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A B S T R A C T

Background: False start analysis is the examination of incomplete saw marks created on bone in an effort
to establish information on the saw that created them. The present study aims to use quantitative data
from micro-CT cross-sections to predict the thickness of the saw blade used to create the mark. Random
forest statistical models are utilised for prediction to present a methodology that is useful to both forensic
researchers and practitioners.
Method: 340 false starts were created on 32 fleshed cadaveric leg bones by 38 saws of various classes.
False starts were micro-CT scanned and seven measurements taken digitally. A regression random forest
model was produced from the measurement data of all saws to predict the saw blade thickness from false
starts with an unknown class. A further model was created, consisting of three random forests, to predict
the saw blade thickness when the class of the saw is known. The predictive capability of the models was
tested using a second sample of data, consisting of measurements taken from a further 17 false starts
created randomly selected saws from the 38 in the experiment.
Results: Random forest models were able to accurately predict up to 100% of saw blade thicknesses for
both samples of false starts.
Conclusion: This study demonstrates the applicability of random forest statistical regression models for
reliable prediction of saw blade thicknesses from false start data. The methodology proposed enables
prediction of saw blade thickness from empirical data and offers a significant step towards reduced
subjectivity and database formation in false start analysis. Application of this methodology to false start
analysis, with a more complete database, will allow complementary results to current analysis
techniques to provide more information on the saw used in dismemberment casework.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Disciplines of forensic science are under scrutiny by both
governing bodies [1,2] and other researchers in the field [3–5]. In
particular, those forensic sciences which rely upon pattern-based
evaluation, such as toolmark evaluation, are questioned [3,5,6].
Subjectivity is inherent in any technique which requires human
interpretation and experience. Hence, increasing quantitation
within the analysis improves objectivity and increases confidence
in reliability and validity. Pelletti and colleagues state that, in order
for a novel method to be validated, a technique must have proven
accuracy, precision and inter-rater reliability [7].

In dismemberment cases, the study of saw marks is essential in
attempting to identify the weapon used [8,9]. Current casework

methodologies focus on casting and comparing striation detail of
saw marks [10] allowing determination of similar qualities
between experimental saw marks and casework saw marks using
human evaluation. Previous research studies have aimed to
improve the information that can be gathered from this evidence,
for example the type of saw used and the blade thickness [7,11].
Previous research has described in detail how profile shapes of
false starts can be used to establish the teeth set of the saw used
[11,12].

The knowledge and characterisation of false starts, defined as
incomplete saw marks, is invaluable in dismemberment investi-
gation to provide critical information on the saw that created it
[9,10,13]. Research into false starts has involved the use of a
multitude of experimental materials. Bones from animals, includ-
ing pig [14], deer [15], and cow [16], have been previously used as
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nd human bones [12]. Further to this, research has strongly
ecommend that fleshed, human remains be the focus of toolmark
n bone research experiments suggesting dry bones are unsuitable
or experimental development [11].

Micro-Computed Tomography (CT) is an imaging technique that
as been applied to many areas of forensic science in recent years,
ncluding gunshot residues [17,18], bloodstains [19], pathology
20–24] and forensic anthropology [11,25]. Micro-CT works by
apturing thousands of 2D radiographs from the full rotation of the
ample which are then reconstructed to form a full 3D digital
odel [26]. This is advantageous as the technique is non-
estructive and also allows for cross-sections and measurements
o be taken at any point. The field of toolmark analysis is one area
hat has benefitted from this technology through visualisation and
easurement of toolmark cross-sections [7,11,27].
Previously, Norman and colleagues [11] introduced a univariate

inear regression method for predicting saw blade thickness of
alse starts from micro-CT data. The research concluded that a
eshed, free-saw action is likely to provide false start data similar
o casework. The researchers were able to accurately predict the
ool thickness in 94% of cases across all methodological conditions,
lthough this reduced significantly when predicting from only
eshed, free-saw toolmarks [11].
This study presents a more objective, robust, and repeatable

andom forest method for saw blade thickness predictions, which
an be complementary to current human evaluation techniques.
andom forests methodologies for saw marks have been
reviously proposed and described by Love and colleagues [28].
hese researchers used traditionally accepted saw mark proper-
ies, determined through microscopy analysis, to predict the blade
ype of the saw used [28]. Love and colleagues [28] demonstrated
he applicability of this technique to forensic toolmark analysis.
orman and colleagues also suggest the use of decision trees,
hich is the foundation of a random forest, for the analysis of false
tarts [11].
Random forests are an ensemble learning technique consisting

f many decision trees grown from a dataset. Using this
ncorrelated forest of trees, instead of a singular decision tree,
rovides a more accurate prediction and prevents overfitting.

Random forests offer a trainable, robust method suitable for
datasets with missing values and possible outliers due to the
bagging process, making this technique ideal for prediction with
multiple variables [29].

Hence, the use of regression random forest in the prediction of
saw blade thickness, from micro-CT cross-sections, is proposed in
this study with the aim of introducing a method which improves
overall accuracy and sensitivity of micro-CT saw mark analysis. In
this study, micro-CT measurements of false starts created on
fleshed human cadavers and statistical analysis is used to produce
random forest models to predict the thickness of the saw used to
create a mark.

2. Materials and methods

2.1. Materials

A total of 38 newly purchased saws, Fig. 1, were selected based
on market research establishing the best-selling and most popular
models of saw. The saws also were chosen to reflect the variety of
profile shapes which have been described by previous authors
[11,12,30]. Materials were purchased from four well known
hardware suppliers in the United Kingdom, and one online
marketplace. The final saws used consisted of seven reciprocating
(power) saws, eleven hacksaws, and twenty hand powered saws
over five sub classes, shown in Table 1. Hacksaws are separated
from hand saws in this study due to the difference in false start
properties exhibited by these marks [11,30]. The saw blade
thicknesses were established by taking 30 measurements, with
digital callipers, over the length of the blade and establishing the
mean and standard deviation, as with previous studies [11].

2.2. Methods

2.2.1. False start creation (experimental)
Sixteen non-pathological human legs, from eight cadavers (5

male, 3 female) with a mean age 82, were sourced following full
ethical approval by the first author’s institution and following
standard Human Tissue Authority guidelines. Femurs and tibias
Fig. 1. Example saw for each class and subclass used in the study. From left to right Saw IDs: 6, 7, 12, 14, 20, 26, 32.
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were chosen due to the prevalence of false starts in this area
during dismemberment [11,31]. The precedent set by Norman
et al. to use fleshed, cadaveric limbs and a free-saw action to
create the marks, was followed in this study [11]. The location of
the false starts was randomised across femur/tibia, donor, bone
side, and location on the bone. One individual attempted ten
marks per saw to ensure statistical reliability, as established by
the effect size analysis of data carried in previous studies [11].
Some attempted false starts were not measurable resulting in 8–
10 marks per saw, this was due to some attempted false starts not
reaching the bone, or lightly scratching the surface. Each bone
was defleshed manually after false start creation for ease of
transportation and scanning.

False starts were created in two sessions on the same day and
under the same conditions, as described above. Sample 1 consisted
of 340 false starts, of randomised location, created by all 38 saws on
leg bones from seven cadavers. Sample 1 measurements were used
to create all statistical models. Sample 2 consisted of one false start
per saw, to be used to establish the predictive capability of the
statistical models. Due to the experimental variability described
above, only 17 false starts were measurable in Sample 2.

2.2.2. Micro-CT scanning
A Nikon XT H 225/320 LC micro-CT scanner (Nikon Metrology,

UK) was used to image the false starts. Scan parameters were
160 kV, 20 W, no filter and 500 ms exposure which resulted in
resolutions of approximately 55 mm with a total scan time of
140 min per bone. The 3D micro-CT data were reconstructed from
the 3142 x-ray projections using Nikon’s proprietary software, CT
Pro and then exported to VGStudio MAX 2.2 (VolumeGraphics,
Heidelberg, Germany). A calibrated work-piece was included in
each scan to allow voxel rescaling and improve measurement
accuracy [32,33].

selected. Repeatability of the cross-section measurement proce-
dure was tested through inter- and intra-operator assessment
using Intra-class Correlation Coefficient (ICC). Three operators
were evaluated using a sub-sample of randomly selected cross-
sections from different saws. The operators consisted of one
individual with prior experience of the procedure, and two
individuals with no prior training or experience in toolmark
analysis. Intra-operator agreement was measured through three
different measurement sessions of Operator 1.

This study builds on a study conducted by Norman and
colleagues who proposed five measurements to assess micro-CT
cross-sections of false starts [11]. The researchers proposed the use
of: minimum toolmark width at floor, wall angle, trough height,
trough angle deep, and trough angle shallow. The latter two
measurements were only suggested for convex profiles, those
exhibiting a ‘W’ profile shape (Fig. 2). However, in the current study
it is proposed that both angles be taken on all profiles but
standardised to avoid directionality misinterpretations, hence this
study utilises angle mean (Am) and angle difference (AD), Fig. 2(a)
and (b). Trough height (h) and minimum toolmark width at floor
(W0) are measured, see Fig. 2(d); h is measured as 0 for non-convex
profiles. Furthermore, this study proposes the use of toolmark
width at 50% height (W50), toolmark width at maximum (W100),
and internal angle (g) to analyze false start profiles, Fig. 2(c) and
(d). Post-hoc multivariate analysis of data from the previous study
suggested wall angle measurements to not be useful in predicting
saw blade thickness, so this measurement has been omitted from
the analysis [11].

2.2.4. Statistical model creation
Using in-built MATLAB (The MathWorks, Inc., MA, USA)

functions, the random forest models were produced. The hold-
out validation method was used to reduce overfitting of the model,
with 15% held out [34]. The random forest models were tested

Table 1
Blade thickness (� standard deviation) and class for each saw.

Hand Saws Hacksaws and Power Saws

Subclass Saw ID Blade thickness (mm) Teeth Set* TPI** Subclass Saw ID Blade thickness (mm) Teeth Set* TPI**

Panel 1 0.98 � 0.11 A 9 Hacksaw 21 0.66 � 0.11 W 18
2 1.18 � 0.12 A 7 22 0.65 � 0.10 W 24
3 1.36 � 0.10 A 7 23 0.64 � 0.10 W 18
4 0.97 � 0.10 A 7 24 0.69 � 0.12 W 24
5 0.83 � 0.08 A 8 25 0.67 � 0.12 W 32
6 0.84 � 0.09 A 11 26 0.67 � 0.11 W 18

Tenon 7 1.08 � 0.11 W 15 27 0.59 � 0.10 W 24
8 0.75 � 0.06 A 12 28 0.69 � 0.14 W 32

Bow 9 1.18 � 0.25 R 4 29 0.79 � 0.09 W 18
10 1.21 � 0.15 R 4 30 0.90 � 0.07 W 24
11 1.20 � 0.29 R 4 31 0.73 � 0.13 W 32
12 1.17 � 0.15 A 5 Power 32 1.12 � 0.09 R 14
13 1.40 � 0.27 A 4 33 1.09 � 0.18 W 6/10

Toolbox 14 1.01 � 0.08 A 8 34 1.26 � 0.10 A 8/14
15 1.01 � 0.07 A 15 35 1.54 � 0.10 W 6/12
16 1.28 � 0.14 A 11 36 1.05 � 0.09 A 10

Universal 17 1.09 � 0.12 A 7 37 1.54 � 0.11 A 6
18 1.13 � 0.11 A 7 38 1.10 � 0.09 R 18
19 1.10 � 0.12 A 7 – – – –

20 0.93 � 0.10 A 7 – – – –

*A – Alternate, W – Wavy, R – Raker.
**TPI, teeth per inch as stated by manufacturer.
2.2.3. Quantitative data collection
Using VGStudio MAX 2.2, a cross-section image was obtained

from the digital models of each false start. The cross-section
location was obtained parallel to the floor of the false start and
halfway through the mark. In cases where the false start floor was
not visible at this point, the nearest section showing a full floor was
3

through prediction of blade thicknesses from Sample 1 data which
was used to build the model.

Predictive capabilities of the models were established through
prediction of blade thicknesses from Sample 2 false starts. This was
used to confirm the models were representative of the saws and
the practicability of the models for simulated casework prediction.
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o test the general applicability of the model to casework a third
et of measurement data was used to predict blade thickness,
nown as Sample 3. Sample 3 used false starts collected from a
revious studys [11], with the addition of the extra measurements
roposed in the current study, to predict blade thickness of saws
ot in the original data.
Two random forest model approaches are proposed. The

nknown Class Model (UCM) is suitable for all false starts without
rior knowledge of the saw class, and hence is a standalone
ethod for saw blade thickness prediction. A second model, the
nown Class Model (KCM) is applicable if the overarching saw class

 handsaw, hacksaw or power saw – is known prior to prediction.
he KCM approach requires some prior knowledge of the class and
herefore must be applied in combination with another classifica-
ion technique. While the UCM is built on one regression random
orest, the KCM consists of three random forest models separated
y class.

3. Results

3.1. Inter- and intra-operator agreement

Intra-operator reliability was proven through ICC analysis on all
measurements, Table 2. Agreement was shown with ICC values
>0.75 for all measurements, indicative of ‘excellent’ agreement on
the ICC agreement level scale [35].

Inter-operator reliability also showed an ‘excellent’ agreement
over all measurements, Table 2. As such, Operator 10s measure-
ment data on all cross-sections were solely used for statistical
analysis going forward.

3.2. Prediction of saw blade thicknesses

The prediction of saw blade thicknesses through the random
forest models is laid out in Table 3. Each prediction value against

able 2
esults of inter- and intra-operator agreement testing using Intra-class Correlation Coefficient (ICC).

Saw Mark Measurement Measurement Code Inter-operator ICC1 Intra-operator ICC

Width at 0% (saw mark floor) W0 0.993 0.935

ig. 2. Diagrammatic representations of the measurements utilised in this study, shown on a convex profile example. (a) and (b) show the trough angle measurements used to
alculate the angle difference and angle mean; Angle Difference (AD) = |α-β|, Angle Mean (Am) = (α + β)/2. (c) shows the internal angle measurement (g) and (d) depicts the
idth measurements (W0, W50, and W100) and trough height measurement (h) used.
Width at 50% W50 0.991 0.987
Width at 100% (at bone surface) W100 0.967 0.977
Trough height h 0.999 0.999
Angle Difference AD 0.999 0.988
Angle Mean Am 0.966 0.972
Internal angle measurement g 0.994 0.997

1 ICC Agreement Levels35: <0.4 – Poor, 0.4�0.59 – Fair, 0.6�0.74 – Good, >0.75 – Excellent.
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the accepted blade thickness range is shown in Figs. 2 and 3, and
the variability of the predicted value against the blade thickness
mean is shown in Tables 4 and 5. The KCM consistently predicts
saw blade thickness with a greater accuracy than the UCM. The
applicability of the model, when the class is known is shown
through the prediction of Sample 3 by the KCM, with accuracy up
to 100%.

4. Discussion and conclusions

Following many researcher and governmental guidelines [1–
6,36], this study aims to present a reduced subjectivity methodol-
ogy. The current study introduces a random forest prediction
approach to false start profile analysis in combination with an
improved cross-section measurement methodology from micro-
CT data, building on work from previous researchers [11,37]. As
such, features used in previous studies which require human
determination (e.g. profile shape, toolmark shape [11]) were
omitted. Measured saw blade thickness in this study experimen-
tally followed previous studies [11] by taking thirty thickness
measurements with digital callipers down the length of the blade.
Experimental error and blade variability has not been studied and
hence is a limitation of this work.

The random forest methodology introduced in this study is
aimed as a tool to complement current methodologies. Striation
analysis and profile shape determination are important techniques
in toolmark examination. Where striation analysis and profile
shape can inform on the TPI and tooth set respectively of the saw
used [11,38], the random forest method proposed may inform on

the thickness of the saw used. In combination, these techniques
should enable elimination of some suspect saws and possible
indication of the type of saw used.

4.1. Micro-CT

Micro-CT as a technique for analysing forensically relevant
toolmark evidence has been shown by previous studies to provide
valuable data and methodology for both research and casework
[7,11,37,39,40]. This study further shows the applicability of micro-
CT technology to these forms of evidence. Non-destructive cross-
section data for false starts is unparalleled and is proven to provide
the necessary data for new methodologies.

4.2. Saw blade thickness prediction

The results of this study present the possibility for accurately,
within 2 standard deviations, predicting saw blade thicknesses
from false start data, particularly for saws within the model. This
high accuracy for Sample 2 prediction offers insight into the
practicability of the methodology to casework. Accurately predict-
ing the saw blade thickness from a false start will give a clear
indication of the tool used to create the mark, and importantly
allow elimination of saws unlikely to have created the mark.
Assuming a representative database, the saw blade thickness
prediction allows up to accuracy.

Previous studies have shown the practicability of statistical
analysis for complementary saw mark analysis techniques
[7,11,16,37]. Univariate regression models have been employed

Table 3
Overall correct prediction results of the two random forest models: UCM and KCM, as applied to Sample 2 and Sample 3 false start measurements.

Accurate Prediction of Saw Blade Thickness

Prediction Range Mean � 1SD Mean � 2SD Mean � 3SD

Dataset Sample 2 Sample 3 Sample 2 Sample 3 Sample 2 Sample 3

Unknown Class Model (UCM) 29.3% 10% 64.7% 26.7% 88.3% 56.7%
Known Class Model (KCM) 82.4% 63.3% 100% 86.7% 100% 100%
Fig. 3. Prediction results from the UCM and KCM for Sample 3.
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y Bailey and colleagues [16] showing the effectivity of saw mark
easurements in elimination of incorrect saw classes. Statistical
valuation of micro-CT data has also been shown, by Giraudo and
olleagues [37], to enable a good discrimination between false
tarts and is suggested as complementary to currently employed
ethodologies. Previously, a univariate approach to saw blade

4.3. Limitations and future work

Due to the nature of scientific donation, human cadavers for
research purposes are often older than the general population, as
seen in this study with a mean age 82. It is worth noting that
without casework validation, the applicability of the proposed

able 4
ariability of predicted saw blade thicknesses from the random forest models, UCM and KCM, for Sample 2.

Saw Class Saw Subclass Saw ID Saw Blade Thickness
Mean (mm)

Saw Blade Thickness
S.D (mm)

Variability of Predicted Blade Thickness from Mean(mm)

UCM KCM

Hand Panel 1 0.98 0.11 0.012 �0.058
5 0.83 0.08 0.088 0.031

Tenon 8 0.75 0.06 0.189 0.118
Bow 10 1.21 0.15 �0.318 �0.065

11 1.20 0.30 �0.343 �0.060
13 1.40 0.27 �0.390 �0.137

Toolbox 14 1.01 0.08 �0.127 �0.149
Universal 18 1.13 0.11 �0.031 0.143

19 1.10 0.12 �0.029 �0.054
Hacksaw 23 0.64 0.10 0.146 0.038

24 0.69 0.12 0.295 0.009
25 0.67 0.12 0.080 0.091
26 0.69 0.11 0.158 0.026

Power 32 1.12 0.09 �0.422 0.079
33 1.10 0.18 �0.035 0.135
34 1.26 0.10 �0.248 0.016
38 1.10 0.09 �0.207 0.084

able 5
redicted blade thickness variability from mean for both models on Sample 3 data.

Saw Class Saw Subclass Saw ID Saw Blade Thickness
Mean (mm)

Saw Blade Thickness
S.D (mm)

Variability of Predicted Blade Thicknesses from Mean (mm)

UCM KCM

Hand Panel 101 1.41 0.10 �0.289 �0.144
�0.289 �0.144
�0.272 �0.144
�0.267 �0.144
�0.267 �0.144
�0.150 �0.675

Tenon 102 0.75 0.04 0.256 �0.014
0.289 �0.012
0.312 �0.016
0.175 �0.008

Hack 103 0.78 0.11 0.416 �0.045
0.325 �0.045
0.380 �0.049
0.347 �0.049
0.373 �0.045

104 0.69 0.04 0.191 �0.023
0.203 0.033
0.010 0.011
0.090 0.004
0.095 0.053

Power 105 1.10 0.1 �0.170 0.252
0.197 0.282
�0.104 0.092
�0.066 0.213
�0.048 0.280

106 1.47 0.11 �0.412 �0.071
�0.312 �0.078
�0.395 �0.137
�0.167 �0.075
�0.386 �0.075
hickness prediction has been proposed [11]. The random forest
pproach introduced in the current study builds on these previous
tudies to introduce a complementary methodology with a
eneralised applicability. A random forest approach improves
verall accuracy and sensitivity of this analysis technique to allow
racticability of the technique within casework.
6

method is unknown. The nature of false start analysis exclusively
studies toolmarks in cortical bone, indeed those extending into the
trabecular are excluded from the study, and previous, studies
[11,13]. Age related factors are unlikely to alter the mechanical
properties of the cortical bone [41] but further research into
applicability is necessary.
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The KCM, particularly for Sample 3 data, show a much higher
predictive accuracy than the UCM. Hence, features of the saws,
such as tooth set or TPI, have an impact on the prediction of saw
blade thicknesses. This highlights the necessity for complementary
analysis with current techniques to establish the class. Further-
more, in order to be implementable to casework, a more
comprehensive database of saw false starts would be needed.
However, the practicability of creating a comprehensive database
is reliant on the resources available.

Reducing subjectivity is a prime aim of this study. Nevertheless,
human error is still likely to be introduced in the manual process.
Extraction of the cross-sections from 3D digital models is a
probable introduction of human error. As 3D models are manually
oriented in order to obtain the cross-section image, it is possible
error is introduced. Though it is expected that any cross-sections
across the false start should still be representative of the weapon,
production of a more objective automatic process should eliminate
the introduction of error at this point. Automation of cross-section
extraction will also standardise this area which has currently not
been studied for error. With further experimental data it is
envisioned this tool may be extremely useful in a more objective,
and data driven, method for false start analysis.

4.4. Conclusions

The methodology proposed in this study shows the applicabili-
ty of regression random forest models in the accurate prediction of
saw blade thicknesses from quantitative false start data. Practical-
ly, this method should be complementary to current analysis
techniques to provide useful information on the saw used in
dismemberment casework. With the methodology presented it is
proposed, with a thorough database of false start measurements
from representative saws, a digital tool for identification of
probable saws used in a dismemberment.
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