be ob-
served that ordinary nets correspond to such colored nets in which: (i) the set of colors C'
contains just one color, and (ii) the arc function assigns weights equal to 1 to all arcs of the
net.

A marked colored Petri net is a pair M = (N, mg) where:
N is a colored Petri net, N' = (P, T, A, C,w),

my is the initial marking function which assigns multisets of token colors (or colored tokens)
to places of a net, mg: P — C — N.

Let any function m that maps P into multisets of token colors, m : P — C — N, be
called a marking of the net N.
An occurrence o (or occurrence color) of a transition t € T', 0o € C, is enabled at the

marking m if and only if

V(p € Inp(t)) w(p,t)(0) < m(p),

where w(p, t)(0) denotes the application of the arc function w of the arc (p,t) to the occur-
rence color o, and < denotes element—wise comparison of multisets.

An occurrence o of the transition ¢ enabled at the marking m; can fire; firing the occur-
rence o of ¢ transforms m; into another marking m; which is directly (o,t)-reachable (i.e.,
reachable in ‘one step’) from m;

V(p € P) mj(p) =mi(p) — > wp,t)(0)+ Y w(t,p)(o)

teOut(p) teInp(p)

where Y is used for element—wise addition of multisets. During o of ’s firing, tokens are
removed from t’s input places in numbers corresponding to the (input) arc functions applied
to o, and tokens are added to t’s output places in numbers corresponding to the (output)
arc functions applied to o.

A colored net is conflict—free iff no two enabled occurrences share the same place color,

ie., iff

V(ti,t; € T) Y(og, 0, € C) p € Inp(t;) N Inp(t;) =
V(c e C) wp,ti)(or)(c) * w(p,t;)(ox)(c) = 0.
Only conflict—free colored nets are considered here.

In timed colored nets, a ‘firing time’ is associated with each occurrence color of each
transition. This firing time may be deterministic or it can be a random variable with some

MUN-CS Technical Report #9503 19

distribution function, for example, negative exponential distribution. Only deterministic
firing times are considered in this report.

A conflict—free timed colored net is a pair, 7 = (M, f) where

M is a conflict—free marked colored net, M = (N, mg, N = (P, T, A,C,w),

f is a firing-time function which assigns a nonnegative firing time to each occurrence of
each transition of the net, f : T'— C — R™, where R™ denotes the set of nonnegative
real numbers.

The behavior of a timed colored net can be described by a sequence of states and
state transitions [Zu90]. Any state description of a timed net must take into account the
marking of a net (i.e., the distribution of token colors in places) as well as the distribution
of occurrence colors in firing transitions.

The arc functions are mappings C — C — N, or (C x ') — Nj the second form
can be represented quite conveniently by a rectangular array indexed by occurrence colors
(columns) and token colors (rows). The incidence (or connectivity) matrix of a colored net
is a k x £ matrix A, where k is the number of places and ¢ the number of transitions, and:

Alk,] = w(ty,pe) — w(pr, te)

i.e., each element of A is a C x C — N mapping, and the difference is componentwise
(for each occurrence color and each token color), so if the arc functions w(p,t) and w(t, p)
are represented as (C' x C') matrices of elements of N, the difference is in the sense of the
corresponding elements of these matrices.

A place invariant of a colored net is a k—element (column) vector of multisets C' — N
such that

AT xT = 0

[T%2!

where AT is the transpose of A, and the operation “+” is a componentwise application of
elements of A to multisets of I, and “0” is the f—element vector of zero multisets C' — {0}:

VI<ji<0) > Al = 0

1<i<k

and the sum is performed componentwise (on multisets):

VA<j<OY(e € C) V(e €C) > Ali,jfllep, c] * Iil(cp) = 0

1<i<k

A colored net M = ((P,T, A, C,w), my) is decoupled iff the occurrences of transitions do
not ‘mix’ the colors, i.e., iff there is a partition P(C') of the set of colors C' (and an implied
equivalence relation H.q on C'), such that all occurrences of transitions have their (nonzero)
input and output arc mappings in the same equivalence classes of P:

20 MUN-CS Technical Report #9503

J(Heqg CCx C)Y(t e T) V(o e C)Y(pi € Inp(t))V(pj € Out(t)) Y(ce, ¢, € C)
w(ps, t)(0)(ce) >0 A w(t,pj)o)(ck) >0 = (co,cx) € Heg.

It should be observed that if a net is decoupled, it can be analyzed independently for
each equivalent class of colors because different classes of colors never interfere one with
another.

A colored net model of all simple schedules for a 3—machine cell is shown in Fig.6.

pl2 p21 @2 p23 p32 t3 p34

@“ .

t20 ¥/ 4
e
.

p04 t40 p40

Fig.6. Colored net model of a three-machine cell.

It can be observed that the three machines are represented, as before, by transitions
t1, to and t3, while the robot actions (for all six simple schedules) are represented by the
remaining part of the net, some transitions of which are used by different schedules (i.e.,
different colors).

There are six basic colors representing the schedules (denoted as the schedules, A, B,
..., F), and five auxiliary colors which are used for elimination of potential conflicts when
the models of different schedules are combined together. These auxiliary colors are needed
for schedules B, C, D, E and F, and are denoted by b, c, d, e and f; they are used as token
colors only, so there are eleven token colors and only six occurrence colors (formally, the
arc functions are partial functions which are undefined for the auxiliary occurrence colors).

The transitions correspond to the following actions (the column schedules indicates the
occurrence colors of the corresponding transitions):

MUN-CS Technical Report #9503

21

robot’s operation schedules execution time

t1 | My operation AB,CDEF | og

to | Mo operation A.B,CD,E,F | oy

ts | M3 operation AB,C,D.EF | o3

tor | pick from In, move to My and load | A B,C.D.EF | u4+w+y
t11 | move from M7 to My D.E Y

t12 | unload M7, move to My and load ABCDEF | v+w+y
t13 | move from M; to M3 CF 2y

too | move from My to In E,F 2y

too | move from My to M3 B.,D Y

tog | unload My, move to M3 and load ABCDEF | v+w+y
t3o | move from Msz to In B,C 2y

t31 | move from Mz to My D,F 2y

t34 | unload Mgz, move to Out and drop | A,B,C.D.EF |v+x+y
t4o | move from Out to In AD Y

t41 | move from Out to M, C.E 2y

tso | move from Qut to My B.F 2y

The ezecution times are the same for all transition occurrences.

The arc functions w are mappings C' — C' — N; for most of the arcs, these functions are
(partial) identity functions for the basic colors A, B, ..., F, i.e., for an arc a, an occurrence
color o € C' and a token color ¢ € C"

1, ifo,c € {AB,CDLEF}No=c,

w(a)(o)(c) =

undefined, otherwise.

0, if o,c € {AB,CDEF} Ao # ¢,

The definitions of all ‘non—standard’ arc functions are shown in the following table, in
which the occurrence colors correspond to columns and each entry is a function g : C' — N,
shown using a simplified notation “X :4” that denotes:

g(c) = {

1, if c = X,
0, otherwise;

arc A B C D E
(tot,p11) | Al [Bl [el | del [el [£1
(ti2,p22) | A:1 | bl | C:1 | dil | el | £
(taz,p33) | A:1 | bl | el | d:1 | E:1 | £
(tsa,pa0) | A:1 | bl | ¢l | D:l | erl | fi1
(p11,t11) | = A1] e1 | —
(p11,t13) — | cl | — — | 1
(p22,t20) — | — | — el | f1
(p22,t22) b:il | — | &1 | — | —
(P33, t30) bl | el | — | — | —
(P33, t31) ol ar ! — e
(P40, ta1) — el | — | el | —
(P40, ta2) bl | — | — | — |1

22 MUN-CS Technical Report #9503

It can be observed that, in addition to the typical representation of machines (a transi-
tion with one input and one output place for each machine), there is a systematic structure
of the net model shown in Fig.6:

e there is a single place corresponding to each of the machines (pi1, pa2 and ps3 in
Fig.4), the Input and the Output (p4o and pog in Fig.4); in general, for an m—machine
cell, there are m+2 such places;

e places representing Input and all machines (i.e., pos and p11, pa2, p33) have three input
transitions each (m input transitions in general) representing the possible moves from
the ‘other’ machines and Output (and from Input in the case of M;); the ‘other’
machines do not include the ‘next’ machine (Output is ‘the next machine’ for M3);
the move from Input always carries a part; the moves from Output never carry a part,
the moves from ‘other’ machine can carry a part only if the ‘other’ machine is actually
the previous machine; so, for pgs the input arcs are from My, M3 and Output, for pqq
the input arcs are from M3, Output and Input, for poo the input arcs are from Output,
M; (carrying a part) and M; (without a part), and for pss the input arcs are form
My, M5 (carrying a part) and My (without a part);

e places representing Output and all machines have three output transitions each (m
output transitions in general) representing moves to ‘other’ machines and Input (and
Output in the case of M3); the ‘other’ machines do not include the ‘previous’ machine
(Input is ‘the previous machine’ for M); so for p1; the output arcs are to My (carrying
a part), Mo (without a part) and Ms, for pee the output arcs are to M3 (carrying a
part), Mz (without a part) and Input, for p33 the output arcs are to Output, Input
and M, and for pyg the output arcs are to Input, M7 and Mo;

e the place representing Input (pg4) has only one output transition (¢¢1, which represents
the operations ‘pick a part, move and load M;’);

e the place representing Output (p4o) has only one input transition (¢34, which represents
the operations ‘unload Ms, move and drop),

e the total number of ‘scheduling’ transitions, resulting from the above rules, is equal
to (counting either the input or output arcs) 14 m % (m + 1), so for a three-machine
cell there are 13 transitions modeling the possible robot schedules (see Fig.4); a net
model of a four-machine cell needs 21 transitions and 6 places to represent all possible
robot’s schedules, and a model of a five-machine cell, needs 31 such transitions and 7
places.

The colored net shown in Fig.6 is decoupled and the partition of the set of colors is as
follows:

P(C) = {{A},{B, b}, {C, ¢}, {D,d}, {E, e}, {F, f}}

Consequently, the invariants are grouped in sections corresponding to different colors
(i.e., different schedules). There are 8 invariants for color/schedule A, 5 invariants for

MUN-CS Technical Report #9503 23

color /schedule B, 6 invariants for color/schedule C, etc.; total number of place-invariants
for this model is 33, as shown in Table 1. The corresponding sets of transitions are shown
in Table 2 (also grouped in sections corresponding to different schedules). The minimum
cycle time of each schedule is determined by the invariant subnet with the maximum total
cycle time. Since all invariant subnets are simple cyclic nets, each subnet cycle time is equal
to the sum of firing times assigned to all transitions of the (invariant) subnet. For the sets
of transitions shown in Table 2, the cycle times of the six schedules are as follows (since the
sets of transitions of some invariant subnets are subsets of those of other invariant subnets,
not all invariants are used in the formulas); e.g., 2, 3, 4, 5, 6, 7 and 8 are all subsets of 1,
11 is a subset of 9, 13 a subset of 10, etc.):

schedule | cycle time

TA = T1

75 =max(T9, T10, T12)

TC :maX(7'14, T16, T17; 7—19)

TC :maX(TQ(), T21, 722, T23, 7'24)
T =max(Tes, Tog, T28)

T =max (T30, 731, T32, T33)

HEH O QW

where

Tm1=01+02+03+u+3v+3w+x+ dy
T9 =01+ 02 +u+2v+ 3w+ 5y
Tio=o01+u+3v+3w+x+ 9y

Ti2 =03 +v+w-+ 5y

T4 =01+ 02 +u+ 2v+ 2w+ by

Tie = 02 + 03+ 3v + 2w + x + Sy
TiT=02+u+3v+3w—+x+ Ty
Tio=u+3v+3w+z+ 10y

Tog =01+ 02+ 03+u+3v+3w+x+ 5y
To1 = 01 +u+2v + 2w+ x + Sy

Tog = 02 + 2v 4+ 2w + 4y

To3 = 03 +u+ 20+ 2w + x + Sy

Tog = U+ 2v+ 2w+ x + 8y

Tos =01 +u+ v+ 2w+ 4y

Tog = 02 + 03 + 3v + 2w + x + 5y

Tog =03+ u—+3v+3w+x+ 9y

T30 =01 +u+ v+ 2w+ 4y

T31 = 02 + 20 + 2w + 4y
T3o=03+2v+w+z+4y

33 =u+3v+3w+x+ 12y

Because the optimal schedule is the schedule with the minimum cycle time, so:

Topt = min<TA7 TB,TC,TD,TE, TF)'

MUN-CS Technical Report #9503

24

Tab.1. P—invariants of the net in Fig.6.

P—invariant

011111111 — — — o o — | — — = — — — -
RSl R SR o S o] o Mm o v o vlAA AA v o W Rl
— — — — — —
o — — — = L . . — — . — — — .
Q Q o Q. Q. =3 S
<< < < AbBb mle © o O A< a £ €3 bl o
— — — — —
~ — — . — — — — — | o —
No o « oo + |lo o - == = = =) =
, < Q. = o Qo s
<t < <<| 5 @y © VOl = AgHE T
— — — — —
_ — o~ o~ — — — = — - — = — .
flococoo vl e oo .. =N = o o
Q, o o . O O Bl
< < << < M M CCCC DdD EEEE P o
411111111111 — |~ — — — = — | — — | —
g g g < g s gmMAM Mmoo O oA A A ajpcaljc £
41 — — — — — — — — — — —
m..o e = = === = = e = R = R = == =)
< < < < M @) @) A A £a) Ea) =
ol — — — — — — — — — — —
m R e = = = === = === =l == = = = = = ==
< < < < M @) @) A A £ M P
311 — — — — — — — — —
m R e = ==l = ==l = ==l = == = N == = ==
< < < < M M @) ONG) A A [CARREa) P
= — — — — — — — — —
m R N = ==l ===l = ==l = == = == = ==
< < < < M M @) o O A A [CARNEa) F
21111 — — — — —
mA........0000....000....0000....000..0000..000
gL << anjyan] (OR®) AA £a) F—
01111 — — — — —
m........0000....000....0000:..000..0000..000
< < < < aalaal OR®; AA €2 P
—Nmsworoe S IdRTEEERIRIASJISSRIINSEAIR

25

MUN-CS Technical Report #9503

Tab.2. Sets of transitions implied by P-invariants of the net in Fig.6.

to ts tor t1n tio t13 tog toa tog t30 t31 l3a tan ta1 tao

tq

P—invariant

10
11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26

27
28
29
30
31

32

33

26 MUN-CS Technical Report #9503

Since all simple schedules are modeled by the same (colored) net (as shown in Fig.6),
the same modeling net will also represent the composite schedules of a manufacturing cell.
For example, to model a composite schedule A+B obtained by combining schedules A and
B, two additional basic colors Ab, aB and an auxiliary color ab should be introduced with
the following occurrences of transitions (the occurrences of Ab correspond to part A of the
schedule AB, while occurrences aB to part B of this schedule):

arc ... | Ab aB
(t12,p22) aB:1 | ab:1
(ta3,p33) | ... | Ab:1 | ab:1
(t34,p10) | --- | Ab:1 | ab:l
(p22,t22) — | ab:l
(P33, ts0) — | ab:l
(Pao, ta2) ab:l | —

so that the complete robot’s path is (pos, to1, P11, ti2, P22, t22, D33, taa, Pao, taz, P22, tas,

P33, t30, Poa, to1, P11, t12, P22, t23, P33, t34, P40, td0, Poa). Systematic generation of such
composite schedules and their analysis need to be investigated in greater detail.

CONCLUDING REMARKS

A systematic approach to modeling and analysis of simple and composite schedules for
a large class of manufacturing cells is proposed and is illustrated by example schedules
for a 3—machine cell. The derived net models are composed of a relatively small number of
conflict—free (for simple schedules) and free—choice (for composite schedules) subnets, which
can easily be determined by net invariants.

Invariant analysis of net models provides performance characteristics (the throughput or
the average cycle time) in symbolic form which means that specific values of performances
can easily be obtained by evaluating the symbolic results for specific values of parameters
(i.e., symbols), and then the best schedule (i.e., the one with the smallest cycle time) can
be selected to maximize the cell’s performance.

Several simplifying assumptions were made during the derivation of Petri net models,
e.g., the all parts are identical, that the robot travel times between adjacent machines
are the same, etc. It should be noted that all these assumptions were made to simplify
the discussion and they can easily be removed by simple modifications of the presented
approach. In particular, composite schedules can be used to describe scheduling problems
when several different parts enter and leave the cell in one cycle. A decomposition of such
a schedule into a number of simple components identifies operations performed om parts of
different types. Different parameters can easily be associated with parts of different types
because the corresponding operations are represented by independent transitions (see Fig.4
and 5),

The number of schedules (both simple and composite) increases very quickly with the
number of machines, and the number of composite schedules also increases rather quickly
with the the length of the schedule; for a 3-machine cell, there are 6 simple schedules, 34
different 2—schedules and 198 different 3—schedules. Instead of analyzing all these schedules

MUN-CS Technical Report #9503 27

one after another, a more general approach can be developed, using colored Petri nets for
modeling the whole sets of schedules, with different colors representing different schedules.

The procedure of developing colored net models and then analyzing them can be au-
tomated. Since the number of schedules grows very quickly with the number of machines
and the length of the schedules, new methods of analysis may be needed in which some
reductions are performed at early stages of analysis in order to eliminate all those cases
(i.e., schedules) which cannot affect the final results.

References

[CI83] Claybourne, B.H.: “Scheduling robots in flexible manufacturing cells”; CME Au-
tomation, vol.30, no.5, pp.36—40, 1983.

[DH90] Dixon, C., Hill, S.D.: “Work—cell cycle-time analysis in a flexible manufacturing
system”; Proc. Pacific Conf. on Manufacturing, Sydney-Melbourne, Australia, vol.1,
pp.182-189, 1990.

[Ha72] Hack, M.: “Analysis of production schemata by Petri nets”; Project MAC Technical
Report TR-94, 1972.

[Hi89] Hillion, H.P.: “Timed Petri nets and application to multi-stage production system”;
in: Advances in Petri Nets 1989 (Lecture Notes in Computer Science 424); pp. 281—
305, Springer Verlag 1989.

[Je87] K. Jensen, “Coloured Petri nets”; in: “Advanced Course on Petri Nets 1986” (Lec-
ture Notes in Computer Science 254), G. Rozenberg (ed.), pp.248-299, Springer Verlag
1987.

[KJ87] Krueckeberg, F., Jaxy, M.: “Mathematical methods for calculating invariants in
Petri nets”; in: “Advances in Petri Nets 1987”7 (Lecture Notes in Computer Science
266), G. Rozenberg (ed.), pp.104-131, Springer Verlag 1987.

[MS82] Martinez, J., Silva, M.: “Simple and fast algorithm to obtain all invariants of
a generalized Petri net”; in: “Applications and Theory of Petri Nets” (Informatik
Fachberichte 52); pp.301-310, Springer Verlag 1982.

[Mu89] Murata, T.: “Petri nets: properties, analysis and applications”; Proceedings of
IEEE, vol.77, no.4, pp.541-580, 1989.

[Re85] Reisig, W.: “Petri nets - an introduction” (EATCS Monographs on Theoretical
Computer Science 4); Springer Verlag 1985.

[S3BK92| Sethi, S.P., Sriskandarajah, C., Sorger, G., Blazewicz, J., Kubiak, W.: “Sequenc-
ing of parts and robot moves in a robotic cell”; Int. Journal of Flexible Manufacturing
Systems, vol.4, pp.331-358, 1992.

[Su85] Suri, R.: “An overview of evaluative models for flexible manufacturing systems”;
Annals of Operations Research, vol.3, no.1, pp.3-21, 1985.

28 MUN-CS Technical Report #9503

[Zu90] Zuberek, W.M., “Performance evaluation using timed colored Petri nets”, Proc.
33-rd Midwest Symp. on Circuit and Systems (Special Session on Petri Net Models),
Calgary, Alberta, pp.779-782, 1990.

[Zu91] Zuberek, W.M.: “Timed Petri nets — definitions, properties and applications”; Mi-
croelectronics and Reliability (Special Issue on Petri Nets and Related Graph Models),
vol.31, no.4, pp.627-644, 1991.

[ZK93] Zuberek, W.M., Kubiak, W., “Timed Petri net models of flexible manufacturing
cells”; Proc. 36-th Midwest Symp. on Circuits and Systems, Detroit MI, August
16-18, 1993.

