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Aims: Numerous algorithms have been developed to guide warfarin dosing and

improve clinical outcomes. We reviewed the algorithms available for various

populations and the covariates, performances and risk of bias of these algorithms.

Methods: We systematically searched MEDLINE up to 20 May 2020 and selected

studies describing the development, external validation or clinical utility of a

multivariable warfarin dosing algorithm. Two investigators conducted data extraction

and quality assessment.

Results: Of 10 035 screened records, 266 articles were included in the review,

describing the development of 433 dosing algorithms, 481 external validations and

52 clinical utility assessments. Most developed algorithms were for dose initiation

(86%), developed by multiple linear regression (65%) and mostly applicable to Asians

(49%) or Whites (43%). The most common demographic/clinical/environmental

covariates were age (included in 401 algorithms), concomitant medications

(270 algorithms) and weight (229 algorithms) while CYP2C9 (329 algorithms),

VKORC1 (319 algorithms) and CYP4F2 (92 algorithms) variants were the most

common genetic covariates. Only 26% and 7% algorithms were externally validated

and evaluated for clinical utility, respectively, with <2% of algorithm developments

and external validations being rated as having a low risk of bias.

Conclusion: Most warfarin dosing algorithms have been developed in Asians and

Whites and may not be applicable to under-served populations. Few algorithms have

been externally validated, assessed for clinical utility, and/or have a low risk of bias

which makes them unreliable for clinical use. Algorithm development and assessment

should follow current methodological recommendations to improve reliability and

applicability, and under-represented populations should be prioritized.
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1 | INTRODUCTION

Warfarin remains the most commonly prescribed oral anticoagulant

for the management of thromboembolic disorders.1 However,

dosing remains challenging due to warfarin's narrow therapeutic

index and highly variable clinical response. These dosing challenges

usually result in a high frequency of adverse effects (thrombosis

and bleeding) as well as an increased burden to the patient

(e.g. more frequent monitoring), which could impact quality of life

and lead to treatment discontinuation of an otherwise highly effi-

cacious drug.2 To better predict an individual's warfarin dose

requirements, numerous dose-prediction algorithms based on

demographic, clinical, environment and genetic factors have been

developed.3,4 Algorithms incorporating only demographic, clinical

and environmental factors have been designated as clinical

and those additionally incorporating genetic factors as

pharmacogenetic.5

The availability of numerous published dosing algorithms

provides a wealth of information but makes navigating the litera-

ture to identify which algorithms to use or recommend, and in

which patients/populations difficult. This task becomes more

complicated if it is not clear if the identified algorithms have low

risks of bias, have been externally validated and/or have been eval-

uated for clinical utility. The Clinical Pharmacogenetics Implementa-

tion Consortium (CPIC) has recommended the use of 4 dosing

algorithms.1 However, these may not be applicable to non-

Caucasians or for some categories of patients such as those with

international normalized ratio (INR) targets outside of the 2–3

range.1,6,7

Previous reviews have attempted to describe available

dosing algorithms but most, if not all, have had the main limitation

of focusing on a limited number of algorithms. For example

Saffian et al.8 evaluated 16 algorithms but these were only

from studies that had: (i) evaluated the algorithm's predictive

ability in the form of a high resolution scatterplot (observed

vs predicted maintenance doses); (ii) used a validation dataset;

and (iii) included at least 5 patients requiring warfarin at a

dose >7 mg/d. Other reviews including those by Verhoef et al.9

(32 algorithms) and Shendre et al.10 (50 eligible studies) have

been narrative in nature and consequently neither reported

a detailed search strategy nor assessed the risk of bias of

included studies. Additionally, both these narrative reviews

included only pharmacogenetic algorithms and the Shendre et al.10

review additionally excluded studies that did not involve

European or African ancestry populations. To methodologically

assess and describe the knowledge base accumulated so far,

we have undertaken this systematic review, which includes

both clinical and pharmacogenetic algorithms with no population-

based exclusion criteria. Our aim was to accurately and compre-

hensively summarize which algorithms are available for

which populations and the covariates (demographic, clinical, envi-

ronmental, genetic), performances and the risk of bias of these

algorithms.

2 | METHODS

2.1 | Search strategy and selection criteria

A predefined protocol (PROSPERO: CRD42019147995), based on the

principles set in the CHARMS (CHecklist for critical Appraisal and data

extraction for systematic Reviews of prediction Modelling Studies)

checklist,11 and PROBAST (Prediction model Risk Of Bias Assessment

Tool), a tool meant to assess the risk of bias and applicability of

prediction model studies12 was followed. This report adheres to the

Preferred Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) statement (Table S1). MEDLINE records (from 1946 to

22 August 2019) were searched using medical subject headings

(MeSH terms) and text words related to “warfarin”, “algorithm” and

“dosing” (Table S2). A second MEDLINE search was conducted on

20 May 2020 to identify records published after our first search. Lists

of references from the identified studies were hand-searched to

identify further eligible studies. Non-English language studies were

excluded.

Observational (e.g. cohort studies) and interventional

(e.g. randomised controlled trials) studies that developed, validated or

assessed the impact/clinical utility of warfarin dosing algorithms in any

warfarin-treated population were included. For development studies,

those that modelled at least 2 predictor variables (not counting dose

and INR readings for dose-revision algorithms) and either: (i) explicitly

stated in their aims that they were developing a dosing algorithm; or

(ii) reported dosing equations, nomograms, charts, tables, computer

programs etc. that can be used to provide a daily or weekly dose, were

included. In all cases, the included predictors had to have been

reported. Unless enough details pertaining to algorithm development

were available in an external validation or clinical utility assessment

study or elsewhere (corresponding development study, other studies),

external validation or clinical utility assessment studies were excluded.

Additionally, for a clinical utility assessment study to be included, a

comparison between a dosing algorithm with an alternative strategy

(such as existing clinical practice) was a prerequisite. For the purposes

of this review, clinical utility13 was defined as the demonstration that a

dosing algorithm improved the quality of anticoagulation (based on the

time spent in the therapeutic INR range) or lead to better clinical end-

points (such as fewer bleeding episodes). Not to be confused with the

outcome to be predicted in the individual studies (i.e. the stable warfa-

rin dose), the primary outcome of interest in this review was the warfa-

rin dose-prediction algorithm developed, and whether it was externally

validated or evaluated for clinical utility in the included studies.

2.2 | Data extraction and quality assessment

One reviewer (I.G.A.) screened titles and abstracts of the retrieved

bibliographic records for eligibility. For all stages, a second reviewer

(R.O.) independently checked a random 10% of the records to check

for consistency. Disagreements were resolved by consensus and

because the first reviewer was consistent with regard to following

agreed upon criteria, only the first reviewer continued reviewing the
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remaining records. A data extraction form was adapted from the

CHARMS11 and PROBAST12 tools, piloted in a subset of randomly

selected included papers and used to extract relevant information

related to participants, predictors, outcome, analysis and results. When

a single publication reported both development and external validation

studies (and/or clinical utility assessments), or multiple algorithms, each

study/algorithm was assessed separately.12 The exception was studies

that reported the warfarindosing.com platform—although this platform

incorporates multiple algorithms, it was not possible to separate the

individual algorithms and so it was considered as 2, the clinical and

pharmacogenetic Gage algorithms.14 Algorithm updating/extension

studies in which new predictors were added to existing algorithms

were considered as new algorithm development studies.12

To assess the methodological quality of each included develop-

ment or external validation study, the 2 reviewers used the PROBAST

tool.12 Although this tool focuses on prediction models that consider

binary or time-to-event outcomes and studies that use generalized

linear modelling, its authors encourage its use in studies that consider

other outcomes and other machine learning techniques such as those

explored in this review.12 It should, however, be tailored to these

other outcomes/techniques as we did in Tables S3 and S4 and

Figure S1. For reasons detailed in Table S3, emphasis was placed on

the assessment of the risk of bias in the analysis domain. We did not

assess the methodological quality (and performance) of clinical utility

(impact) assessment studies since these have been previously

explored in several systematic reviews and meta-analyses.15–22

2.3 | Data synthesis

This systematic review was qualitative in nature and no attempt to

quantitatively synthesise studies by way of meta-analysis was con-

ducted. Consequently, heterogeneity measures and publication bias

were not explored. The descriptive results (i.e. proportions and

measures of central tendency and dispersion) are presented in

structured tables, graphically and as a narrative summary. Where

appropriate, the results were stratified according to the type of algo-

rithm (clinical vs pharmacogenetic) and ethnic populations for which

they were developed. For the purposes of stratifying by population,

we used the 4 categories (White, Asian, Black and Mixed/Other)

reported by 1 of the largest warfarin-related studies to date, the Inter-

national Warfarin Pharmacogenetics Consortium (IWPC) study.23

Where these race categories were unreported, country was used as a

proxy (for example populations from China were categorized as Asian

while populations from northern Europe as White). Regarding which

algorithm would be relevant to a given population, we arbitrarily

chose a 5% cut-off, i.e. an algorithm that recruited at least 5% of a

given population would be applicable to that population. These

F IGURE 1 PRISMA flow chart of included studies. aIncludes studies that neither stated in their aims that they were developing/validating a
dosing algorithm nor reported dosing equations, nomograms, charts, tables, or other tools that can be used to provide a daily or weekly dose.
bPrior doses and international normalized ratios not counted
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descriptive analyses were conducted in R (version 3.6.1).24 No sensi-

tivity analyses were conducted.

2.4 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, the

common portal for data from the IUPHAR/BPS Guide to

PHARMACOLOGY.

3 | RESULTS

We aimed to summarize which algorithms are available for which

populations, and the covariates, performances and risk of bias of these

algorithms. Figure 1 illustrates the literature search and selection

process; 10 035 records were identified of which 9435 were excluded

based on the title and abstract. Of 600 full text records assessed for

eligibility, 266 met the eligibility criteria and were included in the

qualitative synthesis. Of these, 205, 123 and 32 articles, respectively,

described algorithm development, external validation and clinical

utility assessment. Some articles described both algorithm develop-

ment and external validation (n = 74), algorithm development and

clinical utility assessment (n = 10), external validation and clinical

utility assessment (n = 15) while 5 articles reported all 3 components

(Figure S2). The included articles described the development of

433 dosing algorithms, 481 external validations and 52 clinical utility

assessments, whose characteristics are summarised in Table 1 and

detailed in Tables S5 and S6 (algorithm development), Table S7

(external validations), and Table S8 (clinical utility assessments).

Out of all date ranges investigated, the period during which most

algorithm developments/evaluations were published was 2011–2015

in which 175 (41%), 224 (47%) and 18 (35%) algorithms were devel-

oped, externally validated and assessed for clinical utility, respectively

(Table 1, Figure 2). The median sample sizes for these studies were

229 (range 18–10 673), 125 (28–2181) and 234 (10–2343), respec-

tively. Children were studied less often—algorithm developments,

external validations and clinical utility assessments in children were

11 (3%), 26 (5%) and 3 (6%), respectively. Asia had the highest number

of algorithm developments (n = 175, 40%) and external validations

(n = 208, 43%), while North America had the highest rate of clinical

utility assessments (n = 25, 48%). Most of the developed algorithms

included both clinical and genetic covariates (n = 344, 79%), were

mostly for dose-initiation (n = 373, 86%), were developed using

multiple linear regression (n = 280, 65%) and presented a regression

formula that could be used to compute a weekly or daily dose

(n = 239, 55%). Of the developed algorithms, 111 (26%) and 30 (7%)

algorithms were respectively externally validated or assessed for

clinical utility at least once (Table S9). The 5 most externally validated

algorithms were all dose-initiation pharmacogenetic algorithms and

included those by the IWPC23 (n = 72 external validations), Gage14

(n = 46), Sconce25 (n = 32), Wadelius26 (n = 20) and Huang27 (n = 19)

while the 4 most clinically assessed algorithms were the Gage

pharmacogenetic algorithm14 (n = 8 clinical utility assessments), IWPC

pharmacogenetic algorithm23 (n = 7), Gage clinical algorithm14 (n = 5)

and Lenzini dose revision pharmacogenetic algorithm28 (n = 4).

Consequently, most external validations were conducted on pharma-

cogenetic (n = 432 external validations, 90%) and dose initiation

(n = 443, 92%) algorithms, algorithms developed using multiple linear

regression (n = 458, 95%) and those that presented a regression

formula (n = 453, 94%). A similar trend was observed for the clinical

utility assessments (Table 1).

3.1 | Study populations

Of the 433 developed algorithms, 186 (43%), 210 (49%), 121 (28%)

and 77 (18%) used datasets that included at least 5% White, 5% Asian,

5% Black and 5% Mixed/Other participants, respectively (Table 1). For

the studies including at least 5% White participants, the median

percentage of White participants was 90% (range 33–100%;

Table S10). Corresponding values for Asian, Black and Mixed/Other

cohorts were 100% (7–100%; Table S11), 14% (5–100%; Table S12)

and 71% (5–100%; Table S13), respectively. Other characteristics

stratified by populations are detailed in Tables S10–S13. For the

developed algorithms that included at least 5% White participants in

their datasets, 54 (29%) and 20 (11%) algorithms were respectively

externally validated and assessed for clinical utility at least once

(Table S14). The corresponding values were 55 (26%) and 10 (5%) for

Asians (Table S15), 34 (28%) and 10 (8%) for Blacks (Table S16), and

14 (18%) and 2 (3%) for Mixed/Other (Table S16). It is important to

note that these algorithms were not always validated in populations

for whom they were developed.

3.2 | Predictors

During algorithm development, all 433 algorithms explored demo-

graphic, clinical, and environmental predictors and for these the

median number of predictors included in the final algorithms was

5 (range 0–23). Conversely, only 346 algorithms explored genetic fac-

tors with the median number of genetic predictors included in the

final algorithms being 3 (range 1–205). The predictors included in at

least 10 algorithms are shown in Figure 3. Age (included in 401 algo-

rithms), concomitant medications (270 algorithms, amiodarone in

201 algorithms), weight (229 algorithms) and sex (141 algorithms)

were the 4 most common demographic/clinical/environmental predic-

tors. Comorbidities were included in 100 algorithms and these

included renal disease (42 algorithms), hepatic disease (40 algorithms),

hypertension (27 algorithms) and diabetes mellitus (26 algorithms).

The genes most frequently included in the pharmacogenetic algo-

rithms were CYP2C9 (329 algorithms), VKORC1 (319 algorithms),

CYP4F2 (92 algorithms) and APOE (11 algorithms). CYP2C9 variants

included CYP2C9*2 (in 206 algorithms), CYP2C9*3 (316 algorithms)

and other variants (64 algorithms), while VKORC1 variants included
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TABLE 1 Summary characteristics of algorithm developments, external validations, and clinical utility assessments

Characteristic Algorithm development (n = 433) External validations (n = 481) Clinical utility assessments (n = 52)

Publication year, n (%)

2000 and before 7 (1.6) - -

2001 to 2005 12 (2.8) 3 (0.6) 2 (3.8)

2006 to 2010 75 (17.3) 81 (16.8) 12 (23.1)

2011 to 2015 175 (40.4) 224 (46.6) 18 (34.6)

`2016 to 2020 164 (37.9) 173 (36.0) 17 (32.7)

Sample size, median (range) 229 (18–10,673) 125 (28–2,181) 234 (10–2,343)

Participants (included), n (%)

≥5% white 186 (43.0) 205 (42.6) 36 (69.2)

≥5% Asian 210 (48.5) 277 (57.6) 17 (32.7)

≥5% black 121 (27.9) 115 (23.9) 16 (30.8)

≥5% mixed/other 77 (17.8) 62 (12.9) 2 (3.8)

Adults 422 (97.5) 455 (94.6) 49 (94.2)

Children 11 (2.5) 26 (5.4) 3 (5.8)

Location, n (%)

Africaa 2 (0.5) 2 (0.4) -

Asiab 175 (40.4) 208 (43.2) 14 (26.9)

Europe 34 (7.9) 121 55 (11.4) 11 (21.2)

North America 136 (31.4) 121 (25.2) 25 (48.1)

South America 15 (3.5) 21 (4.4) -

Middle East 30 (6.9) 25 (5.2) 2 (3.8)

Oceania - 8 (1.7) -

Multiple 41 (9.5) 41 (8.5) -

Covariates included, n (%)

Clinicalc only 87 (20.1) 49 (10.2) 11 (21.2)

Genetic onlyd 2 (0.5) - -

Clinicalc and genetic 344 (79.4) 432 (89.8) 41 (78.8)

Application time, n (%)

Dose initiation 373 (86.1) 443 (92.1) 40 (76.9)

Dose revision 41 (9.5) 31 (6.4) 10 (19.2)

Both initiation and revisione 19 (4.4) 7 (1.5) 2 (3.8)

Modelling techniques, n (%)

Artificial neural network 32 (7.4) 2 (0.4) 1 (1.9)

Multiple linear regression 280 (64.7) 458 (95.2) 47 (90.4)

Nonlinear mixed effectsf 14 (3.2) 7 (1.5) 3 (5.8)

Support vector regression 27 (6.2) 2 (0.4) -

Otherg 66 (15.2) 9 (1.9) -

Unclear 10 (2.3) 3 (0.6) 1 (1.9)

Algorithm presentation, n (%)

Computer programh 10 (2.3) 4 (0.8) 4 (7.7)

Nomogram/table 9 (2.1) 3 (0.6) -

Regression formula 239 (55.2) 453 (94.2) 47 (90.4)

None 175 (40.4) 21 (4.4) 1 (1.9)

aExcludes Egypt, which is under Middle East.
bMostly China (131 algorithm developments, 120 external validations and 11 clinical utility assessments). This was followed by South Korea (16 algorithm
developments, 59 external validations and 1 clinical utility assessment) and Japan (10 algorithm developments and 14 external validations).
cClinical includes clinical, demographic, and environmental variables.
dClinical factors also considered during the modelling.
eAll incorporate pharmacokinetic and/or pharmacodynamic techniques.
fUsed to fit pharmacokinetic/pharmacodynamic-based algorithms.
gSee Table S6 for details.
hOr online tool.
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VKORC1-1639G > A (270 algorithms), VKORC1 1173C > T, (75

algorithms), VKORC1 3730G > A (20 algorithms) and a number of

others (34 algorithms). Figure S3 shows numbers stratified by the 4

population categories. Age remained the most included demographic/

clinical/environmental predictor in each of the 4 categories, while

CYP2C9 remained the most common predictor in Whites, Blacks and

the Mixed/Other population categories, but was overtaken by

VKORC1 in Asians. The Asian algorithms that included the CYP2C9

gene (n = 153) mostly focused on the CYP2C9*3 variant (n = 149,

97%) as opposed to the CYP2C9*2 (n = 44, 29%) or other CYP2C9

(n = 7, 5%) variants. The corresponding proportions for inclusion of

CYP2C9*3 vs CYP2C9*2 vs other CYP2C9 variants, respectively, were

99 vs 92 vs 19% (Whites, n = 153 algorithms), 99 vs 96 vs 36% (Blacks,

n = 99) and 88 vs 95 vs 30% (Mixed/Other, n = 64).

3.3 | Predictive performance

A fit accuracy measure (the coefficient of determination, R2) was the

most commonly reported performance measure during both algorithm

development (323 [75% of 433]) and external validation (261 [54% of

481]; Table 2). The R2 value represents the proportion of total

interpatient variability in warfarin dose requirements that can be

jointly accounted for by the variables included in an algorithm. For

algorithm development, the median variability in warfarin dose

explained by included predictors was 43% (range 2–96%). This was

higher (median 45%, range 8–96%) when only pharmacogenetic

algorithms were considered and lower (median 20%, range 2–83%)

when only clinical factors were considered. The CYP2C9 and VKORC1

genes, respectively, accounted for a median of 7% (<1–50%) and

median of 25% (1–59%) of the variability in warfarin dose require-

ments. The R2 performance stratified by race is shown in Table S17.

A consideration of the race-specific proportions in each stratified

analysis (Tables S10–S13) should be made when interpreting the race-

stratified performances. For example, for 24 studies that included at

least 5% Black patients, the proportion of warfarin dose variability that

can be attributed to VKORC1 is 23%. However, these 24 studies on

average included a median of only 13% (range 5–100%) Black patients.

When only the 3 studies that included only Black patients are consid-

ered, the median VKORC1 partial R2 becomes 9% (range 7–10%).

These partial R2 values should also be cautiously interpreted since dif-

ferent computation approaches yield different results (Figure S1).

Regarding the precision (predictive accuracy) and bias measures,

the most reported measures were the mean absolute and mean

prediction errors, respectively, being reported 137 (32%) and 17 (4%)

times (algorithm development) and 222 (46%) and 144 (31%) times

(external validations). The median mean absolute errors for the

algorithm development and external validations were respectively

F IGURE 2 Algorithm development/
evaluation by publication year

F IGURE 3 Predictors included in at least 10
algorithms. APOE, apolipoprotein E; CYP2C9,
cytochrome P450, family 2, subfamily C,

polypeptide 9; CYP4F2, cytochrome P450, family
4, subfamily F, polypeptide 2; PK parameters,
pharmacokinetic parameters (S-warfarin clearance
and/or distribution volume); INR, international
normalized ratio; VKORC1, vitamin K epoxide
reductase complex subunit 1
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TABLE 2 Performance measures

Measures

Algorithm
development (n = 433)

External
validations (n = 481)

Na Median (range) Na Median (range)

Fit accuracy R2b (%)

All 323 43 (2–96c) 261 39 (<1–86)

Pharmacogenetic 273 45 (8–96) 232 41 (<1–86)

Clinicald 178 20 (2–83) 29 24 (<1–69)

CYP2C9 98 7 (<1–50) - -

VKORC1 114 25 (1–59) - -

Correlation coefficient

All 19 0.65 (0.31–0.82) 101 0.60 (0.03–0.86)

Pharmacogenetic 15 0.65 (0.52–0.79) 97 0.60 (0.03–0.86)

Clinical 4 0.56 (0.31–0.82) 4 0.32 (0.07–0.54)

Precision/predictive

accuracy

Mean absolute error (mg/d)e,f

All 137 1.23 (0.11–2.89) 222 1.20 (0.37–3.70)

Pharmacogenetic 105 1.26 (0.11–1.96) 185 1.18 (0.57–3.30)

Clinical 32 1.10 (0.21–2.89) 37 1.34 (0.37–3.70)

Mean square error (mg2/d2)

All 54 0.02 (0.01–0.74) 4 0.67 (0.60–0.74)

Pharmacogenetic 30 0.02 (0.01–0.10) - -

Clinical 24 0.02 (0.01–0.74) 4 0.67 (0.60–0.74)

Root mean square error (mg/d)

All 14 0.80 (0.10–3.09) 68 1.44 (0.19–4.29)

Pharmacogenetic 6 0.34 (0.10–1.44) 58 1.37 (0.19–4.29)

Clinical 8 1.87 (0.66–3.09) 10 1.77 (0.66–2.33)

Mean absolute percentage error (%)f

All 7 21 (13–54) 37 32 (20–53)

Pharmacogenetic 6 25 (18–54) 34 32 (21–53)

Clinical 1 19 (13–21) 3 34 (20–36)

Unbiased mean absolute percentage

Error (%)

All (clinical) 1 34 3 37 (36–38)

Root mean square percentage error (%)

All (pharmacogenetic) 1 42 5 53 (37–99)

Bias Mean prediction error (mg/d)f

All 17 0.01 (−0.28–0.60) 144 −0.20
(−3.94–1.80)

Pharmacogenetic 9 −0.10
(−0.28–0.48)

140 −0.20
(−3.94–1.80)

Clinical 8 0.04 (0.01–0.60) 4 −0.59
(−1.01–0.27)

Mean percentage prediction error (%)f

All (pharmacogenetic) 3 4 (3–6) 26 22 (2–76)

Logarithm of the accuracy ratio-derived (%)

All (clinical) 1 <1 3 8 (4–13)

Clinical relevance Patients with predicted dose within 20% of actual (%)

All 132 48 (10–98) 245 43 (0–80)

Pharmacogenetic 95 50 (30–98) 231 42 (0–80)

(Continues)
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1.23 and 1.20 mg/d, with Asians (0.70 and 0.96 mg/d) and Whites

(1.29 and 1.30 mg/d) having lower values when compared to Blacks

(1.55 and 1.39 mg/d). The preferred precision and bias measures

(Table S4) were underreported, each being reported only once and

thrice for algorithm development and external validation, respectively.

Clinical relevance and other fit accuracy, precision and bias measures

are detailed in Tables 2 and S17.

Because most studies reported R2 (a fit accuracy measure), we

carried out a posthoc correlation analysis and included the studies that

reported both the R2 and a precision accuracy measure to determine

whether R2 could be a good proxy of predictive accuracy. For this

purpose, we used the mean absolute error as the predictive accuracy

measure because it was the most reported (its limitations as a

predictive accuracy measure (Table S4) not withstanding). A total of

216 algorithm developments and external validations reported both

these 2 measures, with lower mean absolute errors being moderately

associated with higher R2 values (Pearson's product–moment correla-

tion coefficient −0.390 [95% confidence intervals −0.494 to −0.274],

Figure S4).

Tables 2 and S17 include the performance measures stratified

according to whether algorithms were clinical or pharmacogenetic

(direct comparisons are available for some algorithm pairs in Tables S5

and S7). To directly compare the performances of algorithms stratified

according to the modelling technique and time of application (dose

initiation or dose revision), we summarized the studies that, using the

same dataset, included at least 2 algorithms that differed in these

2 characteristics. As expected, dose revision algorithms generally

performed better than dose initiation algorithms (Table S18). Multiple

linear regression performed comparable to or even better than many

other machine learning techniques (Table S19). Although pharmacoki-

netic/pharmacodynamic algorithms (fitted using nonlinear mixed

effect modelling) performed better than other algorithms, this is

mainly attributable to their dose revision aspects (i.e. when used for

dose initiation, performance was comparable). However, the numbers

of direct comparisons were few, and the performance metrics used

were probably suboptimal (Table S4).

3.4 | Risk of bias

We focused on the assessment of the risk of bias in the analysis

domain (Tables S3, S4, S6, S7 and S20). During algorithm develop-

ment, most developments had the number of participants per

candidate predictor variable ≥20 (n = 203, 47%), did not provide

information on the handling of continuous and categorical predictors

(n = 291, 67%), probably included all enrolled participants in the analy-

sis (n = 229, 53%) and did not provide information on the handling of

participants with missing data (n = 233, 54%; Table S20). Additionally,

many algorithm developments relied on univariable (n = 204, 47%)

and multivariable (n = 208, 48%) analysis during predictor selection,

did not appropriately evaluate algorithm performance (n = 232, 54%),

did not account for model overfitting and optimism in algorithm per-

formance (n = 300, 69%), and did not provide enough information to

assess whether predictors and their assigned weights in the final algo-

rithms corresponded to the results reported in the multivariable analy-

sis (n = 220, 51%). Consequently, only 1 (<1%) algorithm was rated as

having a low risk of bias (unclear n = 26, 6%; high n = 406, 94%).

By contrast, most external validations included at least 100 partic-

ipants with stable dose (n = 329, 68%), all probably appropriately han-

dled continuous and categorical predictors (n = 481, 100%), mostly

analysed all enrolled participants (n = 309, 64%) although many did

not provide enough information on the handling of participants with

missing data (n = 293, 61%). Most (n = 273, 57%) reported the preci-

sion measures we considered appropriate for this review, although

only 8 (<2%) were rated as having a low risk of bias (unclear n = 97,

20%; high n = 376, 78%).

TABLE 2 (Continued)

Measures

Algorithm
development (n = 433)

External
validations (n = 481)

Na Median (range) Na Median (range)

Clinical 37 47 (10–87) 14 48 (26–63)

Patients with predicted dose within 1 mg/d of actual

(%)

All 14 63 (34–92) 47 42 (17–83)

Pharmacogenetic 12 63 (34–92) 34 42 (17–83)

Clinical 2 62 (36–87) 13 42 (22–70)

aN represents the number of algorithms for which the respective measures were explored and reported. For algorithm development, both development

and internal validation cohorts were included, if both reported, although the algorithm was still counted as 1. Results in figures were included if a numerical

value was extractable.
bAlso called the coefficient of determination. For the development cohort, adjusted values used, when reported.
cThe highest R2 reported in Pavani29 as 94%/96%.
dFrom clinical algorithms. For algorithm development, this also includes pharmacogenetic algorithms that reported R2 contributions of clinical factors only.
eIncludes 9 studies reporting median absolute error.
fIn some studies (e.g. Botton,30 You,31 Tan,32 Biss,33 Zhou,34 Lin,35 Xie36) these performance measures were unclear or inconsistent with their definitions (if

available) and/or reported values, in which case a best guess was made. For example, a negative mean absolute error was likely to be a mean prediction error.
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Although we did not focus on the risk of bias in the participant,

predictors and outcome domains, the key risk of bias concerns in

these domains are reported in Tables S6 (algorithm development) and

S7 (external validation). Of note, despite large variability, most algo-

rithm developments (n = 386, 89%) and external validations (n = 433,

90%) provided stable dose definitions and/or referenced previous

publications in which the same were provided. Lastly, for algorithm

development, we also explored whether the outcome of stable dose

was transformed during analysis since outcome transformation may

affect the bias of the algorithm (Asiimwe, unpublished data). Most

algorithm developments (n = 228, 53%) did not incorporate any form

of transformation, while 102 (24%) and 85 (20%) algorithm develop-

ments, respectively, incorporated logarithmic and square root trans-

formations for reasons detailed in Table S21 (for 18 [4%] algorithms,

information was not available). The most common reason provided

was to normalize dose and limit heteroscedasticity (n = 120, 64%) with

only 3 (2%) studies reporting clinical considerations as justification.

4 | DISCUSSION

To facilitate a literature search of warfarin dosing algorithms by clini-

cians, guideline developers and/or policymakers, we have provided a

comprehensive summary of existing algorithms (n = 433), external vali-

dations (n = 481) and clinical utility assessments (n = 52) as well as

described the populations for which they were developed. Using a

threshold of at least 5% inclusion in a dataset, most algorithms were

developed in Asians (49% of developed algorithms) and Whites (43%).

Whereas 28% of the development datasets included Blacks, this group

was under-represented, the median percentage of Black participants

in those datasets being only 14% (Asians and Whites, by contrast,

comprised 100 and 90% [medians] of their corresponding algorithm

development datasets). Similar trends were observed in the external

validations and clinical utility assessments, with these results echoing

previous reports of underrepresentation of minority groups.6,10 The

IWPC23 population categories were reported in the main results. As a

result, Hispanic Caucasians were grouped with European Caucasians,

sub-Saharan Blacks with African Americans, Indians with Han-Chi-

nese, multiple sub-populations under Mixed/Other etc.—groupings

that simplify results' presentation but may be inaccurate in the context

of personalized medicine. We therefore included locations (countries)

from where the trial populations were recruited to serve as proxies for

these sub-populations, and further disparities were revealed. For

example, despite 28% of the algorithm developments, 24% of the

external validations and 31% of the clinical utility assessments includ-

ing at least 5% Blacks, <1% algorithm developments, <1% external val-

idations and none of the clinical utility assessments were conducted in

sub-Saharan Africa, results that re-affirm our previous report that very

few studies are conducted in Africa.37

Nonstatistical methods including clinical reasoning and literature

support are recommended when deciding which candidate predictors

to omit, combine or include during multivariable modelling.12 To make

it easier for those developing new or updating existing algorithms, we

also summarised the clinical, demographic, environmental, and genetic

factors that are commonly included in warfarin dosing algorithms. The

4 most common demographic/clinical/environmental predictors were

age, concomitant medications such as amiodarone, weight and sex

being included in 93, 62, 53 and 32% of the 433 algorithms, respec-

tively. By contrast, CYP2C9, VKORC1, and CYP4F2 variants were

respectively included in 95, 92 and 27% of the 346 pharmacogenetic

algorithms. All these are well-established predictors whose mecha-

nisms of action have been previously extensively reported.7,38 In line

with the ethnicity-specific differences in minor allele frequencies of

the various genetic variants, population-specific differences were

observed. For instance, CYP2C9*2 is almost absent in some Asian

populations39 and it was included in only 29% of Asian algorithms that

included the CYP2C9 gene (n = 153; compared to being included in

92% of 153 White algorithms, 96% of 99 Black algorithms and 95% of

64 Mixed/Other algorithms). Other CYP2C9 variants (such as *5, *6,

*8 and *11) were mostly included in Black (36% of 99) and Mixed/

Other (30% of 64) algorithms and less frequently in Asian (5% of 153)

and White (19% of 153) algorithms. Despite a higher inclusion of

these other CYP2C9 variants in studies employing at least 5% Blacks,

36% may still be a low figure given the importance of these African-

specific variants.37 When undertaking multivariable modelling, other

population- and/or clinical setting-specific considerations such as

availability and cost of predictors should also always be considered.12

Our third objective was to evaluate the performances of these

algorithms. As reported previously,40 the coefficient of determination

(R2) was the most common performance measure (reported in 75% of

algorithm developments and 54% of external validations). Based on

R2, the median contribution of clinical factors (20%) and VKORC1

(25%) was similar to previous estimates7,38 although CYP2C9’s

contribution (7%) was lower (previously estimated at 1238 and 15%7).

Among the first of 2 key cautions is, like for all the other performance

measures, these summary estimates were descriptive in nature since

we did not conduct a formal quantitative synthesis, which with the

preferred measures (Table S4) and methods (such as individual partici-

pant data meta-analysis41) is possible. Because of the descriptive

nature of the study, different algorithms using the same or over-

lapping datasets was also of little concern. The second cautionary

warning is that R2 is a fit accuracy and not a prediction accuracy mea-

sure, the former of which is of less relevance when evaluating the

value of prediction algorithms.42–44 For example, fit accuracy mea-

sures will mostly focus on the correct relative ordering of the dose

predictions while predictive accuracy measures will also require that

these predictions be close to the doses actually required by the

patients. During a posthoc correlation analysis aimed at determining if

R2 could be a good proxy of 1 of the predictive accuracy measures

(the mean absolute error, MAE), a moderate correlation coefficient

(−0.39) was observed, which further questions the use of fit-accuracy

measures given that predictive accuracy measures are available.

Among the predictive accuracy distance measures (Table S4), the

MAE is preferred to the [root] mean squared error mainly because it is

less sensitive to outliers45—and this would be an additional reason to

prioritize it over R2, which is also highly sensitive to outliers. For
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example, the exclusion of only 1 outlier (<0.1% of 1010 participants)

in the IWPC internal validation cohort improved the performance of

the pharmacogenetic algorithm from an R2 of 33 to 43%23 while in

Langley's study (n = 75), the R2 increased from 9 to 31% when 2 out-

liers were excluded.46 To reiterate and for the reasons above, all the

reported R2 values, especially those that approach 100%, should be

interpreted cautiously. Despite the mean absolute error being prefera-

ble to the above-mentioned measures, it remains a distance measure

whose limitations we detail in Table S4. In the same table, we describe

an unbiased predictive accuracy ratio measure (derived from the loga-

rithm of the ratio of the predicted dose to the actual dose43,47), which

we consider to be most appropriate. Unfortunately, and excluding our

own study (Asiimwe, unpublished data), this measure was not used.

We conducted some comparisons in performance based on

populations, modelling techniques and the time an algorithm is applied

but these results should again be cautiously interpreted because few

studies reported direct comparisons and the performance measures

used were likely to be inappropriate. For example, it may be mislead-

ing to conclude that Asians are better dosed compared to Whites or

Blacks based on mean absolute error (or any distance measure that

ignores the actual dose required by a patient) since as explained in

Table S4, an MAE of 1 mg/d in a small value (e.g. 2 mg/d) may be clini-

cally more important than a larger error (e.g. 2 mg/d) in an even larger

value (e.g. 5 mg/d). With these precautions in mind, multiple linear

regression (the most commonly used technique) seemed to perform

comparable or even better than other supervised machine learning

techniques as previously observed.23 A further understanding of these

other techniques, and a more thorough comparison with multiple lin-

ear regression, is nevertheless recommended. For instance, artificial

neural networks can capture very complex relationships,48 while phar-

macokinetic/pharmacodynamic-based techniques model both tempo-

ral and quantitative aspects of warfarin response and do not exclude

unstable patients,40 which may be beneficial to warfarin dosing.

Lastly, we assessed the risk of bias of existing algorithms with

focus on the analysis domain. Less than 2% of both algorithm devel-

opments and external validations had a low risk of bias. Only our

study was ranked as having a low risk of bias during algorithm devel-

opment and although this could be because of self-evaluation, we

mainly attribute it to following the TRIPOD (Transparent Reporting of

a multivariable prediction model for Individual Prognosis Or Diagnosis)

guidelines,49 which if followed correctly would result in a low risk of

bias rating with the risk of bias assessment tool that we used. It is of

concern that although the TRIPOD guidelines were published in 2015,

none of the other 163 studies reported from 2016 onwards refer to

its use. In the context of not adhering to current methodological rec-

ommendations, warfarin dosing algorithms may not be unique.50,51

The consequences of most of the design flaws have been previously

described in detail.52 One key issue that has received less attention is

data transformation (done in 44% of the algorithm developments). As

discussed by Keene,53 we also discourage data-driven decisions to

transform or not and recommend that the logarithmic transformation

be preferred because it produces a proportional/multiplicative scale

that is clinically relevant and easy to interpret.53,54 A slightly more

complex method to fit nontransformed dose using a proportional/

multiplicative scale is to estimate the parameters of a linear algorithm

using nonlinear (log–log) modelling43,47 as we previously did (Asiimwe,

unpublished data).

In agreement with the CPIC guidelines,1 we recommend the

IWPC23 and Gage14 clinical and pharmacogenetic algorithms since

these have been the most externally validated and clinically assessed

algorithms. Specifically, clinical utility assessments have concluded that

they are better than fixed dose-initiation approaches.15–22 Recent

debate has mainly focused onwhether pharmacogenetic-guided dosing

strategies are better than clinical-guided strategies with randomized

controlled trials such as Kimmel et al.,55 Pirmohamed et al.56 and Gage

et al.57 providing conflicting results—we neither quantitatively synthe-

sized (both benefit and safety) nor assessed the risk of bias of the clini-

cal utility studies since we felt these have been previously explored in

more detail in several systematic reviews andmeta-analyses.15–22

In addition to the CPIC guidance, before using these or other algo-

rithms, clinicians, guideline developers and/or policymakers are

reminded to ensure their applicability to their respective populations.

For example, the above pharmacogenetic algorithms, despite including

Black patients, may not be appropriate for Blacks because they exclude

important Black-specific genetic variants. Clinicians are also reminded

that other numerous dosing algorithms that were not assessed in this

review exist and may be more appropriate depending on the clinical

setting. For example, we excluded many algorithms that rely only on

current dose and measured INR levels to make this review more man-

ageable, while the Food and Drug Administration dosing table was

excluded because themethods used to derive this table are not publicly

available. Nevertheless, these algorithms are less likely to perform

better than those that incorporate predictors additional to existing

dose/measured INR while the Food and Drug Administration table has

been assessed in several studies58–64 and its performance is not better

than the pharmacogenetic algorithms we have reported here.

In addition to using heterogeneous and nonspecific racial catego-

ries, presenting mainly descriptive results, and excluding algorithms

that rely only on current dose and measured INR levels, our study had

other limitations. Specifically, we did not include non-English articles,

which could have affected geographical representation. For example,

we excluded 9 Chinese studies during title/abstract screening and non-

English articles are less likely to be indexed in MEDLINE.65 Although

we tried identifying other studies through reference list searching,

using only the MEDLINE database also limited the number of studies

that we could include in this review. Lastly, we relied on single-

reviewer extraction; a second reviewer, nevertheless, confirmed con-

sistency based on a random selection of 10% of the included papers.

For further research, novel/existing algorithms may need to be

developed or updated and externally validated following the

recommended guidelines such as TRIPOD.49 More attention needs to

be paid to under-represented populations such as minority ethnic

groups and children (only 3% developed algorithms) to reduce health

disparities. Moreover, although newer directly acting oral anticoagu-

lants have been developed, warfarin is likely to remain the preferred

choice for some of these groups.66
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In conclusion, this systematic review provides a comprehensive

summary of the algorithms available for different populations and

their associated covariates (demographic, clinical, environmental

and/or genetic), performances and risk of bias from these algo-

rithms. Most of these algorithms have been developed for Asians

and Whites, most have neither been externally validated nor

assessed for clinical utility and either have a high or unclear risk of

bias, which makes their reliability for clinical use uncertain. Future

research should focus on developing prediction algorithms for

under-represented populations and externally validating and

assessing the clinical utility of these and already existing algorithms.

Algorithm development and assessment should follow current

methodological recommendations to improve reliability and

applicability.
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