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Design effort is a key resource for product design projects. Environments where design effort 

is scarce, and therefore valuable, include hackathons and other time-limited design 

challenges. Predicting design effort needs is key to successful project planning, therefore, 

understanding design effort-influencing factors (objective considerations that are universally 

accepted to exert influence on a subject, i.e. types of phenomena, constraints, characteristics 

or stimulus) will aid in planning success, offering improved organisational understanding of 

product design, characterising the design space and providing a perspective to assess project 

briefs from the outset.  

This paper presents the Collaborative Factor Identification for Design Effort (CoFIDE) Method, 

based on Hird’s (2012) method for developing resource forecasting tools for new product 

development teams. CoFIDE enables the collection of novel data of, and insight into, the 

collaborative understanding and perceptions of the most influential factors of design effort 

levels in design projects and how their behaviour changes over the course of design projects. 

CoFIDE also enables design teams, hackathon teams and makerspace collaborators to 

characterise their creative spaces, to quickly enable mutual understanding, without the need 

for complex software and large bodies of past project data. This insight offers design teams, 

hackathon teams and makerspace collaborators opportunities to capitalise on positive 

influences, while minimising negative influences. 

This paper demonstrates the use of CoFIDE through a case study with a UK-based product 

design agency, which enabled the design team to identify and model the behaviour of four 

influential factors. 

KEYWORDS: Product Design, Project Management, Design Effort, Influential Factors, Design 

Space Characterisation 
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Introduction  

As with many industries, time is a valuable, irreplaceable resource for design projects, in 

particular for hackathons where challenges are particularly time-constrained (Raatikainen et 

al., 2013). This resource, referred to as design effort, is typically measured in person-hours 

and is defined as the amount of time required to complete a project, or a task (Salam et al., 

2009; Salam and Bhuiyan, 2016). Looking at the design agency industry by way of example, 

designers record their efforts using timesheets, and design agencies and teams will typically 

charge (or invoice) their clients in either hours or days. It is common practice that design 

agencies and teams will charge their clients for one length of time, while work a greater 

amount. This deliberate project time discrepancy behaviour is especially common with smaller 

agencies and teams, where projects are run to tight margins. Therefore, quotes are 

deliberately underestimated, especially when a project is put out to tender, due to the desire 

to win the bid and secure the business of the client, with a view to establishing a longer-term 

working relationship. This presents a significant challenge when conducting research into 

small design teams, as the anticipated project design effort levels may not be a reliable 

measure of design project management. 

With such a universal and critical resource, there is undoubtedly a wide range of potential 

factors which contribute to the characterisation of a design space, influencing the design effort 

required to complete a project. But which factors have the greatest influence and how do they 

behave over time? An improved and enhanced understanding of what these factors are and 

how they influence design effort is key to effective and improved project planning and, in the 

case of industry, improved invoicing of projects.  

One successful means of estimating design effort is through the use of tacit knowledge and 

experience, which designers already use to plan product design projects (Brauers and Weber, 

1988; Eckert and Clarkson, 2010; Jack, 2013; Serrat et al., 2013). Yet one notable limitation 

of using tacit knowledge is that it can be difficult to articulate and can manifest as a “gut feeling” 

or “hunch”. This difficulty in communicating opinions effectively can also lead to 
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misunderstanding between design members (Luck, 2013). This is particularly significant 

during the initial stages of the design process, which is a social and collaborative process 

(Shai and Reich, 2004) where fostering a dialogue, especially within interdisciplinary teams, 

is a particular challenge (Bowen et al., 2016).  

Notably, this challenge is present in hackathons and makerspaces, where the creation of 

collaborative ad hoc interdisciplinary teams to respond to specific goals are commonplace. 

These teams, comprised of members who likely have only met at the start of the project 

(Komssi et al., 2015) are typically from vastly differing backgrounds and levels of experience 

(i.e. Pe-Than et al.  (2019) and Jensen et al. (2016)). Further compounding this challenge, 

hackathon activities are time-constrained (Raatikainen et al., 2013) limiting the level of design 

considerations made within their process (Saravi et al., 2018). Considering the imposed time 

limits in hackathons, and the ad hoc team creation found in makerspaces, there is a clear 

need for quick, effective development of mutual understanding and team dynamics 

(Raatikainen et al., 2013). 

A means of capturing the tacit knowledge and experience of designers can enable the 

successful articulation of opinions, providing and sharing tactical insight into the design and 

planning process and enable designers to discuss their perceptions between them, bringing 

them “on to the same page”. Therefore, there is a clear need for a method which can capture 

the tacit knowledge of factors which influence design effort levels in product design, as held 

by designers and design teams. Additionally, there is a clear requirement for a method which 

can articulate this knowledge in a manner that can be understood by all team members, further 

improving the overall characterisation and understanding of the design space and the factors 

which influence it. 

This paper presents the Collaborative Factor Identification for Design Effort (CoFIDE) Method, 

a new method developed from Hird’s (2012) method for producing resource forecasting tools 

for new product development. CoFIDE aids design teams to characterise their creative spaces 

by identifying and capturing those factors which are perceived as being most influential on 
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design effort levels in product design projects through the capture of tacit knowledge and 

experience. This tacit knowledge and experience is modelled graphically, characterising the 

design space, enabling the direct comparison and providing the opportunity for better 

understanding between team members; illustrating the changes each factor has over the 

course of a design project. 

This paper can be considered to have two parts, starting with an outline of the current state of 

design effort influencing factor identification approaches which demonstrates the need for 

suitable methods. The second section is a presentation of CoFIDE using a case study example 

with data gathered at a UK-based product design agency, Design Agency 1 (DA1); 

demonstrating the novelty of the data collected and the insight which it offers. This 

demonstration includes the factors considered by the team at DA1 to be most influential and 

an analysis of the method and the results. This section will also discuss the output of CoFIDE 

in detail, including the key mean effect plots and Percentage Influence graphs used to model 

the participating designers’ perceptions on design effort levels in product design. The five-

person design team of DA1 acted as study participants and are either experienced product 

designers and product design engineers, or members of management (both at director level 

and middle management) who are educated to a degree-level in either product design or 

product design engineering. 

Literature Review 

A literature review was conducted to identify existing published work into design effort 

estimation. This was done using combinations of key words to search internet databases 

(Scopus and IEEExplore), identifying key papers relating to the research. Key words used in 

the search included “design effort”, “design project”, “product design”, “project time”, “resource 

estimation”, “resource forecasting” and “project planning” used in various combinations. 35 

papers were identified where the estimation of product design effort, project time, or similar, 

was either the focus of the method covered, or as part of a larger method. Of the papers 
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identified, sixteen either were generalised approaches where insufficient detail was provided 

in order to determine what, if any, methods and techniques were applied, or discussed generic 

project management methods, thus not specifically focusing on design effort estimation. The 

remaining nineteen papers have a range of scope, from generic product design projects, to 

tooling design.  

Papers addressing the estimation of product design project cost have been included as there 

is an intrinsic link between project length and project cost (Jacome and Lapinskii, 1997) and 

these methods estimate project length as part of their methods. Additionally, three papers 

were found using these terms that addressed design effort influencing factors, without 

producing a resource estimating tool, these were also included in this review.  

This review will firstly discuss the published design effort estimation methods to determine 

how each factor (if present) was identified. Additionally, the factors identified by each method 

are gathered and categorised based on the definitions stated by the authors of each 

publication. 

Current Methods to Estimate Design Effort 

Literature addressing design effort estimation were categorised in six ways, shown on the top 

row of Table 1. These categories were identified by considering the methods, technologies, 

etc. that are used in their method and the sources of their data, and address whether the 

method identifies factors or draws conclusions from existing literature; their means of factor 

identification (brainstorming, data analysis or surveys and interviews) and methods that either 

do not state factors, or do not justify the factors used. 

Methods that Identify Factors 

Table 1 indicates that eight papers reviewed identified factors as part of their overall process. 

Of these papers, four used a statistical analysis approach and the remaining four engaged 

with experts by various means to identify factors. A further eight papers reviewed made 

assumptions on influential factors based either on a synthesised list derived from their own 
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literature reviews, or on pre-existing research and methods. Another common approach for 

factor identification is to gather insight from industry. This is typically achieved through 

interviews with designers, or through brainstorming (i.e. Andersson, Pohl & Eppinger  (1998)). 

Such approaches rely on the tacit knowledge of designers to successfully identify these 

factors. 

An alternative method for identifying influential factors is through various forms of data 

analysis. Four papers were identified using this approach including Cho & Eppinger (2005) 

who  further acknowledge that the influence of factors can vary over time. Many data analysis 

methods use regression analysis, particularly to train simulations, i.e. a Monte-Carlo 

simulation (Hellenbrand et al., 2010),  or other regression-based approaches.  

The other main approach to identifying influential factors is through the review of literature. 

Eight of the methods reviewed based assumptions on influential factors on published research 

or models; or by creating a list synthesised from a literature review. These studies look to 

produce a range of factors from which practitioners can identify the most influential by using 

their tacit knowledge of the design space (i.e. Bashir & Thomson (2001a)); or  use various 

factors from their own literature reviews to inform various statistical analysis approaches, using 

variations of neural networks, or similar (Xu & Yan (2006), Yan & Xu (2007), Wang et al. (2015) 

and Pollmanns et al. (2013)). Notably these approaches do not utilise the first-hand tacit 

knowledge of the design teams their methods are intended for. 

Some methods use a small number of factors, which they discuss within their literature 

reviews. Bashir & Thomson (2001b) offer two approaches to estimate design effort through 

historical data analysis. In both instances, they consider product complexity to be the major 

influential factor, along with severity of requirements. Other approaches with few influential 

factors are for specific use-cases, such as those of Salam et al. (2009) for aircraft engine 

compressor design.  
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Other Methods using Factors 

Unjustified Factor Use 

Two of the papers covered in this review use influential factors, or a similar term, without any 

specific justification, to produce cost estimates, drawing connections between a project cost 

and project design effort levels, actors relating to productivity as influential factors, yet no 

sources for these are specified. The method proposed by Zhi-gen & Yan (2011) uses 

regression analysis to predict design effort with factors that have no justification for their use. 

Methods without Factors 

Design effort estimation approaches were also identified for this study which did not use any 

influential factors in the methods. These methods opt to either model the design process in 

collaboration with designers and engineers (Eppinger, Nukala & Whitney (1997)), or DSM-

based modelling (Smith & Eppinger (1997) and Yan et al. (2010)). Although these methods 

do not explicitly identify any influential factors, clearly it is necessary to understand what 

influences the calculated probability. 

It is clear that a significant number of design effort estimating approaches rely on the use and 

understanding of influential factors, identifying them is various ways. These methods vary in 

approach, with some participating with design teams, utilising their tacit knowledge, and the 

level of structure applied to them. Regardless of the specific steps of these approaches, an 

understanding of which factors exert an influence over design effort levels is essential to the 

process. The following section will consider what these types of factors are. 

Factors Influencing Design Effort Levels Found in Literature 

From the analysis of the 59 factors found in literature, shown in Table 2, ten factor categories 

were found based on the collation of definitions given by the authors. These categories are: 

project, product, team management, business management, client, information, stakeholder, 

tools & technology, external influences and retrospective-only. A further category of “Not 

Included” has also been added, to acknowledge the instances where it was not possible to 
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confidently determine the justifications or definitions of the term. The distribution of factor 

categories is shown in Figure 1 and the full list of factors found in literature is shown in Table 

2. Many of the factors identified within this review are categorised within more than one 

category. Project-based factors refer to the project type, or the activities within a project.  

Product-based factors are those that refer to qualities or attributes of the intended product. 

This was one of the most common type, with the most common factor being “product 

complexity”. Two management-based factors: Team management and business 

management-based factors refer to the makeup and management of design team members 

and overall management of the design agency (or similar), the business plan, strategies, etc. 

that are used business-wide respectively. Additionally, means-based factors fall into two 

categories: information and tools & technology-based factors. With information-based factors 

relating to the exchange of information (although many factors can be assigned additional 

categorisations), and tools & technology-based factors referring to the use and availability of 

equipment or other technologies to aid in the development of a product. 

Two other factor categories consider external parties that are involved in the design process.  

Client-based factors refer to any issues or characteristics that are displayed by the client. 

These include the factors that consider the levels of information being provided to the design 

team by the client. Stakeholder-based factors refer to those that involve other stakeholders, 

other than the client, including processes to resolve conflict with stakeholders and the 

geographical locations of stakeholders. 

Additional factor categories include External influences-based and retrospective factors. 

These that refer to any non-stakeholder external body that may influence a design project 

(including political and market-based influences); and those proposed by authors but can 

only be assessed after a project has been completed.  
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Factors Not Included 

Two factors were proposed by Pollmanns et al. (2013) which have not been included in the 

analysis as the source is written in German. To prevent any misinterpretation of the authors’ 

intent, these have been disregarded. 

Many factors have been found to influence project planning and design effort, with varied 

contexts and can be specific to a product feature or project phase, or general with universal 

influence. Writing on the topic is significantly limited which emphasises the need for further 

study of the field. Furthermore, although this analysis of studies shows which factor categories 

are more common (i.e. product and team management-related factors), the specifics of each 

factor vary from study to study. This further emphasises the need for study into this field. 

Additionally, those factors identified through literature review do not allow for practicing design 

teams to offer their own insight (based on their tacit knowledge of the design space). 

Literature Review Summary 

In this literature review, a clear link has been shown between a designer’s, or design team’s 

understanding of the design effort levels needed for a project, and their understanding of the 

factors which influence such levels. It has been shown that the use of experience and tacit 

knowledge can lead to accurate design effort estimation, demonstrating that designers have 

a working understanding of influencing factors. Some methods have been developed for factor 

identification, or design effort estimation with a range of use cases and scope. Yet research 

into this topic is limited. Many assuming factors have the same influence over different teams’ 

projects, using literature review findings as a guide; others relying on the analysis of past 

project data to identify factors. There is therefore a clear need for more study into these factors 

to enable improved comprehension across the product design field; more study into 

identification of factors to enhance factor discovery by design teams to effect valuable impact 

on practicing design teams; and more study into capturing the tacit knowledge and experience 

of designers to aid this discovery by using the data that has been captured through experience. 

The findings of this literature review show that there is a clear gap in methods to identify the 
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influential factors of design effort levels in product design projects. Specifically those that 

utilise the tacit knowledge of design teams. In response, the authors propose the following 

research questions:  

RQ1: Through the capture of tacit knowledge of design teams, what novel data and data 

presentations can be generated from new design effort influencing factor identification 

approaches? 

RQ2: What new insights and opportunities does this offer makerspace collaborators and 

hackathons participants? 

The following discussion will address and answer these research questions through the 

application of a new approach and discuss the output of said approach in a stepwise manner, 

highlighting the novelty of the data produced and the value gained from it. 

CoFIDE – A New Method for Identifying Design Effort Influencing 

Factors in Product Design 

CoFIDE provides detailed novel data from which researchers can gain insight into how design 

teams perceive their design space, their projects and the factors which influence them. This 

insight facilitates a deeper and improved understanding of the factors which influence design 

effort demands, including the behaviour if each factor changes over the course of the project. 

By identifying which factors have the greatest influence, researchers and design teams can 

make efforts to minimise the negative effects of some factors, while maximising the positive 

effects of other. In hackathons and limited time design challenges, this insight can aid to 

maximise the effectiveness of the design team and enable mutual understanding within the 

team.  By repeating CoFIDE at regular intervals, it is possible for researchers to determine if 

the influence of each factor has changed based on design teams’ efforts to manipulate these 

factors. 
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CoFIDE Method Background 

This paper presents CoFIDE, which builds upon resource forecasting for new product 

development (NPD) teams method developed by Hird (2012). Working with NPD teams in 

various industries, Hird developed a method with a foundation in Fisher’s Design of 

Experiments (1949), which captures the perceptions and tacit knowledge of NPD teams’ 

management in order to replicate it for future NPD project planning (Figure 2).  

Hird’s method is a five-step process, following closely to that of the traditional Design of 

Experiments approach, but with three main differences: physical (or simulated) experiments 

are replaced with estimations about hypothetical scenarios; objective, measurable inputs are 

replaced with tacit, subjective expert knowledge as the subject of modelling; and results of the 

analysis will be used for prediction, rather than optimisation.  

CoFIDE builds upon Hird’s method in three main ways: 

1. Collaborative approach: CoFIDE works collaboratively with every member of a design 

team, rather than with team managers, which prevents users of CoFIDE from 

overlooking the potentially valuable insight and knowledge held by design team 

members. 

2. Project types it has been developed for: NPD teams typically operate within the 

parameters of their company – a medical device company will most-likely develop 

other medical devices, rather than say children’s toys. The scope for new projects will 

be limited, so the factors that influence these projects may be niche to the field. 

Whereas the diversity of potential project types that a design agency may take is 

significant. CoFIDE has been developed to be used by design agencies, therefore the 

factors being considered could be broader, or more generalised. 

3. Graphical modelling of each designer’s perceptions: CoFIDE graphically models the 

perceptions each team member has of these factors and provides a means of 

Page 13 of 43

Cambridge University Press

Artificial Intelligence for Engineering Design, Analysis and Manufacturing



For Review Only

comparison and a greater understanding of the characteristics of each factor during 

the course of the project, rather than using this insight for design effort estimation. 

CoFIDE Method 

The following section will describe each stage of the application of CoFIDE in turn, providing 

example case study data, and the analysis and findings of applying CoFIDE in a design 

context. The novelty of the data gathered and generated will be shown, with the insight offered 

demonstrated, and the potential benefits for design teams in makerspaces and hackathons 

also explored. 

CoFIDE Method Introduction 

CoFIDE is a four-step method enabling research into collaborative understanding of the most 

influential factors of design effort requirements in product design projects, as perceived by 

design team members. Each of the four stages (shown in the left hand column of Figure 3) 

provide data key to the study of the practice of product design and of the product design 

industry, including models of factor behaviour during a design project and design processes 

used in industry. Case study examples of this data, and the research insight it offers is included 

throughout this study. 

Case Study Introduction 

The case study data presented in this paper was collected from a UK-based product design 

engineering agency, Design Agency 1 (DA1). The case study was conducted over four hours 

over the course of two months due to participant availability. DA1 has experience developing 

a diverse range of products for varied markets, including sports training equipment and food 

& beverage equipment. At the time of study, DA1 employed five full-time product designers 

and product design engineers, and a studio manager, all of whom participated in the study. 

The participants have various degrees of experience, from mid-level to design directors with 

over ten years of experience, outlined in Table 3. Discussion of the findings of each step will 
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be included where appropriate. Although in this example case study, statistical analysis was 

conducted using Minitab 17.0, this can be replicated using MS Excel (or similar). 

Stage 1. Design Process & Factor Identification 

CoFIDE consists of semi-structured interviews and brainstorming workshops conducted by 

the researcher to generate and gather all relevant data to build the experimental design. This 

first stage provides researchers with the fundamental data to produce experimental designs 

for further data collection, as well as details on the types of factors considered and the design 

processes followed in industry. 

Mapping the Design Project Process 

DA1 have a formal design process that they use for all their projects, therefore gathering this 

information was simple, during a semi-structured interview conducted by the researcher with 

the Managing Director and Studio Manager. This process is similar to that of the Design 

Council’s Double Diamond (2005). This adaptation included the standard four stages (each 

with their own tasks and sub-tasks) of “Discover, Define, Develop, Deliver”, including an initial 

“Pre-sign off” stage and splitting the “develop” stage into two: “design” and “detail”. DA1’s 

design process is illustrated in Figure 4.  

Resource Identification 

Identifying resources is key for CoFIDE as it is the subject of the factors’ influence. As 

discussed during the literature review, although the resource in question is design effort, and 

is measured in units of time, the intention of this step is to determine which specific unit will 

provide maximum utility for the remaining steps of CoFIDE. During the same semi-structured 

interviews, DA1’s project resource type was identified as “Person-hours” as its equivalence is 

used for effort tracking and invoicing. During the workshop, participants were invited to discuss 

alternatives, everyone agreed this was the best method. 
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Factor Identification 

A long list of factors is generated by the participants through brainstorming facilitated by the 

researcher. DA1 participants, unprompted by the facilitator, approached this task by 

addressing each design project stage individually, identifying those factors that influenced the 

length of each stage. This resulted in the creation of seven distinct categories, one for each 

design process stage, plus one for factors which affected more than one, or all of the stages. 

In total, 63 different factors were suggested, shown in the right hand column of Table 4, and 

were then regrouped into ten different categories, shown in the left hand column of Table 4.  

During informal interviews, the participants agreed that this clustering process aided them (the 

participants) in identifying some similar terms, applied to separate stages of the design 

process and allowed for common themes to be established. An advantage to this stage-by-

stage process, is that participants were able to define each of the clustered factors by varied 

ranges of terms for similar factors. However, this process also allowed for some terms to be 

suggested that were activities/tasks, rather than factors, these have been placed in 

parenthesis in Table 4. Best practice for future uses of CoFIDE should include guidance to 

prevent suggestions of activities, or tasks, in lieu of factors. 

Factor Selection 

The most influential factors were individually rank-voted confidentially in order to prevent inter-

participant influence on voting. Ranking factors aided in capturing which factors were 

considered most influential among those being voted for. This voting activity, shown in Table 

5, lead to the selection of client “gut feeling”, definition level inputs, product complexity, 

delivery output complexity and design experience as the factors perceived by DA1 to have the 

most influence on project length.  

The top factors were (in descending order): client “gut feeling” (the intuitive reaction the design 

team have of the client), definition levels inputs, product complexity and delivery output 

complexity (after a tie-breaking vote). As shown in the Table 2 (in the literature review), of the 

seven factors to be categorised as client-based, none consider the design team’s intuition on 
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the perceived qualities of the client specifically. Definition level inputs relates to the brief (as 

shown in Table 4), specifically the levels of information provided. 10 of the identified factors in 

Table 2 consider information by some means. Product complexity (a product-based factor) is 

one of the most common, specifically mentioned factors in Table 2. It is noteworthy that this 

was only voted third most influential by the DA1 team. Delivery output complexity is also a 

product-based factor, one of the most common factors found in Table 2. 

Each factor was assigned a minimum and maximum level with participants using the 

corresponding factor elements to aid in the definition of the factor’s range, shown in Table 6. 

Two of the factors (client “gut feeling” and definition level (inputs)) were assigned a 4 point 

scale measurement; product complexity was given a range of “simple” to “complex”; delivery 

output complexity was given a scoring system based on a quadrant diagram with risk and 

complexity on the axes, giving the factor a range of three. 

This novel data gathered from this first step of CoFIDE provides researchers with valuable 

insight into how practicing design teams conduct their projects, through the capture of the 

processes used in industry and (as shown with the case study example) how formal processes 

have been adapted to best suit those using it. This capture of the formal processes used 

across industry makes it possible to establish a greater understanding of which (of all the 

proposed processes) are used and also which processes are most commonly used.  

This first step enables researchers to capture the factors considered to be influential by the 

industry and practicing designers with a formalised process. By applying this process with 

various design teams, researchers can create of a list of global factors that influence design 

effort. Such data would enable the identification of regional and global trends, correlations, 

etc. in which factors influence projects. This may offer the opportunity to identify research 

opportunities to investigate regional differences based on design education (availability, type, 

etc.); and available resources (manufacturing, supply, etc.). The creation of lists of factors 

synthesised from brainstorming further improves understanding of the design space by 

identifying industry-based definitions for these factors. 
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Applying the first step of CoFIDE in a hackathon or makerspace environment provides 

valuable structure for newly-formed design teams to follow. By mandating the discussion of 

design processes from the outset, hackathon teams and makerspace collaborators must 

agree on a process before tackling the challenge, providing valuable structure to their hack. 

This includes the consideration of the tasks necessary to complete their goals, a challenge 

that Savari et al. (2018) emphasised. Identifying a design effort resource provides hackathon 

teams with context and measure to the design process, aiding in identifying feasible outcomes 

for the hackathon. Hackathon teams and makerspace collaborators can be made up from 

participants with varied backgrounds and levels of experience, therefore by brainstorming 

influential factors and reflecting on the results of a vote (like those shown in Table 5), 

hackathon design teams are able to establish mutual understanding of what will effect their 

project and specifically which factors to give the most attention to. 

Stage 2. Estimation Collection 

During Estimation Collection, CoFIDE uses statistical analysis (using software such as Minitab 

17.0)  to produce a half factor experimental design (based on Fisher’s Design of Experiments 

approach (1949)) using the factors and defined levels to describe hypothetical design projects.  

The gathered factors and design process were used to produce an experimental plan based 

on a four factor, two level, half factorial Design of Experiments with Minitab 17.0, without 

randomisation. Randomisation was omitted as pilot study participants would locate an 

experimental run that resembled a design project they had experience with, from which they 

would base all other estimates. The experimental plan was combined with the six project 

phases tasks identified in the preliminary work, to create the Estimation Sheet for Workshop 

2 – Collect Phase, shown in Table 7.  

During semi-structured focus group discussions conducted by the researcher, every 

participant estimates the design effort needed to complete each of the hypothetical design 

projects described by the experimental runs. DA1 participants completed their own 
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estimations simultaneously without conferring, taking less than an hour to complete. The 

estimation responses from this were gathered and used in the next phase of CoFIDE. 

Stage 3. Perception Model Building 

Regression equations derived from the participant estimate values are produced by the 

researcher using statistical analysis software, such as Minitab 17.0, enabling the modelling of 

participants’ perceptions. These models take two forms: the regression equation factor 

coefficient model, and the mean effect plots. Taking the regression equation coefficient values 

allows researchers to identify the perceived magnitude of influence of each factor. These 

graphs do not depict the behaviour of each factor (i.e. whether they influence design effort 

positively or negatively); nor do the graphs illustrate the constant value that is included in each 

regression equation. The mean effects plots, representing the average effect of each factor at 

each project stage, illustrate the direction of change the influence of the factor has on the 

project stage length. 

Using Minitab 17.0, 30 regression equations were created, six for each participant predicting 

each phase of the project for design. Each factor has been coded as follows: client “gut feeling” 

(CGF); definition levels (inputs) (DL); product complexity (PC); and delivery output complexity 

(DOC). As the experimental design is a half-factorial, not all inter-factor relationships can be 

modelled, those of definition levels (inputs) x product complexity, definition levels (inputs) x 

delivery output complexity, and product complexity x delivery output complexity. Each set of 

participant’s regression equations are summarised in Table 8. 

This step of CoFIDE provides a unique opportunity for researchers to model designers’ 

perceptions. Doing so not only provides insight into how factors influence design effort, but 

how that influence changes from project phase to project phase. Researchers can use these 

models to estimate design effort levels needed for future projects that have been evaluated 

against the same factors. Additionally, these models can enable researchers and design 

teams to optimise their design space by taking steps to reduce the negative influence, and 
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conversely increase the positive influence, of factors. The mean effect values produced 

through CoFIDE enables each factor’s influence to be shown on a phase-by-phase basis; 

allowing researchers to map the behaviour of factors over the course of the design project. 

Although this step of CoFIDE provides novel data, valuable to research, the value to 

hackathon teams and makerspace collaborators is produced in step 4. 

Stage 4. Actionable Information Collation 

The graphical models produced by CoFIDE present analysis data in two forms linked with the 

data produced in step 3. In a semi-structured interview setting conducted by the researcher, 

participants can evaluate these graph sets, reflecting on their individual perceptions of factors, 

allowing researchers to ask questions around whether they felt the graphs illustrated these.  

Percentage Influence Graphs 

Percentage influence graphs, derived from the regression equation values, enable the cross-

comparison of all factors for each phase of a design project by plotting the percentage of 

influence each factor has over the output of each regression equation.  

Percentage influence graphs for DA1 produced by the researcher, shown in Figure 5, allow 

the visual identification of which factor has the greatest influence and whether there is 

consensus within the group. The percentage shown in each graph is the percentage of 

influence each factor has over the output of the corresponding regression equation. It does 

not show the percentage of influence in comparison to the regression equation’s coefficient, 

as this would not allow for comparison between two different regression equations (i.e. 

comparison between different participants). As a set, these graphs also depict the changes in 

levels of influence over the course of a product design project. 

Client “Gut Feeling” 

When considering Figure 5 in isolation, it is challenging to determine the characteristics and 

level of influence that the client “gut feeling” factor has over design time of a project. Yet when 

considering the averages of each response, shown in Figure 7, it is clear that the client “gut 

Page 20 of 43

Cambridge University Press

Artificial Intelligence for Engineering Design, Analysis and Manufacturing



For Review Only

feeling” factor has a low influence on design times, with minimal fluctuation across the entire 

design project. When presented with these findings in an informal interview, the participants 

suggested that this is likely due to the greater involvement the client has at the project’s start, 

which reduces once the designing starts. Additionally, during informal interviews, the 

participants further suggested that the increase in influence during the Delivery phase is also 

likely due to this increase in client involvement.  Considered the most influential of factors at 

the voting phase of CoFIDE, as the client “gut feeling” score of a client increases, the 

anticipated design effort levels of a project decreases. As shown by the calculated 

percentages, this is the least influential factor with an average influence of 9.9% across a 

project.  

Definition Level (Inputs) 

Figure 5 shows that the definition level (inputs) factor has greatest influence on the design 

times during the Discover phase and gradually reduces as the project progresses, with least 

influence at the Deliver phase. This is reinforced when considering the trend line shown in 

Error! Reference source not found. Informal interviews with the case study participants 

indicate that this is due to ambiguity in the project brief, reflected in the level of the factor, and 

would be resolved prior to the later stages of the project.  

Product Complexity 

The influence of the product complexity factor (as shown in Figure 5) increases from the 

project start, peaking at the design phase, and maintaining higher influence in the later project 

phases. Confirming what has been posited by authors such as Griffin (1997), the complexity 

of a product has direct influence over design effort levels, particularly during the design phase. 

From the case study data, it is clear that product complexity is the most influential factor, this 

is further emphasised in Figure 7, where the corresponding trend line maintains the highest 

percentage of influence throughout the course of the project. 
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Delivery Output Complexity 

According to Figure 5, the influence of the delivery output complexity factor increases over the 

course of the project, with the greatest level of influence held over the Delivery phase of the 

project. This is more clearly shown in Figure 6, where the trend lines both steadily increase 

over the course of the project. During informal interviews, the case study participants 

confirmed that this was due to the factor representing the demands of the client and brief on 

what is expected as the output of the project, with a more detailed, longer list of project 

deliverables causing an increase in its perceived complexity, and thus more time will be 

required in order to fulfil the project requirements.  

Mean Effect Plots 

The second type of graphical output of CoFIDE is the mean effect plot, produced by the 

researcher. As the same suggests, this is the graphical version of the mean effect values 

produced in the previous step. A main effect plot enables researchers to clearly demonstrate 

the effect a single independent variable (in this case a factor) has on the dependent variable 

(in this case project time), disregarding the effects of any other factor. 

The mean effects plots for DA1’s design team, shown in Figure 8, provide the direction of 

influence each factor has on project times, where the gradient of the graph indicates both the 

correlation relationships of factors and project times, but also the magnitude of said 

relationships. Values for each graph are included in Table 9. Each graph illustrates the mean 

effects of each participant for each factor and each project phase of design time. 

Client “Gut Feeling” 

The trend lines shown in Figure 8 show that there is an inverse correlation between client “gut 

feeling” and design project stage design effort levels, the higher the level of definition, the less 

design effort will be required. It can be noted that this factor has greatest influence over the 

earlier phases of the project. However, considering the “Detail” phase, the trend lines show a 

mixture of positive and negative gradients, which shows potential confusion in the design 

space.  
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Definition Level (Inputs) 

The trend lines shown in Figure 8 show that there is an inverse correlation between definition 

level (inputs) and design effort levels, the higher the level of definition, the slower the demand 

for design effort. It can be noted that this factor has greatest influence over the earlier phases 

of the project. 

Product Complexity 

Figure 8 shows that there is a clear positive correlation between the product complexity level 

and design effort levels. Furthermore, it is clear that this influence increases as the project 

progresses, with the Design, Detail and Deliver phases having the greatest increase at high 

levels of complexity. 

Delivery Output Complexity 

Figure 8 indicates that there is a positive correlation between the delivery output complexity 

level and design effort levels. Furthermore, it is clear that this influence increases as the 

project progresses, with the Design, Detail and Deliver phases having the greatest increase 

at high levels of complexity. However, considering the “Pre-Sign Off” phase, the trend lines 

show a mixture of positive and negative gradients, which shows potential confusion in the 

design space. 

A third set of graphical models were created by the researcher, showing comparisons between 

each to the factor coefficients as they change per stage, per factor, an example is shown in 

Figure 9. Consensus and confusion within the design team were identified in a semi-structured 

workshop by presenting these graphical representations to the team. Insight and discussion 

points could also be identified during this workshop. 

Participant Evaluation of Graphs in combination 

When considering the graphs in combination, of the five participants interviewed by the 

researcher, three (1, 2 and 4) agreed that the relationships between each factor and design 

effort levels represented in the graphs accurately reflect their personal opinions and 
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perceptions of all factors and phases. While the remaining two participants (3 and 5) had some 

reservations over particular factor-phase length relationships. Participant 3 believed that the 

mean effects plots reflected his perceptions, however they felt that the percentage splits could 

vary. Participant 5 agreed with Participant 3, but expressed doubt in their own ability to 

accurately estimate design effort, stating that their responses might have been more 

“anomalous” due to their perceived difficulty completing the estimation task. 

Additionally, three participants were able to identify at least one other member of the design 

team. Although this may not have utility for newly-formed design teams for hackathons, etc. 

this has great potential for longer-standing design teams, where the benefits of mutual 

understanding can continue beyond a single project. 

Observations on Definition Level (Inputs) 

Although each participant commented on the results of each factor, specific comments were 

made around the definition level (inputs) factor. Specifically referring to its influence over latter 

design phases. For example, Participant 2 stated that “possible issues relating to this factor, 

ambiguity of brief, etc., would be resolved before later [design] phases started.”  

Use of graphs in future 

During these semi-structured interviews, each participant assessed the potential utility of the 

graphs shown to them. Specifically whether they found, or could find, any use for the 

relationships and correlations between factor levels perceived by themselves and their 

colleagues. The results of which are shown in Table 10. 

Three participants believed that the graphs offered some insight into the way that either they, 

or other team members perceive the different factors and how they view project planning. 

Three participants also believed that the information provided by the graphs could be used to 

aid in unspecified future managerial decision making, with one participant stating that such 

information could help inform future team construction, qualifying that this would be of greater 

use when the designer team is larger. 
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By producing graphical models of designers’ perceptions, it is possible to create accessible 

visual diagrammatic representations of tacit knowledge-informed perceptions of designers. 

This provides a simple means of drawing direct comparisons between each design team 

member enabling the identification of consensus and disagreement within design teams; and 

offering a cornerstone from which to consider various influences of these perceptions, from 

background and education, to personal taste and opinion. These models further provide visual 

models for each factor’s behaviour. Not just the magnitude of influence over design effort 

levels, but also how and when that influence has greatest effect.  Producing such insight allows 

for the potential identification of common traits and attitudes towards the practice of design 

and the design space in general throughout the industry. Additionally, these graphs provide 

valuable insight and discussion points by identifying potentially industry-wide issues for 

potential future research. 

When considering the graphs produced by CoFIDE, hackathon teams and makerspace 

collaborators can quickly develop mutual understanding of not only each team members’ 

perceptions towards these factors, but also the influence and behaviour of each factor during 

a design project. This insight further provides hackathon teams with the means to identify 

points of consensus and confusion between team members. This, in turn, acts as a basis and 

reference for open discussions around the design project, the factors themselves and the 

perceptions and opinions of each member of the team. Additionally, hackathon teams can use 

the graphs to identify the contributing issues to the most influential factors to provide a focus 

for improving and optimising of the design space. 

Application of CoFIDE Findings 

The case study findings demonstrate that it has been possible to provide valuable insight 

relating to DA1 design team’s design space. CoFIDE has shown that product complexity is 

the most influential factor for DA1 and that its influence increases during the course of the 

project, peaking at the “Design” phase, shown in Figure 6. Figure 7 shows that as the 

perceived complexity of a product increases, so too does the design effort levels for a project. 
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By modelling the level of influence each factor has during each project phase, DA1 can identify 

which factors to address at each phase and can look to address and optimise their processes 

to mitigate the negative impacts of each factor. Indeed, during an informal discussion with the 

company director, DA1 has used the insight attained through CoFIDE in several ways; DA1 

has taken steps to manage the influence of factors where possible by various means, since 

using CoFIDE. For example, improving the management of projects by introducing scoping 

studies for projects where the definition level is considered to be too low and other processes 

to improve information collection at the pre-sign off phase. Additionally, DA1 has used the 

differences in perceptions illustrated by the mean effect plots (Error! Reference source not 

found.) to prompt discussion and reflection between team members, further enabling 

improved mutual understanding of the design space and each team member’s role within the 

agency.  

Limitations of Method 

There are a number of limitations to CoFIDE which will be discussed in this section. Using 

CoFIDE to identify the most influential factors is dependant on at least one member of any 

design team, hackathon team or makerspace collaborator to think of the factor in some form 

during the process. This is a clear limitation of the method, however the natural solution to this 

would be to have some predetermined factors included as a prompt. However, this may bias 

the participants, potentially placing more importance on them, rather than those that the 

participants identify. 

Intentionally, CoFIDE works only for the team that is using it. To achieve some form of 

universal insight from CoFIDE, one must apply it across a large broad range of design teams, 

hackathon teams and makerspace collaborators. Naturally this is a challenge, as it will require 

gaining access to a suitable number of teams. Furthermore, when considering that each of 

the aforementioned groups will be working towards their own types of projects, the findings 

from each application of CoFIDE could only be compared, not be cross-combined.  
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Conclusions  

Design effort is a highly valuable resource to design teams, no more so than for design teams 

in makerspaces and hackathons, where time and resources are limited to begin with. 

Extensive studies have shown that the design effort levels of product design projects are 

influenced by a number of factors. Many past studies have identified these factors through 

past project data analysis which is not achievable for hackathon teams and makerspace 

collaborators. Other methods studies have used literature reviews to identify factors, yet 

studies have shown that the use of design teams’ tacit knowledge and experience has been 

proven to be effective in the estimation of design effort for product design projects. This 

indicates that designers know which factors are most influential, and how they influence; yet 

in many cases, it is not possible for designers to coherently and completely articulate their 

perceptions of these factors to others. By sharing the understanding gained through this tacit 

knowledge and experience, effective planning of design projects is achievable. This is 

particularly critical in design teams at hackathons and limited-time design challenges, were 

design teams typically do not know each other; and thus there lacks a familiarisation present 

between design team members in industry.  

Through a case study approach, this paper answers the proposed research questions:  

RQ1: Through the capture of tacit knowledge of design teams, what novel data and data 

presentations can be generated from new design effort influencing factor identification 

approaches? 

Through the use of the Collaborative Factor Identification for Design Effort (CoFIDE) method, 

researchers can gather and generate a range of valuable data including models of the most 

influential factors on design effort levels for product design project, shown in the third column 

of Figure 10. The case study data in this study provides detail on the kinds of insight that can 

be offered through the use of CoFIDE. By applying CoFIDE in various diverse design teams, 

this data enables product designers to identify design processes for best practice and design 
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researchers establish, define and model globally-influencing factors. CoFIDE can also provide 

researchers and designers with the means to estimate design effort for design teams, from 

small and specialised, to large and widely-distributed. Furthermore, CoFIDE produces 

mathematical and graphical models of designers’ perceptions of design effort influencing 

factors and the behaviour of these factors, enabling the optimisation of the design space. 

These models further provide the means to draw direct comparisons between the perceptions 

of design team members; find areas of consensus to build upon, disagreement to discuss and 

improve; and determine industry-wide factor-based issues to address. By modelling the level 

of influence each factor has during each project phase, DA1 can identify which factors to 

address at each phase and can look to address and optimise their processes to mitigate the 

negative impacts of each factor. Indeed, during an informal discussion with the company 

director, DA1 has used the insight attained through CoFIDE in several ways; DA1 has taken 

steps to manage the influence of factors where possible by various means, since using 

CoFIDE. For example, improving the management of projects by introducing scoping studies 

for projects where the definition level is considered to be too low and other processes to 

improve information collection at the pre-sign off phase. Additionally, DA1 has used the 

differences in perceptions illustrated by the mean effect plots (Figure 8) to prompt discussion 

and reflection between team members, further enabling improved mutual understanding of the 

design space and each team member’s role within the agency. Utilising the advantages that 

CoFIDE offers, design teams can become more efficient and effective in product design, 

spend more time designing and less planning, and save money on wasted, miss-allocated 

resources. 

RQ2: What new insights and opportunities does this offer makerspace collaborators and 

hackathons participants? 

When applied in a makerspace or hackathon environment, where teams are have diverse 

backgrounds and are likely working together for the first time, CoFIDE provides a range of 

opportunities and benefits for design teams. CoFIDE enables hackathon teams to quickly 
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organise themselves by structuring discussions around the design processes they could adopt 

for the hack. CoFIDE enables design teams to have open discussions about the issues 

surrounding their design task, identifying those most factors that are most influential enabling 

members to take steps to mitigate the negative impacts of factors. Furthermore, through the 

creation of graphical models, it is possible for hackathon teams to quickly establish mutual 

understanding of each other’s perspectives (with the potential to facilitate more effective 

working); and mutual understanding of the factors and their influencing their design space, 

including how influence levels change during the course of the design project. In effect, 

CoFIDE creating team cohesion by rapidly developing mutual understanding, and by 

presenting opportunities to capitalise on the detailed insight of influential factors through the 

characterisation of the design space.  

Future Work 

The next steps for the development and use of CoFIDE will firstly be the use of CoFIDE across 

a range of various design teams, both in size, as in the number of team members; as well as 

the diversity of experience between team members. Doing so will allow for the capabilities of 

CoFIDE to be fully realised, and also will aid in understanding how design team members with 

different backgrounds and experience perceive the challenges and influences exerted by 

factors on design effort levels.   

Secondly, by using CoFIDE in different design spaces globally, it may be possible to identify 

which factors have an influence over design effort levels globally. Interestingly, the opposite 

may also be true, this method may be able to help identify factors which are only considered 

to be influential in a particular market, country, etc. By doing so, it may further be possible to 

use such findings to help share different coping mechanisms that render influential factors in 

one market as impotent in others. This exchange of knowledge, insight and experience could 

easily lower the barrier to entry for future designers and makers, further democratising the act 

of designing. 
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Thirdly, by creating a scoring system, as part of CoFIDE, it may be possible to produce a 

project scorecard tool. Such a tool would allow design teams to evaluate design project briefs, 

assigning a score to each influential factor. This would allow for comparisons between 

projects, both past and current to be drawn. Furthermore, once a range of projects had been 

scored, designers and managers could quickly identify projects with similar scores, enabling 

comparisons to be drawn, experiences to be recalled and planned projects to be improved. 

Finally, the use of CoFIDE and the regression analysis data that it produces should be 

extended to design effort estimation, allowing for bespoke tools to be created for design teams. 

This could potentially enable design agencies to significantly save on time, and therefore 

money, by quickly assessing project briefs and generating accurate design effort estimates. 

This could be particularly beneficial for design agencies, which are typically SMEs operating 

with tight budgets, where planning errors are not easily absorbed.  
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Table 1 Design effort estimation methods in product design that consider influential factors 
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Bashir & Thomson, (2004) •  •    
Andersson et al., (1998) •    •  
Shang & Yan, (2016) •    •  
Benedetto et al., (2018) •    •  
Griffin, (1993) • •  •   
Yan & Shang, (2015) •   •   
Hellenbrand et al, (2010) •   •   
Cho & Eppinger, (2005) •   •   
Bashir & Thomson, (2001a)  •     
Bashir & Thomson, (2001b)  •     
 Xu & Yan, (2006)  •     
Yan &  Xu, (2007)  •     
Salam et al., (2009)  •     
Pollmanns et al., (2013)  •     
Wang et al., (2015)  •     
Eppinger et al., (1997) •   •   
Jacome & Lapinskii, (1997)      • 
Yan et al., (2010)      • 

TOTAL 8 8 1 5 3 2 
Percentage 44.4 44.4 5.6 27.8 16.7 11.1 
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Table 2 Design effort influencing factors 
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Difficulty of the design task (Pollmanns et al., 2013) • • •         
Strategic driver development (Griffin, 1993) •    •  •  •   

Degree of innovation (Rondinelli et al., 1989) •     •      
Project complexity (Zirger and Hartley, 1994) •           

Context (Bryson and Bromiley, 1993)  • •   • • •    
Complexity (Griffin, 1993)  • •     •    

Technical difficulty (Bashir and Thomson, 1999)  •   •   •    
Severity of requirements (Bashir and Thomson, 2001a)  •   •       

Amount of Change (Griffin, 1993)  •    •   •   
Technology Novelty  (Tatikonda and Rosenthal, 2000)  •      •    

Higher Perceived Product Quality (Ittner and Larcker, 1997)  •          
Lower Conformance Quality (Ittner and Larcker, 1997)  •          
Project Complexity  (Tatikonda and Rosenthal, 2000)  •          

Product functionality (Bashir and Thomson, 2004)  •          
Product complexity (Bashir and Thomson, 2001a)  •          
Product complexity (Bashir and Thomson, 1999)  •          

Type of design (Salam et al., 2009)  •          
Degree of change (Salam et al., 2009)  •          

Innovation (Pollmanns et al., 2013)  •          
Product size (Pollmanns et al., 2013)  •          

Product size (Jacome and Lapinskii, 1997)  •          
Product Complexity (Jacome and Lapinskii, 1997)  •          

Level of understanding of technology (Christensen, 1985)  •          
Process (Griffin, 1993)   • • • •      

Multi-site development and development outsourcing (Pollmanns et al., 2013)   • •   •     
Tools and techniques used (Griffin, 1993)   • •    •    

Team structure (Bashir and Thomson, 1999)   • •    •    
Design method (Benedetto et al., 2018)   • •        

Planning and control (Benedetto et al., 2018)   • •        
Type of process used (Griffin, 1993)   • •        

Organisational Variables (Griffin, 1993)   • •        
Use of a formal process (Bashir and Thomson, 1999)   • •        

Concurrency (Salam et al., 2009)   • •        
Productivity (Jacome and Lapinskii, 1997)   • •        

Cultural value (Rondinelli et al., 1989)   • •        
Process (Bryson and Bromiley 1993)   •  • • •     

Clarity of goals (Christensen, 1985)   •  • •      
Technical difficulty versus team expertise (Bashir and Thomson, 2004)   •   •  •    

Knowledge (Benedetto et al., 2018)   •   •      
Execution (Benedetto et al., 2018)   •   •      

Customer & supplier involvement in the development process (Ittner and Larcker, 1997)   •    •     
Information processing capability (Zirger and Hartley, 1994)   •         

Greater use of cross-functional development teams (Ittner and Larcker, 1997)   •         
Diminished Returns to Scale for additional resources (Ittner and Larcker, 1997)   •         

Experience, skill, and attitude of team members (Bashir and Thomson, 1999)   •         
Experience of departmental personnel (Salam et al., 2009)   •         

Employee experience (Pollmanns et al., 2013)   •         
Educational level of the employees (Pollmanns et al., 2013)   •         

Fit with the organization's strategy (Ittner and Larcker, 1997)    •        
Type of drawings submitted to the customer (Bashir and Thomson, 2004)     • •      

Motivation (Zirger and Hartley, 1994)      •      
Involvement of design partners (Bashir and Thomson, 2004)       •     

Use of advanced design tools (Ittner and Larcker, 1997)        •    
Use of design assisted tools (Bashir and Thomson, 1999)        •    

Socio-economic environmental (Rondinelli et al., 1989)         •   
Product (Griffin, 1993)          •  

Outcome (Rondinelli et al., 1989)          •  
Team aspects and working environment (Pollmanns et al., 2013)           • 

Criticality of the designed product (Pollmanns et al., 2013)           • 
 4 20 23 12 7 10 5 8 3 2 2 
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Table 3 Design Agency 1 participant roles 

Alias Role Experience 

Participant 1 
Product Design  

Engineer (Mid-level) 
5-10 years 

Participant 2 
Managing  
Director 

10+ years 

Participant 3 
Design  
Director 

10+ years 

Participant 4 
Studio  

Manager 
<5 years 

Participant 5 
Product Design  

Engineer (Mid-level) 
5-10 years 
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Table 4 Factors influencing design effort levels of design projects as perceived by Design Agency 1 

Grouped Factor Name Factors 

Client “Gut Feeling” 

Client experience, Judge of character, Scope alignment, Client "hand holding" (i.e. how much personal 
management a client will require), Willingness to compromise, Scope Creep, Client Expectations, Client's 
motivation for product, Laws of physics, Decision making chain, Client responsiveness, Client management, 
Curveballs (unexpected changes in aim/scope/etc.) and interruption & University research project 

Communication 
complexity 

Communication, No. of stakeholders, No. of subcontractors 

Definition Level (Inputs) How developed the brief is, Key milestones, Defined market, Critical milestones 
Delivery Output 
Complexity 

Supplier risk factor, Chinese New Year, Supplier liaison, Product Budget, Volume of product, Material 
diversity, Process diversity 

Designer Experience 
Designer Experience, (User research), (Sketch/Ideation), (CAD/Technical), Project Management, 
(Fusion/Solidworks), Motivation, (Presentation putting together), New people, Material Knowledge, 
Manufacturing Knowledge 

Development Budget Budget, Knowing budget, Funding 
Geography Supplier proximity, Travel time/proximity, Environmental parameters 

Product Complexity 
No. of unique parts / Standard components, Prototypeability (the ease and feasibility by which a prototype 
can be made), Testing, Novelty, IP, Complexity, Rendering, Functional requirements, Build time, Types of 
parts / mechanisms 

Regulatory Complexity Regulatory Complexity 

“Stuff” Happens 
Hardware issues, Distractions, Personality Traits, Holiday & Illness, Bad day, Team Efficiency, Current 
resource of team 
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Table 5 Voting for shortlist of factors for design effort influence in design projects at Design Agency 1 

 Ranked Vote Points Score 
Total 

Voted 
Rank Factor 1 2 3 4 5 5 4 3 2 1 

Client “Gut Feeling” 3 0 0 2 0 15 0 0 4 0 19 1 

Communication Complexity 0 0 2 0 1 0 0 6 0 1 7  

Definition Level Inputs 0 3 1 0 2 0 12 3 0 2 17 2 

Delivery Output Complexity 1 0 1 3 0 5 0 3 6 0 14 -5 

Designer Experience 0 2 1 1 1 0 8 3 2 1 14 -5 

Development Budget 0 0 1 0 0 0 0 3 0 0 3  

Geography 0 0 0 0 0 0 0 0 0 0 0  

Product Complexity 2 1 0 0 2 10 4 0 0 2 16 3 

Regulatory Complexity 0 0 0 0 0 0 0 0 0 0 0  

“Stuff” Happens 0 0 0 0 0 0 0 0 0 0 0  
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Table 6 Factor classification and elements 

Grouped 
Factor 

Client “Gut Feeling” Definition Level (Input) Product Complexity 
Delivery Output 

Complexity 

Elements Technical Experience Budget - - 

 Business Experience Scope Definition   

 Personality Background Research   

 Competency Milestones   

Range 
Options 

1 – 4 (points) 
1 – 4 (star) 

1 – 4 (points) 
1 – 4 (star) 

Simple – Complex 
4 Quadrant Diagram 
Complexity vs. Risk 
Range of 3 
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Table 7 Estimation collection sheet 
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Complexity 
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1 1 1 Simple Low       

2 4 1 Simple High       

3 1 4 Simple High       

4 4 4 Simple Low       

5 1 1 Complex High       

6 4 1 Complex Low       

7 1 4 Complex Low       

8 4 4 Complex High       
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Table 8 Participant regression equation values for design effort levels in product design projects 

 
P

h
a
s
e

 Regression Coefficient 

 Cft A B C D AB AC AD BC BD CD 

P
a
rt

ic
ip

a
n

t 
1

 1 1 0 0 0 0 0 0 0 0 0 0 

2 39.875 6.875 -12.625 12.625 8.125 -0.625 0.625 5.125 0 0 0 

3 45 7.5 -7.5 7.5 7.5 6.20E-16 -6.20E-16 -2.00E-16 0 0 0 

4 78.75 3.75 3.75 26.25 11.25 3.75 -3.75 -3.75 0 0 0 

5 78.75 3.75 3.75 26.25 11.25 3.75 -3.75 -3.75 0 0 0 

6 86.25 3.75 3.75 26.25 11.25 -3.75 3.75 -11.25 0 0 0 

P
a
rt

ic
ip

a
n

t 
2

 1 3.875 -1.125 -0.125 1.875 -0.625 -1.125 -0.625 -0.125 0 0 0 

2 150.25 -17.75 -56.5 126 -5.25 -11 -18.5 -47.25 0 0 0 

3 106.25 -14.375 5.75 73.875 11.25 -1.375 -8.25 6.875 0 0 0 

4 207.625 -12.625 1.125 153.625 -0.125 -21.125 -8.625 0.125 0 0 0 

5 195.063 -24.438 38.687 146.813 32.438 5.688 -16.188 21.938 0 0 0 

6 194.25 -9.25 14.5 147 83.25 55.5 -2 -3.25 0 0 0 

P
a
rt

ic
ip

a
n

t 
3

 1 4.125 -0.125 -1.375 1.875 0.125 -0.125 0.125 -0.625 0 0 0 

2 33 1 -17 16 6 1 -4 -4 0 0 0 

3 25.25 -4.25 -9.75 14.75 9.25 5.75 -5.75 -5.25 0 0 0 

4 90 3.75 3.75 37.5 12.5 -5 3.75 3.75 0 0 0 

5 120 -7.40E-16 6.10E-15 60 20 2.10E-15 2.10E-15 -4.80E-15 0 0 0 

6 73 -8.30E-16 2.10E-15 17 27 3 -5.10E-16 -4.80E-16 0 0 0 

P
a
rt

ic
ip

a
n

t 
4

 1 6 -0.5 0 1 1.5 -0.5 -0.5 1 0 0 0 

2 38.5 1.5 -5.5 -16.5 8.5 -6.5 -3.5 -0.5 0 0 0 

3 80 8.00E-16 -10 20 10 -10 8.50E-16 -10 0 0 0 

4 169 1 -19 71 31 9 -1 -21 0 0 0 

5 92 -10 -3.50E-16 28 18 2 -10 2.00E-15 0 0 0 

6 121 9 -1 19 49 11 -9 1 0 0 0 

P
a
rt

ic
ip

a
n

t 
5

 1 5.375 -0.375 1.125 1.875 0.375 -1.125 1.125 -0.375 0 0 0 

2 21.5 -1 -3.5 5 4.5 -3 -0.5 -3 0 0 0 

3 30.75 0.75 -3.75 8.25 4.75 -0.75 -0.75 -1.25 0 0 0 

4 58.5 2.5 8.00E-17 26.5 8 -8 2.5 -2.60E-15 0 0 0 

5 63.25 8.75 1.25 14.25 11.75 -19.25 8.75 1.25 0 0 0 

6 36 2 2 19 11 4 3 3 0 0 0 

Note: 
Project Phases are numbered:  1. Pre-Sign Off; 2. Discover; 3. Define; 4. Design; 5. Detail; 6. Deliver 

Factors are labelled:   A. Client "Gut Feeling"; B. Definition Level (Inputs); C. Product Complexity; D. Delivery Output Complexity 
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Table 9 Mean effect plot values for factor influence over design effort levels 

 Factor 

P
a
rt

ic
ip

a
n
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  Client  
“Gut Feeling” 

Definition Levels 
(Inputs) 

Product  
Complexity 

Delivery Output 
Complexity 

 1 4 1 4 Simple Complex Low High 

P
re

-S
ig

n
 O

ff
 1 1 1 1 1 1 1 1 1 

5 2.75 4 3.75 2 5.75 4.5 3.25 2 

4.25 4 5.5 2.75 2.25 6 4 4.25 3 

6.5 5.5 6 6 5 7 4.5 7.5 4 
5.75 5 4.25 6.5 3.5 7.25 5 5.75 5 

D
is

c
o
v
e

r 

33 46.75 52.5 27.25 27.25 52.5 31.75 48 1 

168 132.5 206.75 93.75 24.25 276.25 155.5 145 2 

32 34 50 16 17 49 27 39 3 
37 40 44 33 55 22 30 47 4 

22.5 20.5 25 18 16.5 26.5 17 26 5 

D
e
fi
n

e
 

37.5 52.5 52.5 37.5 37.5 52.5 37.5 52.5 1 

119.875 91.875 100.5 111.25 32.375 179.375 94.25 117.5 2 
29.5 21 35 15.5 10.5 40 16 34.5 3 

80 80 90 70 60 100 70 90 4 

30 31.5 34.5 27 22.5 39 26 35.5 5 

D
e
s
ig

n
 

75 82.5 75 82.5 52.5 105 67.5 90 1 

220.25 195 206.5 208.75 54 361.25 207.25 207.25 2 
86.25 93.75 86.25 93.75 52.5 127.5 77.5 102.5 3 

168 170 188 150 98 240 138 200 4 

56 61 58.5 58.5 32 85 50.5 66.5 5 

D
e
ta

il 

75 82.5 75 82.5 52.5 105 67.5 90 1 
219.5 170.625 156.375 233.75 48.25 341.875 162.625 227.5 2 

120 120 120 120 60 180 100 140 3 

102 82 92 92 64 120 74 110 4 

54.5 72 62 64.5 49 77.5 51.5 75 5 

D
e
liv

e
r 

82.5 90 82.5 90 60 112.5 75 97.5 1 

203.5 185 179.75 208.75 47.25 341.25 111 277.5 2 

73 73 73 73 56 90 46 100 3 

112 130 122 120 102 140 72 170 4 

34 38 34 38 17 55 25 47 5 
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Table 10 Utility of mean effect plots and percentage influence graphs 

Participant 1 2 3 4 5 Percentage 

Provides Insight into Perceptions x   x x 60% 

Insight (in own perceptions) x    x 40% 

Insight (into colleagues perceptions) x   x x 60% 

Ability to identify another participant by their graphs x x  x  60% 

Tool for Managerial Decision Making  x x  x 60% 

Unspecified Potential  x x  x 60% 

Potential for Team Creation / Member Selection   x   20% 
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