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Abstract 

This paper reports on an analysis of a proposed EV 

charging hub at a city centre car park in Glasgow 

Scotland, equipped with a 200kWp roof-mounted 

photovoltaic (PV) array and buffering battery. 

Specifically, the ability of the PV plus battery to mitigate 

the impact of EV charging on energy networks and the 

environment was assessed. The car park performance was 

simulated over a calendar year using building simulation 

and supporting tools. The analysis featured a range of 

vehicles using the hub (10 - 500) and a range of 

supporting battery sizes (0-500kWh). The results 

indicated that supporting batteries of 10kWh or less, 

increased the utilisation of PV generated electricity and 

decreased the electrical energy exchanges with the grid. 

Larger batteries produced marginal gains in performance. 

With a load of less than 100 vehicles using the hub, peak 

power imports from the grid reduced with increasing 

battery size; battery size had a minimal effect above this 

load level. Peak exported power reduced with increasing 

battery size if more than 200 vehicles used the hub. Below 

this load level, the number of vehicles and battery size 

made a minimal difference. In operation, the PV and 

battery-supported-hub was carbon neutral or carbon 

positive when servicing up to 200 EVs. 

Introduction 

In common with most of the rest of the developed world, 

the UK aims to be carbon neutral by 2050 (UK 

Government, 2019) and a central plank of its 

decarbonisation strategy is the decarbonisation of 

transport, with petrol and diesel vehicles scheduled to be 

phased out by 2035 (DFT, 2018). The primary means to 

achieve this is through the decarbonisation of grid 

electricity, coupled with a rapid uptake of electric vehicles 

(EVs) or vehicles fuelled by hydrogen from electrolysis. 

Of the two, electric vehicles are currently far closer to 

mass market adoption (Kulagin & Grushevenko, 2020), 

though this situation may change in the longer term.  

This paper looks at the issues surrounding a growth in 

publicly charged EVs in urban areas in the short-to-

medium term. Specifically, the energy and environmental 

performance of an EV charging hub supported by a 

rooftop PV array and buffering battery was analysed. This 

system is being developed in Glasgow, Scotland, as part 

of the EU-funded RUGGEDISED project 

(http://www.ruggedised.eu/). The charging hub is one of 

a range of low carbon, “smart” solutions that are being 

demonstrated in several European cities. The hub is 

located at a car park close to Glasgow city centre. The 

building has 1170 parking spaces located over 9 floors. 

The PV rooftop array, already designed for installation, 

has a notional peak power output of 200kWp and 

comprises 625 PV panels, with a total surface area of 

1250m2. The panels are tilted at 20o to the horizontal 

(GCC, 2018). 

 
Figure 1: Duke St car park (Image: Google street view). 

 

Mitigating the impacts caused by the growth of EVs is of 

interest to policy makers and utilities, as increasing 

charging demand (along with the electrification of heat 

and increased use of cooling in a warming climate) poses 

a significant challenge for urban energy networks, with 

the risk that increasing demand for electricity could 

outstrip the development of the infrastructure required to 

support it. This could lead to the need for extensive 

investment and upgrading of power networks to combat 

potential supply problems (Earl & Fell, 2019). There is 

also the risk of increased greenhouse gas emissions, as 

rapid growth in the use of electrical energy could result in 

growing use of backup fossil fuel generation 

(Bahamonde-Birke, 2020). The use of photovoltaics to 

support daytime charging of electric vehicles (EV) is of 

interest as there is, in theory, a strong temporal match 

between the timing of the demand and the availability of 

the zero-carbon solar electricity.  

There have been some previous studies investigating 

aspects of the energy, environmental and economic 

performance of PV supported EV charging (e.g. Bhatti et 

al, 2016). In an early US study, Birnie (2009) undertook 

some high-level modelling, indicating that for commuters 

in the north-eastern USA, the energy produced by 15m2 

http://www.ruggedised.eu/
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of PV could entirely offset the energy required for 

commutes of 15-30 km in PHEV vehicles. Mouli et al. 

(2016) analysed the performance of a small PV system 

(10kWp) supporting the charging of up to 3 vehicles in 

the Netherlands. The EV charge taken was assumed to be 

a fixed 10kWh, though various charging profiles are 

analysed; the use of even a small 10 kWh battery was seen 

to significantly reduce energy drawn from the grid.   

Several studies have assessed the ability of intelligently 

controlled charging to further mitigate grid impacts. For 

example, Tupule et al. (2013) analysed a 100kW PV array 

supporting up to 50 electric vehicles in different US cities 

along with the use of smart charging control. They 

demonstrated a significant reduction in CO2 emissions; 

the use of a buffering battery was not considered.  

Chaudhari et al. (2018), utilized a linear programming 

approach in a least cost optimization of an EV charging 

hub in Singapore featuring photovoltaics (PV) and battery 

storage. The authors concluded that the use of PV plus 

storage could reduce the average and peak power demand 

from EV charging.   

This research takes a slightly different approach to these 

latter papers and does not look at demand side restrictions 

on charging through active charge control or the potential 

for vehicle-to-grid operation. Instead, a local supply-side 

solution is assessed. Specifically, ability of PV with local 

battery storage to mitigate the effects of unconstrained 

charging is examined for different supporting battery 

sizes and populations of vehicles. The rationale behind 

this approach was that 1) at least in the short-term, 

intelligent control of vehicle charging will lag the 

deployment of charging infrastructure and so the work 

here represents the analysis of a likely-near-term scenario; 

2) local, supply-side approaches to controlling EV 

charging impacts on the grid such as PV with batteries 

could be seen to be preferable to demand-side, time-based 

charge control for time-constrained users of public charge 

points; 3) most of the papers reviewed analysed fixed 

vehicle numbers and battery sizes; and 4) constraining 

stochastic demand for power through control (intelligent-

or-otherwise) can lead to unintended demand peaks, 

worsening rather than exacerbating the impact on the grid 

(e.g. Callaway, 2009).      

AIM  

This paper assesses the contribution that building-

mounted photovoltaics with battery storage could make to 

mitigate the impact of increased public, urban EV 

charging on electricity networks and the wider 

environment. The impact of local renewable electricity 

production on the energy exchanged with the electrical 

network, peak electrical power flows and emissions is 

analysed for a variety of operating conditions. 

Contribution  

A new empirically derived statistical model for the 

prediction of public EV charging demand is presented. A 

wide-ranging sensitivity analysis is undertaken to 

quantify the impact that PV plus different supporting 

battery sizes could have in mitigating the detrimental 

effects that EV charging on the local electricity network. 

The carbon emissions associated with the different cases 

modelled are also analysed using time-varying grid 

carbon intensity figures.  

METHOD 

A multi-tool modelling approach was adopted.  

1) The open source ESP-r building simulation tool 

(ESRU, 2020) was used to calculate the time-varying 

output of a 200kWp roof-mounted PV array at the Duke 

Street car park; the output was a PV power supply profile. 

2) A probabilistic EV charging model for public hubs, 

developed specifically for the work reported here, was 

used to calculate the electrical demand associated with a 

fleet of electric vehicles using the hub during the day. The 

output of the model was a set of time-series power 

demand profiles for different numbers of EVs.  

3) A custom load-flow model of the charging hub was 

created that included battery storage and that featured 

ability to apply a supportive battery operating strategy.  

The tools above were used to quantify the interactions 

between the grid, battery storage, PV generation and EV 

charging hub. 

Car Park Model 

The ESP-r model features a detailed representation of the 

car park and PV array (Figure 2). ESP-r includes 

integrated thermal and electrical algorithms for 

simulating the performance of building-integrated PV 

(Kelly, 1998). These make use of the tool’s intrinsic 

thermal and solar processing capabilities to calculate the 

electrical power output.  

The PV array is represented explicitly as a set of building 

surfaces. When the model is simulated using real climate 

data (temperature, solar radiation, wind speed and 

direction) as a boundary condition over a user defined 

period, the time-varying PV array temperature can be 

computed. This is based on a surface energy balance using 

the computed transient energy exchanges: the surface 

conduction, convective and infrared heat transfers, 

incident direct, diffuse and ground reflected solar 

radiation.    

The corresponding electrical algorithm (based on 

Equation 1) solves the output voltage and current of a 

single PV cell as a function of the computed total surface-

incident solar radiation intensity 𝑄̇𝑖 𝑆𝑂𝐿 (which includes 

the effects of shading), and the array surface temperature 

𝑇𝑖 . The results are then extrapolated to determine the 

operating state of the panel and hence the whole array, 

assuming all the panels are of the same type and at the 

same orientation and tilt.  

𝑃𝑖 = [𝑉𝑖𝐼𝐺 (1 − 𝑒𝑥𝑝 (
𝑒𝑉𝑖
𝜆𝑘𝑇𝑖

)) − 𝑉𝑀𝑃𝐼𝐿] 𝑛𝑚𝑞 
(1) 

 

The power output of the PV array is passed back to the 

surface thermal energy balance resulting in the PV surface 

temperature being suppressed when the PV is producing 

power (as happens in reality). The input data for the PV 

model is shown in Table 1.  

ESP-r and its PV model has been extensively validated, 

as summarized by Strachan et al. (2008).   
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Figure 2: rendered model of the ESP-r Duke St Car 

Park model with roof-mounted PV arrays. 

Table 1: characteristics of the PV panels used in the 

analysis [19]. 

Open circuit voltage (𝑉𝑂𝐶) 42.2 V 

Short circuit current. (𝐼𝑆𝐶) 7.15 A 

Voltage at maximum power point (𝑉𝑀𝑃) 34.3 V 

Current at maximum power point (𝐼𝑀𝑃) 6.72 A 

Reference insolation (𝑄̇𝑟𝑒𝑓) 1000 W/m2 

Reference temperature (𝑇𝑟𝑒𝑓) 298 K 

Number series connected cells in a 

branch (𝑛) 

72 

Number parallel connected branches 

(𝑚) 

1 

Number of panels (𝑞) 625 

Temperature sensitivity of 𝐼𝐺 (𝛽) 1.072 

 

An example of calculated PV power output over a 

simulated year is as shown in Figure 3. 

 

Figure 3: simulated car park half-hourly PV output. 

It is worth noting that although the array mounted on 

the car park roof has a notional output of 200kWp, the 

simulated peak power produced was significantly less 

than this at around 115 kW. The main reasons for this 

are that 1) the incident solar radiation on the PV is 

always less than that used by manufacturers in tests to 

determine the notional power output; 2) during these 

tests the panel temperature is held to 25oC, however the 

operating temperature of insolate panels is typically 

higher than this, reducing operating efficiency and 

further reducing power output; 3) the model also 

includes converter inefficiencies (~10%). This 

reduction in real-life performance compared to 

manufacturers’ tests has been noted elsewhere (Clarke 

et al, 1996). 

EV Charging Model 

For a user-defined population of vehicles, the model 

calculates the total charging demand at half hour time 

intervals for a population of vehicles. It was calibrated 

using a Transport Scotland dataset (Transport Scotland, 

2018) containing information on all public EV charge 

point use in Scotland between 2015 and 2018. The dataset 

included the identity of the vehicle charging, the charger 

id and geographical location, the charger type and 

capacity, the charging date, the connection and 

disconnection times, the charge taken and the charge cost. 

For a user defined period, and for each vehicle, the 

calibrated calculated:  

• whether the vehicle would charge on a particular day; 

• time at which the vehicle would charge; 

• whether there was a compatible charge point 

available at the specified charge time;  

• and the charge taken (kWh) during a charging event 

(which dictated the duration of the charge, along with 

the charger power). 

To determine whether a vehicle would charge on a 

specific day, the dataset was analysed to determine a 

charging behaviour for each vehicle at the beginning of 

the simulation process. This behaviour indicated how 

often (on average) a vehicle would charge per week.  

For each vehicle using the hub, a random value (𝑟𝑤 ) 

between 1-100 was generated and compared to the 

cumulative probability, 𝒑𝑤, (shown in Figure 4); this then 

determined the vehicle’s average number of charge events 

per week and consequently the daily probability (𝑝𝑑) of a 

charge event occurring. 

For example, if a vehicle was determined to charge on 

average twice per week, then the daily probability of 

charging was 28.6%. Once set, the charging behaviour 

and daily charging probability for each individual vehicle 

remained the same over the simulated period.  

To test if a vehicle charged on a specific day, a further 

random value (𝑟𝑑 ) was generated and compared to the 

daily charging probability, then if 𝑟𝑑 ≤ 𝑝𝑑  the vehicle 

would charge on that day.  

To identify the time at which a vehicle charged, the 

Transport Scotland dataset was used to generate two 

further curves describing the cumulative probability of a 

charge event starting on a day that an EV charges for 

weekdays and weekends, respectively. The data showed 

that charging behaviour was markedly different for each. 

The curves are shown in Figure 5.  

To determine when a charge event started, a random test 

value ( 𝑟𝑠 ) 1-100 was generated and compared to the 

appropriate cumulative probability value 𝒑𝑠  at 30-minute 

time intervals throughout the day. When 𝒑𝑠 𝑡 < 𝑟𝑡 ≤
𝒑𝒔 𝒕=𝒕+𝟑𝟎 the charging was deemed to start in that time 

interval.  

When a vehicle charged, the amount of charge taken was 

determined using a similar approach taken to determining 

the charge start time and used another correlation derived 
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from the Transport Scotland dataset (ibid) and shown in 

Figure 6. 

 

Figure 4: cumulative probability (expressed as a %) 

of vehicle charge events per week. 

 

 
Figure 5: cumulative probability of charge starting. 

The time taken to charge was then the charge taken 

divided by the power of the charger to which the vehicle 

is connected.  

Charging Hub Electrical Model 

To assess the interaction between the PV, battery, 

charging load and the network, an electrical network 

model was developed; this treated the car park as a single 

bus-bar system, with the PV, EV demand and a battery all 

connected via converters to a common AC busbar, which 

also included a (bi-directional) connection to the local LV 

grid. 

The instantaneous EV demand and PV generation were 

obtained from the profiles illustrated in Figure 7 and 

Figure 3, respectively. The battery power flows were also 

bi-directional in that it could either charge from, or 

discharge to the busbar. The battery can reconcile short 

term-temporal mismatches between the availability of 

PV-generated electricity and vehicle charging. 

An example of a demand profile generated by the tool is 

shown in Figure 7.  

The basic equation for the determining power exchanged 

between the different elements the PV-EV system were as 

follows. 

𝑃𝐿𝑉 = 𝑃𝐸𝑉 − 𝑃𝑃𝑉 ± 𝑃𝐵 (2) 

  

 

 

Figure 6: cumulative probability of energy taken 

during a charge. 

 

 

Figure 7: example of demand profile for a fleet of 50 

electric vehicles serviced by the hub. 

The model tracked the battery state of charge using the 

following equations. 

𝐶𝐵(𝑡 + ∆𝑡) = (1 − 𝜀)𝐶𝐵(𝑡) ± 𝑃𝐵 (3) 

 

𝑆𝑂𝐶𝐵 =
𝐶𝐵(𝑡 + ∆𝑡)

𝐶𝐵 𝑀𝐴𝑋
 

(4) 

The battery power flow, 𝑃𝐵 , was determined by the 

battery operating strategy. If there was available energy 

from the PV, and the total vehicle charging demand, 𝑃𝐸𝑉, 

was less than the PV generation,  𝑃𝑃𝑉 , then the battery 

charged. Where the PV output power exceeded the 

battery’s maximum charging rate, then the surplus was 

spilled to the grid. If there was energy available from the 

PV, but this was less than the charging demand, then the 

battery discharged to help meet the demand, if there was 

sufficient charge in the battery. Only where the PV and 

battery were insufficient to meet the EV demand was 

power drawn from the grid.  

𝑃𝐵 = 

{
 
 

 
 
𝜂𝐶𝜂𝑋(𝑃𝑃𝑉 − 𝑃𝐸𝑉), 𝑖𝑓 𝑆𝑂𝐶𝐵 < 1 ∧ 𝑃𝑃𝑉 > 𝑃𝐸𝑉  
𝑃𝑃𝑉 − 𝑃𝐸𝑉
𝜂𝐷𝜂𝑋

, 𝑖𝑓 𝑆𝑂𝐶𝐵 > 𝑆𝑂𝐶𝑀𝐼𝑁 ∧ 𝑃𝑃𝑉 < 𝑃𝐸𝑉

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

 

 

 

(5) 

SIMULATONS 

To quantify the energy and environmental performance of 

the car park charging hub, its operation was simulated 

over two calendar years. This involved generating a two-

year time series profile of PV array output and two-year 

demand time series profile for different numbers of EVs. 

The first year of data was used for pre-simulation and only 

the second year’s data was used in the analysis. This was 

done to ensure that the SOC of the battery at the beginning 
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of the simulated period was based on calculated values 

and not a guestimate, as (particularly for larger battery 

sizes) the starting SOC had an impact on the annual 

results.  

Table 1: Battery parameters used with the model 

(GCC,2018). 

battery capacity ( 𝐶𝑀𝐴𝑋) 0 – 500 kWh  

minimum state of charge 

(𝑆𝑂𝐶𝑀𝐼𝑁) 

0.2  

charging efficiency (𝜂𝐶) 0.960 

discharge efficiency (𝜂𝐷) 0.972 

battery standing loss (𝜀) 6.25E-5 of 𝐶𝐵(𝑡) 
per time step 

converter efficiency (𝜂𝑋) 0.9 

Table 2: charger “fleet” used with the model (GCC, ibid).   

charger power 

(kW) 

charge 

points (-) 

 number of 

chargers (-) 

7 (AC) 1 4 

22 (AC) 2 5 

50 (DC) 1 5 

To assess the impact that the numbers of EVs using the 

hub and the battery size had on performance, the 

following parameters were explored:  

• the vehicles supported by the hub were varied 

between 0 and 500; the car park has around 1200 

spaces. With an average occupancy of 82% (City 

Parking, 2015), 500 EVs represents approximately 

half of all vehicles using the car park; a scenario not 

likely to occur until the late 2030’s given current 

projections (Hirst, 2020). 

• the battery size was varied between 0 and 500 kWh; 

the upper value is sufficient to store the maximum 

daily electrical output from the PV array. 

In total, 80 operating cases were analysed; in all of these, 

it was assumed that there would be enough chargers to 

meet the needs of any vehicles using the hub; the validity 

of this assumption is discussed later. Further, as an 

objective was to assess peak power flows, no limits were 

set on the power that could be drawn from or exported to 

the network and the power that could be accepted by or 

discharged from the battery.   

The metrics extracted from each simulation were as 

follows. 

• The fraction of vehicle charging load that was 

supplied by the PV - the renewable utilization 

fraction (RUF); the higher value of RUF, the more 

local, zero-carbon electricity is being used to charge 

vehicles, rather than being drawn from the grid.  

• The energy exchanges with the grid; this information 

was used to calculate the carbon emissions associated 

with the charging hub. 

• The peak power imported or exported to the 

electricity network; the latter has an impact on the 

                                                           
1 The EV charging profiles are generated using a probabilistic model, 

increases in demand will not be exact multiples of the number of 
vehicles. 

viability of the EV charging hub scheme, as higher 

the peak power flows require a larger investment in 

infrastructure to support charging and may require 

that the surrounding network is reinforced.  

• The state of charge (SOC) and power flows 

associated with the battery; this is useful in 

determining a best-fit battery size to support EV 

charging and understanding the characteristics of 

electrical power and energy exchanges with the 

network.   

RESULTS AND DISCUSSION 

The total annual energy from the PV array, after 

conversion was approximately 110 MWh. The total 

simulated demand for the different numbers of vehicles 

using the charging hub is as shown in Table 3. 

 

Table 3: annual simulated electrical demand with 

different numbers of vehicles using the hub1.   

Vehicles 10 50 100 200 350 500 

Demand 

(MWh) 

4.8 36.8 62.6 115.4  195.0 272.9 

 

The results indicate that the net public charging demand 

of a vehicle fleet of just under 200 EVs could be fully 

offset by the 200kWp PV array of the car park. Note 

however, that this does not include the energy demand 

associated with the home charging of these vehicles. 

The Renewable Utilisation Fraction (RUF) was calculated 

as follows:  

𝐹 = 1 −
𝐴𝑛𝑛𝑢𝑎𝑙 𝐼𝑚𝑝𝑜𝑟𝑡𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑘𝑊ℎ)

𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑒𝑚𝑎𝑛𝑑 (𝑘𝑊ℎ)
 

(6) 

Figure 8 shows the renewable utilization fraction (RUF) 

for vehicle numbers between 10-500 and battery sizes 

between 0-500kWh. 

As the size and capacity of the car park PV array was 

fixed, the renewable utilisation fraction dropped as the 

vehicle demand increased. For example, with a 100kWh 

battery, 100% RUF was achievable for a 10-vehicle load, 

but only around 40% was achievable with 500 vehicles.  

The addition of a relatively small size of battery (less than 

10 kWh), significantly improved the localized use of the 

PV generated power. For example, with 10EVs using the 

hub, the RUF was approximately 58% with no battery, 

rising to 100% with a 5kWh battery. Similarly, with 200 

EVs using the hub the RUF increased from 43% with no 

battery to almost 63% with a 10 kWh supporting battery.  

Adding additional battery capacity above approximately 

10 kWh only resulted in marginal improvements in 

performance: e.g. for the 200EV case with a 500kWh 

supporting battery capacity, the RUF increased to 71%. 

Import and Export of Electricity. 

The annual electrical energy imported from the grid to the 

hub to support charging is shown in Figure 9.  The 

numbers of vehicles using the hub largely dictated the 

energy imported from the grid.  For the 10-vehicle case 
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with no battery, 85.5 kWh of imported electricity was 

required to support charging, whilst with 500 vehicles 

7.84 MWh of electricity was imported.  

As was the case with the renewable utilisation factor 

(RUF), a relatively small battery size of less than 10 kWh 

made a significant reduction to imported energy. 

 

 
Figure 8: renewable utilisation fraction (expressed as 

a %) for different supporting battery sizes and vehicle 

fleets. 

  

 
Figure 9: imported electrical energy against battery 

size for different vehicle fleets. 

For example, with 50 vehicles using the hub, the electrical 

energy imported from the grid to support charging was 

some 0.74 MWh. Adding a 10kWh battery reduced the 

electricity imported to 0.19 MWh. Beyond a capacity of 

10kWh, the imported energy was relatively insensitive to 

battery size, e.g. with a 100 MWh battery, the imported 

electricity was 0.11 MWh. 

Figure 10 illustrates that the peak imported electrical 

power was only sensitive to battery size with low charging 

loads. At higher charging load levels, the sensitivity was 

minimal. The principal reason for this insensitivity is that 

the peak power drawn was in mid-winter when the PV 

contribution to charging was minimal, consequently the 

magnitude of power drawn was predominantly a function 

of the vehicle charging load.  

At lower vehicle loads (< 100 vehicles) and larger battery 

sizes, the stored PV energy was enough to supply the 

vehicle charging demand throughout the year and the 

peak imported power (and energy) could drop to zero.  

Exported electrical energy was very dependent on vehicle 

numbers, with increasing load from EVs reducing the 

exported electrical energy. As was the case with the RUF 

and imported energy, for a given vehicle load the annual 

exported energy varied markedly for battery sizes 

between 1-10 kWh and was then relatively insensitive to 

increasing battery size. For example, with 200 vehicles 

using the hub, the electrical energy exported to the 

network was 2.50 MWh without a supporting battery; this 

dropped to 1.49 MWh with a battery capacity of 10 kWh 

and 1.02 MWh with a battery capacity of 500 kWh. 

 

 
Figure 10: peak imported power against battery size 

for different vehicle fleets. 

 

 
Figure 11: exported electrical energy against battery 

size for different vehicle fleets. 

For battery sizes below 200kW, the peak exported 

electrical power was insensitive to the number of vehicles. 

Above this size, and as the number of vehicles serviced 

increased, the peak exported power eventually dropped to 

zero. In these cases, all the energy from the PV was either 

used to raise the battery SOC or to support vehicle 

charging.    

Reasons for the relative insensitivity of the peak exported 

power value at battery sizes below 200kW were that 

firstly, the peak export occurred in mid-summer in the 

middle of the day, where the battery SOC was close to 

100%, so it could absorb little of the PV generation. 

Secondly, with smaller numbers of vehicles, midday was 

a relatively quiet time for vehicle charging, so there was 

little EV demand to offset the PV generation. 

Consequently, almost all the PV peak power was exported 

the grid in these cases.  

The battery average state of charge (SOC) over the 

simulated period was primarily dictated by the number of 

vehicles using the hub. For example, with 10 EVs, the 

average SOC for a 100 kWh battery was just under 100%, 

whilst with 200 EVs the average SOC dropped to around 

38%. With 500 vehicles the average SOC was generally 

close to the minimum 20%, indicating that this level of 
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vehicle load exceeded the ability of the modelled system 

to support it. 

 
Figure 12: peak exported electrical power against 

battery size for different vehicle fleets. 

Battery State of Charge (SOC) 

 
Figure 13: average battery state of charge (expressed 

as a %) against battery size for different vehicle fleets. 

As was the case with the renewable utilisation factor and 

the energy imported and exported, the average SOC (for 

a given number of vehicles) was sensitive to smaller 

battery capacities (smaller than 10 kWh) and relatively 

insensitive to larger battery capacities. As an illustration, 

the average SOC for a 1 kWh battery with a hub servicing 

50 EVs was 61.6%, 77.6% with the 10 kWh battery and 

92.4% with a 500 kWh battery.   

CONCLUSIONS  

This paper has described an empirically derived electric 

vehicle (EV) charging model and its use to assess the 

value of a car-park-based photovoltaic (PV) array and a 

battery to support vehicle charging at a proposed charging 

hub in Glasgow, Scotland.  

A multi-tool approach to simulating performance was 

employed. The ESP-r building simulation tool was used 

to model and simulate the performance of the PV array 

using real Glasgow climate data. An EV charging model 

was used to generate stochastic electrical charging 

profiles for different populations of electric vehicles 

services by the grid. A custom load flow model was used 

to simulate the performance of the hub.  

A total of 80 cases were examined, with battery capacity 

(kWh) varied between 0 and 500kWh and the number of 

vehicles using the hub varied between 10 and 500 

vehicles. The key metrics examined were the renewable 

utilisation factor (RUF), the energy and power exchanges 

with the local grid and the battery state of charge.  

The peak simulated photovoltaic power output for the car 

park array of approximately 115 kW was significantly 

less than the installed PV capacity of 200 kWp and output 

was also strongly seasonal with very little useful power 

output in the winter months and a surfeit of power (for 

most of the cases modelled) in summer. 

The renewable utilization factor (RUF) and energy 

exchanges with the grid (import and export) was primarily 

dictated by the number of EVs supported by the hub.   

However, the simulation results indicated that a relatively 

small battery capacity (10kWh or less) could make a 

significant difference to renewable utilization and to 

reduce the energy exchanges with the grid. This result also 

supports the findings of Mouli et al. 2016. Beyond this 

small battery capacity, only marginal gains were made in 

these performance metrics. 

Whilst the presence of the PV and even a relatively small 

battery, reduced energy exchanges with the grid, their 

impact on peak power imported and exported form the 

hub was more nuanced. With less than 100 vehicles using 

the hub, peak power imports from the grid reduced with 

increasing battery size, but above this number of vehicles 

the battery size had a minimal effect and the peak was 

dictated by the number of vehicles charging. Peak 

exported power reduced with battery size if more than 200 

vehicles used the hub, but below this load level the 

number of vehicles and battery size made minimal 

difference. Instead, the peak power exported was dictated 

by the size of the installed PV array. 
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NOMENCLATURE 

𝐶 Capacity kWh 

𝑒 charge on an electron 

(1.602177×10-19) 

C 

𝐸 Energy kWh 

𝐹 renewable utilisation fraction 0-1 

𝐼 current  A 

𝑘 Boltzmann constant 

(1.380649×10−23) 

J/K 

𝑚 number of parallel connected 

branches 

- 

𝑛 number of series connected 

cells in a branch 

- 

𝑝 Probability 0-1 or 0-100 

𝒑 cumulative probability 0-1 or 0-100 

𝑃 power  W 

𝑞 number of panels - 
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𝑟 random value 0-1 or 0- 100 

𝑆𝑂𝐶 state of charge 0-1 

𝑇 Temperature K 

𝑡 Time s 

∆𝑡 time increment s 

𝑉 Voltage V 

Greek Symbols 

𝜀 battery standing loss 0-1 

𝜆 diode factor - 

𝜂 efficiency 0-1 

 

Subscripts 

𝐵 Battery 𝑀𝐴𝑋 Maximum 

𝐶 Charge 𝑂𝐶 short circuit 

𝑐 Charging 𝑀𝑃 maximum power 

point 

𝑑 Daily 𝑃𝑉 Photovoltaic 

𝐷 discharge 𝑟𝑒𝑓 reference value 

𝐸𝑉 electric vehicle 𝑠 start time 

𝐺 generation 

current 

𝑆𝐶 short circuit 

𝑖 layer i 𝑡 time or time 

interval 

𝐿 light generated 

current 

𝑤 Weekly 

𝐿𝑉 low voltage 𝑥 Exported 

𝑀𝐼𝑁 Minimum 𝑋 Converter 
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