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Abstract—Stone duality relates logic, in the form of Boolean
algebra, to spaces. Stone-type dualities abound in computer
science and have been of great use in understanding the rela-
tionship between computational models and the languages used
to reason about them. Recent work on probabilistic processes
has established a Stone-type duality for a restricted class of
Markov processes. The dual category was a new notion—Aumann
algebras—which are Boolean algebras equipped with countable
family of modalities indexed by rational probabilities. In this
article we consider an alternative definition of Aumann algebra
that leads to dual adjunction for Markov processes that is a
duality for many measurable spaces occurring in practice. This
extends a duality for measurable spaces due to Sikorski. In
particular, we do not require that the probabilistic modalities
preserve a distinguished base of clopen sets, nor that morphisms
of Markov processes do so. The extra generality allows us to
give a perspicuous definition of event bisimulation on Aumann
algebras.

I. INTRODUCTION

Dualities in computer science have enjoyed a recent spate
of popular interest. Since Plotkin and Smyth’s discovery of a
Stone-type duality between the predicate-transformer seman-
tics of Dijkstra and state-transformer semantics [1], [2], it has
become increasingly apparent that dualities are ubiquitous in
computer science, having appeared in automata and formal
language theory, automated deduction, programming language
semantics and verification, domain theory, and concurrency
theory [3]-[14].

Dualities are important because they establish canonical
connections between computational models and the languages
used to reason about them. A duality gives an exact character-
ization of the power of a state transition system by showing
how the system determines a corresponding logic or algebra
in a canonical way, and vice versa. Moreover, algebra homo-
morphisms correspond directly to structure-preserving maps or
bisimulations of the transition system, allowing mathematical
arguments to be transferred in both directions.

The original duality of Stone [15] asserts that the category
of Boolean algebras and Boolean algebra homomorphisms is
contravariantly equivalent to the category of Stone spaces and
continuous maps. Jonsson and Tarski [16] extended Stone’s
result to Boolean algebras with modal operators and Stone
spaces with transitions. A recent surge of interest in prob-
abilistic systems, due largely to impetus from the artificial
intelligence and machine learning communities, has led to the
study of various logics with constructs for reasoning about
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probabilities of events or expected behaviour. Recent papers on
Markovian logic [11], [17], [18] have established completeness
and finite model properties for such systems.

In this paper we focus on the duality of a certain class
of models of probabilistic computation, namely Markov tran-
sition systems, with a certain class of Boolean algebras with
operators that behave like probabilistic modalities, the Aumann
algebras. Aumann algebra is the algebraic analogue of Marko-
vian logic; that is, it is to Markovian logic what Boolean
algebra is to propositional logic. They were first defined in
[19], where a restricted form of the duality was established.
The duality was shown to hold only under certain (somewhat
artificial) assumptions, to wit:

o The Aumann algebra must be countable.

o The Borel sets of the Markov transition system must be
generated by a distinguished countable family of clopen
sets, and morphisms must preserve the distinguished
clopens.

These assumptions were made in order to apply the Rasiowa—
Sikorski lemma [20], a lemma of logic that is dual to the Baire
category theorem of topology. The RSL/BCT implies that
certain “bad” ultrafilters (those not satisfying the countably
many infinitary defining conditions of countable Aumann al-
gebras) can be deleted from the Stone space without changing
the supported algebra of measurable sets, since the “good”
ultrafilters are topologically dense.

Although not a perfect duality due to these restrictions, the
groundwork laid in that paper nevertheless led to significant
advances in the completeness of Markovian logics [21], [22].
Previously, strong completeness theorems had used a powerful
infinitary axiom scheme called the countable additivity rule,
which has uncountably many instances. Moreover, one needs
to postulate Lindenbaum’s lemma (every consistent set of
formulas extends to a maximally consistent set), which for
these logics is conjectured but not proven. The duality result
of [19] gives rise to a complete axiomatization that does
not involve infinitary axiom schemes with uncountably many
instances and that satisfies Lindenbaum’s lemma.

In this paper we improve the duality of [19] to a full-
fledged Stone-like duality between Markov transition systems
and Aumann algebras based on Sikorski’s Stone duality for
o-perfect o-fields [23], [24] and o-spatial Boolean algebras.
A o-Boolean algebra is o-spatial if every element, other
than L, is contained in an o-complete ultrafilter; this is the
algebraic analogue of Lindenbaum’s lemma. The construction
does not use the RSL/BCT, thus the restrictions mentioned



above are no longer necessary. However, we need to change
the definition of an Aumann algebra, so this duality is not
strictly a generalization of [19]. In particular, the axiom AAS8
that we use has uncountably many instances. We say that
the duality is Stone-like because the duality is no longer
an algebraic/topological duality in the strict sense of the
word, as the “topological” side is axiomatized in terms of
measure-theoretic properties of the state space, not topological
properties as with traditional Stone-type results. This is an easy
price to pay, because it brings the relevant properties of the
state space needed for duality into sharp relief.
Our key results are:

« a version of the duality of [19] for all o-spatial Aumann
algebras, not just countable ones; and

o the removal of the assumptions that Markov processes
be countably generated and that maps preserve the dis-
tinguished clopens.

The paper is organized as follows. In §1I, we briefly review
the necessary background material. In §III, we describe Siko-
rski’s Stone duality for measurable spaces. We do this so as to
fix notation and also because it will be used in two different
places later in the article. It takes the form of an adjunction
that becomes a categorical duality when restricted to objects
for which the unit and counit are isomorphisms. In §IV, we
recall Halmos’s description of free o-Boolean algebras and
what a presentation of a o-Boolean algebra is. We then give
a presentation of the Borel o-field of [0, 1] as an abstract o-
Boolean algebra. In §V, we describe an alternative definition of
Aumann algebras and prove a duality for Aumann algebras and
(discrete-time, continuous-space, time-homogeneous) Markov
processes extending the duality for o-Boolean algebras and
measurable spaces in §III. Finally, in §VI we describe the
generalization of labelled Markov processes and how event
bisimulation is formulated in the setting of Aumann algebras.

II. BACKGROUND

See Johnstone [25] for a detailed introduction to Stone
duality and its ramifications, as well as an account of several
other related mathematical dualities such as Priestley duality
for distributed lattices and Gelfand duality for C*-algebras.

We assume knowledge of basic notions from measure theory
and topology such as field of sets, o-field, measurable set,
measurable space, measurable function, measure, topology,
open and closed sets, continuous functions, and the Borel
algebra of a topology (denoted by Bo(X) for X a topological
space in this article). See [26], [27] for a more thorough
introduction.

Throughout, we use o-Boolean algebra to refer to a o-
complete Boolean algebra, i.e. a Boolean algebra with count-
able joins and meets, and use o-field to refer to a pair (X, F)
where X is a set, and F a family of subsets that is a o-Boolean
algebra under set-theoretic operations. To avoid confusion we
do not use the term o-algebra.

The natural notion of an ultrafilter on a o-Boolean algebra
is a o-ultrafilter, i.e. an ultrafilter that is additionally closed
under countable meets. We say that a o-Boolean algebra is

o-spatial if every element is contained in a o-ultrafilter.! If
we use o-homomorphisms as morphisms, o-Boolean algebras
form a category o0-BA, with o-spatial algebras forming a full
subcategory o-BAg;,.

Define @y = QN [0,1] and RT =R N0, 00).

A. Measurable Spaces and Measures

It F C PM, the o-field generated by F is the smallest
o-field containing F.

In any measurable space (X,3), a point € X defines a
o-ultrafilter on X by

(xy={SeX|xzeS}

Sikorski introduced the term o-perfect for those measurable
spaces for which (-) is a bijection from X to the set of o-
ultrafilters on ¥ [24, pp. 1, 98].

Measurable spaces form a category Mes with measurable
maps as morphisms, and o-perfect measurable spaces form a
full subcategory P.Mes.

A nonnegative real-valued set function y is said to be finitely
additive if p(AUB) = pu(A)+pu(B) whenever ANB = ), and
countably additive if p(|J; A;) = >, u(A;) for a countable
pairwise-disjoint family of measurable sets. A measure on a
measurable space (X, X)) is a countably additive set function
1% — RT. A measure is a probability measure if in addition
w(X) = 1, and a subprobability measure if p(X) < 1. We
use G(X,Y) to denote the set of subprobability measures on
(X, %).

We can view G(X, X)) as a measurable space by considering
the o-field generated by the sets { € G(X,X) | u(S) > r}
for S € ¥ and r € [0, 1]. This is the least o-field on G(X, X))
such that all maps p — p(S) : G(X,X) — [0,1] for S € &
are measurable, where the real interval [0,1] is endowed its
Borel o-field. In the usual way, we extend G to a functor
Mes — Mes by defining

where f : (X,X) — (Y, ©) is a measurable map, ;1 € G(X, X)
and T' € ©. It is worth mentioning that G is the subprobabilis-
tic Giry monad [28].

B. Markov Processes

Markov processes (MPs) are models of probabilistic systems
with a continuous state space and discrete-time probabilistic
transitions [28]-[30].

Definition 1 (Markov process). A Markov process (MP)
is a measurable space (X,X.) equipped with a measurable
map 0 : (X,%¥) — G(X,X). A Markov process is said to
be o-perfect iff (X,%) is. Maps of Markov processes are
“zig-zags”, i.e. if (X1,%1,01) and (X2, 39, 62) are Markov

I'This terminology is inspired by the theory of locales.



processes, a measurable map [ : (X1,51) = (X2,%2) is a
map of Markov processes if

Xi Xy

| |o

X X

G(X1) Wg( 2)

commutes. Then Markov processes and morphisms thereof
form a category Markov, with o-perfect Markov processes
Sforming a full subcategory PMarkov.

In a Markov process (X, X, 0), and 6 is called the transition
Sfunction. For x € X, 6(z) : ¥ — [0,1] is a subprobability
measure on the state space (X,X). For S € X, the value
0(x)(S) € [0,1] represents the probability of a transition from
x to a state in S.

The condition that § be a measurable function X —
G(X,Y) is equivalent to the condition that for fixed S € 3,
the function = — 0(x)(S) is a measurable function X — [0, 1]
(see e.g. [30, Proposition 2.9]).

C. Aumann Algebras

Aumann Algebra (AA) [19] is the algebraic analogue of
Markovian logic [11], [17], [18]. It is so named in honor of
Robert Aumann, who has made fundamental contributions to
probabilistic logic [31].

Definition 2 (Aumann algebra). A o-Aumann algebra is a
tuple (A, (L;)req,), Where A is a o-Boolean algebra, Qy =
QnN0,1] and each L, : A — A, such that the following
axioms hold, where a,b are arbitrary elements of A and r, s
are elements of Qq:
(AAD)
(AA2)
(AA3)
(AA4)
(AAS)
(AA6)
(AA7)

T < Lo(a)

L.(L) <1, where 7 > 0

Ly(a) < -Ls(ma)ifr+s>1
Lr(aAb)ANLs(aN-b) < Lrys(a)ifr+s<1
—Lr(aAb)AN—=Ls(aA—b) <—Lpjg(a)ifr+s<1
a < b implies Ly(a) < L,(b)

A Li(a) = Ly(a)

r<s
(AA8) If r € Qo and r # 0, for all countable descending chains a3 >
oo

oo
ap > --- such that A a; = L we have A L,(a;) = L.
i=1 1

1= 1=

TABLE I
AUMANN ALGEBRA

We define a morphism of o-Aumann algebras f
(A, (L)) — (B,(M,)) to be a o-Boolean homomorphism
such that f(L,(a)) = M,(f(a)) for all a € A, i.e. such that
the following diagram commutes for all v € Qq:

A*f>B

e

We define the category Aumann to have o-Aumann algebras
as objects and o-Aumann algebra morphisms as its mor-
phisms, and AumannSp to be the full subcategory on o-
spatial Aumann algebras.

The reader may verify that AA1 and AA3-AAG6 are the same
as in [19, §4.1], and that AA7 and AAS8 imply the AA7 of the
original definition. Note that AA2 originates in [22, Table 3],
and is the small change needed to account for subprobability
distributions. Note also that AA2 with » = 0 is inconsistent
with AA1. Additionally, AA1 is implied by AA7 with s = 0.
A o-spatial Aumann algebra is defined to be a o-Aumann
algebra whose underlying o-Boolean algebra is o-spatial.

III. DUALITY FOR MEASURABLE SPACES

In this section, we express Sikorski’s duality for measurable
spaces [24, §24, §32][23, 2.1-2] as an adjunction, and describe
how this adjunction can be restricted to an equivalence (see
[32, Part O, Proposition 4.2] for a proof that this is possible
for any adjunction).

If (X,X) is a measurable space, then ¥ is a o-Boolean
algebra. We can use this to define a functor F' : Mes —
o-BA°P by defining F(X,X) = %, and for f : (X,X) —
(Y, ©) a measurable map and T' € ©

F(fIT) = f~1(D).

This is easily verified to be a functor. The following is easy
to verify using the fact that sets can be distinguished by their
points.

Lemma 3. For any measurable space (X,X), ¥ is a o-spatial
o-Boolean algebra.

So we can also regard F' as having the type Mes —
o-BAZP. The analogous functor in Stone duality takes the
Boolean algebra of clopens of a Stone space.

The reader familiar with Stone duality will already be
expecting ultrafilters to be involved in the definition of a
functor the other way. For A a o-Boolean algebra, we define
U7 (A) to be the set of all o-ultrafilters on A. Given an element
a € A, we define

(a) = {u e U’ (A)|u > a} CU(A).

We can define F(A) C P(U?(A)) by F(A) = (A4), i.e. it is
the image of A under the map (-).

Lemma 4. (-) is a surjective morphism of o-Boolean algebras
A — F(A), and F(A) is a o-field [24, §24.1]. We also have
that A is o-spatial iff (-) is an isomorphism.

The proof is omitted.

We can now define G : 0-BA°® — PMes on objects
as G(A) = (U°(A),F(A)), where F(A) = (A). On o-
homomorphisms f : A — B, G(f) is defined for each
u €U’ (B) as

G(f)(u) = [~ (u).



In order to prove that F' 4 G, we define the unit and counit
of the adjunction. For a measurable space (X,Y), for each
element x € X, we can define an ultrafilter (z) € U°(X) as

(r) ={Sex|zes8)

We define the unit nx : (X,%) — G(F(X,X)) and counit

€a: F(G(A)) — Ato be

nx () = (x)
ea(a) = (a).

The direction of €4 is reversed because we use o-BA°P.

Theorem 5. (F,G,n,¢) is an adjunction making G a right
adjoint to F. In fact, G maps into PMes and by restricting F
and G to the categories where the unit and counit are isomor-
phisms, they define an adjoint equivalence c-BAZD ~ P Mes.

In passing, the above theorem shows that PMes and
0-BAg, are reflective [33, §1V.3] subcategories of Mes and
o-BA, respectively.

The reader might object to the definition of a o-perfect
measurable space as only attempting to “solve” a problem by
defining it out of existence. To address this potential criticism,
we show that there are many o-perfect measurable spaces
occurring in practice using a theorem of Hewitt. First, we
recall that on a topological space X, the Baire o-field Ba(X)
can be defined to be the o-field generated by the zero sets, the
subsets of X of the form f~1(0) for some continuous map
X — R.If X is metrizable, Ba(X) is the same as the Borel
o-field. We also need to refer to the concept of a realcompact
space. We omit the definition [34, §5.9], but we only need the
fact that every o-compact Hausdorff space and every separably
metrizable space2 is realcompact, as is shown in [34, §8.2].

Theorem 6 (Hewitt). For a completely regular space X,
(X, Ba(X)) is o-perfect iff X is realcompact.

See [35, Theorem 16] for the proof®.

Therefore the Borel o-field of any separable metric space,
e.g. a Polish space or analytic space, and the Baire o-field
of any compact Hausdorff space are o-perfect. We warn the
reader that it is not the case that the Baire o-field of a
locally compact space is o-perfect, nor the Borel o-field of
an unmetrizable compact Hausdorff space, and o-perfectness
is not preserved under o-subfields (even though o-spatiality is
preserved under subalgebras).

For example, consider an uncountable set X. Take X to
consist of countable sets and their complements (co-countable
sets), the countable co-countable o-field. Then we define u
to be the set of co-countable sets. This is a non-principal o-
ultrafilter on X, so (X,X) is a measurable space that is not
o-perfect. But note that if we take X = R, this is a o-subfield
of the Borel o-field.

One thing to note is that the smallest cardinality of a set X
such that (X, P(X)) is nor o-spatial is strongly inaccessible,

2Not requiring completeness.
3Hewitt uses Q-space to mean realcompact space.

i.e. it is not possible to produce this set by taking powersets
or unions of strictly smaller families of strictly smaller sets.
This was first proven by Ulam [36, Lemma 1 and Satz 4].
It is therefore not possible to prove the existence, or even
the consistency, of a non-o-spatial discrete set [37, Theorem
12.12].

IV. PRESENTATIONS OF 0-BOOLEAN ALGEBRAS

In this section we describe Halmos’s construction of the
free o-Boolean algebra on a set, how to give presentations of
o-fields in terms of generators and relations, how to define
measurable maps in terms of presentations, and give a presen-
tation of Bo([0, 1]). We note that this point that presentations
can be defined in a more general setting of universal algebra
for theories with operations of countable arity, and Lemma 8
and Proposition 9 (i) could have been given as a reference to
such a general theorem rather than being proved in this special
setting. However, we will stick with a presentation closer to
measure theory than universal algebra.

We have the usual forgetful functor U : 0-BA — Set.

Proposition 7 (Halmos). The functor U has a left adjoint H,
given on objects by

H(X) = Ba(2%),

where 2% is given the product topology. This is also a left
adjoint to the restriction of U to 0-BA;.

For the proof, see [38, §23, Theorem 14].

We have already seen the definition of a o-ultrafilter. A o-
ideal in a o-Boolean algebra A is a subset I/ C A that is
downward closed (i.e. if b < a and a € I, then b € I) and
closed under countable joins. As any o-ideal is an ideal, we
can define A/ to be the set of equivalence classes of elements
of A modulo the relation a ~ b < a/Ab € I, where A is the
symmetric difference, as usual, and o-Boolean operations are
well-defined with respect to this equivalence relation.

If K is a subset of a o-Boolean algebra A, we can define
the sub-o-Boolean algebra B generated by K to be the
smallest o-Boolean algebra in A containing K. This can
equivalently be defined as either the intersection of all o-
Boolean subalgebras of A that contain K, or by building up
elements of B as o-Boolean combinations of elements of K
using countable ordinals, as in the Borel hierarchy [39, §I1.3].
If B = A, we say that A is generated by K. Note that K will
not necessarily generate A as a Boolean algebra, in general
countable operations will be necessary.

Recall that H : Set — 0-BA is the free (o-spatial) o-
Boolean algebra on a set, from Proposition 7, in the following
lemma.

Lemma 8. A set K C A generates A iff the universal map
1 HK) — A:

K



is surjective, where i is the inclusion morphism.

We say a o-ideal I C A is generated by a subset R C [ if
I is the smallest o-ideal containing R, equivalently if

I = {GEA|E|(bi)ieN.ViEN.bi € Rand a < \/bz}

i=1

Note that R does not necessarily generate I as an ideal, as
countable joins may be necessary to produce every element
of I. Also note that the o-ideal generated by a set and the
o-Boolean algebra generated by a set are not necessarily the
same.

A o-ideal is principal if it is generated by one element,
and if (b;);en is a countable set of generators for a o-ideal I,
then I is generated by \/,_ - s, i.e. every countably generated
o-ideal is principal.

A presentation of a o-Boolean algebra A is a pair (K, R)
where K C A generates the o-Boolean algebra A and R
generates the o-ideal 7' (L) in H(K), where i : K — A is
the inclusion morphism. We call the elements of R relations.
This agrees with the usual notion of a presentation of a
group or ring in terms of generators and relations. In view
of Theorem 5, we can define a presentation of a o-perfect
measurable space (X,X) to be a presentation of X.

Once we have a presentation of a o-Boolean algebra, we
can define homomormorphisms by giving their values on the
generators and checking that the relations are satisfied.

Proposition 9.

(i) Let A and B be o-Boolean algebras, (K, R) a presen-
tation of A, and f : K — B a function. There exists
a o-homomorphism g : A — B such that g|x = f iff
f(ry= L1 forall v € R.

(ii) Let (X,3) and (Y,0) be measurable spaces, where
(X,X) is o-perfect, and let (K, R) be a presentation
of (X,X). Let f : K — © be a function. There exists
a measurable map g : (Y,0) — (X,X) such that
g Nk =Ffiff f(r)=0 foralreR

In the special case that there are only countably many
relations, we can verify that a set of relations is sufficient
to define a presentation in another way.

Lemma 10. Let (X,Y) be a o-perfect measurable space,
K C X a set of generators with inclusion morphism i : K —
Y, and (rj)jes a countable set of relations, i.e. elements
of H(K) such that i(r;) = (. The following condition
implies that (K, (r;)jc) is a presentation of (X,%): For all
u € UP(H(K)) such that Vj € J.r; & u, we have that there
exists x € X such that i~ ({z)) = u.

We can now give a presentation of Bo([0,1]) for later use.
This presentation is related to a presentation of Bo([—oo, 0])
given by Sikorski [23, I1.3 Lemma].

Define

K ={[r,1]]r e Q) (1)

This is a countable family of closed subsets of [0, 1]. To define
the relations, we write

B, = nK([Ta 1])

Then we define the relations as

R:K&ABQA&h@U{<A

r<s

B’r') ABS} , (2
s€Qo

where  and s are understood to range over Q.

Lemma 11. The above (K, R), as in (1) and (2), define a
presentation of ([0, 1], Bo([0, 1])).

V. DUALITY FOR MARKOV PROCESSES

In this section, we extend the adjunction and duality from
Section III to Markov processes. Recall that the category of
Markov processes is called Markov and the category of
Aumann algebras is Aumann. We define a o-perfect Markov
process to be one whose underlying measurable space is o-
perfect, forming the full subcategory PMarkov. Likewise,
an Aumann algebra is called o-spatial if its underlying o-
Boolean algebra is o-spatial, and these form a full subcategory
AumannSp.

As o-perfectness of a Markov process only depends on
the underlying measurable space, our remarks at the end of
Section IIT imply that the usual Markov processes defined on
the Borel o-fields of Polish spaces or analytic spaces are o-
perfect, so the duality works as a categorical equivalence in
these cases.

When defining the adjunction, it is useful to recall Giry’s
definition of pg, where (X, X)) is a measurable space and S €
by

Ps g(sz:) -
ps(v) = v(5).

The o-field of G(X, X)) is defined to be the coarsest such that
ps is measurable, equivalently that generated by pgl(B) as
S varies over all S € ¥ and B varies over the Borel sets of
[0, 1], or equivalently any family of sets generating Bo([0, 1]).

As in the case of Mes and o-BA, we define F
Markov — AumannSp°” based on F': Mes — 0-BAZD
and G : Aumann® — PMarkov based on G : 0-BA°P —
PMes.

For a Markov process (X,
processes f : (X,%,0) —

[0,1]

3, 0), and a morphism of Markov
( Y, 0, ) we define F as

(X, )(,(
()

where L, is defined, for S € ¥, as
L. (S) ={z € X | 0(x)(S5)

T)TGQO)
>r} 3)

Proposition 12. F' defines a a functor Markov —
AumannSp°P.



We can now define the Markov process arising from a o-
Aumann algebra, defining the functor G : Aumann®® —
PMarkov on objects.

Given an Aumann algebra (A, (L,),cq,) we define, using
Proposition 9, for each ¢ € A a measurable map 6,

U (A) — [0,1] such that
0c " (Ir,1]) = (L (a)), @)
and then define 0 : U7 (A) — G(U7(A)) as
0(u)((a)) = Oa(w). (5)

Proposition 13. If (A, (L,)req,) is a o-Aumann algebra,
(U (A), F(A),0) is a o-perfect Markov process.

We can now show that this defines a functor G
Aumann® — PMarkov. On objects, we should have

G(A7 (LT)TEQO) = (UJ(A)’ ]:(A)’ 9);

as described above. Given a map of o-Aumann algebras ¢ :
(A, (Ly)req,) — (My)reg, we define G(g) exactly as for
o-Boolean algebras, i.e. G(g)(u) = g~ (u).

Proposition 14. With the above definition, G is a functor
Aumann® — PMarkov.

Proof. By Proposition 13, it is defined correctly on objects. If
we have a morphism of o-Aumann algebras (4, (L,),ecq,) —
(B, (M,)req,), by Theorem 5, this defines a measurable
map G(f) : U°(B) — U?(A), and the identity map and
composition are preserved. Therefore we only need to show
that G(f) is a map of Markov processes, i.e. that the diagram:

ue(B) —2 o (a)
GU(B)) 55 GU7 (4))

commutes, where 6 and )\ are the morphisms defining the
Markov processes on U7 (A) and U7 (B) respectively.
The bottom left path is

G(G(9))(Mw))((ah) = AMu)(G(9) ™" ((a)))

Now,

G(9)"((a)) = {u e U”(B) | u € G(g)~"((a))}
={uel?(B)|G(g)(u) € (a)}
={ueU’(B)|ac G(g)(u)}
={ucU’(B)|acg'(u)}
={uel?(B)|g(a) € u}
={uel?(B)|uc(g(a)}
= (9(a)),

so the bottom left path is equal to

A(w)(l9(a))) = Ag(a) (w)- (6)

The top right path is equal to:

0(G(g)(w)((a)) = 0a(G(g)(w)) (7
To show that the right hand sides of (6) and (7) are equal,

we will show that A\jq) = 0, o G(g) using Theorem 5. Let

r € Qg. Then

A;(fw([ 1]) = (M, (g(a))) definition of )\g(a)
= (g(Lr(a))) g a 0-AA morphism
= G(9) ' ((Lr(a))) naturality (Theorem 5)
=G(g)~" (0, ([, 1)) definition of 6,

= (0a 0 G(9)) " ([r,1]).

As intervals of the form {[r,1]},cq, generate Bo([0,1])
(Lemma 11), we have

1 _
Mgy () =

for all Borel subsets S of [0,1]. As Ay, and 60, o G(g)
are both maps (U°(B),F(B)) — ([0,1],Bo([0,1])), i.e.
measurable maps between o-perfect measurable spaces, we
can apply the categorical duality from Theorem 5 to deduce
Ag(a) = 0a 0 G(g) from the equation above, and therefore the
diagram commutes. O

(02 © G(g))H(S)

Theorem 15. F is a left adjoint to G, and when restricted they
define adjoint equivalences AumannSp°® ~ PMarkov.

Proof. Recall the natural transformations (-) : A — F(G(A))
and (-) : (X,X) » G(F(X,X)) from Theorem 5. If we show
that (-) is a morphism of Aumann algebras and (-) a morphism
of Markov processes, then the commutativity of the naturality
diagrams and the triangle diagrams defining an adjunction
follows from the proofs in Theorem 5, and we have shown
F is a left adjoint to G.

We first show that (-) is a o-Aumann algebra morphism.
That is to say, we want to show that for all @ € A and r € Qg
that (L.(a)) = M,((a)), where (M,),cq, is the Aumann
algebra structure on F'(G(A)). Well,

Ly((a)) ={u e U?(A) | 6(u)((a)) = r}  see (3)
= {u eU(A) ] 0,(u) >r} see (5)

o ([ 1))
= (]Lr(a)D see (4).

We now show that (-) is a morphism of Markov processes,
i.e. the following diagram commutes

(X,%) — - G(P(x, %)

| |
X, %) —— F(X, X
G(X.%) 5= G(GIF(X, X)),
where A\ is map making G(F'(X,%)) a Markov process. In

equations, what we want to show is that G((-)) 06 = Ao (-).
Recall that the o-field on G(F(X,X)) consists of elements



of the form (S) for S € X, so we want to show that, for all
rzeXand S € X,

G((-N0(2))(1S)) = A({x))((S))- (8)

If we expand the definition of G on the left hand side, we get

G- (O@)AS)) = ) ((-) " ((SD)).

Now, we can simplify the argument of 6(x) as follows

(71 (S)) = {z € X | (z) € (S)}
={zeX|Se(x)}
={reX|zeS}t=2S5,

so, all together, the left hand side of (8) is 6(x)(S). For the
right hand side, we can expand the definition

A((2)) (1)) = As((z))

according to (5). We now prove that Ag({z)) = 0(x)(S) b
showing that, for all r € Qg, Ag({x)) > r iff 6(x)(S) > r.

As((@) =7 & (z) € Ag' ([, 1])
< ) € (Lr(9)) @
Lr(5) € (x)
<z € L.(S)

& 0(x)(S) =7 3.
Because every real is the supremum of the rationals below it,
this implies that 6(z)(S) = As({z)), and therefore that (8)
holds.

As we explained at the start of the proof, this suffices to
show that F' is a left adjoint to G. We can show that ' and G
define an adjoint equivalence PMarkov ~ AumannSp by
showing that when (-) and (-) are, respectively, o-Boolean
algebra isomorphisms and measurable isomorphisms, they
are o-Aumann algebra isomorphisms and Markov process
isomorphisms.

We do so as follows. We first need to show that (-)~! is a
o-Aumann algebra homomorphism. First, we observe that the
equality M,.((a)) = (L(a)) implies

O-D_l(MT(daD)) = Lr(a)
Lo (™" ((a))).

As every element of the algebra F(G(A)) is of the form (a)
for some a € A, we have shown that (-)~! is an Aumann
algebra isomorphism.

It is a generally true fact that a measurable isomorphism
that is a map of Markov processes is an isomorphism of
Markov processes, but we give the special case that <->_1 is

a morphism of Markov processes here:

G((-Nob=Xo(-) &G((-Nobo(-) "=
& 0o(-)7 =G((-)" oA

(
) >

Note that by Theorem 6 this duality can be applied to any
of the Stone-Markov processes with countable base considered
in [19], although the dual Aumann algebra will be the Borel
sets, not the base of clopens.

VI. EVENT BISIMULATION AND DUALITY FOR LABELLED
MARKOV PROCESSES

Given a measurable space (X, X)), a labelled Markov pro-
cess is a tuple (X,X,(0%)cck), where FE is a set of labels
and for each e € E, ¢ : X — G(X,X) is a measurable
function. If (X, X, (6¢).cg) and (Y, 0, (A\¢)ccp) are labelled
Markov processes with the same label set I, we say that
a measurable function f : (X,X) — (Y,0) is a morphism
of labelled Markov processes if it is a morphism of Markov
processes f : (X,%,60.) — (Y,0,).) for each e € E. For
any set of labels, we have a category LabMarkovy of E-
labelled Markov processes and their morphisms. It should now
be obvious how to define the full subcategory of o-perfect
labelled Markov processes, PLabMarkov .

We can define a labelled o-Aumann algebra to be
(A, (LE)ecE,req,), such that for each label e € E,
(A, (L%)req,) is a o-Aumann algebra. A morphism of E-
labelled o-Aumann algebras (A, (LE)) — (B, (ME)) is a o-
Boolean homomorphism A — B that is a o-Aumann algebra
homomorphism for each e € E. For each set of labels E,
we have categories LabAumanng and LabAumannSp
defined in the familiar way. By working with each e € E
independently, we can define F, G and a duality as in Theorem
15.

In the context of labelled Markov processes, an event
bisimulation on (X,%,(0¢).cp) is defined to be a sub o-
field A C X such that (X, A, (6¢|a)cck) is a labelled Markov
process, where for each e € E, 6¢|y : X — G(X,A) is the
function such that for each x € X, 0°|(x) is the restriction
of 0°(x) to A. This notion was originally defined in [40,
Definition 4.3], as a version of the notion of probabilistic
bisimulation [41] that is more adapted to probabilistic logics.

Theorem 16. Let (X,X,(0°).cr) be a labelled Markov
process. A o-field A C ¥ is an event bisimulation iff it is a o-
Aumann subalgebra of F(X, %, (0°)cck), i-€. iff it is preserved
by the Aumann algebra operations.

Proof. We start with the only if direction, which is to say
we show that an event bisimulation A is also an Aumann
subalgebra of the Aumann algebra F (X, 3, (69)).

Since an event bisimulation is a o-field supporting a labelled
Markov process, when F' is applied to it becomes an Aumann
algebra. As 6¢| is the restriction of #¢ to A at all points
x € X, we get that A and X agree on the effect of the L¢
operators for all » € Qp. This shows that A is an Aumann
subalgebra of ..

For the other direction, suppose Ag is an Aumann subal-
gebra of F(X, X, (0%).cr). We prove that 4 is an event
bisimulation of (X, %, (6°).cg) as follows. We need to show
that for each e € F,

96|A0 : (X,.Ao) — g(X,.Ao)



is measurable. This is equivalent to showing that for each a €
Ap and each B € Bo([0, 1]),

(0°].40) ™" (02 ' (B)) € Ao.

To do this, it is sufficient to prove that for any rational r < 1,
(0°].40) " (" ([ 1])) € Ao
But since a € Ag, we get
(0°].40) " (2 ([ 1)) = Lia € Ao
and this concludes the proof. O

Therefore we can, if we like, define event bisimulations
directly on o-Aumann algebras, by taking them to be o-
Aumann subalgebras.

VII. CONCLUSION

We have given a general Stone-like duality between spatial
Aumann algebras and certain Markov processes, improving a
similar duality of [19] of a more restricted form. We have also
shown how the improved version captures the notion of event
bisimulation for Markov processes.

Strictly speaking, the result of [19] is not a special case of
the result of this paper, because we have amended the defini-
tion of Aumann algebras to assume countable completeness:
all countable joins are assumed to exist, not just the definable
ones. This result is probably not the last word on the subject,
as it may be possible to derive an even more general version of
the duality parameterized by the class of joins that are assumed
to exist that would subsume both the results of [19] and those
of this paper. We leave such investigations to future work.
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