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FIT–2, A SIMULATION–BASED

PARAMETER EXTRACTION PROGRAM 1

A b s t r a c t

Accurate and reliable simulation of circuit behavior cannot be obtained without ade-
quate device models. FIT–2 is an interactive program for extraction of transistor parameters
for SPICE–like circuit simulators. It is based on a circuit simulator rather than an explicit
set of model equations. Basic advantages of the proposed approach include: (1) explicit
model equations need not be known as they are provided by the circuit simulation tool
used, (2) fitting can be performed not only for single devices but for functional blocks or
whole circuits as well, and (3) the same extractor can be used for a variety of devices and/or
device models. Several optimization methods are built into the program to provide robust
as well as efficient fitting of device characteristics. Flexibility of the approach is obtained
by specification of extraction details in the data sets rather than the extraction procedure.
Parameter extraction for heterojunction bipolar transistors (HBT) is used as an illustration
of FIT-2 capabilities. The effects of optimization methods on extraction performance are
presented. Several directions for further research are identified.

R é s u m é

La simulation précise et fiable du comportement des circuits nécessite des modèles
adéquats des composants. FIT-2 est un programme interactif d’extraction de paramètres
des transistors pour les simulateurs de type SPICE. Le programme est basé sur le sim-
ulateur de circuits et non sur une formulation explicite des équations du modèle. Les
avantages essentiels de l’approche proposée sont: (1) les équations explicites du modèle ne
sont pas nécessaires parce qu’elles sont fournies par le simulateur, (2) l’extraction peut être
effectuée non seulement pour des composants mais aussi pour des blocs fonctionnels ou
même des circuits entiers, (3) le même extracteur peut être utilisé pour une grande variété
de composants et/ou modèles de composants. Plusieurs méthodes d’optimisation sont im-
plantées dans le programme pour obtenir un fit des aractéristiques aussi robuste qu’efficace.
La flexibilité de l’approche est obtenue par la spécification de détails d’extraction dans
les fichiers de données plutôt que dans la procédure d’extraction. L’exemple du Transistor
Bipolaire à Héterojonction (TBH) est donné pour illustrer les divers aspects de la procédure
d’extraction. Nous présentons l’impact, sur les performances, de la méthode d’optimisation
utilisée. Plusieurs directions pour des recherches futures sont indiquées.
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1. INTRODUCTION

Accurate simulation of electronic circuits cannot be obtained without adequate specifica-
tion of circuit elements and device models. Passive elements, such as resistors or capacitors,
can easily be characterized by a few parameters, values of which can usually be obtained by
simple measurements. In the case of semiconductor devices that are characterized by highly
nonlinear models with large sets of of parameters and complicated relationships between
them, a proper selection of values of parameters is a nontrivial task which, if performed
inadequately, can significantly distort simulation results. Usually these model parameters
cannot be determined by direct measurements because of device nonlinearities; popular
parameter extraction methods use thus iterative techniques to minimize the differences
between measurement data and model’s behavior in the full range of operating conditions.

Several different approaches to parameter extraction have been proposed; some charac-
teristic features of these approaches include:

• extraction methods can be general or specialized; specialized methods extract some
subsets of model parameters only, for example, model resistances, or capacitances
[CFG], or DC parameters only [IbGr], while general methods determine all parameters
of the model;

• parameter extraction can be direct or iterative; direct methods approximate model
equations by linear functions and determine the values of parameters graphically or
by solving linearized equations; iterative methods fit the model responses to a set
of measured characteristics by minimizing an objective function that quantitatively
characterizes the fit [DoSc,CCLL,Garw]; sometimes a mixed approach is used in which
some parameters are extracted using the direct methods, and remaining by an iterative
procedure [DaJa,IbGr];

• iterative methods can be equation–based or simulation–based; equation–based meth-
ods use a set of model equations to obtain device responses that correspond to mea-
surement data [DoSc,EGMT]; in simulation–based approach, a circuit simulator (or
its part that handles devices and their models) is used to provide circuit responses;
simulation–based approach eliminates potential inconsistencies between model equa-
tions used by the extractor and equations implemented in simulation tools as the same
simulation tool can be used for both extraction and simulation,

• extraction methods can be program–driven or data–driven; in program–driven ap-
proach the structure of the data as well as the sequence of processing steps are de-
termined by the extracting software; data–driven approach is more flexible to use but
also more difficult to implement as the extraction “strategy” is specified together with
the measurement data, and the extracting program mainly recognizes and executes
extraction directives formulated in some sort of “high–level language”.

The approach presented in this report is iterative, simulation–based and data–driven;
it uses general optimization methods and an “open” circuit simulation tool rather than
traditional set of model equations. The data-driven capability allows integrated parameter
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extraction [BCYZ] as well as selective extraction, performed on subsets of measurement
data and subsets of parameters. Different extraction strategies can thus be developed
for different types of devices and/or their models in order to perform the extraction of
parameters efficiently.

Several extraction programs have been reported [DoSc,CCLL,YaCh] that use gradient
optimization techniques to fit electrical models to measurement data. These programs have
successfully demonstrated the general principle of applicability of optimizations methods,
nonetheless they suffered from significant convergence problems. The convergence properties
of these methods depend upon properties of the error functions; typically, it is required
that error function have no singularities, be unimodal, and approximately quadratic in the
region of a minimum. These conditions are not always met by popular error functions
[CCLL,BST] especially in the absence of good initial estimates of parameters. To achieve
convergence, strategies must be developed which perform “partial” extractions using subsets
of parameters and subsets of measurement data. Also, less efficient but robust methods are
being used [CCLL,Garw] in order to avoid convergence problems of gradient techniques. The
approach presented in this report uses two optimization algorithms; the initial optimization
is performed by very robust direct search method of Nelder and Mead [NeMe], while a more
efficient gradient–based method (from the NAG library [Phil]) is used in a neighborhood of
the solution.

The proposed approach is simulation–based, i.e., it uses a general circuit simulation tool
rather than a set of model equations. Basic advantages of such an approach include:

• explicit model equations need not be known as the required circuit responses are
provided by a general circuit simulation tool,

• the same extractor can be used for a variety of devices and/or device models; the
actual limitations are imposed by the tool used for circuit simulation rather than by
the extractor,

• fitting can be performed not only for single devices (as is the case for equation–based
extractors) but for any (sub)circuits as well; consequently, all packaging, mounting
and fixture parasitics [EGMT] can easily be taken into account.

The report is composed of seven main sections. Section 2 describes the organization of
data. Section 3 formulates parameter extraction as an (data–driven) optimization problem.
Some simple examples of parameter extraction are shown in Section 5. General structure
of the FIT–2 extraction program is presented in Section 5, and while Section 6 describes
the command language used for interactive extraction. Section 7 contains a brief discussion
of the optimization methods used by FIT–2 as well as an illustration of performance of
parameter extraction depending upon the optimization method used. Section 8 discusses
generalizations of parameter extraction in which optimization is performed with respect to
non–electrical parameters, usually technological and/or geometric ones. Section 9 concludes
the report; it also indicates a number of topics that need further research.
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2. INPUT DATA

Simulation–based parameter extraction uses three different types of input information;
it appears that it is convenient to store these three different types of data in three different
files:

• the circuit file (file .CKT),

• the variables file (file .VAR), and

• the measurement data file (file .DAT).

The circuit file contains the (SPICE–style) description of a circuit that corresponds to
the measurement environment (including all parasitics). Usually the same circuit file is used
for fitting all available data obtained in the same measurement environment. If extraction
is performed on a (sub)circuit level rather than for a single device (e.g., the transfer curve of
an inverter is fitted rather than characteristics of transistors), the circuit file must describe
the corresponding (sub)circuit as well as any measurement related components.

Shown below is the circuit description file for extraction of (electrical) parameters of het-
erojunction bipolar transistors, for which the measurement data include DC measurements
in common–base and common–emitter configurations, in forward and reverse modes, and
AC measurements of all four S–parameters; the independent voltage and current sources
are used to control the bias conditions and to sense the corresponding currents – the initial
values of these voltage and current sources are immaterial because they are (dynamically)
adjusted during the extraction process to the values used during the measurements:

**** subcircuit TRPAR : transistor with parasitics
.SUBCKT TRPAR 1 2 3
QA 1 5 3 HBT
RBN 5 2 50
RFCB 1 2 1E8
RFCE 1 3 1E8
RFBE 2 3 1E8
CFCB 1 2 1E-16
CFCE 1 3 1E-16
CFBE 2 3 1E-16
.ENDS
.MODEL HBT NPN (IS=6.79D-24 BF=96.4 NF=1.057 VAF=229 IKF=5.53
+ ISE=1.44D-17 NE=1.67 BR=0.28 NR=1.060 VAR=104 IKR=1.00D-06
+ ISC=1.38D-11 NC=2.21 RB=27.7 IRB=6.29D-3 RBM=15.30 RE=9.29
+ RC=26.5 CJE=1.58D-13 VJE=1.80 MJE=0.50 TF=3.76D-12 XTF=0.0
+ VTF=100 ITF=0 PTF=0 CJC=1.09D-13 VJC=1.4 MJC=0.5 XCJC=0.52
+ TR=3.76D-12 CJS=0 VJS=0.75 MJS=0 XTB=0 EG=1.4 XTI=3.0 KF=0
+ AF=1.0 FC=0.5)
**** CB forward and reverse
XCB 101 102 103 TRPAR
VE 0 103 0
VB 0 102 0
VC 0 101 0
**** CE forward and reverse; parameter: IB’DC
XCE 201 202 0 TRPAR
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ECE 201 203 0 203 2.0
VCE 0 203 DC=4
IB 209 202 DC=2E-4
VIB 0 209 0
**** AC parameters
.SUBCKT TRPOL 1 2 3 4
CD 2 5 1.0
CS 1 6 1.0
XAC 6 5 3 TRPAR
FIB 3 5 VB0 1.0
LD 4 6 1.0
.ENDS
**** reference sources
VC0 99 0 DC=3
RC0 99 0 1.0
IB0 0 98 DC=1.3E-4
VB0 98 97 0
RB0 97 0 1.0
**** parameters S11 (V(11)) and S21 (V(21))
I1 1 0 AC -20M
RS 1 0 50.0
E11 10 0 1 0 2.0
V11 10 11 AC 1.0
R11 11 0 1.0
X1 2 1 0 99 TRPOL
RL 2 0 50.0
R21 21 0 1.0
E21 21 0 2 0 2.0
**** parameters S12 (V(12)) and S22 (V(22))
RSB 31 0 50.0
E12 12 0 31 0 2.0
R12 12 0 1.0
X2 32 31 0 99 TRPOL
RLB 32 0 50.0
I2 32 0 AC -20M
V22 20 22 AC 1.0
E22 20 0 32 0 2.0
R22 22 0 1.0
.END

The second file describes all variables and their lower and upper bounds; it also contains
the “nominal” values (which are used as starting points) and the actual values of variables;
initially, actual values are equal to nominal ones, but during extraction they are replaced
by the (partial) results of fitting.

For the circuit description shown above, the variables file contains all transistor model
parameters as well as parasitics defined in the subcircuit TRPAR:

* var min nom max act
HBT’IS 1.0D-24 6.79000D-24 1.0D-23 6.79000D-24
HBT’BF 1.0D+01 9.64000D+01 1.5D+02 9.64000D+01
HBT’NF 1.0D+00 1.05700D+00 1.0D+00 1.05700D+00
HBT’VAF 1.0D+01 2.29000D+02 3.0D+02 2.29000D+02
HBT’IKF 1.0D+00 5.53000D+00 1.0D+01 5.53000D+00
HBT’ISE 1.0D-30 1.44672D-17 1.0D-16 1.44672D-17
HBT’NE 1.6D+00 1.66752D+00 1.8D+02 1.66752D+00
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....... ....... ........... ....... ...........
TRPAR.RBN 1.0D-03 5.00000D+01 1.0D+02 5.00000D+01
TRPAR.RFCB 1.0D+05 1.00000D+08 1.0D+10 1.00000D+08
TRPAR.RFCE 1.0D+05 1.00000D+08 1.0D+10 1.00000D+08
TRPAR.RFBE 1.0D+05 1.00000D+08 1.0D+10 1.00000D+08
TRPAR.CFCB 1.0D-16 2.56330D-15 8.0D-15 2.56330D-15
TRPAR.CFCE 1.0D-16 2.35640D-15 8.0D-15 2.35640D-15
TRPAR.CFBE 1.0D-16 5.61994D-15 1.0D-14 5.61994D-15

During the extraction process it is possible to store any (partial) results in a file, and
subsequently use such stored results as a “new” variables file; the extraction process can
thus be suspended at any stage, its (partial) results saved, and then restored when needed.
This capability is the main reason of storing the circuit description and the specification of
variables in two independent files.

Measurement data normally include DC measurements, frequency–domain (AC) and/or
time–domain (TR) measurements. Measurements of the same type (e.g., DC for a particular
configuration, AC for a given bias point, etc.) form a data “group”. It is assumed that each
data group is composed of:

• a series of “comment” lines identified by the exclamation point as the leading char-
acter; one of the comment lines must be the group identification line (the !IDENT

line),

• the header line that describes the contents of consecutive columns of data,

• a rectangular table of numerical values, which is composed of values of one independent
variable (the first column of data) and a number of (dependent) measurements (the
remaining columns); the values of independent variables are voltages or currents for
DC data, frequencies for frequency–domain data, and timepoints for time–domain
results,

• a blank line that terminates the group.

The identification line contains:

• an optional (unique) name of the group that is not longer than 8 characters and that
is followed by the equality sign,

• the type of data which can be DC, AC or TR,

• an optional group parameterization (enclosed in square brackets), and

• an optional list of group parameters enclosed in parentheses; these parameters spec-
ify the bias point for AC data, the selected value of the base current for an I–V
characteristic of a bipolar transistor, etc.

For example, the following group describes the DC collector and base current charac-
teristics of a heterojunction bipolar transistor (in common–base configuration):
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!IDENT:TBH_CB_1=DC
!ERRNUM=10
!’ PLAQUE: 129_19 DISPO: BIP, TYPE: T1C, POSIT: 8_5_1’
!’ DATE : 11 Dec 1989 AT 22:11:17’

VE I(VC) I(VB)
0.80 3.028E-08 6.419E-08
0.84 3.225E-08 7.246E-08
0.88 3.589E-08 8.801E-08
0.92 4.696E-08 1.210E-07
0.96 9.328E-08 1.986E-07
1.00 3.017E-07 3.894E-07
1.08 5.321E-06 2.122E-06
1.16 6.808E-05 1.174E-05
1.24 3.506E-04 3.795E-05
1.32 9.349E-04 7.726E-05
1.40 1.856E-03 1.262E-04
1.44 2.463E-03 1.540E-04
1.48 3.178E-03 1.836E-04
1.52 4.015E-03 2.152E-04
1.56 4.976E-03 2.483E-04
1.60 6.069E-03 2.828E-04

The identification line in this data group contains only the group name (TBH_CB_1) and
the data type (DC). The header line indicates VE as the independent variable (VE must be
an independent voltage source controlling the collector–base voltage of the transistor; see
the circuit description), while I(VC) and I(VB) determine the collector and base currents,
respectively (i.e., currents flowing through the independent voltage sources VC and VB).

The values of VE (in the VE column) can be distributed quite arbitrarily as SPICE–PAC
performs “data–driven” circuit analyses in which a table of explicit data values determines
the analysis points (for DC Transfer Curve as well as time–domain and frequency–domain
analyses).

AC data groups (indicated by AC on the !IDENT line) specify the bias point (parameters
VC0 and IB0 in the data group shown below) as the group parameters; again, VC0 and
IB0 must be the names of independent sources which are used (in the circuit description)
to control the collector voltage and the base current, respectively. The circuit description
is specified in such a way that the nodes 11, 12, 21 and 22 represent the values of the
corresponding S–parameters, i.e., VM(11) and VP(11) represent the magnitude and phase
of S11, VM(12) and VP(12) represent S12, etc.:

!IDENT:TBH_S_31=AC(VC0=3,IB0=1.3E-4)
!’ PLAQUE: 129_19, DISPO: BIP, TYPE: T1C, POSIT: 8_5_1’
!’ DATE : 11 Dec 1989 AT 22:11:17’

FREQ VM(11) VP(11) VM(12) VP(12) VM(21) VP(21) VM(22) VP(22)
0.1E9 .907900 -1.9024 .005604 68.7193 1.92283 176.782 .992218 -1.3091
0.5E9 .885851 -9.2346 .024712 74.4871 1.96212 164.147 .977838 -6.3971
1.0E9 .841972 -18.392 .045578 68.0622 1.93063 152.206 .932817 -12.136
1.5E9 .762174 -28.541 .063145 61.8087 2.06325 140.790 .889376 -16.343
2.0E9 .706567 -35.935 .076629 56.7939 1.87871 131.411 .846614 -19.134
3.0E9 .582672 -48.811 .096839 49.1194 1.61879 114.934 .754855 -23.171
5.0E9 .385694 -67.021 .121180 44.1407 1.31416 93.5795 .672503 -26.436
7.0E9 .272881 -77.497 .143552 41.8148 1.07349 78.5958 .625978 -29.892

10.0E9 .186544 -85.502 .175547 38.1709 .837550 61.8570 .568874 -35.373
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15.0E9 .125009 -95.021 .224270 31.3440 .657729 42.2776 .521664 -47.433
20.0E9 .066596 -93.885 .251645 19.4876 .548006 25.0648 .471522 -56.130
25.0E9 .069205 -80.422 .261124 14.4976 .487924 15.8900 .437293 -63.089

Families of similar characteristics (e.g., a family of a bipolar transistor’s collector current
characteristics for different values of the base current) can be described by a “parameter-
ized” group in which the same values of the independent variable (the collector–emitter
voltage in this case) correspond to several columns of data (e.g., different collector current
characteristics); for a parameterized group, the name of the “column” parameter as well as
the specification of output (which is the same for all columns) are given in the identification
line as the “group parameterization” (within square brackets). The following DC group
describing typical common–emitter characteristics of a bipolar transistor is an example of
a parameterized group:

!IDENT:TBH_CE_2=DC[IB/I(VCE)]
!’ PLAQUE: 129_19, DISPO: BIP, TYPE: T1C, POSIT: 8_5_1’
!’ DATE : 11 Dec 1989 AT 22:11:17’

VCE 5.E-5 1.E-4 1.5E-4 2.E-4 2.5E-4
0.00 -4.993E-5 -9.990E-5 -1.499E-4 -1.999E-4 -2.499E-4
0.20 -4.899E-5 -9.798E-5 -1.468E-4 -1.954E-4 -2.438E-4
0.40 1.299E-4 1.963E-4 2.351E-4 2.570E-4 2.705E-4
0.60 4.936E-4 1.140E-3 1.556E-3 1.785E-3 1.934E-3
0.80 5.024E-4 1.314E-3 2.323E-3 3.394E-3 4.165E-3
1.00 5.039E-4 1.318E-3 2.339E-3 3.555E-3 4.961E-3
1.20 5.048E-4 1.320E-3 2.343E-3 3.561E-3 4.972E-3
1.40 5.054E-4 1.321E-3 2.346E-3 3.563E-3 4.974E-3
1.60 5.060E-4 1.323E-3 2.348E-3 3.564E-3 4.976E-3
1.80 5.068E-4 1.324E-3 2.348E-3 3.566E-3 4.976E-3
2.00 5.072E-4 1.325E-3 2.350E-3 3.566E-3 4.973E-3
2.40 5.082E-4 1.327E-3 2.352E-3 3.567E-3 4.970E-3
2.80 5.091E-4 1.328E-3 2.354E-3 3.567E-3 4.968E-3
3.20 5.096E-4 1.329E-3 2.355E-3 3.567E-3 4.963E-3
3.60 5.106E-4 1.331E-3 2.356E-3 3.567E-3 4.959E-3
4.00 5.115E-4 1.332E-3 2.358E-3 3.567E-3 4.956E-3

IB (base current) is the column parameter, and it must be the name of an independent
current source (see the circuit description) used (by the extractor) to control the base
current during DC circuit simulation. Similarly, the first element of the header line (VCE)
must be the name of an independent voltage source that is used for the voltage sweep in
the DC Transfer Curve analysis. The remaining values of the header line are values of IB
that correspond to collector current (I(VCE)) characteristics.

Usually the column parameter is the name of an independent current or voltage source;
the associated output must be an “output variable” in the sense of SPICE; both must be
valid with respect to the circuit description from the circuit file.

For parameterized groups, the simulation results are obtained in a number of analyses,
one analysis for each column, i.e., for each value of the column parameters that is indicated
in the header line.

The file of measurement data contains a sequence of data groups. There is no limit
imposed on the number or composition of data groups; in fact, a section of one data group
can be repeated (with more data points) as another data group to obtain better fit in regions
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which are believed to be more important or more difficult for fitting (e.g., initial parts of
characteristics or highly nonlinear regions).

3. EXTRACTION THROUGH OPTIMIZATION

Extraction of transistor parameters can be formulated as an optimization problem
[CCLL,DoSc,Garw,MMD,YaCh] in which a nonlinear objective function F is minimized
with respect to the set of transistor parameters P subject to a set of constraints C. The
objective function F describes the fit of simulated device responses S against a set of mea-
surement data D. The results of optimization determine such a set of parameter values
which minimizes the differences between the measurement and simulated data:

minimize
P

subject to C

(F(D,S))

The set of measurement data can be regarded as a sequence of K data groups, and each
data group is a rectangular table of numerical results composed of Ni rows and Li columns,
1 ≤ i ≤ K. The objective function F(D,S) is given as

F(D,S) =
1

K

∑

1≤i≤K

1

Li

∑

1≤j≤Li

Wij fi





1

Ni

∑

1≤k≤Ni

ei(D[i, j, k], S[i, j, k])





where:

D[i, j, k] is a measured data value (in the i-th group, j-th column and k-th row),

S[i, j, k] is the corresponding simulated result,

ei is one of the “standard” error functions such as the absolute value of the difference
between D[i, j, k] and R[i, j, k] (norm1), the square of this difference (norm2), the
square of the relative difference (relative norm2), the logarithm of the absolute value
of the difference between D[i, j, k], etc.,

fi is a function that is “complementary” to ei, e.g., if ei is the square function, fi is the
square root function, etc.,

Wij is a weight factor associated with the j-th column of the i-th data group; weight
factors are introduced in order to “scale” averaged error values of different columns
and different groups, i.e., to make them comparable in magnitude.

Error functions ei are thus associated with data groups, and each data group can be
associated with a different error function. The “standard” error functions (ei(x, y)) include:

• norm1, e1(x, y) = abs(x− y),

• relative norm1, e2(x, y) = abs((x− y)/x),
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• norm2, e3(x, y) = (x− y)2,

• relative norm2, e4(x, y) = ((x− y)/x)2,

• norm4, e5(x, y) = (x− y)4,

• relative norm4, e6(x, y) = ((x− y)/x)4,

• norm8, e7(x, y) = (x− y)8,

• relative norm8, e8(x, y) = ((x− y)/x)8,

• logarithmic norm, e9(x, y) = abs(ln(abs(y/x))),

• logarithmic maximum, e10(x, y) = max1≤k≤Ni
(abs(ln(abs(y/x)))).

The formulation of the objective function “averages” the error values in order to make
them independent of the number of data points. Furthermore, the error functions ei (and
fi) are usually selected in such a way that the errors for different data groups are within
the same range of magnitude (e.g., common–base characteristics of bipolar transistors are
usually fitted with logarithmic error functions); selection of error functions and their asso-
ciations with data groups can be specified in the input data (by the !ERRFUN=i lines).

4. SIMPLE EXAMPLES

Simple illustrations of parameter extraction are shown for heterojunction bipolar tran-
sistors.

Fig.4.1, 4.3 and 4.5 show three groups of measurement data (indicated by the “+” mark-
ers) together with the simulated characteristics obtained for the initial values of transistor
parameters (continuous lines) for DC measurements in CB configuration and forward mode

1e-071e-061e-050.00010.0010.01

1.1 1.2 1.3 1.4 1.5

measuredsimulatedI[A]

VEB[V ]

ICIB++

+ + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + +

1e-071e-061e-050.00010.0010.01

1.1 1.2 1.3 1.4 1.5

measuredsimulatedI[A]

VEB[V ]

ICIB++

+ + + + + + + + + + + + + + + + + + + + + + + +
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Fig.4.1. Initial DC CB data. Fig.4.2. Fitted DC CB data.
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Fig.4.3. Initial DC CE data. Fig.4.4. Fitted DC CE data.
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Fig.4.5. Initial AC data. Fig.4.6. Fitted AC data.

(the collector and base currents), DC measurements in CE configuration and forward mode
(4 different values of the base current), and AC measurements for all four S–parameters,
respectively. It can be observed that the initial values of parameters do not provide a
reasonably good fit of transistor characteristics against the measurement data.

Fig.4.2, 4.4 and 4.6 show the same three groups of measurement data with extracted
values of transistor parameters. It can be observed that transistor characteristics fit very
closely to the measurement data.

The error functions used in this extraction were logarithmic maximum error, relative
norm1 and relative norm1, respectively, and all weight factors (Wij) were equal to 1; the
values of error functions were reduced approximately one order of magnitude, to 0.010,
0.018, and 0.108, respectively.
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5. FIT–2 PROGRAM

FIT–2 is an interactive simulation–based program that extracts parameters for SPICE–
like circuit simulators. It is based on the SPICE–PAC simulation package [Zub2]. General
organization of the FIT–2 program in shown in Fig.5.1.
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Fig.5.1. General organization of the FIT–2 program.

The program is composed of the following major parts:

• general driver which coordinates all remaining parts of the program; it also performs
interaction with the user and contains an interpreter of a simple command language
used for description of consecutive steps of the parameter extraction process; a number
of “auxiliary” functions is supported by the driver, for example, loading and storing
the values of optimization variables, printing and plotting the results, selecting data
groups and subsets of variables, redefining error functions associated with data groups,
modifying the weight coefficients assigned to data columns, etc.,

• variables manager which controls the set of optimization variables; all optimization
variables, with their lower and upper bounds as well as starting and actual values,
are defined in the variables file, and are loaded during the initialization phase of the
program; the variables manager performs all run–time selections and adjustments
of these variables, it updates the lower and upper bounds of variables as well as
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their initial and actual values as indicated by appropriate interactive commands, it
selects any subset of variables for subsequent optimization, as specified by the selection
commands, and it updates the corresponding actual values after each optimization;

• data manager that maintains a collection of all measurement data and corresponding
simulation results (for the initial and actual values of variables); it performs selective
extraction of data for any subset of groups and any subset of columns within a group,
as indicated by appropriate interactive commands, and it stores the results of circuit
simulation with corresponding measurement data,

• optimizer which selects one of the optimization methods and adjusts optimization pa-
rameters accordingly, determines the starting point (using the nominal or actual values
of selected variables) and invokes the optimization algorithm; for each evaluation of
the objective function:

– the values of optimization variables are used for updating corresponding param-
eters of the simulated circuit,

– for each data group, group parameters (if any) are used for updating the control
parameters of the simulated circuit (e.g., the bias point for AC simulations or
the value of the base current for DC simulations), and then

– the corresponding simulation is performed (DC, AC or time–domain) and its
results are used for evaluation of the objective function;

• circuit simulator which performs analyses (of the circuit specified in the circuit de-
scription file) required by the evaluation of the objective function, e.i., analyses that
correspond to consecutive data groups selected for optimization; circuit simulation
is controlled by the simulation driver which recognizes data groups, updates circuit
elements according to the measurement data (e.g., the bias point for AC analysis, the
base current for DC analysis with CE configuration, etc.), initiates circuit analyses,
and uses the results to update the value of the objective function:

for each data group do
update group-dependent circuit parameters;
define circuit outputs;
set analysis parameters;
if group is parameterized then

for each data column do
update column-dependent circuit parameters;
perform circuit analysis;
use results to update the value of the objective function

endfor
else

perform analysis;
for each data column

use results to update the value of the objective function
endif;

endfor;
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It should be noted that the operations “update circuit parameters”, “define
circuit outputs”, “set analysis parameters” and “perform analysis” corre-
spond to the “main” operations of the SPICE–PAC package, so they directly corre-
spond to invocations of the appropriate routines of the package [Zub1].

6. COMMAND LANGUAGE

FIT–2 is an interactive extractor which means that consecutive steps of the extraction
process are usually determined by the user, who communicates with the program using a
simple command language. FIT–2 can also be used in a non–interactive mode, in which
case a complete sequence of commands (called a “script”) is stored in a file from which the
driver fetches consecutive commands and interprets them.

Most commands use some parameters. Command interpreter accepts commands with
complete sets of parameters, but it also processes incomplete commands in which case it
prompts the user for the missing parameters; quite often some auxiliary information is
displayed that helps in selection of parameters.

The present version of the program recognizes the following commands (the commands
can be given in lower case or upper case but not in combination of both):

data – specifies selection of data as a sequence of groups or subgroups; for example:

data(1,3-5,6(1-3,5))

selects data groups 1, 3 to 5, and a subgroup of group 6 that is composed of columns
1 to 3 and 5. Data groups can also be indicated by their (unique) names, so assuming
that name1, name2, etc., are the names of consecutive data groups, an equivalent data
selection command is:

data(name1,name3-name5,name6(1-3,5))

Each data command overrides all previous data selections, so only the most recent
command is used for data selections.

var – specifies selection of variables as a sequence of indicators or names of variables; for
example:

var(1,3,5-7,12)

selects variables 1, 3, 5 to 7, and 12 (as defined in the variables file); the variables
can also be identified by their names, so – in the context of the variables file shown
in section 2 – an equivalent variable selection is:

var(HBT’IS,HBT’NF,HBT’IKF-HBT’NE,HBT’ISC)
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Each var command overrides all previous selections of variables, so only the most
recent command is used for selection of variables.

fit – selects the optimization algorithm and specifies its parameters; fit uses three pa-
rameters, the first parameter identifies the optimization method: nag indicates the
E04JBF routine from the NAG library and sim the simplex direct search method of
Nelder and Mead; the second parameter indicates the maximum number of iteration
steps, and the third parameter determines the starting point as act or nom for actual
or nominal values of optimization variables; for example:

fit(nag,25,act)

plot – invokes plotting of extraction or simulation results.

noplot – turns off the plotting capabilities; during optimization (execution of the fit
command), plotting is automatically invoked when the objective function is reduced
by at least 10 % unless plotting is turned off.

err – prints the result of evaluation of the error function for the selected data groups; err
uses one parameter which indicates the nominal or actual values of variables by nom

or act, respectively.

save – stores the set of variables with their bounds and actual and nominal values in a
file; the command may have one parameter that is the file name to be used for storing
the variables; if save is used without its parameter, the original variables file is used
for storing.

load – restores (saved) values of variables and their bounds; the command may have one
parameter which is the file name to be used for loading the variables; if load is used
without its parameter, the original variables file is used for loading.

new – creates a new data group from an indicated subset of data rows of an existing
group; it uses one parameter which specifies the name of the new group, the equality
sign, the name of the existing group and the selection list enclosed in parentheses; for
example:

new(newgroup=oldgroup(1,3-7,9(3)20,25))

creates a new group named newgroup that contains rows 1, 3 to 7, every third row
from 9 to 20 (i.e., 9, 12, 15, 18) and 25 of the data group named oldgroup; all
attributes of the created newgroup group, such as group and column parameters (if
any), the number of data columns and their associated names, etc., are the same as
for oldgroup.

del – deletes a group created by new; the group is the only argument of this command;
only the most recently created group can be deleted (making the previous group the
most recent one).
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temp – defines or redefines the (ambient) temperature for data groups; the temperature
can also be specified in the data groups by !TEMP=value lines; temp command speci-
fies the temperatures (in degrees Celsius) by a sequence of pairs “group=value” where
“group” identifies the data group, and “value” is the corresponding temperature; for
example:

temp(1=75.0,3=50.0)

defines the ambient temperature of the data group “1” as 75 degrees, and that of group
“3” as 50 degrees Celsius. The temperatures assigned to groups remain valid until
they are redefined. The default values of the temperature are equal to the reference
temperature in the circuit description.

moderr – redefines error functions assigned to data groups; error functions can be assigned
by defaults, or they can be specified in the data file by !ERRFUN=number lines; the
moderr command redefines error functions by a sequence of pairs “group=number”
where “group” identifies the data group, and “number” is one of the standard error
functions; for example:

moderr(1=9,3=2)

assigns the logarithmic norm function (9) to the data group “1” and the relative norm1

function (2) to the data group “3”. The assigned error functions remain valid until
they are redefined.

modact – redefines actual values of variables indicated in a sequence of pairs “vari-
able=value” where “variable” identifies one of optimization variables, and “value”
is its new actual value; for example:

modact(1=5E-24,4=100.0)

or equivalently using the names of variables:

modact(HBT’IS=5E-24,HBT’VAF=25.0)

assigns the value 5E-5 to the first variable as its actual value, and 25.0 as the actual
value of the third variable. The actual value of a variable must be defined within its
lower and upper bounds.

modnom – as modact but for the nominal values of variables.

modmin – as modact but for lower bounds of variables; the lower bound of a variable
cannot be defined greater than its actual value.

modmax – as modact but for upper bounds of variables; the upper bound of a variable
cannot be defined smaller than its actual value.
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coef – defines or redefines weight coefficients Wij associated with columns of data groups;
default values of these coefficients are equal to 1; the coef command specifies a se-
quence of pairs “column=value” or “group=value” where “column” identifies a column
j of a data group i as i.j, and “value” is the value of the corresponding coefficientWij ;
the specification “group=value” assigns the “value” to all columns of the indicated
data group; for example:

coef(1.2=0.5,2=0.75)

assigns the coefficient 0.5 to the second column of the first data group, and the coef-
ficient 0.75 to all columns of the second data group. The assigned coefficients remain
valid until they are redefined.

if ... then ... else ... end – a conditional structure for description of simple extraction
strategies (for noninteractive applications); its condition is a logical expressions that
is composed of simple relations and logical operators and represented by “&” and or
represented by “|”.

For example, the following script first selects data groups 1 to 4 and a subset of opti-
mization variables 1 to 5, 10 and 12 from the set of variables specified in the variables file;
then it performs at most 100 optimization steps using the simplex method and the actual
values of circuit variables as the starting point (command fit(sim,100,act)); if the error
value remains greater than 0.1 (ERROR is a global variable that stores the value of the error
function), then a smaller subset of variables and smaller subset of data are selected and
optimization is repeated using the simplex method; if the new error value becomes less
than 0.5, previous subsets of variables and data are selected and optimization continues,
otherwise some other actions are specified; the final step performs yet another optimiza-
tion, but in this case the NAG routine is used under the assumption that a point close to
a minimum has been reached (which may not be the case, actually):

data(1-4)
var(1-5,10,12)
fit(sim,100,act)
if ERROR>0.1 then

data(1,2)
var(1-3,5)
fit(sim,50,act)
if ERROR<0.5 then

var(1-5,10,12)
data(1-4)
fit(sim,50,act)

else
...

endif
endif
fit(nag,25,act)

ERROR is a global variable that saves the value of the error function (evaluated by the fit or
err commands). RETURN is another such variable and it indicates the termination condition
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of the fit command (and in fact, the termination condition of the optimization routine used
within fit).

Command scripts can include comment lines indicated by “#” or “*” as the leading
character. Command scripts can also use multi–level “include” files indicated by

<filename

lines, where filename is the name of the “include” file.

7. OPTIMIZATION METHODS

Presently FIT–2 contains two different optimization techniques:

• quite robust but rather slow simplex direct search method of Nelder and Mead [NeMe]
(as in [CCLL]); the method requires only function evaluations, not derivatives; the
method (also known as “downhill simplex”) maintains a “simplex” composed of N+1
vertices (N is the number of dimensions), and in each step it replaces the vertex cor-
responding to the largest value of the objective function with a reflection, a reflection
and extension, or a contraction, depending upon the value of the objective function in
the new vertex; if no “better” vertex can be found in such a way, the whole simplex is
reduced, and the procedure continues; the method is thus not very efficient in terms
of the number of function evaluations, but it is quite insensitive to large changes and
even discontinuities of the objective function;

• the E04JBF routine from the NAG library [NAG]; E04JBF implements a comprehen-
sive quasi–Newton algorithm (that updates an approximation of the Hessian matrix
using the BFGS formula) for finding a minimum of a function of several variables
subject to fixed upper and lower bounds on the variables; although the method is
intended for functions which have continuos first and second derivatives, it usually
works even if the derivatives have occasional discontinuities; the derivatives are not
required as they are approximated by finite differences; the method is much more ef-
ficient with respect to the number of required function evaluations than the downhill
simplex, but it also is more sensitive to large changes of function values.

Normally, the initial optimization is performed by the simplex method as it is less
sensitive to changes of the objective function; the quasi–Newton method is most efficient
in the neighborhood of the solution, so its typical application is in the second stage of
optimization, when a neighborhood of a minimum has been reached by the simplex method.

The influence of the optimization method can be illustrated by the following comparison
of the computational effort (i.e., the CPU time) required to find the best fit and the values
of the error function at the solution:

optimization method CPU time (in min) error value

simplex 178 7.9E-3
E04JBF 82 3.0E-3

simplex + E04JBF 70 2.6E-3
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The CPU time was measured on a microVAX 3600 machine running VMS.

8. PARAMETER CONVERSIONS

Although electrical parameters of semiconductor devices are very useful from circuit de-
sign perspective, they are quite inconvenient from manufacturing viewpoint as they cannot
provide the required feedback for process analysis or device design optimization. A set of
technological and geometric parameters is much more relevant to manufacturing processes
than a set of electrical parameters.

Usually, the relationship between such two sets of parameters is provided by device mod-
elling, and once these relationships are established and verified, the new set of parameters
can be used for device characterization, optimization as well as design. Technological and
geometric parameters are also much more convenient to impose technology constraints, and
to analyze parameters deviations and correlations. Quite often a “mixed” set of parameters
is used that includes electrical as well as technological and geometric parameters.

It should be noted that technological parameters and dependencies between techno-
logical and electrical parameters are closely related to manufacturing technology; as this
technology evolves, both parameters and dependencies change. Therefore, a capability of
(flexible) parameter conversions is an important aspect of extraction tools.

In order to support different sets of parameters, an interface has been incorporated into
the FIT–2 extractor that accepts a user–defined conversion of parameters used as opti-
mization variables (e.g., technological and geometric parameters) into electrical parameters
(used in circuit simulation and called circuit variables). This interface is composed of two
routines, vardef and varmap; vardef performs a mapping of the set of names of opti-
mization variables into a corresponding set of names of circuit variables (names of circuit
variables must be correct with respect to the circuit description file as required by SPICE–
PAC [Zub2]), and varmap performs a mapping of values of optimization variables into the
corresponding values of circuit variables assuming that the ordering of variables is the same
as for vardef.

For “nonstandard” applications, these two routines must be user–defined and linked
with the FIT–2 program. The routines must conform to the following FORTRAN headers:

SUBROUTINE VARDEF (NAMOPT,NOV,NAMCKT,LCV,NCV)
CHARACTER*16 NAMOPT(*),NAMCKT(*)

where:

NAMOPT is a vector of character*16 names of optimization variables (as entered form
the variables file),

NOV is the number of names in the vector NAMOPT,

NAMCKT is a vector that returns the character*16 names of circuit variables,

LCV is the limit of circuit variables (i.e., the length of NAMCKT),
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NCV is the number of defined circuit variables.

SUBROUTINE VARMAP (VAROPT,NOV,VARCKT,LCV,NCV)
DOUBLE PRECISION VAROPT(*),VARCKT(*)

where:

VAROPT is a vector of double precision values of optimization variables,

NOV is the number of optimization variables,

VARCKT is a vector that returns the double precision values of circuit variables,

LCV is the limit of circuit variables (i.e., the length of VARCKT),

NCV is the number of circuit variables.

The “standard” interfacing routines correspond to the case when the optimization vari-
ables are also circuit variables, i.e., they perform identity mappings:

SUBROUTINE VARDEF (NAMOPT,NOV,NAMCKT,LCV,NCV)
CHARACTER*16 NAMOPT(*),NAMCKT(*)
NCV=0
DO 10 I=1,NOV
IF (NCV.LT.LCV) THEN
NCV=NCV+1
NAMCKT(I)=NAMOPT(I)

ELSE
WRITE(*,900)

900 FORMAT(’ ... vardef : too many circuit variables ...’)
RETURN

ENDIF
10 CONTINUE

RETURN
END

SUBROUTINE VARMAP (VAROPT,NOV,VARCKT,LCV,NCV)
DOUBLE PRECISION VAROPT(*),VARCKT(*)
NCV=0
DO 10 I=1,NOV
IF (NCV.LT.LCV) THEN
NCV=NCV+1
VARCKT(I)=VAROPT(I)

ELSE
WRITE(*,900)

900 FORMAT(’ ... varmap : too many circuit variables ...’)
RETURN

ENDIF
10 CONTINUE

RETURN
END

The following simple example illustrates a potential application of parameter conversion.
It assumes that many of the (electrical) Gummel–Poon parameters of a GaAs/GaAlAs
transistor depend on a few other parameters:
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ρb base contact resistance
ρe emitter contact resistance
ρc collector contact resistance
Lt transistor length

The first three parameters represent ohmic contacts (in Ω/cm2) of the base, emitter and
collector, respectively. Approximate values of these parameters can be obtained through
measurements of special test devices, however, such test devices are usually much larger than
other devices, so the measured values do not correspond to the non–test devices accurately.
The last parameter, Lt, is very difficult to measure.

The relationships between these new parameters and the electrical ones are as follows:

RE emitter resistance f1(ρe, Lt)
RC collector resistance f2(ρc, Lt)
RB zero bias base resistance f3(ρb, Lt)
RBM minimum base resistance at high currents f4(ρb, Lt)
CJE base–emitter zero bias depletion capacitance f5(Lt)
CJC base–collector zero bias depletion capacitance f6(Lt)
IS transport saturation current f7(Lt)
ISE base–emitter leakage saturation current f8(Lt)
ISC base–collector leakage saturation current f9(Lt)

Assuming that the set of optimization variables specifies the four variables indicated
above, and that the set of electrical parameters (or circuit variables) includes only the nine
listed parameters, the conversion routines vardef and varmap could be as follows:

SUBROUTINE VARDEF (NAMOPT,NOV,NAMCKT,LCV,NCV)
CHARACTER*16 NAMOPT(*),NAMCKT(*),NAMES1(4),NAMES2(9)
DATA NAMES1 / ’RHOB’,’RHOE’,’RHOC’,’LT’ /
DATA NAMES2 / ’TBH:RE’,’TBH:RC’,’TBH:RB’,’TBH:RBM’,’TBH:CJE’,
+ ’TBH:CJC’,’TBH:IS’,’TBH:ISE’,’TBH:ISC’ /
NCV=0
DO 10 I=1,9
IF (I.LE.4) THEN
IF (NAMOPT(I).NE.NAMES1(I)) WRITE(*,910) NAMES1(I)

910 FORMAT(’ ... vardef : incorrect optimization variable : ’,A)
ENDIF
IF (NCV.LT.LCV) THEN
NCV=NCV+1
NAMCKT(I)=NAMES2(I)

ELSE
WRITE(*,920) NAMES2(I)

920 FORMAT(’ ... vardef : too many circuit variables ... ’,A)
ENDIF

10 CONTINUE
RETURN
END

SUBROUTINE VARMAP (VAROPT,NOV,VARCKT,LCV,NCV)
DOUBLE PRECISION VAROPT(*),VARCKT(*)
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IF (NOV.LT.4) THEN
WRITE(*,910) NOV

910 FORMAT(’ ... varmap : incorrect optimization variables : ’,I3)
ELSE IF (LCV.LT.9) THEN
WRITE(*,920) LCV

920 FORMAT(’ ... varmap : there are 9 circuit variables : ’,I3)
ELSE
VARCKT(1)=f1(VAROPT(1),VAROPT(4))
VARCKT(2)=f2(VAROPT(2),VAROPT(4))
VARCKT(3)=f3(VAROPT(3),VAROPT(4))
VARCKT(4)=f4(VAROPT(3),VAROPT(4))
VARCKT(5)=f5(VAROPT(4))
VARCKT(6)=f6(VAROPT(4))
VARCKT(7)=f7(VAROPT(4))
VARCKT(8)=f8(VAROPT(4))
VARCKT(9)=f9(VAROPT(4))
NCV=9

ENDIF
RETURN
END

The example shows that parameter conversion can eventually reduce the set of opti-
mization variables. Furthermore, because of nonlinear dependencies between these two
sets of parameters, simple constraints of technological parameters correspond to nonlinear
constraints of electrical parameters; such constraints may be difficult to take into account
because more powerful optimization methods are needed to deal with general (nonlinear)
constraints. However, the most important aspect of parameter conversion seems to be in
a rather straightforward implementation of parameter dependencies that are introduced by
functions fi in the example, and which are ignored when optimization is performed with
respect to electrical parameters only.

9. CONCLUDING REMARKS

A simulation–based parameter extraction program has been developed as an example
of integrated computer–aided design tools; the program is based on an existing circuit
simulation package instead of traditional model equations, and it uses general optimization
algorithms for minimization of dissimilarities between measurement data and the model
behavior. Conversion of parameters is provided for extraction with respect to technological
and geometric parameters as well as for dealing with parameter dependencies which cannot
be represented (at least not easily) by optimization constraints.

It appears that different types of (measurement and simulated) data are associated with
subsets of transistor parameters. The extraction process can be simplified considerably if
optimizations are performed on small but relevant subsets of optimization variables, des-
ignated by different types of available measurement data. Mechanisms needed for such
selective optimizations (or “partial extraction”) are built into the FIT–2 program.

Although a number of relationships between measurement data and extracted param-
eters are quite useful in parameter extraction [DaJa,IbGr], practical experiments seem to
indicate that a general extraction strategy may be rather difficult to find. Therefore a
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convenient formalism for higher–level specification of the extraction processes can be very
helpful in automation of this process. Elements of such higher–level specification have been
implemented in FIT–2; some further extensions of this formalisms should be included in
future versions of the program.

Both optimization methods available in FIT–2 provide local optimization only, so in a
case of numerous local minima, the starting point should be disturbed externally to cover
as large part of the feasible space as seems reasonable. However, that local optimization
algorithms are seldom satisfactory even when restarted from several randomly chosen initial
points. Measurement error coupled with the large number of variables of a physically based
circuit leads to an error function with many nonphysical local minima in addition to the
global minimum [BST]. More general (and efficient) global optimization methods are needed
but they are rather difficult to find. Simulated annealing [Rut] has recently been proposed
as an alternative to gradient–descent methods. In simulated annealing, the actual values
of variables are disturbed and the new error is calculated; if this error is smaller than
the previous one, the new values replace the actual ones, as in descent methods. But,
sometimes, in distinction to descent algorithms, the vector of variables with larger error
may be accepted in accordance with a precise probabilistic criterion which becomes less
tolerant of “bad” moves at late stages of the algorithm. The success of this algorithm
depends on generating moves that are neither always accepted nor always rejected [Rut].
The method is very promising but further research is needed to make it generally applicable.
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