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1 Introduction

Mixed frequency vector autoregressions (MF-VARs) have enjoyed great popularity in recent

years as a tool for producing timely high frequency nowcasts of low frequency variables. A

common practice (see, e.g., Schorfheide and Song, 2015)1 is to choose a quarterly macroeconomic

variable such as gross domestic product (GDP) and a set of monthly variables and model them

together in a VAR so as to produce monthly nowcasts of GDP. The fact that statistical agencies

release data such as GDP with a delay, whereas appropriately chosen monthly variables are

released with less of a delay further enhances the benefits of the MF-VAR. Nowcasts can be

updated in a timely fashion.

The pandemic lockdown of 2020 has further increased the need for timely, high frequency

nowcasts of economic activity. And the increasing availability of a variety of high frequency (i.e.,

monthly, weekly or daily) and quickly released data (i.e., some variables are released almost

instantaneously) presents rich opportunities for the mixed frequency modeler. However, the

pandemic also poses challenges to the conventional, linear, MF-VAR. During the pandemic, we

have seen values of variables that are far from the range of past values. Linear time series

econometric methods seek to find average patterns in past data. If current data is very different,

using such patterns and linearly extrapolating them may be highly questionable.

This has led researchers to try to develop new VAR frameworks for nowcasting during

the pandemic. For instance, Schorfheide and Song (2020) find that the model developed in

Schorfheide and Song (2015) nowcasts poorly, but that if they estimate their MF-VAR using

data through 2019 and then produce conditional forecasts for the first half of 2020, improvements

were obtained. In essence, the extreme data in the first half of 2020 caused estimates of the

full sample MF-VAR coefficients to change in a manner which led to poor forecasts. Lenza and

Primiceri (2020) propose an alternative VAR-based approach which allows the error covariance

matrix to have a mixture distribution. In essence, the pandemic is treated as a large variance

shock and pandemic observations are, thus, drastically downweighted in the model estimation.

They conclude: ”Our results show that the ad-hoc strategy of dropping these observations may

be acceptable for the purpose of parameter estimation. However, disregarding these recent data

is inappropriate for forecasting the future evolution of the economy, because it vastly under-

estimates uncertainty.” Thus, although Schorfheide and Song (2020) and Lenza and Primiceri

(2020) adopt very different approaches, they end up with similar advice: discard the pandemic

observations when estimating the model.

1A few other recent MF-VAR references adopting similar strategies include Eraker et al. (2015), Ghysels (2016),
Brave et al. (2019) and Koop et al. (2020).
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It is possible to envisage other approaches to modifying the MF-VAR for pandemic times.

These would involve parameter change of some form (e.g., structural break or time-varying

parameter, TVP, models). But structural break models would be plagued by the fact that there

are too few observations post-break to permit reliable estimation. This problem would not occur

with TVP models which assume smoothly adjusting coefficents. But such TVP models are not

capable of adjusting for sudden and strong jumps in the endogenous variables within a few

months such as have been occurring in the pandemic. In light of these considerations, we adopt

a different, non-parametric, approach. We argue that such an approach should automatically

decide how to treat the pandemic observations in a sensible fashion. In an empirical exercise

involving four European countries, we demonstrate the superior nowcasting performance of our

approach.

The non-parametric model we adopt involves Bayesian additive regression trees (BART,

see Chipman et al., 2010). BART is a flexible and popular approach in many fields of statistics.2

But BART has rarely been used in time series econometrics. Huber and Rossini (2020) develop

Bayesian methods which build BART into a VAR leading to the Bayesian additive vector au-

toregressive tree (BAVART) model and demonstrate that it forecasts well. In this paper, we

develop Bayesian methods for the mixed frequency version of this model (MF-BAVART). This

development is non-trivial and, thus, represents an econometric contribution to the literature

even apart from the pandemic context. The MF-VAR is a Gaussian linear state space model

and well-established Bayesian methods exist for estimation and predictive inference. However,

the MF-BAVART is not linear and, thus, these methods are not directly available. MF-VARs

treat the unobserved high frequency values of the low frequency variables as latent states. Con-

ditional on these latent states, we obtain the BAVART and methods similar to those of Huber

and Rossini (2020) can be used. It is drawing the latent states (conditional on the BAVART

parameters) which is more challenging. We deal with this challenge by rendering the model

conditionally Gaussian using recently developed methods for estimating effect sizes in so-called

black-box models such as BART, see Crawford et al. (2018, 2019).3 In simulations, we show that

this approximation is accurate for data generating processes (DGPs) that resemble the behavior

of GDP during the pandemic.

We apply the resulting model to nowcast GDP growth in selected euro area economies

(Germany, Spain, France and Italy) and show that our approach outperforms the linear MF-

VAR model. With some exceptions, it produces slightly better nowcasts through 2019. But

2Tan and Roy (2019) is an excellent introduction to BART and includes a long list of papers using BART in
a variety of scientific disciplines.

3The methods derived in this literature and used in the present paper can also be used with other black-box
models such as neural networks or Gaussian process regressions.
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when the first two quarters of 2020 are included, the improvements offered by MF-BAVART rise

substantially. We investigate where these gains come from in a detailed study of the predictive

densities for the first six months of 2020. Our results suggest that they stem from the superior

ability of our model to adjust the predictive variance in a timely manner and thus increase the

probability of observing the extreme observations during the pandemic. These increases in the

predictive variance are mostly driven by a flexible Bayesian prior and using a large number of

regression trees. Moreover, we also assess whether data on COVID-19 cases and Google mobility

trends can improve nowcasts despite the fact that the time series data on these variables is very

short. Our model is equipped to extract information from such series and predictive accuracy

is increased in some cases.

The remainder of this paper is organized as follows. The next section discusses our econo-

metric methods. We define the MF-BAVART model, illustrate how it can handle extreme

observations such as those that have occurred during the 2020 pandemic and discuss prior elic-

itation. It also contains the relevant full conditional posterior distributions and sketches the

Markov Chain Monte Carlo (MCMC) algorithm for posterior inference. Section 3 carries out an

artificial data exercise where we investigate the properties of the MF-BAVART model. Section 4

of the paper contains our empirical work. Section 5 offers a summary and conclusions. Appendix

A provides some technical details. There is also an Online Appendix that includes additional

empirical results and MCMC convergence diagnostics.4

2 Econometric Methods

2.1 The MF-BAVART

Suppose we are interested in modeling an M -dimensional vector of time series yt = (y′m,t,y
′
q,t)
′

where ym,t is an Mm vector and yq,t is an Mq vector and t = 1, . . . , T indicates time at the

monthly frequency. The variables in ym,t are observed, but we do not observe yq,t at any point

in time. Instead the statistical agency produces a quarterly figure, yQ,t. Assuming that yq,t

are monthly growth rates (log difference relative to the previous month) and yQ,t are quarterly

growth rates (log difference relative to the previous quarter), the relationship between them is

(see Mariano and Murasawa, 2003):5

yQ,t =
1

9
yq,t +

2

9
yq,t−1 +

1

3
yq,t−2 +

2

9
yq,t−3 +

1

9
yq,t−4. (1)

4All codes and data are available from the corresponding author upon request. Replication files are also
available for download at github.com/mpfarrho/mf-bavart.

5We divide our latent monthly growth rates by three to make their scales comparable. Thus, the right hand
side of this equation divides that of Mariano and Murasawa (2003) by three.
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We refer to this as the intertemporal restriction and note that it applies every third month (e.g.,

the statistical agency produces quarterly data for the quarter covering January, February and

March, but not the quarter covering February, March, April).

We assume that yt evolves according to a general multivariate model of the form:

yt = F (Xt) + εt, εt ∼ N (0,Σ), (2)

with Xt = (y′t−1, . . . ,y
′
t−p)

′ denoting a K(= Mp)-dimensional vector of covariates, F (Xt) =

(f1(Xt), . . . , fM (Xt))
′ being an M -dimensional vector of potentially non-linear functions fj :

RK → R and Σ denotes an M ×M -dimensional variance-covariance matrix.

This is a state space model where unobserved monthly growth rates, yq,t, are treated

as states. The state equations are given by Eq. (2). The measurement equations are the

intertemporal restriction in Eq. (1) (applicable every third month) and those which simply

state that ym,t are observed every month.

If F (Xt) is a vector of linear functions, then we obtain the linear MF-VAR of, e.g.,

Schorfheide and Song (2015). Assuming a conditionally Gaussian prior for the VAR coefficients

(e.g., the Minnesota prior or a conditionally Gaussian global-local shrinkage prior), posterior

and predictive inference is straightforward. That is, standard Bayesian MCMC methods such as

Forward-Filtering Backward-Sampling (FFBS, see, e.g., Frühwirth-Schnatter, 1994) for Gaussian

linear state space models can be used.

In this paper, we wish to treat F (Xt) non-parametrically. In principle, any model can be

used for F (e.g., kernel regression, deep neural networks, tree-based models, Gaussian process

regression) and the methods derived below could be used with minor modifications. In this paper,

we approximate F using BART as, for reasons discussed below, it should be well-designed to

capture large shocks and outliers such as those produced by the pandemic.

BART approximates each fj(Xt) as follows:

fj(Xt) ≈
S∑
s=1

gjs(Xt|Tjs,µjs), (3)

where gjs is a single regression tree function and Tjs are the corresponding so-called tree struc-

tures related to the jth element in yt. Moreover, µjs are tree-specific terminal nodes and S

denotes the total number of trees. The dimension of µjs is denoted by bjs and depends on the

complexity of the tree (i.e., this dimension is the number of leaves on the tree).

The literature on BART models typically sets S between 200 and 250. Chipman et al.

(2010) show that setting this number too low hurts predictive performance. If S is increased,
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predictive performance increases up to a certain level of S. Increasing the number beyond this

level (which is often between 100 to 150) hardly impacts predictive accuracy. In our empirical

work, including the artificial data exercise, we set S = 250. This choice provides sufficient

flexibility to capture sharp shifts in the conditional mean. Section 4.2.2 contains results showing

that this is a reasonable choice.

To understand how BART works, we begin with a single tree and single equation (and,

for simplicity, suppress the j, s subscripts which distinguish the various trees and equations in

the VAR). In the language of regression, a tree takes as an input the value for the explanatory

variables for an observation and produces as an output a fitted value for the dependent variable

for that observation. These fitted values are the parameters related to the terminal nodes. It

does this by dividing the space of explanatory variables into various disjoint regions using a

sequence of binary rules. These so-called splitting rules take the form {X ∈ Ar} or {X 6∈ Ar}
with Ar being a partition set for r = 1, . . . , b and X = (X1, . . . ,XT )′ a full-data matrix of

dimension T ×K. The partition rules involve an explanatory variable and depend on whether

they are above or below a threshold, c. If we let X•i denote the ith column of X, then the

partition set takes the form {X•i ≤ c} or {X•i > c}.
For Y (which is a T -dimensional vector in our simple example) we obtain the fitted values

as follows:

g(X|T ,µ) =
b∑

r=1

µrI(X ∈ Ar), (4)

which is a step function where I denotes an indicator function that equals one if its argument

is true. As we will show in our simple example in the next sub-section, this is an analysis of

variance (ANOVA) model that can, conditional on knowing the indicators, be cast in a linear

regression form.

A key point to emphasize is that everything defining the tree is treated as an unknown

parameter and estimated. This includes the terminal node parameters (µ which is the vector

of fitted values the algorithm can choose between), their number (b) as well as all the elements

of the tree structure (i.e. the explanatory variable, X•i, and threshold, c chosen to define each

splitting rule). To illustrate our model and show what an estimated tree looks like in our dataset,

the following sub-section provides an empirical illustration.

2.2 Empirical Illustration of How BART Works and Handles the Pandemic

To provide some additional intuition of what BART is doing and why it might be a good

approach to handle the extreme observations associated with the pandemic, we preview our
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Figure 1: Estimated tree structures for Germany using a single tree.

(a) Without pandemic observation

GDPt−1 < −1.392

PMIt−5 ≥ 0.013

−9.588 (2)

IPt−2 < 3.424

−5.114 (3)

GDPt−1 ≥ −4.687

−1.825 (5) 2.447 (1)

IPt−1 < 1.774

ESIt−1 < 0.899

IPt−1 < −1.610

−1.018 (9) 0.246 (99) 0.833 (39) 1.594 (19)

(b) Including pandemic observation

IPt−1 < −16.960

IPt−2 < −9.492

−19.960 (2) −12.549 (4)

GDPt−1 < −1.392

PMIt−5 ≥ 0.013

−9.588 (2)

IPt−2 < 3.424

−5.114 (3)

GDPt−1 ≥ −4.687

−1.825 (5) 2.447 (1)

IPt−1 < 1.774

ESIt−1 < 0.899

IPt−1 < −1.610

−1.018 (9) 0.246 (99) 0.833 (39) 1.594 (19)

Notes: The variables in the trees are GDP, IP (industrial production), ESI (economic sentiment indicator), and
PMI (purchasing manager’s index). Complete definitions are given in the empirical section of this paper. The
number of observations choosing each terminal node is in parentheses. The splitting rules are defined such that,
if the condition holds you move down the left branch of the tree, else you move down the right branch.

empirical application in a simple way. Full details of our data and application are provided

below, suffice it to note here that results in this sub-section are for GDP growth in Germany

and the full sample of data runs through 2020Q2. We use a single tree with a relatively non-

informative prior so as to allow for more complex tree structures. This is just for illustration.

In our main empirical work, we use many trees and a regularization prior.

Figure 1 shows two estimated regression trees for Germany. The top panel uses data

through 2019Q4 and the bottom panel uses the full sample. The general structure of a regression

tree can be illustrated from panel (a). The tree is organized with a condition (e.g., GDPt−1 <

−1.392) at the top of every binary split. If this condition holds, you move down the left branch,

else you move down the right branch. So, for example, the rightmost terminal node (1.594) is

chosen by observations with GDPt−1 greater than or equal to −1.392 (go right at the first split)

and have the first lag of industrial production (IPt−1) greater than or equal to 1.774 (go right

at the second split). Hence, the fitted value for GDP growth for observations with last month’s

industrial production growth greater than 1.774 and last month’s estimated GDP growth above

−1.392 is 1.594. There are 19 observations which fall in this category.

Recall that everything in the tree is estimated by the algorithm. This includes all the

numbers (i.e., the values of the terminal nodes and the thresholds in the splitting conditions),
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the choice of variables in the splitting conditions (e.g., some of the conditions depend on GDP

growth, others depend on the growth in industrial production and both appear at various lags)

and the number of splits that occur. For instance, to get to the leftmost terminal node in panel

(b) involves checking two conditions (two splits), to get to the rightmost terminal node involves

checking three conditions (three splits). To get to some terminal nodes there are multiple splits

involving different variables, which is particularly useful for correlated explanatory variables.

All in all, BART has great flexibility in capturing any sort of behavior, including charac-

teristics common with macroeconomic data. Using Eq. (4), we can illustrate this by casting our

model into ANOVA form based on panel (a) of Figure 1. The corresponding model is given by:

Y•j =− 9.588 {I(GDPt−1 < −1.392)I(PMIt−5 ≥ 0.013)}

− 5.114 {I(GDPt−1 < −1.392)I(PMIt−5 < 0.013)I(IPt−2 < 3.424)}

− 1.825 {I(GDPt−1 < −1.392)I(PMIt−5 < 0.013)I(IPt−2 ≥ 3.424)I(GDPt−1 < −4.687)}

+ 2.447 {I(GDPt−1 < −1.392)I(PMIt−5 < 0.013)I(IPt−2 ≥ 3.424)I(GDPt−1 < −4.687)}

− 1.018 {I(GDPt−1 ≥ −1.392)I(IPt−1 < 1.774)I(ESIt−1 < 0.899)I(IPt−1 < −1.610)}

+ 0.246 {I(GDPt−1 ≥ −1.392)I(IPt−1 < 1.774)I(ESIt−1 < 0.899)I(IPt−1 ≥ −1.610)}

+ 0.833 {I(GDPt−1 ≥ −1.392)I(IPt−1 < 1.774)I(ESIt−1 ≥ 0.899)}

+ 1.594 {I(GDPt−1 ≥ −1.392)I(IPt−1 ≥ 1.774)}+ ε•j .

Here we let Y•j and ε•j the jth column of Y and ε, respectively. Since GDP is ordered first in

Y , j = 1 denotes its equation. Each row in the equation above corresponds to an assignment

depending on whether the indicators in the parentheses are equal to one. The equation illustrates

that BART is capable of handling multi-way interaction effects. For instance, the first row

suggests a two-way interaction effect between the first lag of GDP and the fifth lag of the

purchasing managers’ index (PMI) while the second row corresponds to a three-way interaction

between GDP, PMI and IP.

Another point to note is that our MF-BAVARTs involve six variables, not just the four

variables which appear in the estimated trees. The BART algorithm has decided that the other

two variables should not be involved in the splitting conditions and have no useful explanatory

power for GDP growth (loosely analogous to these other variables being insignificant).

With regards to modeling during the pandemic, we now turn to a comparison of panels

(a) and (b) in Figure 1. Note that panel (b) has a splitting condition IPt−1 < −16.960 at the

top, an extremely low value for the growth in industrial production. The branch of the tree

which satisfies this condition contains six observations. These are the six monthly pandemic
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observations. The branch of the tree which does not satisfy this condition contains all the non-

pandemic observations and is the same as the tree in panel (a). What our tree-based model

is doing is creating nodes for capturing outliers. Whereas the parameter estimates in a linear

model can be substantially affected by an outlier, BART can simply add a new branch to control

for it without affecting the main body of the tree. We will explore this issue in more detail in

our empirical work, but this is one of the reasons why our MF-BAVART ends up nowcasting

better than the linear MF-VAR, particularly around the time of the pandemic.

Since this example is a special case with a single tree and thus S = 1, it ignores another

dimension of flexibility in terms of handling outliers: the option to add additional trees. The

”A” in BART stands for additive and the BART algorithm allows for new trees to be introduced

to deal with the pandemic observations. Through 2019, we could see a tree (or trees) which had

terminal nodes covering the range of pre-2020 GDP growth values. For the pandemic period, a

new tree could yield an estimate of the average GDP growth rate within the pandemic (which

would probably be close to −10 percent). Adding such a tree would imply that the remaining

tree(s) lack the pandemic-related branches. Thus this new tree could serve to account for

deviations from the pre-pandemic GDP growth rate.

2.3 The Priors

In this section we discuss our prior setup. For computational reasons discussed below, all priors

are specified in an equation-specific manner and any fixed hyperparameters are the same across

equations. In the following discussion, the index j = 1, . . . ,M refers to the different equations

of the model.

BART can be interpreted as a non-parametric approach capable of approximating any

non-linear function. But, as with any non-parametric approach, BART risks over-fitting. This

is why Bayesian methods have been commonly used since prior information can mitigate this

problem. We use regularization priors to reduce the complexity of the tree structures and to

shrink the terminal nodes. In the jargon of this literature, we force each tree to be small and,

thus, act as a weak learner. This essentially implies that for a large S, each tree explains only a

limited fraction of the variation in yt. For each equation we closely follow Chipman et al. (2010)

and use a regularization prior that can be factorized as follows:

p ((Tj1,µj1), . . . , (TjS ,µjS)) =
∏
s

p(µjs|Tjs)p(Tjs).

with p(µjs|Tjs) =
∏
i p(µi,js|Tjs) and µi,js being the ith element of µjs. Within trees, we assume

that the terminal leaf parameters are independent of each other but depend on the specific tree
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structure Tjs.
We specify a tree generating stochastic process (see Chipman et al., 1998) on Tjs that

consists of three parts. The first part relates to the probability that a given node at stage

n = 0, 1, 2, . . . is not a terminal node. This probability is specified such that

α(1 + n)−β.

α ∈ (0, 1) and β > 0 denote scalar hyperparameters. Smaller (larger) values of α (β) introduce a

larger penalty on more complex tree structures. This prior thus controls for overparameterization

by keeping trees rather small and simple (and they thus act as weak learners). In our empirical

application we set α = 0.95 and β = 2. This is the standard choice proposed by Chipman

et al. (2010) that works well for a wide range of different datasets and in simulations. The

second part concerns the possible values the thresholds c can take. Here we assume a discrete

uniform distribution over all possible values of the ith covariate X•i. Finally, the last part deals

with the specific variables used in the splitting rules. Again, in the absence of substantial prior

information about which variables should define the splitting rules we use a uniform distribution

over the K columns of X.

It is worth noting that our choice for the tree generating prior flexibly adjusts to the data

since the implied prior on the decision rules depends on the range of the columns in X. Hence,

if X contains extreme observations (such as the ones observed during the pandemic), our prior

places equal weights on these extremes without artificially bounding away prior mass from the

boundary of the parameter space of the thresholds used to define splitting rules.

On the terminal node parameters we use a Gaussian prior that places substantial prior

mass on the range of the M columns in Y = (y1, . . . ,yT )′. The prior on µi,js is given by:

µi,js|Tjs ∼ N (0, σ2
µj).

The prior standard deviation σµj is set as follows:

σµj =
max(Y•j)−min(Y•j)

2γ
√
S

, (5)

with γ denoting a suitable positive constant. Notice that if the number of trees S or γ are

increased, the prior is pushed towards zero and the effect of a single tree becomes smaller. This

specification also implies that the prior variance widens with the range of Y•j . Hence, if we

observe extreme observations, the range of Y•j sharply increases and the prior on µi,js becomes

looser (for fixed S and γ). This feature helps us in a pandemic since we introduce little shrinkage
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if outliers arise and consequently allow for a large range of possible realizations of Y•j . And this

increases the likelihood of capturing outlying observations when interest centers on predictive

inference.

Consistent with Chipman et al. (2010), we construct the prior on µi,js by transforming

the endogenous variable such that the transformed values range from −0.5 to 0.5, which implies

that the numerator in Eq. (5) is one. Following much of the recent literature, we set γ = 2. This

value implies an approximate 95 percent probability that the conditional mean of the model is

between the minimum and maximum of each column of Y .

We specify a prior on the covariance parameters and the error variances σ2
j separately. Let

Q be an M ×M lower triangular matrix with unit diagonal and H = diag(σ2
1, . . . , σ

2
M ) denotes

a diagonal matrix with elements σ2
j , such that Σ = QHQ′. The free elements associated with

the jth row of Q are stored in a (j − 1)-dimensional vector qj . On each element of qj we use a

Horseshoe (HS) prior:

qji|τji, λ ∼ N (0, τ2
jiλ

2), τji ∼ C+(0, 1), λ ∼ C+(0, 1). (6)

Here we let C+ denote the half Cauchy distribution and τji and λ scaling parameters. Note

that λ does not feature any indices and thus serves as a common shrinkage factor across the free

elements ofQ. For later convenience we let V j = λ2×diag(τ2
j1, . . . , τ

2
jj−1) denote a (j−1)×(j−1)

dimensional prior scaling matrix.

For σ2
j we use the conjugate inverse Chi-square distribution:

σ2
j ∼ νjξj/χ2

νj ,

where νj and ξj denote hyperparameters that are calibrated using a data-based estimate of σj ,

σ̂j . This data-based estimate is taken to be the OLS standard deviation from a univariate AR(5)

model. The values of νj and ξj are then chosen such that the vth quantile of the prior is centered

on σ̂j with P (σj < σ̂j) = v. In our application we use v = 0.75 and set the degrees of freedom

νj = T/2. We found that this choice avoids too large values of σ2
j during the pandemic and thus

forces the tree-based model to fit more aggressively. Smaller values of νj yield similar results

if the sample is expanded to include the first two quarters of 2020, but at the cost of potential

numerical stability issues of the algorithm.

This completes our prior setup. For reference, Table 1 summarizes all our prior choices.
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Table 1: Summary of prior hyperparameters.

Description Parameters Hyperparameters

Trees (probability of non-terminal node) α(1 + n)−β α = 0.95
β = 2

Terminal nodes µi,js|Tjs ∼ N (0, σ2
µj) σµj = (max(Y•j)−min(Y•j)) /(2γ

√
S)

γ = 2
S = 250 (number of trees)

Error variances σ2
j ∼ νjξj/χ2

νj νj = T/2

ξj s.t. P (σj < σ̂j) = v v = 0.75
Covariances qji|τji, λ ∼ N (0, τ2jiλ

2) τji ∼ C+(0, 1)
λ ∼ C+(0, 1)

Notes: “Description” provides information about the respective model parameter. “Parameters” shows the respective dis-
tribution or probability. “Hyperparameters” indicates our choice for the hyperparameters. Y•j refers to the jth column of
Y , σ̂j is the OLS standard deviation from a univariate AR(5) model and “s.t.” is an abbreviation for such that. We use
this prior setup for the simulation study and our empirical application.

2.4 Posterior Simulation

In terms of posterior and predictive computation, the point to note is that efficient MCMC

algorithms have been derived for estimating BART models. In our MF-BAVART model, we use

these conditional on yq,t. That is, one block of the MCMC algorithm (to be discussed below)

provides draws of yq,t and, conditional on these draws, we use standard algorithms for drawing

the BART parameters. In principle, we could draw the parameters of the trees and Σ as an

entire M dimensional system. However, we follow Carriero et al. (2019) and estimate the model

on an equation-by-equation basis by conditioning on the lower Cholesky factor of Σ. This speeds

up computation time enormously.6

2.4.1 Drawing the Trees

In this sub-section, we discuss the sampling step involved in estimating the trees. Each tree

structure Tjs is obtained using the Bayesian backfitting strategy discussed in Chipman et al.

(2010). Under our prior setup, Chipman et al. (2010) show that the trees can be sampled

marginally of µjs:

p(Tjs|Rjs, qj ,Zj , σj) ∝ p(Tjs)
∫
p(Rjs|µjs, Tjs, qj ,Zj , σj)p(µjs|Tjs, qj , σj)dµjs︸ ︷︷ ︸

p(Rjs|Tjs,qj ,Zj ,σj)

. (7)

We let Rjs denote a partial residual vector that depends on the trees s 6= s as follows:

Rjs = Y•j −
∑
s6=s

gjs(X|Tjs,µjs)−Zjqj ,

6Appendix A shows how to write the model as a system of unrelated regressions (conditional on Σ).
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with Zj = (Zj1, . . . ,ZjT )′ and Zjt being composed of the structural shocks of the preceding

j − 1 equations (see Appendix A). Hence, p(Rjs|Tjs, qj ,Zj , σj) can be viewed as a conditional

likelihood that takes a relatively simple form and, more importantly, does not depend on µjs.

A draw from Eq. (7) can be obtained by using the Metropolis-Hastings (MH) algorithm

proposed in Chipman et al. (1998). This algorithm starts by generating a candidate value T ∗js
from a probability distribution q(T ijs, T ∗js), with the superscript i denoting the accepted draw at

the ith iteration of the algorithm. We set T i+1
js = T ∗js with probability:

a(T ijs, T ∗js) =
q(T ∗js, T ijs) p(Rjs|T ∗js, qj ,Zj , σj) p(T ∗js)
q(T ijs, T ∗js) p(Rjs|T ijs, qj ,Zj , σj) p(T ijs)

. (8)

The transition kernel q(T ijs, T ∗js) is constructed by switching randomly between four moves.

The first move grows a terminal node with a probability of 0.25. The second move randomly

selects a parent of two terminal nodes and transforms it into a terminal node with a probability

of 0.25. The third step randomly picks some interior node and changes its splitting rule with

probability 0.4. The final move swaps a decision rule between a parent (i.e., the node above)

and child (i.e., the node below) with probability 0.1.

The key feature of this algorithm which leads to convenient properties is that µjs is

integrated out and thus the dimension of the estimation problem is kept fixed.

2.4.2 Drawing the Latent States and Predictive Inference in the MF-BAVART

The previous sub-sections defined the MF-BAVART and discussed how well-established MCMC

methods can be used to draw the BART parameters conditional on the states (i.e., the unob-

served high frequency values of the low frequency variables). To complete the MCMC algorithm

we need a method for drawing the states, conditional on the BART parameters. In a linear

MF-VAR this is done using standard Bayesian state space algorithms such as FFBS. But with

the non-parametric MF-BAVART this is more complicated since the model is highly non-linear

and FFBS is not directly applicable. Accordingly, we borrow from the literature that deals with

estimating effect sizes in black-box models (see Crawford et al., 2018, 2019) to produce a linear

approximation to F (Xt).

This linear approximation has been originally proposed in the context of Gaussian kernel

(GK) and Gaussian process (GP) regressions. But the method is much more general and applies

to several popular techniques in machine learning and econometrics (Ish-Horowicz et al., 2020).

The only requirement is that we have learned a non-linear function F = (F (X1), . . . , F (XT ))′

evaluated at the T observations and we can sample from the relevant posterior distribution.
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To explain the linear approximation, note that in linear regression models, the effect size

(or regression coefficient) is interpreted as the magnitude of the projection of X onto Y which

takes the form:

Â = Proj(X,Y ) = X†Y ,

with X† (which is K × T ) being the Moore-Penrose inverse. In the case where X is a full rank

matrix this projection is simply (X ′X)−1X ′Y and the effect size is the least squares estimate

(i.e., it is an estimate of the magnitude of the marginal effect of the explanatory variables on

the dependent variables).

We follow Crawford et al. (2018, 2019) and project X onto the non-linear matrix F . This

produces the following estimate which can be interpreted as an effect size:

Ã = Proj(X,F ) = X†F .

The main intuition behind this approximation is that the regression of F on X provides infor-

mation on how much variance is explained through X. This is a simple way of understanding

the relationship between X•i (i = 1, . . . ,K) on F . In the absence of additional regularization,

the projection essentially implies that XÃ ≈ F .

Given this linear approximation, FFBS can be used to draw yq,t. Thus, this step in

the MCMC algorithm is an approximate one, but our simulation study and empirical results

indicate the approximation is a good one. We use Ã to produce a linear approximation to the

non-parametric multivariate model:

yt = Ã′Xt + εt. (9)

Since we now have an approximated linear model with Gaussian shocks, standard techniques

such as FFBS can be used to draw yq,t based on the Gaussian linear state space model defined

by Eq. (9) and the intertemporal restriction in Eq. (1).

FFBS provides draws from the nowcast distribution based on a linearized version of the

non-parametric and non-linear state space model. In our empirical work (and if interest cen-

ters on out-of-sample forecasting) we refrain from using these linearized estimates but use the

posterior distribution of F to produce now/forecasts.

In the case of the one-step-ahead forecast, the corresponding predictive distribution is
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then simply given by:

p(yT+1|XT+1) =

∫
p(yT+1|Ξ,Y )p(Ξ|Y )dΞ, (10)

with Ξ being a generic notation that refers to all parameters and latent states in the model.

The conditional distribution p(yT+1|Ξ,Y ) is:

yT+1|Ξ,Y ∼ N (F (XT+1),Σ). (11)

Within our algorithm, draws from Eq. (11) can be mapped back to the quarterly values using

the intertemporal restriction in Eq. (1).

Iteratively using this equation allows us to compute higher order forecasts or other func-

tions of the parameters. Equation (10) implies that we can use the BART model to produce

the one-step-ahead predictive distribution. After integrating out Ξ, this distribution will take

a highly non-standard form that allows for multi-modality, fat tails and asymmetries in the

forecast distributions. At this point, we would like to stress that for nowcasts, the differences

between using the smoothed estimates of yT or using Eq. (11) are negligible. Both approaches,

after integrating out Ξ, yield very similar estimates of the predictive distribution with the same

interesting features that make this approach suitable for handling the pandemic.7

2.4.3 Drawing the Remaining Parameters

The steps involved in simulating the remaining parameters are standard with the conditional

posteriors taking a well-known form. The terminal node parameters µjs can be obtained by

simulating µi,js from independent Gaussian distributions which take a textbook conjugate form.

The same can be said about the error variances. These can be simulated from a conditional

posterior which follows an inverse Gamma distribution.

We sample qj from a multivariate Gaussian posterior. This posterior is given by:

qj |? ∼ N (mj ,Ωj) , Ωj = (Z ′jZj + V −1
j )−1, mj = ΩjZ

′
jỸj (12)

with Ỹj = Y•j − fj(X) and the ? notation indicating that we condition on the remaining model

parameters and the latent states.

The scaling parameters of the HS prior are obtained using methods outlined in Makalic

and Schmidt (2015). Introducing additional auxiliary parameters allows us to simulate τji and λ

7Figure A.6 in the Online Appendix compares both distributions over the full-sample across countries and
shows that they are very similar.
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from inverse Gamma distributions. More precisely, the corresponding full conditional posteriors

are:

τ2
ji|? ∼ G−1

(
1,

1

wji
+

q2
ji

2λ2

)
, for i = 1, . . . , j − 1,

λ2|? ∼ G−1

M(M − 1) + 2

4
,

1

ζ
+

1

2

∑
i

∑
j

(
q2
ji

τ2
ji

) .

The auxiliary parameters wji and ζ are simulated from:

wji|? ∼ G−1(1, 1 + τ−2
ji ), ζ|? ∼ G−1(1, 1 + λ−2).

2.4.4 Full Conditional Posterior Sampling

Our MCMC algorithm iteratively samples from the full conditional posterior distributions out-

lined in the previous sub-sections. Conditional on a suitable set of starting values, the algorithm

cycles through the following steps:

1. Simulate the S trees T ijs for each equation using the Metropolis Hastings algorithm with

acceptance probability given by Eq. (8) and proposal distribution q(T ijs, T ∗js).

2. Simulate the terminal node parameters associated with each tree and for each equation

j from a Gaussian distribution. This Gaussian distribution takes a standard form and

depends only on the elements in Y•j −Zjqj that are allocated to the respective terminal

node and the prior variance.

3. For each equation, simulate the error variance σ2
j from an inverted Gamma distribution.

4. The covariance parameters associated with the jth row of Q are simulated from a multi-

variate Gaussian posterior described in Eq. (12).

5. The parameters related to the HS prior are obtained by sampling from the relevant con-

ditional distributions described above.

6. We use a conventional FFBS algorithm to simulate the latent states based on the approx-

imate model derived in Sub-section 2.4.2.

7. In case we are interested in producing now/forecasts based on the estimated BART model,

use Eq. (11) to draw from the predictive distribution.

This algorithm is used to produce 30, 000 draws. We then discard the first 15, 000 draws

as burn-in. Standard convergence diagnostics indicate rapid convergence towards the joint pos-
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terior distribution and thus closely mirror the excellent performance of the original algorithm

of Chipman et al. (2010). Some of these diagnostics are shown in the supplementary Online

Appendix.

3 Simulation Study

In this section we investigate the properties of our model and algorithm using various DGPs.

Since our empirical work deals with nowcasting in the pandemic, we construct DGPs that

mirror the dynamic properties observed for actual macroeconomic aggregates such as output

and unemployment. We assume that the data is generated by a persistent VAR(1) process, but

during the last part of the sample, we have a substantial deviation from linearity by assuming

a rapid decline followed by a sharp and abrupt recovery during the last few observations. To

investigate how the quality of our approximation varies with the size of the model, we consider

different values for M ∈ {3, 5, 7} as well as different numbers of observations T ∈ {150, 250, 350}.
Assuming that the first element of yt, y1t, is the latent process that determines the low

frequency variable, our DGP takes the following form:

yt = A1yt−1 +Qut, εt ∼ N (0M , IM ), for t = 1, . . . , T − 25,

where A1 is an M×M matrix with off-diagonal elements sampled from a N (0, 0.12) distribution

and its diagonal elements equal to 0.9. Q is a lower triangular matrix with the diagonal elements

equal to 0.2 and off-diagonal elements sampled from a N (0, 0.12) distribution.8 The DGP is

initialized by simulating y0 from a standard Gaussian distribution.

Non-linearities in the DGP are introduced by assuming that y1t follows a VAR for the first

T − 25 observations. For the remaining 25 observations we assume that:

y1t =


−ϑ0t for t = T − 24, . . . , T − 5,

+ϑ1t for t = T − 4, . . . , T.

ϑjt (j = 0, 1) denotes an element of an evenly spaced grid with the length given by the number

of observations within a regime (i.e., 20 for the downturn and 5 for the quick recovery). This

grid is scaled with the standard deviation of y1t, σy1 , over the first T − 25 observations. In the

case of the downturn, we let the grid range from 0.1σy1 to 6σy1 . In the recovery, the grid runs

from 2σy1 to 5σy1 . This introduces substantial non-linearities and yields realizations of y1t that

8Since adding random noise to A1 can lead to an unstable DGP with eigenvalues exceeding unity, we introduce
the restriction that the maximum absolute eigenvalue of A1 must not exceed one.
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Figure 2: Single realization from the DGP for M = 7 and T = 150 and posterior estimates

Notes: The gray shaded area and the outer solid black lines refer to the 5th and 95thth credible intervals, the
middle solid black line denotes the posterior median and the red line is the true outcome. The dashed black line
marks the beginning of the “crisis” episode of our DGP.

behave similar to output during the first half of 2020. It is worth noting that we introduce a

larger number of pandemic observations in our simulations than the model gets to see in our

empirical work (especially during the downturn). Nevertheless, the rapid increase in y1t takes

place over five observations and thus serves to illustrate how our model deals with detecting

rapid shifts using few observations.

Notice that the share of these non-linear regimes depends on the length of the time series

T and goes from close to seven percent (for T = 350) to almost 17 percent (for T = 150).

These latent indicators are then mapped back to the observed quantities using the intertemporal

aggregation scheme outlined in Eq. (1).

This DGP allows us to assess how well our approach recovers the latent high frequency

series y1t. Estimation accuracy is measured by computing root mean squared errors (RMSEs)

between the posterior median of y1t and the true outcome. We compare results from our MF-

BAVART specification to a standard linear MF-VAR which is identical in all respects except

that it is linear. This implies that we set F (Xt) = AXt with A being an M × K coefficient

matrix. On a = vec(A) we use the HS prior defined in Eq. (6). The prior on Σ is the same in

the two models. All experiments are repeated 150 times.

It is worth noting that the chosen DGP is a tough case for our model. This is because

the DGP assumes linearity for the majority of periods and then includes a rather small number

of extreme observations. Hence, our model needs to learn the behavior of y1t using relatively
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Table 2: Relative performance for differently sized models and sample size.

Sample size

Model size T = 150 T = 250 T = 350

M = 3 0.87 0.89 0.90
M = 5 0.89 0.89 0.89
M = 7 0.89 0.91 0.93

Notes: The table shows relative root mean squared errors (RMSEs) with respect to the “true” latent monthly process be-
tween the MF-VAR and MF-BAVART for the estimated monthly processes over 150 simulated data generating processes
(DGPs). Values below unity indicate that our model yields more precise estimates of y1t than the competing approach,
and refer to the mean of relative RMSEs over all simulation repetitions.

few data points. And this is the challenge we face when our aim is to model macroeconomic

quantities in a pandemic.9

Before discussing RMSEs comparing our model and the MF-VAR, we present Figure 2

which illustrates the properties of the MF-BAVART model for a single realization from the DGP

for M = 5 and T = 350. Other realizations typically look very similar and are thus omitted for

brevity. From this figure, we observe that during the first part of the sample (which we label the

non-crisis part), our model tracks the actual evolution of y1t remarkably well. Once we hit the

crisis regime, it adjusts and the corresponding credible sets include the actual outcome in the

vast majority of periods. Only during the beginning of the rapid expansion do the credible sets

of MF-BAVART not cover the true series. The final few observations are also well captured with

only a single observation not included in the credible intervals. This shows that MF-BAVART

works well when the DGP is characterized by substantial non-linearities towards the end of the

sample.

To investigate whether this strong performance is consistent across replications of the

DGP and how our approach performs relative to the standard MF-VAR, Table 2 shows average

RMSE ratios between the MF-BAVART and the MF-VAR across different configurations of the

DGPs. Values below unity indicate that our model yields more precise estimates of y1t than the

competing approach. The figure suggests that for small-scale models (M = 3), our approach

substantially outperforms the linear model for different sample sizes. When the model size is

increased, the MF-BAVART still improves upon the MF-VAR but to a slightly lesser extent.

This experiment based on synthetic data shows that our approach yields reasonable estimates

of the latent states, even in the presence of substantial deviations from normality and linearity.

9In principle, we could also showcase our model using DGPs that feature substantial non-linearities over the
full sample. However, such DGPs imply an unfair advantage of our model relative to the standard MF-VAR. We
have carried out some simulation experiments using such DGPs and find that our model performs remarkably
well. The results are available from the corresponding author upon request.
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4 Empirical Results

In this section, we investigate the performance of our MF-BAVART model for nowcasting GDP

growth using four data sets with relatively short samples. The short sample arises since some of

the variables have only been collected for a short time period. This is an issue with many of the

new data sets that are becoming popular (e.g., internet search data) and, accordingly, we felt it

useful to test our methodology in the type of context where it might be used in the future. All

models use a lag length of five since this is the number of lags in the intertemporal restriction

in Eq. (1).

4.1 Data and Design of the Real Time Nowcasting Exercise

We use monthly and quarterly data on Germany (DE), France (FR), Italy (IT) and Spain (ES)

from 2005M03/2005Q1 to 2020M06/2020Q2 on the following M = 6 variables:

1. GDP growth: quarterly GDP growth (abbreviated GDP), released six weeks after the end

of the respective quarter.

2. Industrial production: monthly growth rate of industrial production (abbreviated IP),

released with a lag of approximately six weeks.

3. Economic sentiment indicator: monthly growth rate of the economic sentiment indicator

(abbreviated ESI), released on the next-to-last working day of the respective month.

4. New car registrations: monthly growth rate of new car registrations (abbreviated CAR),

released with a delay of two and a half weeks.

5. Purchasing managers’ index: monthly growth rate of the purchasing managers’ index

(abbreviated PMI), released on the first working day of the next month.

6. One-year-ahead interest rates (abbreviated EUR), monthly average of the level of interest

rates, available immediately after the end of the respective month.

Growth rates are exclusively computed by taking log-differences. Data on GDP and industrial

production is obtained from the OECD real time database, the Economic Sentiment Indicator

is provided by the European Commission, figures on new car registrations are released by the

European Automobile Manufacturers Association (ACEA), PMI readings come from Markit and

the interest rate data is obtained from Macrobond.

Our main results use the data just described. However, the paper ends with a detailed

examination of nowcasting during the COVID-19 pandemic of 2020. One of the models consid-

ered there includes two additional variables which we refer to as pandemic variables. The first of

20



these is the number of new COVID-19 infections which is obtained from the Centers for Disease

Control. We include this variable as end of period values using the transformation log(1 + x)

where x indicates the number of cases. First cases in the respective countries were reported in

January 2020. The second variable reflects information associated with social distancing mea-

sures and relevant lock-downs by using Google mobility trends data. More precisely, we take

the average of the series on Retail & Recreation, Workplaces and Transit Stations to obtain an

aggregate measure of social distancing. Both of these variables are only available for the first

six months of 2020. In order to include the pandemic variables in the MF-BAVART we fill in

pre-2020 values with zero.

Recall that following standard BART practice, our variables are transformed to lie in

the interval [−0.5, 0.5]. This transformation is used for estimating the tree-based components.

After obtaining the tree structures and terminal node parameters, the remaining quantities of

the model are estimated by transforming the variables back to their original scale.

Given the relatively short sample size we begin evaluating nowcasts in 2011Q1. Within

each quarter, we produce three nowcasts, one for each month in the quarter (subsequently

abbreviated Mth./Qt.). Our model nowcasts monthly growth rates, yq,t, which are turned into

quarterly growth rates for comparison with the actual realization of quarterly GDP growth. All

of our nowcasts respect the release calendar and data revisions (e.g., a nowcast produced for

January will be made at the beginning of February using the data that has been released by

then).

4.2 Results of the Real Time Nowcasting Exercise

4.2.1 Comparing the MF-BAVART to the MF-VAR

Table 3 summarises our findings for the nowcasting exercise. The table offers a comparison of

MF-BAVART to the conventional MF-VAR in terms of RMSEs and log predictive scores (LPSs,

which are log predictive likelihoods summed over the nowcast evaluation period). To investigate

the pandemic period, we produce two sets of results: one ending in 2019Q4 (the left panel of

Table 3), and one for the full sample (including the pandemic period, the right panel of Table

3).

Note first that, as we move from month to month within a quarter, our nowcasts almost

always improve. This statement holds true for both nowcast evaluation metrics and countries.

This provides evidence that mixed frequency methods are useful for nowcasting in these data

sets. As new information is released each month, our nowcasts of GDP growth improve.

In terms of the comparison of linear versus non-parametric mixed frequency methods,
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Table 3: Results of the nowcasting exercise.

Through 2019Q4 Through 2020Q2

MF-BAVART MF-VAR MF-BAVART MF-VAR

RMSE LPS RMSE LPS RMSE LPS RMSE LPS

DE
Mth./Qt. 1 0.586∗∗ −54.735∗∗∗ 0.646 −112.792 1.891∗∗∗ −411.289∗ 1.971 −628.246
Mth./Qt. 2 0.587 −54.251∗∗∗ 0.654 −114.451 1.699 −87.527∗∗∗ 1.452 −182.194
Mth./Qt. 3 0.537 −45.714∗∗∗ 0.536 −66.582 1.610 −85.816∗∗ 1.001 −144.233

ES
Mth./Qt. 1 0.490∗ −31.535∗∗∗ 0.556 −151.984 3.496 −590.363 3.421 −2108.736
Mth./Qt. 2 0.428∗∗ −30.103∗∗∗ 0.484 −121.163 2.828∗∗ −378.179∗∗ 2.865 −815.515
Mth./Qt. 3 0.354∗∗∗ −27.170∗∗∗ 0.402 −89.600 2.814∗∗∗ −367.837∗ 2.964 −682.207

FR
Mth./Qt. 1 0.320 −32.317∗∗∗ 0.330 −65.015 2.669 −2800.367 2.656 −2893.765
Mth./Qt. 2 0.312 −27.547∗∗ 0.333 −61.902 1.991 −716.782 1.900 −1122.662
Mth./Qt. 3 0.313 −33.201∗ 0.296 −49.014 2.057 −753.489 1.498 −1141.538

IT
Mth./Qt. 1 0.391∗ −15.288∗∗ 0.473 −70.330 2.323 −360.691∗ 2.133 −872.414
Mth./Qt. 2 0.366 −12.075∗∗ 0.401 −49.272 1.808 −319.175∗ 2.153 −548.016
Mth./Qt. 3 0.297∗ −6.824∗∗ 0.333 −26.648 1.758 −314.247 1.558 −592.571

Notes: The table shows root mean squared errors (RMSE) and cumulative log predictive scores (LPS). Mth./Qt. denotes
which month within the quarter the nowcast was made. Asterisks indicate p-values of the Diebold and Mariano (1995) test
with MF-VAR as the benchmark model, with levels of significance ∗ (10%), ∗∗ (5%), ∗∗∗ (1%).

prior to the pandemic, we find that MF-BAVART nowcasts better than the linear MF-VAR.

If we consider the properties of our density nowcasts using LPS as the evaluation metric, the

superior performance of MF-BAVART holds for each month within the quarter and for every

country. The nowcast improvements provided by MF-BAVART are statistically significant using

the Diebold and Mariano (DM, 1995) test.10 For point nowcast performance, RMSEs indicate

that MF-BAVART is outperforming the MF-VAR, but the nowcast improvements tend not to

be statistically significant.

When we turn to the right panel of Table 3, which includes the pandemic period, we tend

to see even larger improvements in the nowcast performance of the MF-BAVART relative to the

MF-VAR. Note in particular the huge improvements found using LPS (a measure based on the

entire predictive density) which occur for every country and for every month within the quarter.

In the right panel of the table, differences in LPS between the MF-BAVART and the MF-VAR

are typically measured in the hundreds whereas in the left panel they are typically measured

in the tens. Given the relationship between log predictive likelihoods and marginal likelihoods,

these findings constitute extremely strong evidence in favor of the MF-BAVART. Thus, standard

Bayesian model comparison methods are showing strong evidence that MF-BAVART is handling

the pandemic better than the MF-VAR. Assessing statistical difference by means of DM tests

points towards superior predictive capabilities in terms of LPS at the 10 percent significance

10We would like to stress that the DM test provides only a rough measure of statistical accuracy. This is
because we use an expanding estimation sample and the number of observations in the hold-out period is quite
low. Moreover, the DM test is conservative when applied to short-term forecasting problems.
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level for the majority of countries (except France) and months within the quarter.

4.2.2 A Deeper Examination of why MF-BAVART is Forecasting so Well

RMSEs are not as consistently favorable to the MF-BAVART as LPSs are when the pandemic

observations are included. This indicates that the benefits of using the non-parametric approach

lie largely in its ability to better model second and higher predictive moments for the extreme

observations for the first half of 2020. More precisely, once we move into the pandemic period

our model yields wider predictive intervals. And it produces these wider predictive distributions

in a timely manner.

To explain why BART is producing these features, note that BART handles outliers either

through creating a new terminal node or by adding trees. The corresponding nodes (either in

an existing complicated tree or a newly grown tree) will feature very few observations (often

only one or two). This implies little information in the likelihood which is coupled with a large

prior variance (mainly driven by our data-based prior discussed in Section 2) thus leading to a

large posterior variance.

We empirically demonstrate this effect in Figure 3. This plots the posterior interval width

(defined as the difference between 5th and 95th percentiles of the posterior distribution) of latent

GDP against the leverage for all T values of each. The leverage values lt (t = 1, . . . , T ) are the

diagonal elements of the projection matrix X(X ′X)−1X ′. Since parts of X are unobserved in

our MF model, we compute the leverage scores for each draw of the latent quantities and then

compute the posterior mean of the scores.11

The figure clearly shows that there exists a positive relationship between leverage and

posterior uncertainty. This implies that if we observe outlying observations (such as during

the pandemic), our model yields wider credible sets. This feature is especially pronounced

during the pandemic (the red dots in the figure) but we also find substantial evidence of a

similar relationship during the global financial crisis (the blue dots). We conjecture that this is

the main mechanism at work that yields improved predictive distributions through sharp and

timely increases in the predictive variance.

Adding more trees (i.e., increasing S) to capture the pandemic-related outliers will further

increase the predictive variance relative to a model which sets S small. To support this statement

consider Figure 4 which shows log predictive likelihoods (LPLs) by period for the first two

quarters of 2020, with nowcasts updated each month for all four countries. The lines in this

figure vary in the number of trees used, ranging from a single tree to 250 trees. While we

11Plugging in the posterior mean of the latent states to compute the leverage values leads to results which are
qualitatively very similar.
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Figure 3: Posterior interval width of latent GDP versus leverage.
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Notes: The scatterplot shows the posterior interval width (defined as the difference between the 5th and 95th

percentiles of the posterior distribution) against leverage. The red dots refer to the pandemic observations and
the blue dots refer to the global financial crisis (i.e., 2008M06 to 2009M03) while the solid black line is the line of
best fit.

observe several differences, these tend to become smaller the more trees we include, with 250

trees indicating superior performance in almost all cases. However, once we get to 150 trees,

further forecast improvements tend to be small.

Another reason for its good performance is that BART is able to detect these tail events

not only through “remembering” partitions of the covariate space during certain periods such as

the global financial crisis but also through recognizing that specific combinations of the covariates

have not been observed in the past and deserve creating a new tree (or terminal node within a

single tree). Again, such a new tree (or terminal node) will likely be equipped with relatively
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Figure 4: Log predictive likelihoods during the first two quarters of the pandemic for different
numbers of trees.
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month during the quarter when the nowcast is produced. S refers to the number of trees used for BART, with
S = 250 being the benchmark specification used for our empirical work.

few observations and little information on the conditional mean function. This, in turn, will

again (correctly) lead to inflated posterior intervals.

4.2.3 Assessing Model Calibration using Probability Integral Transforms

The preceding sub-section compared the relative performance of the MF-BAVART to the MF-

VAR, but did not present any evidence on the nowcast performance of either in an absolute

sense. In the Online Appendix, we provide graphs of the nowcasts of both approaches plot-

ted against realized GDP growth for the four countries and three monthly nowcasts within

each quarter. An examination of them indicates that the MF-BAVART’s nowcasts are better

calibrated, particularly for Spain.

In this sub-section, we investigate this issue more formally using Probability Integral

Transforms (PITs). In particular, we follow a common practice (e.g., Clark, 2011) and produce

PITs for our nowcasts and transform them using the inverse of the c.d.f. of a standard Gaussian

distribution. We denote these transformed PITs as rt for the time of our nowcast evaluation

period. Perfectly calibrated nowcasts should lead to rt having mean zero, variance one and

being uncorrelated over time. We calculate the sample mean (labeled µ in the tables), variance

(labeled σ2) and estimated autoregressive coefficient (labeled AR(1)). Table 4 displays these

summary statistics for the sample through 2019Q4 and the full sample, respectively.
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Table 4: Summary statistics of transformed PITs.

Through 2019Q4 Through 2020Q2

MF-BAVART MF-VAR MF-BAVART MF-VAR

Mth./Qt. 1 2 3 1 2 3 1 2 3 1 2 3

DE
µ 0.44 0.37 0.45 0.83 0.91 0.87 −0.48 0.06 0.12 −0.27 0.43 0.39
σ2 3.59 3.52 3.12 6.97 6.85 4.14 22.97 5.20 5.23 35.58 10.87 8.79
AR(1) −0.33 −0.32 −0.37 −0.29 −0.15 −0.18 0.83 −0.07 −0.12 0.60 0.08 0.04

ES
µ −0.25 −0.66 −0.56 −0.29 −0.73 −0.58 −1.45 −1.45 −1.31 −1.55 −1.97 −1.72
σ2 2.33 2.52 2.77 10.56 8.60 7.06 30.64 19.79 19.77 41.35 42.65 36.42
AR(1) 0.71 0.51 0.56 0.72 0.65 0.58 1.24 0.29 0.24 0.69 0.52 0.45

FR
µ 0.34 0.35 0.33 0.49 0.69 0.55 −0.70 −0.76 −0.3 −0.57 −0.10 −0.16
σ2 3.34 3.02 3.50 5.53 5.07 4.54 24.37 40.29 14.73 26.77 18.47 16.35
AR(1) 0.17 0.15 −0.06 0.19 0.12 0.09 0.93 0.22 0.28 0.83 0.46 0.37

IT
µ −0.10 −0.05 0.01 −0.05 0.06 0.18 −0.96 −0.79 −0.74 −1.45 −0.99 −0.84
σ2 1.54 1.38 1.17 5.67 4.45 3.09 19.58 17.51 17.38 47.28 30.66 33.35
AR(1) 0.60 0.46 0.32 0.58 0.40 0.30 0.39 0.23 0.21 0.51 0.35 0.20

Notes: Mth./Qt. denotes which month within the quarter the nowcast was made. µ, σ2 and AR(1) denote the sample
mean, variance and AR(1) coefficient of the transformed probability intergral transforms (PITs).

Beginning with the linear MF-VAR, note that even in the pre-pandemic sample, there is

some evidence of poor calibration. For the sample mean, the point estimates are consistently

well away from zero. The sample variances are often substantially higher than one indicating

the predictive variance of the linear model is too small. There is sometimes evidence of autocor-

relation in rt. When we move to the full sample, these problems get much worse, particularly

for the sample variance of rt which now becomes very large.

If we turn to the MF-BAVART for the sample ranging through 2020Q2, it can be seen

that the nowcasts are better calibrated. Even for the full sample, the sample mean of rt is

often close to zero. The estimated AR(1) coefficient often indicates autocorrelation in the first

month per quarter, while second and third month nowcasts indicate more favorable calibration.

It is the case that the sample variance of rt is still too high, but to a much lesser extent than

for the MF-VAR. Thus, use of the MF-BAVART has gone a large way towards improving the

calibration problems of the MF-VAR, even if it has not completely fixed them.

4.2.4 A Closer Look at the Pandemic Period

In this sub-section, we provide additional insight as to how MF-BAVART is nowcasting in the

two pandemic quarters. In addition to taking a closer look at the densities produced by the

MF-BAVART and MF-VAR models (labeled “Benchmark” models in the following figures) of

the preceding sub-sections, we also produce results for an eight dimensional MF-BAVART which

adds the two pandemic variables (see Sub-section 4.1, this is labeled the “Pandemic” model in
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Table 5: Log predictive likelihoods for MF-BAVART for each month within the first two
quarters of 2020.

Benchmark Pandemic

2020Q1 2020Q2 2020Q1 2020Q2

Mth./Qt. 1 2 3 1 2 3 1 2 3 1 2 3

DE −29.6 −22.6 −32.2 −349.8 −6.3 −4.9 −10.9 −2.3 −12.4 −4.2 −3.8 −3.5
ES −190.4 −337.3 −321.6 −538.3 −6.7 −5.4 −77.8 −94.3 −3.3 −6.7 −4.8 −4.2
FR −925.4 −721.2 −696.6 −1918.6 −4.1 −4.1 −346.4 −15.3 −107.4 −9.1 −4.6 −4.0
IT −319.4 −291.8 −307.5 −6.3 −3.8 −3.6 −92.5 −5.7 −29.6 −4.6 −3.7 −4.0

Notes: “Benchmark” refers to the information set described above in the context of our main nowcast evaluation. “Pan-
demic” includes further variables measuring infection rates and Google mobility trends. Mth./Qt. denotes which month
within the quarter the nowcast was made.

the figures).12

In Sub-section 4.2.1, we showed that (with one exception) the benchmark MF-BAVART

produces greatly superior predictive likelihoods relative to the MF-VAR during the six pan-

demic months. Table 5 offers additional insight by comparing log predictive likelihoods for the

benchmark and pandemic versions of the MF-BAVART model. It can be seen that adding the

pandemic variables often improves the nowcasting performance of the MF-BAVART. There are

several exceptions to this, but in the crucial pandemic months of March, April and May the

inclusion of pandemic variables is beneficial in all four countries. Thus, despite the very short

time series and the very simple way these variables are included in the model, BART finds a

way to usefully incorporate the information they contain.

One interesting result is that both time series even improve nowcasts produced in January

and February 2020. Inspection of the pandemic time series reveals that all countries have

reported the first infections already at the end of January. Since we assume that the nowcasts

are always produced towards the end of each month, BART is essentially using this increase from

zero to very few infections in combination with deteriorating values in the PMI, car registrations

and the ESI. As we will show below, this does not signal a downturn in GDP but merely

reflects the fact that uncertainty surrounding the predictive distribution is increasing (which

also happens technically because the size of the model is increased as well). And this is beneficial

for nowcasting.

Figure 5 plots the predictive densities themselves for the three models for the first six

months of 2020. The key general finding is that, as expected, MF-BAVART is much more

flexible than the MF-VAR. Particularly in 2020Q2, the predictive densities it produces tend to

be much more dispersed, feature fatter tails, are often asymmetric and even sometimes multi-

12Since the pandemic variables are non-zero for an extremely short time and feature rapid shifts, the MF-VAR
was not capable of handling them without substantial prior tuning and hence we do not include results from the
MF-VAR using the pandemic variables.
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modal. This contrasts with the MF-VAR where the predictive densities tend to be closer to

Gaussian densities.

Figure 5: Predictive densities for the first two quarters of 2020 across countries.
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Notes: “Benchmark” refers to the information set described above in the context of our main nowcast evaluation.
“Pandemic” includes further variables measuring infection rates and Google mobility trends. The black vertical
line marks zero.

In light of the recent interest of macroeconomics in models involving asymmetries and

multi-modalities (see, e.g., Adrian et al., 2019a,b) this feature of the MF-BAVART is particularly
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attractive and is the source of the improvements in nowcast performance during the pandemic.

If we compare the benchmark and pandemic versions of the non-parametric model, a clear

pattern emerges. As the pandemic hits, the predictive densities for the pandemic model quickly

become much more dispersed than those of the benchmark model. The latter, in turn, are more

dispersed than those of the linear model. BART is deciding to incorporate information in these

short time series in such a way that the predictive densities reflect the increased uncertainty.

This is due to the fact that inclusion of these two additional very short time series is akin to

adding a time-varying intercept to the model with a rather large state innovation variance from

January 2020 onward. And this random intercept term scales up the variance of the predictive

distribution and thus improves density nowcasts (especially in the beginning of the pandemic

period).

5 Summary and Conclusions

MF-VARs have been a standard tool for producing timely, high frequency nowcasts of low

frequency variables for several years. With the arrival of the COVID-19 pandemic of 2020 the

need for such nowcasts has become even more acute. However, conventional linear MF-VARs

nowcast poorly during the pandemic due to their inability to effectively deal with the extreme

observations that have occurred. In this paper, we have developed the MF-BAVART which is a

non-parametric model using additive regression trees. MF-BAVART can be cast as a non-linear

state space model. We develop an approximate MCMC algorithm where the parameters defining

the conditional mean of the VAR are drawn using a standard BART algorithm and, conditional

on these, the states are drawn using a linear approximation. This linear approximation is taken

from the machine learning literature on black-box models and we use simulations to show that

it also works well for a DGP that closely matches the evolution of GDP during the pandemic.

Our nowcasting exercise, involving four major euro area countries, shows that MF-BAVART,

with few exceptions, performs better than the linear MF-VAR at all times in our sample, with

major nowcasting benefits during the pandemic. We show how and why this occurs by providing

a detailed comparison of nowcast densities in the first six months of 2020.

The techniques outlined in this paper have a wide range of potential applications, as they

can be applied to any non-linear and non-parametric learner commonly used in the literature.

Our focus on using BART is motivated by its strong performance in various applications (see,

e.g., Bleich et al., 2014; Linero, 2018; Kapelner and Bleich, 2015) as well as its flexibility in

handling outliers. As a fruitful avenue for further research one could assess how different learners

perform and then combine them using Bayesian model averaging techniques.
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Appendix

A Equation-by-Equation Estimation of the VAR

In this Appendix we show how to rewrite the VAR as a system of unrelated regression models.

This approach has the advantage that the computational burden is drastically reduced since we

can perform equation-by-equation estimation. Notice that the first equation of Eq. (2) can be

written as:

y1t = f1(Xt) + η1t, η1t ∼ N (0, σ2
1).

The second equation is given by:

y2t = f2(Xt) + q21η1t + η2t, η2t ∼ N (0, σ2
2).

In general, the jth > 1 equation can be written as:

yjt = fj(Xt) + q′jZjt + ηjt, ηjt ∼ N (0, σ2
j ). (A.1)

This implies that, conditional on the shocks to the previous j−1 equations, the jth equation is a

standard regression model that features a non-parametric part given by fj(Xt) and a regression

part q′jZjt with qj = (qj1, . . . , qjj−1)′ and Zjt = (η1t, . . . , ηj−1t)
′. The (j − 1)-dimensional

vector qj stores the first j − 1 elements of the jth row of Q. These equations are conditionally

independent and standard MCMC techniques can be readily applied.

Alternative algorithms replace the shocks with the contemporaneous values of yt. This

introduces order dependence which we avoid by conditioning on the shocks. Thus, we are using

a standard sampling algorithm that is commonly used to sample from the multivariate Gaussian

(Carriero et al., 2019).
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Online Appendix

A Additional Empirical Results

A.1 Log Predictive Scores Over Time

The LPS is the preferred comparison metric for many Bayesians. To investigate patterns in it

more deeply, consider Figures A.1a, A.1b, A.1c and A.1d which plot cumulative sums of log

predictive likelihoods over time. There tends to be a pattern where the advantage in nowcast

performance of the MF-BAVART relative to the MF-VAR steadily and gradually increases over

time through 2019. Then in 2020, there tends to be a large jump in the LPS’s of the MF-

BAVART relative to the MF-VAR. There is only one exception to this: French nowcasts made

by the MF-BAVART in the first month of each quarter show a large jump in 2020Q1, but then

display a fall in 2020Q2. Thus, we are doing a poor nowcasting job in April 2020 for France

relative to the linear model. But with this one exception, the MF-BAVART model is doing an

excellent job of handling the pandemic.

A.2 Predictive Densities and Actual Realizations

Here, we plot the nowcasts against the realizations. Our model produces monthly nowcasts of

GDP growth which are converted into quarterly nowcasts to be comparable to the realization.

To improve readability, we present results through 2019Q4 and through 2020Q2 as separate

graphs.

A.3 Estimates of the Latent States using FFBS compared to using BART

In this sub-section, we briefly compare the posterior density obtained from using FFBS to the

ones we obtain by using the estimated BART model. This serves to illustrate that both ap-

proaches (i.e. the one based on linearizing the non-linear model and the actual non-linear model)

yield predictive distributions which are very similar. Notice that the main difference is that the

FFBS-based posterior distribution features slightly tighter credible sets. These differences, how-

ever, only have a minor impact on the quality of the predictive density.
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Figure A.1: Log predictive scores for MF-BAVART (solid line) relative to MF-VAR (dashed).

(a) DE

M1 M2 M3

2012 2014 2016 2018 2020 2012 2014 2016 2018 2020 2012 2014 2016 2018 2020

0
5

10
15
20

0

20

40

60

0

20

40

60

U
nt

il 
20

19

M1 M2 M3

2012 2014 2016 2018 2020 2012 2014 2016 2018 2020 2012 2014 2016 2018 2020
0

20

40

60

0
25
50
75

0
50

100
150
200

In
cl

. 2
02

0

(b) ES

M1 M2 M3

2012 2014 2016 2018 2020 2012 2014 2016 2018 2020 2012 2014 2016 2018 2020
0

20
40
60

0
25
50
75

0
25
50
75

100
125

U
nt

il 
20

19

M1 M2 M3

2012 2014 2016 2018 2020 2012 2014 2016 2018 2020 2012 2014 2016 2018 2020
0

100
200
300

0
100
200
300
400

0

500

1000

1500

In
cl

. 2
02

0

(c) FR

M1 M2 M3

2012 2014 2016 2018 2020 2012 2014 2016 2018 2020 2012 2014 2016 2018 2020

−5
0
5

10
15

0
10
20
30

0
10
20
30

U
nt

il 
20

19

M1 M2 M3

2012 2014 2016 2018 2020 2012 2014 2016 2018 2020 2012 2014 2016 2018 2020
0

100
200
300
400

0
100
200
300
400

0

200

400

600

In
cl

. 2
02

0

(d) IT

M1 M2 M3

2012 2014 2016 2018 2020 2012 2014 2016 2018 2020 2012 2014 2016 2018 2020
0
5

10
15
20

0
10
20
30

0

20

40

U
nt

il 
20

19

M1 M2 M3

2012 2014 2016 2018 2020 2012 2014 2016 2018 2020 2012 2014 2016 2018 2020
0

100

200

0
50

100
150
200

0
100
200
300
400
500

In
cl

. 2
02

0

Notes: Samples ending in 2019Q4 are marked “Until 2019,” those ending in 2020Q2 are indicated as “Incl. 2020.”
M1, M2 and M3 refer to the month during the quarter when the nowcast was produced.
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Figure A.2: Predictive densities for Germany.
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Notes: Columns are months per quarter in which the nowcast was produced. Realizations are marked as X’s, and
shown alongside the estimate for the posterior median and the 68 percent credible set.
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Figure A.3: Predictive densities for Spain.
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Notes: Columns are months per quarter in which the nowcast was produced. Realizations are marked as X’s, and
shown alongside the estimate for the posterior median and the 68 percent credible set.
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Figure A.4: Predictive densities for France.
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Notes: Columns are months per quarter in which the nowcast was produced. Realizations are marked as X’s, and
shown alongside the estimate for the posterior median and the 68 percent credible set.
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Figure A.5: Predictive densities for Italy.

(a) Until 2019
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Notes: Columns are months per quarter in which the nowcast was produced. Realizations are marked as X’s, and
shown alongside the estimate for the posterior median and the 68 percent credible set.
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Figure A.6: Comparison of FFBS-based and BART-based estimates of the monthly GDP
indicator.
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Notes: The figure shows the 16th, 50th and 84th precentiles of the posterior distribution of the latent monthly
GDP indicators using Forward-Filtering Backward-Sampling (FFBS, in orange) and based on the estimated BART
specification (in black). The dashed red line marks the beginning of the pandemic (March 2020).
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B MCMC Diagnostics

To assess convergence properties of our sampling algorithm, we present inefficiency factors (IF)

and the Raftery and Lewis (1992) diagnostic (RL) of the total number of runs required to achieve

a certain level of precision. The quantiles for the latter are set to 0.025, the degree of accuracy

is 0.025, and the probability of attaining this required accuracy is 0.95.

Table B.1 shows the corresponding measures across all countries for the final data vintage.

For Ã we compute the median across all coefficients, det(Σ) is the determinant of the covariance

matrix. For yq,2005:2019, we present the median over time from 2005M03 to 2019M12, while for

yq,2020 we show the median over time from 2020M01 to 2020M06.

IFs and RLs signal an overall strong performance of the algorithm. Inefficiency factors are

below five for all parameters and latent states except for yq,2020 in Spain. Considering the RL

diagnostic, we find that the number of iterations required is far below the total number of iter-

ations considered for most parameters. Overall the convergence statistics indicate satisfactory

performance of our algorithm.

Table B.1: Summary statistics of MCMC diagnostics.

DE ES FR IT

IF RL IF RL IF RL IF RL

Ã 2.224 3951 2.672 3940 2.693 3994 2.507 3983
det(Σ) 4.058 4338 4.870 4340 4.708 4314 4.453 4458
yq,2005:2019 1.538 3802 1.353 3782 1.411 3761 1.554 3802
yq,2020 3.458 3792 5.308 8937 4.247 8258 4.545 11830

Notes: For Ã we compute the median measures across all coefficients, for yq,2005:2019, we present the median over
time from 2005M03 to 2019M12, while for yq,2020 we show the median over time from 2020M01 to 2020M06. IF
and RL denote inefficiency factors and the Raftery and Lewis (1992) diagnostic, respectively.
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