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Abstract 

As a new continuum mechanics formulation, peridynamics has a non-local character by having an internal length scale 
parameter called horizon. Although the effect of the size of the horizon has been studied earlier, the shape of the 
horizon can also be influential. In this study, the effect of horizon shape is investigated for both ordinary state-based 
and non-ordinary state-based peridynamics. Three different horizon shapes are considered including circle, irregular 
and square. Both static and dynamic analyses are studied by considering plate under tension and vibration of a plate 
problems. For both static and dynamic conditions, square shape could not capture accurate vertical displacements for 
ordinary-state based peridynamics. On the other hand, results obtained for all three horizon shapes agree very well 
with finite element analysis results for non-ordinary state-based peridynamics. 
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1. Introduction 

Classical continuum mechanics which is widely used in solid mechanics is facing difficulties for predicting crack 
propagation since its equations contain spatial derivatives of displacements and such derivatives are not defined along 
crack surfaces. To overcome this problem, a new continuum mechanics formulation, peridynamics (PD), was 
developed by Silling (2000) using integro-differential equations without spatial derivatives. Since then PD has been 
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utilized for the analysis of various challenging problems. Amongst these Imachi et. al. (2019) developed new transition 
bond concept and then applied it for crack arrest in Imachi et. al. (2020). Liu et. al. (2018) used peridynamics at nano-
scale and analyzed fracture behavior of zigzag graphene sheets. Oterkus et. al. (2010a) utilized peridynamics for 
damage analysis of bolted joint of composite structures based on the formulation presented in Oterkus and Madenci 
(2012a,b). PD has also been used for meso-scale analysis by De Meo et. al. (2016) and Zhu et. al. (2016) to predict 
fracture in polycrystalline materials. Moreover, Vazic et. al. (2017) and Basoglu et. al. (2019) investigated interactions 
between micro-cracks and macro-cracks. An interesting application of peridynamics is topology optimization of 
cracked structures which was presented by Kefal et. al. (2019). PD is also suitable for impact analysis such as the 
impact analysis of reinforced concrete considered by Oterkus et. al. (2012). Fatigue analysis is also possible in PD 
framework as shown in Oterkus et. al. (2010b). Simplified structures such as beams, plates and shells can also be 
represented by using peridynamics. Euler-Bernoulli beam formulation was developed by Diyaroglu et al. (2019) which 
was further extended to Kirchhoff plate formulation by Yang et. al. (2020). For Winkler foundations, Vazic et. al. 
(2020) introduced a model for Mindlin plates resting on Winkler foundations. Although PD formulations and classical 
finite element formulations have fundamental differences, PD formulations can be implemented in commercial finite 
element software packages as explained in Yang et. al. (2019). Peridynamics is not limited to mechanical analysis and 
can be used for the analysis of other fields. For instance, Diyaroglu et. al. (2017a) presented peridynamic diffusion 
formulation. Moisture is an important concern for the durability of electronic packages. Therefore, Oterkus et. al. 
(2014) and Diyaroglu et. al. (2017b) used PD for moisture analysis of electronic packages. Wang et. al. (2018) 
investigated the fracture evolution in lithiation process for electrodes of Lithium-Ion batteries. Corrosion can also be 
modelled by using peridynamics. De Meo et. al. (2017) investigated crack evolution starting from corrosion pit areas 
by using the formulation presented in De Meo  and Oterkus (2017). 

Another important difference between peridynamics and classical continuum formulation is the length scale 
parameter of peridynamics, horizon, which doesn’t exist in classical formulation. Horizon defines the range of non-
local peridynamic interactions. The size of the horizon has been investigated in various studies including Silling and 
Askari (2005), Bobaru and Hu (2012) and Wang et. al. (2020). However, the shape of the horizon can also be important 
and circular or spherical shape horizons are widely used. In this study, the effect of the shape of peridynamic horizon 
is investigated by considering various horizon shapes including circle, irregular and square for ordinary state-based 
and non-ordinary state-based peridynamic formulations under static and dynamic conditions. 

 

2. Peridynamic theory 

2.1. Ordinary state-based peridynamics 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Peridynamic forces in ordinary state-based peridynamics (Madenci and Oterkus, 2014). 
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utilized for the analysis of various challenging problems. Amongst these Imachi et. al. (2019) developed new transition 
bond concept and then applied it for crack arrest in Imachi et. al. (2020). Liu et. al. (2018) used peridynamics at nano-
scale and analyzed fracture behavior of zigzag graphene sheets. Oterkus et. al. (2010a) utilized peridynamics for 
damage analysis of bolted joint of composite structures based on the formulation presented in Oterkus and Madenci 
(2012a,b). PD has also been used for meso-scale analysis by De Meo et. al. (2016) and Zhu et. al. (2016) to predict 
fracture in polycrystalline materials. Moreover, Vazic et. al. (2017) and Basoglu et. al. (2019) investigated interactions 
between micro-cracks and macro-cracks. An interesting application of peridynamics is topology optimization of 
cracked structures which was presented by Kefal et. al. (2019). PD is also suitable for impact analysis such as the 
impact analysis of reinforced concrete considered by Oterkus et. al. (2012). Fatigue analysis is also possible in PD 
framework as shown in Oterkus et. al. (2010b). Simplified structures such as beams, plates and shells can also be 
represented by using peridynamics. Euler-Bernoulli beam formulation was developed by Diyaroglu et al. (2019) which 
was further extended to Kirchhoff plate formulation by Yang et. al. (2020). For Winkler foundations, Vazic et. al. 
(2020) introduced a model for Mindlin plates resting on Winkler foundations. Although PD formulations and classical 
finite element formulations have fundamental differences, PD formulations can be implemented in commercial finite 
element software packages as explained in Yang et. al. (2019). Peridynamics is not limited to mechanical analysis and 
can be used for the analysis of other fields. For instance, Diyaroglu et. al. (2017a) presented peridynamic diffusion 
formulation. Moisture is an important concern for the durability of electronic packages. Therefore, Oterkus et. al. 
(2014) and Diyaroglu et. al. (2017b) used PD for moisture analysis of electronic packages. Wang et. al. (2018) 
investigated the fracture evolution in lithiation process for electrodes of Lithium-Ion batteries. Corrosion can also be 
modelled by using peridynamics. De Meo et. al. (2017) investigated crack evolution starting from corrosion pit areas 
by using the formulation presented in De Meo  and Oterkus (2017). 

Another important difference between peridynamics and classical continuum formulation is the length scale 
parameter of peridynamics, horizon, which doesn’t exist in classical formulation. Horizon defines the range of non-
local peridynamic interactions. The size of the horizon has been investigated in various studies including Silling and 
Askari (2005), Bobaru and Hu (2012) and Wang et. al. (2020). However, the shape of the horizon can also be important 
and circular or spherical shape horizons are widely used. In this study, the effect of the shape of peridynamic horizon 
is investigated by considering various horizon shapes including circle, irregular and square for ordinary state-based 
and non-ordinary state-based peridynamic formulations under static and dynamic conditions. 
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Fig. 1. Peridynamic forces in ordinary state-based peridynamics (Madenci and Oterkus, 2014). 
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  Peridyamics is a new continuum mechanics formulation. A material point can interact with other material points 
inside its influence domain, horizon, in a non-local manner as shown in Fig. 1. According to ordinary state-based 
peridynamics, it is assumed that peridynamic forces between interacting material points are along the interaction 
direction but with different magnitudes. Moreover, the peridynamic forces are not only depending on the motion of 
interacting material points but also motion of material points inside their horizons. The equations of motion in ordinary 
state-based peridynamics can be written as (Madenci and Oterkus, 2014) 
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where  is density, u is acceleration, Hx is the horizon and b is the body load vector. In Eq. (1) t and t represent 

the peridynamic forces that the material points x and x exert on each other which are defined as 
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where y and y are the position of the material points x and x in the deformed configuration, respectively,   is the 

horizon size, and s is the stretch which is defined as  
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a, b and d are peridynamic parameters which can be expressed for 2-dimensional problems as 
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where E and   are elastic modulus and Poisson’s ratio, respectively, and h  is the thickness. The peridynamic 

dilatation,   is defined as  
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2.2. Non-ordinary state-based peridynamics 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Peridynamic forces in non-ordinary state-based peridynamics (Madenci and Oterkus, 2014). 

  As mentioned in the previous section, an assumption is made in ordinary state-based peridynamics regarding the 
direction of peridynamic forces being along the interaction direction. For non-ordinary state-based peridynamics, this 
assumption is relaxed so that interaction forces can be in arbitrary directions. Moreover, non-ordinary state based 
peridynamics is a suitable platform to incorporate classical material models in peridynamic framework. Peridynamic 
forces that the material points x and x exert on each other in non-ordinary state-based peridynamics can be written 
as 
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where  is the influence function,  P x is the first Piola-Kirchhoff tensor of the material point x , and  K x is the 
tensor of the material point x  which is defined as 
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with the symbol “  ” being the dyadic product. To calculate the first-Piola Kirchhoff tensor in peridynamic 

framework, it is essential to define the deformation tensor in peridynamic framework,  F x which can be written as 
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The original non-ordinary state-based peridynamics suffer from zero-energy mode problem. To overcome this 
problem, Silling (2017) introduced an additional stability term to peridynamic forces given in Eqs. (6a,b) as 
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In Eq. (9), G is a positive constant and c is the bond constant. 

3. Numerical results 

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Horizon shapes considered in this study, (a) circle, (b) irregular, (c) square. 
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To investigate the effect of horizon shape, three different horizon shapes were considered including circular, irregular 
and square shapes as shown in Fig. 3. Both static and dynamic analysis cases were studied for plate under tension and 
vibration of a plate problems.  

3.1. Plate under tension 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 4. Square plate subjected to tension loading. 

In the first problem case, a square plate subjected to tension loading was considered as shown in Fig. 4. The square 
plate has a 1m edge length and thickness of 0.01 m. The elastic modulus and Poisson’s ratio were specified as 200 
GPa and 1/3, respectively. A uni-axial loading condition of * 6200 10 Pa   in the x-direction at the right edge was 
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The original non-ordinary state-based peridynamics suffer from zero-energy mode problem. To overcome this 
problem, Silling (2017) introduced an additional stability term to peridynamic forces given in Eqs. (6a,b) as 
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In Eq. (9), G is a positive constant and c is the bond constant. 

3. Numerical results 

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Horizon shapes considered in this study, (a) circle, (b) irregular, (c) square. 
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To investigate the effect of horizon shape, three different horizon shapes were considered including circular, irregular 
and square shapes as shown in Fig. 3. Both static and dynamic analysis cases were studied for plate under tension and 
vibration of a plate problems.  
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Fig. 5. Variation of (a) horizontal displacements along the central x-axis and (b) vertical displacements along the central y-axis obtained by using 
ordinary state-based peridynamics. 

For numerical discretization, a uniform discretization size of 0.01mx  was utilized. The steady-state solution was 
obtained by utilizing Adaptive Dynamic Relaxation (ADR) (Madenci and Oterkus, 2014). The solution was first 
achieved by using ordinary state-based formulation. A horizon size of 3 x   was selected. Variation of horizontal 
displacements along the central x-axis and vertical displacements along the central y-axis for three different horizon 
shapes; circle, irregular and square, are shown in Fig. 5. Peridynamic results were compared against finite element 
analysis results obtained from ANSYS, a commercially finite element software. Although PD results of all horizon 
shapes agree well with ANSYS results for the horizontal displacements, square horizon shape case could not capture 
accurate vertical displacement results. 
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Fig. 6. Variation of (a) horizontal displacements along the central x-axis and (b) vertical displacements along the central y-axis obtained by using 
non-ordinary state-based peridynamics. 

 
The same problem case was also analyzed by using non-ordinary state-based peridynamics. A horizon size of 2 x  
was selected. Variation of horizontal displacements along the central x-axis and vertical displacements along the 
central y-axis for three different horizon shapes are shown in Fig. 6. As opposed to ordinary state-based peridynamics 
results, for all three horizon shapes peridynamics results agree very well with ANSYS results for non-non-ordinary 
state-based peridynamics.  
 

3.2. Vibration of a plate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7. Square plate subjected to initial uni-axial strain condition. 
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Fig. 7. Square plate subjected to initial uni-axial strain condition. 
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In the second problem case, the square plate subjected to initial uni-axial strain condition was considered as shown in 
Fig. 7. The square plate has a 1m edge length and thickness of 0.01 m. The elastic modulus, density and Poisson’s 
ratio were specified as 200 GPa, 7850 kg/m3 and 1/3, respectively. An initial uni-axial strain condition of 0 0.001t  
in the x-direction was applied whereas the left edge is fully fixed. 
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Fig. 8. Variation of (a) horizontal displacement and (b) vertical displacement of the material point located at (0.255 m, 0.255 m) with time 
obtained by using ordinary state-based peridynamics. 
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For numerical discretization, a uniform discretization size of 0.01mx  was utilized. The dynamic solution was 
obtained by utilizing explicit time integration with a time step size of 71 10 st    . The solution was first achieved 
by using ordinary state-based formulation. A horizon size of 3 x    was selected. Variation of horizontal and 
vertical displacements at a particular material point located at (0.255m,0.255m)  for the three different horizon shapes 
are shown in Fig. 8. Although PD results of all horizon shapes agree well with ANSYS results for the horizontal 
displacement, square horizon shape case could not capture accurate vertical displacement results. 
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Fig. 9. Variation of (a) horizontal displacement and (b) vertical displacement of the material point located at (0.255 m, 0.255 m) with time 
obtained by using non-ordinary state-based peridynamics. 
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The same problem case was also analyzed by using non-ordinary state-based peridynamics. A horizon size of 2 x  
was selected. Variation of horizontal and vertical displacements at a particular material point located at 
(0.255m,0.255m)  for the three different horizon shapes are shown in Fig. 9. As opposed to ordinary state-based 
peridynamics results, for all three horizon shapes peridynamics results agree very well with ANSYS results for non-
non-ordinary state-based peridynamics. 

4. Conclusions 

  In this study, the effect of horizon shape was investigated for both ordinary state-based and non-ordinary state-based 
peridynamics. Three different horizon shapes were considered including circle, irregular and square. Both static and 
dynamic analyses were studied by considering plate under tension and vibration of a plate problems. For both static 
and dynamic conditions, square shape could not capture accurate vertical displacements for ordinary-state based 
peridynamics. On the other hand, results obtained for all three horizon shapes agreed very well with finite element 
analysis results for non-ordinary state-based peridynamics. 
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The same problem case was also analyzed by using non-ordinary state-based peridynamics. A horizon size of 2 x  
was selected. Variation of horizontal and vertical displacements at a particular material point located at 
(0.255m,0.255m)  for the three different horizon shapes are shown in Fig. 9. As opposed to ordinary state-based 
peridynamics results, for all three horizon shapes peridynamics results agree very well with ANSYS results for non-
non-ordinary state-based peridynamics. 
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peridynamics. Three different horizon shapes were considered including circle, irregular and square. Both static and 
dynamic analyses were studied by considering plate under tension and vibration of a plate problems. For both static 
and dynamic conditions, square shape could not capture accurate vertical displacements for ordinary-state based 
peridynamics. On the other hand, results obtained for all three horizon shapes agreed very well with finite element 
analysis results for non-ordinary state-based peridynamics. 
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