
Federated Learning For Cyber Security:
SOC Collaboration For Malicious URL Detection
Ekaterina Khramtsova

SNT
University of Luxembourg

Luxembourg
ekaterina.khramtsova@uni.lu

Christian Hammerschmidt
Department of Intelligent Systems

TU Delft
Delft, The Netherlands
0000-0003-2460-1997

Sofian Lagraa
SNT

University of Luxembourg
Luxembourg

sofian.lagraa@uni.lu

Radu State
SNT

University of Luxembourg
Luxembourg

radu.state@uni.lu

Abstract—Managed security service providers increasingly rely
on machine-learning methods to exceed traditional, signature-
based threat detection and classification methods. As machine-
learning often improves with more data available, smaller orga-
nizations and clients find themselves at a disadvantage: Without
the ability to share their data and others willing to collaborate,
their machine-learned threat detection will perform worse than
the same model in a larger organization. We show that Feder-
ated Learning, i.e. collaborative learning without data sharing,
successfully helps to overcome this problem. Our experiments
focus on a common task in cyber security, the detection of
unwanted URLs in network traffic seen by security-as-a-service
providers. Our experiments show that i) Smaller participants
benefit from larger participants ii) Participants seeing different
types of malicious traffic can generalize better to unseen types of
attacks, increasing performance by 8% to 15% on average, and
up to 27% in the extreme case. iii) Participating in Federated
training never harms the performance of the locally trained
model. In our experiment modeling a security-as-a service setting,
Federated Learning increased detection up to 30% for some
participants in the scheme. This clearly shows that Federated
Learning is a viable approach to address issues of data sharing
in common cyber security settings.

Index Terms—cyber-security, federated-learning, machine-
learning

I. INTRODUCTION

Managed security service providers (MSSPs) with offers
ranging from security operating centers (SOCs) as a service
to managed detection and response (MDR) services enable
smaller organisations to keep up with the increasing threat
surface brought by the ongoing digital revolution across in-
dustries. Their goal is to protect mission-critical data and
assets, respond to cyber emergencies, and provide continuity
and efficient recovery. Increasingly, machine-learning methods
are key factors in surpassing traditional, signature-based threat
detection and classification methods. As machine learning
often improves with more data available, smaller organizations
and clients find themselves at a disadvantage: Without the
ability to share their data and others willing to collaborate,
their machine-learned threat detection will perform worse than
the same model in a larger organization. Unfortunately, sharing
raw data of different customers is problematic: this data can
contain confidential information about users such as personally
identifiable information (PID). Legal and contractual restric-
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Fig. 1. The scenario considered here: A SOC/MSSP with three clients running
on a range of services on slightly different infrastructure. The goal is to build
a shared threat detection model that improves security over learning separate
models for each customer, but without sharing data from different customers.

tions, as imposed in the European Union (GDPR [1]) make it
difficult to build a common shareable model to detect threats.

How can we collectively learn a better model than the one a
customer/organization could learn on its own, without having
to share data or other confidential information? We show that
Federated Learning is a valid approach to resolve this question.
We focus on a scenario where a managed security service
provider with multiple customers cannot share the customers’
data to build a shared model from data directly, but can share
models learned for each customer separately. Figure 1 shows
an example of this scenario.

We apply our Federated Learning approach to malicious
URL detection. The goal is to distinguish URLs leading to
phishing sites, defacement sites, malware-spreading sites, or
spam sites from URLs leading to legitimate sites. Classifying
malicious URLs serves as a prototype of the problems faced
in cyber security because it shares a number of important
properties commonly encountered in cyber security: It is
strongly imbalanced, contains several classes with distinct
characteristics, is hard to solve purely by blacklisting and
rule-based methods, and is non-stationary over time. Within
cyber security finding malicious URLs is a problem of value
in itself: by identifying potentially dangerous sites, users can



be proactively protected.
The contributions of this paper are as follows:
1) We collected an extensive URL dataset and extracted

features from URLs. We have made this dataset publicly
available1. 2) We proposed a Federated Learning-based ap-
proach for malicious URL detection in a managed security
service provider setting. We modeled several scenarios taking
into consideration the characteristics of the data, such as
class balance and class distribution, together with various
sizes of customer infrastructure. 3) We showed that the small
providers can achieve up to 30% performance improvement
when trained in collaboration, while the big providers become
more stable and generalize better with no cost compared to a
locally-trained model.

The rest of the paper is organized as follows. Section II
introduces Federated Learning, malicious URL detection and
related literature. Section III explains our setup, data splits,
and experiments. Section IV summarizes the obtained results.
Section V concludes our paper and describes potential future
work.

II. BACKGROUND AND RELATED WORK

Federated Learning (FL). FL is a Machine Learning
concept for decentralizing training. It helps to preserve the
participants privacy by allowing them to collaboratively train a
model without ever sharing their data. This approach is partic-
ularly appealing to the holders of highly sensitive data, such as
medical records, financial information, private conversations,
and other PID.

One of the most common optimisation methods for FL
is the Federated Averaging algorithm [2], where each client
(agent) trains a local model on his local data for several
epochs, using Stochastic Gradient Descent (SGD). Note that
the structure of the model across agents is the same. Then the
central server selects a subset of agents, collects their local
models and averages them. This aggregated model is then
distributed back and used for the next local training at each
agent. Local training, agent selection, model gathering, model
aggregation and model distribution form one round (global
epoch) of federated training.

Various modifications of the aggregation mechanism exist.
For example, in Federated Averaging (FedAvg) the priority
is given to the agents holding the most data. [3] introduces
Attentive Aggregation method. q-Fair FL [4] encourages a
fairer accuracy distribution across agents. [5] proposes Prob-
abilistic Federated Neural Matching to either match local
parameters and aggregate them, or dynamically extend the
network structure.

The complexity and convergence of FL has been analyzed
thoroughly. We refer to [6] for details.

In cyber security, research on Federated Learning often fo-
cuses on the vulnerability of Federated Learning itself, e.g. via
data and model poisoning, or on privacy benefits of Federated

1https://github.com/khramtsova/url feature extractor/raw/master/urls final
complete.tar.xz

Learning schemes [7], [8]. For the sake of simplicity, we note
that the solutions proposed in these works also apply to our
model, even though we do not present a system incorporating
these, as the focus of our work is to show the benefit of
cooperation itself.

Recently, numerous FL-based applications have been pro-
posed for healthcare [9], autonomous driving [10], mobile
applications [2], keyword spotting [11], The authors of [12]
propose to apply FL-based malware defense mechanism by
analysing individual logs in cloud ecosystems.

Malicious URL detection. Within cyber security, the task
of distinguishing malicious URLs from benign URLs is a
well studied problem. Existing proposals relying on centralized
learning use several techniques. These range from pattern
mining-based [13] and deep learning-based approaches [14] to
semantic information extraction from URLs [15], [16]. Using
machine-learning outperforms rule-based approaches, such as
static blacklisting of domains. In practice, lists and rule-
based systems are often used in combination with machine-
learning approaches. The former capture well-known threats
from threat-intelligence providers and the latter detects yet
unknown but suspicious cases.

The survey [17] provides an overview of existing ap-
proaches. In general, research on machine-learning approaches
takes the following steps:

1) URL collection and feature extraction. Features typically
include lexical information, extracted host information,
and content extraction of the target. Lexical features such
as URL length, the words used in the URL, and bi-grams
are most commonly used.

2) Algorithm design. Both supervised and unsupervised ap-
proaches in batch and streaming-setting exist.

Learning with an imbalanced distribution of data is a classic
problem in the field of cyber security [18].

III. FEDERATED LEARNING FOR MALICIOUS URL
CLASSIFICATION

As outlined in Figure 1, we propose a collaboration scheme
for SOCs, MSSP, and small organisations to collaboratively
classify malicious URLs using Federated Learning.

The main goal of the paper is to showcase how Federated
Learning can be beneficial for the customers.

Our proposed solution does not take into account adversarial
actors and other deployment considerations. Instead, we design
experiments to answer the following questions:

• How much performance is lost by distributing training
instead of learning a single centralized model on the data
from all the participants?

• How does the number of agents affect the training of a
model?

• What happens if agents have very different data?
• What would be the performance in a realistic environ-

ment?
The rest of this section is organised as follows:

We begin with a description of our Federated Learning setup



used in all the experiments. We further proceed with defining
3 types of data partitioning, that reflect different scenarios and
expose the strengths and weaknesses of FL.

A. Federated Learning setup

We introduce the following modification to the Federated
Averaging algorithm described in Section II. We assume that
all agents behave fairly and follow the protocol. Therefore
the server does not perform agent selection - everyone can
participate.

For the structure of the model we chose a fully connected
feed-forward neural network with 72 input neurons. It consists
of 2 hidden Linear layers with Relu with the output dimensions
equal 64 and 32 respectively. We apply a dropout after the
second layer with a keep probability of p = 0.2. Finally, the
last output layer is Linear with Logarithmic softmax.

The network is trained with Cross Entropy loss, SGD
optimizer with the learning rate equal 0.01.

The evaluation of the FL is done through the accuracy
calculated over a test set, that has not been seen by any
agent during training. The accuracy is calculated after the
aggregation of the models by the server, which means that
all agents have the same test accuracy.

B. Data partitioning

We conducted several experiments to assess the capabilities
and limitations of Federated Learning.

Assume that x ∈ X are the feature vectors, extracted from
URLs; ŷ ∈ {0, 1} are the labels to be predicted - benign
or malicious. Even though the main task represents a binary
classification problem, the malicious class can be further
categorised based on the type of attack: y ∈ {Defacement,
Phishing, Malware, Spam}. y is not needed for training,
however it might be used as one of the parameters that defines
the federated environment.

Our Federated Learning setup consist of k agents, where
each of the agents draws samples from it’s local data distri-
bution: (x, y) ∼ Pi(x, y). One of the main difficulties of FL
training lies in the uneven data distribution among participants.
In order to mimic real-world scenarios, we performed multiple
data splits, including independent and identical distribution
(IID) and non-independent and identical distribution (non-
IID). The experiments are grouped into three categories based
on the splitting criteria:

• Category 1: IID
The data is evenly split between workers and the label
distribution is preserved. In reality, identical distribution
is almost never achievable; it serves as a best case
benchmark of Federated Learning and the starting point
of the analysis.

• Category 2: Label-based split
The dataset is split by the type of attack, while the amount
of benign data in each agent is balanced. For example,
one agent has only malicious instances of the type mal-
ware, while another agent has only phishing attacks. This
models scenarios where the security provider has clients

experiencing different types of threats. Private consumers,
public institutes, banks, and corporations experience dif-
ferent kinds of attacks.

• Category 3: Size-based split
We define small, medium and large agents based on the
size of the dataset they possess. For all the agents, the
samples are drawn independently on sub-labels y. This
models a security provider with various customer sizes.

A more detailed description of the proposed partitions and
their relevance for our use-case is provided in the following
section.

IV. EXPERIMENTAL RESULTS

We performed our experiments on University of Luxem-
bourg HPC Iris cluster [19] using 1 GPU Tesla V100 16G
and 1 CPU Intel Xeon Gold 6132. Our solution has been
implemented in Python3 with the help of PyTorch and PySyft
library [20] for federated communication.

A. Dataset overview

A large dataset of more than 700K malicious and benign
URLs was collected from various sources. We began with
a dataset from [21] consisting of 110 000 URLs, equally
distributed between malware, defacement, phishing, spam and
benign classes. This equal size distribution did not reflect a
real-world scenario. Therefore, we decided to augment some
classes. In particular, the benign class was enlarged with
Hacker News post URLs2; data from [16] and [22]. Moreover,
70K samples of malware URLs were taken from URLHaus3.
Finally, the phishing class was extended with the samples from
OpenPhish4 and with valid phishes from PhishTank 5 gathered
for 4 consecutive days.

A detailed overview of the final constructed dataset is shown
in Figure 2.

Fig. 2. Overview of the dataset. Total number of items per class (left) and
relative distribution (right).

During pre-processing, we reproduced the feature extraction
mechanism from [21] and retrieved 72 basic lexical features
from the entire URL string and separately from each URL
component, such as hostname, path, directory, filename, ex-
tension and query. Retrieved features include:

2https://kaggle.com/hacker-news/hacker-news-posts
3https://urlhaus.abuse.ch/
4https://openphish.com/
5https://www.phishtank.com/



• Number of letters, symbols, digits, dots, delimiters,
dashes and tokens

• Length and length ratios between URL components, e.g.
length(path)/length(query)

• Number of letter-digit-letter (ldl) and digit-letter-digit
(dld) sequences

• Character entropy and character continuity rate
• Binary features, e.g. IsPortEighty; IsIPAddressInDomain

Note that all the features are static and dictionary and
language-independent. Thus feature extraction can be easily
parallelized between agents without introducing any ambi-
guity. For reproducibility purposes, we publish the feature
extraction script.6

We split our dataset of benign and malicious URLs into
three categories to model scenarios in which a SOC combines
data from customers with a range of different characteristics.

B. Category 1: IID

We started with the identically distributed setting and a
small number of participants, where the data is equally split
between workers and the label distribution is preserved (Fig-
ure 3).

Fed Agent 1 Fed Agent 2 Fed Agent 3 Fed Agent 4

Fig. 3. Showing the distribution of samples in the label-based data split

We evaluated the training loss and accuracy on each agent
after 2 local epochs. We further performed aggregation of the
gradients, followed by testing on a subset of the initial dataset
that had not been seen by any of the participants. The test
set follows the same uniform label distribution as the training
subsets and represents 10% of the whole dataset.

In order to evaluate the advantages of collaborative learning,
federated training was compared to centralized and local
trainings. Due to the data homogeneity across the agents,
they all received similar results while training locally without
participation in collaborative learning. For this reason, we only
report the mean of their local accuracy. The results are shown
in Fig.4.

In the case where all the available data is assembled by the
centralized agent, an accuracy of 89% is obtained after only
one training epoch. The federated training shows worse results

6https://github.com/khramtsova/url feature extractor

Fig. 4. Comparing the performance of a model with an equal-sized IID data
split, 4 agents. Centralized shows the performance of a learner with access
to all data.

in the beginning, however it reaches the same performance
after approximately 80 epochs. In other words, in the case
where each agent has a relatively large amount of data,
distributing the training does not harm the performance of the
algorithm. Moreover, the graph reveals that Federated training
is more stable compared to centralized setting.

In the next step, we increased the number of participants
from 4 to 50. This means that each agent had access to much
smaller parts of the initial dataset. The resulting loss and
accuracy can be found in Figure 5.

Fig. 5. Comparing the performance of a model with an equal-sized IID data
split, 50 agents. Centralized shows the performance of a learner with access
to all data. Local shows the performance of a learner with access to only his
own data.

The test accuracy of FL is worse that centralized training,
however it reaches the same accuracy as the local trainings.
Moreover, the test loss reveals an interesting property of FL: it
is less prone to overfitting. This is not surprising, seeing that
Federated Averaging plays the role of label smoothing, that
has been shown to be efficient against overfitting [23].

All in all, FL does not harm the performance of the agents
in idealistic IID scenario, however it does not provide any
benefits either.



C. Category 2: Label-based split

After studying the behaviour of the system in the ideal case
of independent and identically distributed data, we proceeded
by splitting the dataset by the type attack. In other words,
each worker had an exclusive possession of one of the attack
types, while the benign data was divided equally amongst them
(Fig.6).

Fed Agent 1 Fed Agent 2 Fed Agent 3 Fed Agent 4

Fig. 6. Showing the distribution of samples in the label-based data split

When the data was split by attack, agents got a high local
accuracy, which means that they learned well how to detect
their particular type of attack. In this set of experiments our
goal was to estimate how well their model generalizes to other
attack types and what is the gain if they decide to collaborate
with other agents.

At first, we selected 10% of each attack type and 10% of
the benign data and used it as the test set. The rest of the data
was distributed between 4 agents, as shown in Fig.6. We then
run the federated training for 40 global epochs with 1 local
epoch per round. We compared the resulting test accuracy to
the accuracy on the same test set, achieved by each agent
from training exclusively on their attack. Additionally, we
noticed that the performance of FL in this setting varies a lot
depending on the weight initialisation of the default models.
Therefore both federated and local training were ran 10 times.
We report the mean and the standard deviation of the resulting
accuracy in Figure 7.

The test accuracy shows that in the case where the test
label distribution from the initial dataset is kept (10 % of
each class regardless the size), most of the participants benefit
from collaborative training and only the agent with Malware
reaches the same accuracy as FL. This is due to the fact that
more than a half of the test data belongs to the Malware
type. However, if we balance the test label distribution by
selecting 1000 samples of each attack and 4000 samples of
benign class, all the agents show improvment in collaborative
learning (Figure 8, left).

Moreover, if we further exclude their own attacks from
the test subsets, the advantage of Federated Learning is even
bigger (Figure 8, right). In other words, if agents participate in
FL, they become significantly better at detecting attacks they
have not seen previously. In particular, the agent with Malware

Fig. 7. Average performance when each agent only sees one class compared
with the federated performance after combining the models. The shaded area
indicates standard deviation over 10 runs with 40 epochs each.

Fig. 8. Evaluating accuracy on: equally distributed test set (left) and test set
with one attack excluded (right)

gains on average 8% in accuracy, the agent with Phishing 15%,
while the agent with Spam boosts from 59% to 86%.

D. Category 3: Size-based split

The final set of experiments reflects a more realistic scenario
where all agents have access to various attacks, but differ in
the size of the datasets they posses.

The estimation of the agents size was made based on the
average number of the security alerts received by SOCs on a
daily basis during the year 2018 as reported in [24].

We created a Gaussian kernel density estimate (KDE) over
the distribution, presented in aforementioned report. While
not all of the alerts received in a SOC come from malicious
URLs, it helped us to establish the differences in traffic volume
amongst SOCs. We therefore scaled our agents to reflect this
size distribution, as shown in Figure 9.

The sizes s1, ...s30 were sampled from the KDE and were
allocated to 30 agents: ai : {(x1, y1), ..., (xsi , ysi)}. Each
agent randomly selected his training samples from the training
set T regardless of the label. Note that

∑30
i=1 si > |T |, which

means that agents are partially overlapped. It reflects the fact
that some URLs, especially benign, can be seen by many
SOCs.

Similarly to the first experiment, 10% of the data from each
class was reserved for the test set, the rest of the data belonged
to the training set. We performed federated training for 30
epochs with 1 local epoch per round.

For evaluation, agents were grouped into small, medium,
and large along their dataset size s as follows:



Fig. 9. Distribution of customer sizes obtained by a kernel density estimation
of typical alert counts published in industry white papers.

0 < s < 50000 small, 50000 < s < 100000 medium, and
100000 < s < 150000 large. Figure 10 shows the the results.

Fig. 10. Left: Testing accuracy for the three categories separately and the
federated model performance for the size-based splitting scenario with 30
agents. Right: Small companies gain the most, while large companies only
slightly improve with FL.

As expected, the small agents benefit the most from collab-
orative learning, gaining up to 30% in accuracy. Medium-sized
and large-sized agents perform slightly worse than FL (only
by 0.5%). However, they are less stable.

V. DISCUSSION AND CONCLUSION

In this paper, we examined how Federated Learning can
help problems with data sharing in cyber security, in particular
in malicious URL detection. We considered several scenarios
with respect to the data partitioning between agents and
showed, across all scenarios, that Federated Learning can
only improve the detection performance. To provide a realistic
analysis, we collected a huge dataset of labeled URLs with
unbalanced classes. In experiments with different types of
malicious URLs, the federated model can improve detection
rates up to 27%. This also shows that it is difficult to generalize
from one malicious class to another. Finally, we made an
estimation of the real-world scenario and demonstrated that the
overall performance increase exceeded 30% for some clients.

In future work, we would like to increase the complexity of
the features and experiment with different federated aggrega-
tion mechanisms. Another interesting venue of research would
be to apply FL in other domains of cyber security, e.g. in edge
computing.
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