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Abstract 

Fiber-reinforced composite materials are widely used in many different industries due to their superior properties with 
respect to traditional metals including their light weight, corrosion resistance, high strength, impact resistance, etc. 
Fiber-reinforced composite materials are composed of a strong fiber material, which mainly carries the applied load, 
and soft matrix material, which transfers the load to the fiber material and keep the fibers together. Macroscopic 
analysis of fiber-reinforced composite materials is done by utilising the homogenised material properties which mainly 
depends on individual material properties of fiber and matrix. In this study, in addition to the effect of individual 
material properties of constituents, the effect of the shape of fibers (inclusions) on homogenised properties is 
investigated by using a new methodology called peridynamics. 
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classical continuum theory with integral operator which makes the Peridynamic theory capable of admitting 
discontinuity in the response field. As a result, Peridynamic theory has been successfully applied directly to fracture 
problems (Basoglu et. al., 2019; De Meo et. al., 2016, 2017; Imachi et. al., 2019, 2020; Kefal et. al., 2019; Liu et. al., 
2018; Madenci and Oterkus, 2014; Oterkus et. al., 2010a,b, 2012, 2014; Oterkus and Madenci, 2012a,b; Vazic et. al., 
2017, 2020; Wang et. al., 2018; Yang et.al., 2019; Zhu et. al., 2016).  
   The increasing requirement for cost efficiency in engineering systems is adding complexity to design requirement. 
This requirement is making weight saving a critical selection driver in the design of systems in offshore, civil, 
automobile, and aerospace industries. In response, composites are nowadays used extensively in a wide spectrum of 
applications. This is because composites offer several attractive attributes that make them better alternative to 
traditional materials such as steel and aluminium. This has resulted in a growing interest to apply Peridynamics in 
studying the behaviour of composites (Oterkus and Madenci, 2012; Hu et. al., 2011, 2014, 2015; Guo et. al., 2019; 
Jiang et. al., 2019; Askari et. al., 2006; Radel et. al., 2019; Baber et. al., 2018; Diyaroglu et. al., 2016; Oterkus, 2010; 
Ren et. al., 2018; Rokkam et. al., 2018). This growing interest has also motivated the development of homogenization 
schemes for composites in the framework of Peridynamics. The first attempt at extending the classical locally elastic 
computational homogenization to the Peridynamic framework was undertaken by (Madenci et. al., 2017) in which the 
Peridynamic unit cell was developed and a microstructure informed effective properties of composites were computed. 
A volumetric Periodic Boundary Condition for computational homogenization of peristatic periodic structured 
composites was proposed in (Buryachenko, 2019). Utilizing a new bond based PD model developed in (Madenci et. 
al., 2019), a scheme for homogenization of microstructures with orthotropic constituents in finite element framework 
was proposed in (Diyaroglu et. al., 2019). A method for Representative Volume Element homogenization based on 
the bond based PD theory was also proposed in (Xia et. al., 2019).  
   The focus in this work is to study the effect of inclusion shape on the effective properties of composite materials. 
To achieve this goal, a homogenization scheme is developed and validated and a method of recovering stress field by 
postprocessing the results obtained from PD simulation is proposed. 
 

2. Bond-based peridynamics 

   In the ‘bond-based’ Peridynamics, if B is a peridynamic body, then the motion of every point Bx is governed by 
the equilibrium equation: 
 
                  , , , , ,
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where u is the acceleration vector field, u is the displacement vector field, Hx is the neighbourhood of the particle 
located at point x and f is a vector valued pairwise force function and represents the force per unit volume squared 
that particle x  exerts on particle x . If linear elastic behaviour is assumed, then Eq. (1) specialises to  
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where :C B B   is a tensor valued micromodulus function that contains intrinsic material properties of B . The 
PD equilibrium equation Eq. (1) or its linearized version Eq. (2) give rise to integro-differential equations that are 
defined within the material horizon. Different numerical techniques have been developed to approximate the solution 
of Eq. (1) or Eq. (2) such as the finite element discretization methods (Chen and Gunzberger, 2011; Wang and Tian, 
2012), the collocation methods (Evangelatos and Spanos, 2011; Wang and Tian, 2014) and meshfree methods (Seleson 
and Littlewood, 2016; Silling and Askari, 2005). The numerical approximation adopted in this work is meshfree 
method proposed in (Silling and Askari, 2005). In this numerical approximation scheme, the region is discretized into 
nodes. Each node i is assigned a volume iV and a material model so that the discrete form of Eq. (2) is given by 
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where iN  is the number of particles within the horizon of the particle located at ix . 

3. Stress computation 

   Although attempts have been made in developing the concept of stress in the bond based Peridynamic theory 
(Silling, 2000; Lehoucq and Silling, 2008; Fallah et. al., 2020; Weckner and Abeyaratne, 2005), the notion has 
generally played less fundamental role in the development and application of the theory. However, since the notion 
of stress plays a fundamental role in developing computational homogenization, an attempt will be made in this work 
to develop a procedure to recover stress values at nodal locations. In this scheme, a finite element mesh is 
superimposed on the discretized PD model as shown in Fig. 1. 
 
 

 

Fig. 1. (a) PD discretization, (b) Superimposition of finite element mesh on PD nodes, (c) Finite element mesh 

Once the nodal displacement is obtained from Eq. (3), the procedure of extracting stresses from the displacement 
result is basically a postprocessing operation and proceeds in the same way as in finite element method. Assuming a 
linear elastic material, the components of the stress field are given by: 
 
        ij ijkl klD                                                                                                                                                            (4)     
 
where ijklD are the components of the fourth-order stiffness tensor and kl are the components of the strain. The strain 
field in an element is related to the displacement field by 
 
            eB u                                                                                                                                                         (5)     
 
where  B is the strain displacement matrix containing the derivatives of the shape functions and  eu  is the nodal 
displacement of an element. Substituting Eq. (4) into Eq. (5) yields: 
 
             eD B u                                                                                                                                                  (6)     
 

4 Author name / Structural Integrity Procedia  00 (2019) 000–000 

4. Homogenisation 

   The objective of this homogenization scheme just like most homogenization schemes is to replace a heterogeneous 
medium with an equivalent homogeneous continuum. The equivalent homogeneous medium is expected to have the 
same averaged mechanical properties as the heterogeneous medium. To achieve this transformation, the problem is 
divided into two scales. The first scale is the microscopic scale. Here, the region occupied by the original 
heterogeneous medium is divided into Representative Volume Elements (RVEs) (Hill, 1963). The second scale is the 
macroscale in which the original heterogeneous medium is replaced with an equivalent homogeneous medium. 

Let the region occupied by a RVE in the microscale be  , and let   and V  be the boundary surface and volume 
of the RVE, respectively. Let this RVE be assigned to a point in the region occupied by the whole medium. Let  be 
the region occupied by a homogeneous representation of the original medium and let   and V be the boundary 
surface and volume of this region. Hereinafter, quantities associated with the macroscale will be denoted with an 
overbar. The goal in this homogenization scheme is to connect the macroscopic quantities ( and  ) through the 
volume averaging of their microscopic counterparts ( and  ). This is achieved using the standard averaging tools 
of micromechanics, the Hill-Mandel theorem and application of appropriate boundary conditions. 
 
4.1. Representative Volume Element (RVE) 
 
   Central to any discussion on computational homogenization is the concept of the Representative Volume Element 
(RVE). The notion of RVE adopted in this work is the working definition given in (Yu, 2016) as any block of material 
used in micromechanical analysis to find the effective properties of a composite material with the objective of 
replacing it with an equivalent homogeneous materials. In this sense, the RVE can be thought of as a bridge in a two-
scale homogenization scheme. On the one hand, the RVE represents the domain of analysis in the microscale and on 
the other hand it is considered as a material point in the macroscale analysis. In other words, the composite will be 
defined in two scale: A microscopic scale defined by the RVE and a macroscopic scale defined by an equivalent 
homogenous material. This two-scale notion immediately motivates the need for average quantities. 
 
4.2. Average theorem 
 
   Let V  represents the volume of the RVE, then the volume average of a quantity Q over the RVE is 
 

        
1

V

Q Q dV
V

                                                                                                                                                         (7)     

 
Eq. (7) provides the tool needed to state the average strain and stress theorems: 
 
Average strain theorem: The average strain theorem can be stated as follows: 
 
If a continuous body with perfect bonding between constituents is subjected to a homogenous boundary displacement 

0 0
i ij ju x generated by a constant strain tensor 0

ij  along the boundary, then the average of the strain field inside the 
body is equal to 0

ij . This statement can be expressed as: 
 

        01
ij ij ij

V

dV
V

                                                                                                                                                 (8)     

 
Average stress theorem: The statement of the average stress theorem can be stated as follows:  
If a heterogeneous body, in static equilibrium, is subjected only to a homogenous boundary traction 0 0

i ij jt n for 

which 0
ij  is a constant stress tensor along the boundary, then the average of the stress field inside the body is equal 
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If a heterogeneous body, in static equilibrium, is subjected only to a homogenous boundary traction 0 0

i ij jt n for 

which 0
ij  is a constant stress tensor along the boundary, then the average of the stress field inside the body is equal 
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to 0
ij . This statement can be expressed mathematically as 
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where ij and ij  are the pointwise strain and stress fields in the RVE. Depending on which of the average theorems 
is used, a homogenization problem could be either displacement driven in which case Eq. (8) is used or traction driven, 
in which case Eq. (9) is used. For the purpose of this work, the displacement driven approach will be utilised, hence 
all further development of the homogenisation scheme will be based on the displacement driven approach. 
 
Hill’s lemma and Hill-Mandel macrohomogeneity condition: Hill’s lemma is given as 
 

         , ,
1

ij ij ij ij ij i j ij i j ij ij ij ij
V

u u dV
V

                                                                                                 (10)     

 
If the Hill-Mandel macrohomogeneity condition is satisfied, then the right-hand side of Eq. (10) vanishes so that 
 
        ij ij ij ij                                                                                                                                                       (11)     
 
Noting that equation ij ij   is twice the value of the average strain energy U of the RVE, Eq. (11) allows us to write: 
 

        ij
ij

U






                                                                                                                                                           (12)   

 
Let the constitutive relation of the equivalent homogeneous medium be  
 
        *

ij ijkl klD                                                                                                                                                          (13)     
 
where *

ijklD represents the effective stiffness matrix. Considering Eq. (12) and Eq. (13), the effective stiffness matrix 
may be written as 
 

        
2

* ij
ijkl

kl ij kl

UD

  
 

 
  

                                                                                                                                        (14)     

 
4.3. Boundary condition 
 
   The boundary condition commonly applied in the analysis of an RVE is the homogeneous boundary conditions. 
This boundary condition when applied on the surface of a homogeneous body produces a homogeneous field. There 
are three types of homogeneous boundary conditions. These are homogeneous displacement, homogeneous traction 
and periodic boundary conditions. Let V be the volume of the RVE and V be the boundary of V :  
The Homogeneous Displacement Boundary Condition (HDBC) is obtained by imposing on the boundary surface 
displacement of the form: 
 
        0 0

i ij j ju x x V                                                                                                                                  (15)     
 
The Homogeneous Traction Boundary Condition (HTBC) is obtained by imposing on the boundary surface a traction 
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of the form: 
 
        0 0
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In the Periodic Boundary Condition (PBC), the displacement field 0

iu over V  is of the form: 
 
        0 0 0

i ij j i ju x u x V                                                                                                                             (17)     
 
where 0

iu is a displacement fluctuation that is assumed to be periodic over the RVE. That is, 0
iu  takes the same value 

at two homologous points on opposite face of the RVE. 

5. Numerical results 

In this section, a numerical example of homogenization problem will be solved to validate the PD homogenization 
scheme to be used. Thereafter, a numerical problem will be solved to study the effect of inclusion shape on the 
effective properties of composites. 
 
5.1. Model validation  
 
Before proceeding to achieve the objective of this work, a numerical problem will first be solved to validate the 
homogenization scheme. Consider a composite with long parallel cylindrical fibres as shown in Fig. 2a. The 
corresponding 2D RVE is depicted in Fig. 2b. The material parameters of the matrix and fibre are as follows: 

200GPafiberE  , 1/ 3fiber  , 100GPamatrixE  , 1 / 3matrix  . The problem is solved for fibre volume fraction 
0.6f  . The RVE is subjected to a PBC. 

 

 

Fig.2. (a) Composite material, (b) RVE 

This homogenization problem was solved using both Finite Element Method (FEM) and PD homogenization schemes. 
The deformed shape due to the application of loads on the RVE are shown in Fig. 3. The components of the effective 
stiffness tensor and hence the effective elastic modulus as obtained from the FEM and PD homogenization are shown 
in Table 1. 
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This homogenization problem was solved using both Finite Element Method (FEM) and PD homogenization schemes. 
The deformed shape due to the application of loads on the RVE are shown in Fig. 3. The components of the effective 
stiffness tensor and hence the effective elastic modulus as obtained from the FEM and PD homogenization are shown 
in Table 1. 
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Fig. 3. Deformed shape of the RVE (a) FEM (b) PD 

The effective elastic modulus obtained from both FEM and PD homogenization schemes from Table 1 shows that the 
PD homogenization scheme produces acceptable results. 
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Table 1. Result of homogenization using both FEM and PD for the purpose of model validation 

Effective Quantity FEM PD 
1111D  1.6244x1011 1.7062x1011 

1122D  0.5257x1011 0.6417x1011 

1112D  0.000x1011 0.0112x1011 

2211D  0.5257x1011 0.5808x1011 

2222D  1.6244x1011 1.7994x1011 

2212D  0.000x1011 0.5968x1011 

1211D  0.000x1011 0.0015x1011 

1222D  0.000x1011 0.0040x1011 

1212D  0.4781x1011 1.8117x1011 
Effective elastic modulus ��� 𝑃𝑃𝑃𝑃 1.4543x1011 1.5084x1011 

 
 
5.2. Effect of inclusion shape 
 
   To study the effect of inclusion shape on the effective properties of composites, a composite with long parallel fibres 
of different shapes is considered. The material parameters of the matrix and fibre are as follows: 200GPafiberE  , 

1/ 3fiber  , 100GPamatrixE  , 1 / 3matrix  . The problem is solved for fibre volume fraction 0.4f  and the RVE 
is subjected to a PBC. 
The deformed shape of the RVE for different inclusion shape is shown in Fig. 4 and the effective modulus and 
Poisson’s ratio for different inclusion shapes are presented in Table 2. A graph of perimeter of shape against the 
number of sides is shown in Fig. 5. 

Table 2. Effective properties 

Shape Area No of Sides Perimeter Poisson Ratio Effective modulus  
Circle 0.4  1 2.242 0.34 1.33x1011 
Triangle 0.4 3 2.883 0.34 1.37x1011 
Square 0.4 4 2.530 0.34 1.34x1011 
Pentagon 0.4 5 2.411 0.34 1.35x1011 
Hexagon 0.4 6 2.354 0.34 1.35x1011 
Heptagon 0.4 7 2.322 0.34 1.33x1011 
Octagon 0.4 8 2.303 0.34 1.32x1011 

Decagon 0.4 9 2.280 0.34 1.24x1011 
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Fig. 4. Deformed shapes of the RVE showing different inclusion shape 
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Fig. 5. Perimeter of the different inclusion shapes 

 

Fig. 6. Effective elastic modulus for different inclusion shapes 

The graph shown in Fig. 6 shows an interesting trend. Generally, for a constant surface area of the inclusion, the elastic 
modulus shows a decreasing trend as the number of sides of the shape of inclusion increases. The highest value of the 
effective elastic modulus was recorded for triangular inclusion while the use of a decagon yielded the lowest effective 
elastic modulus. 
 

6. Conclusions 

   In concluding, a bond-based PD homogenization scheme was developed to study the effect of inclusion shape on 
effective properties of composites. To validate the numerical scheme, results of homogenisation using this scheme 
were compared with those obtained using FEM. Results from both models show good agreement. Furthermore, 
analysis of the RVE using different inclusion shapes suggested a dependence of effective properties on shape of the 
inclusion. 
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