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Abstract 26 

Many organisms inhabiting seasonal environments exhibit adaptive developmental plasticity, 27 

allowing them to optimally match life-history traits with fluctuating conditions. This critically 28 

relies on environmental cues, such as temperature, as predictors for seasonal transitions. In 29 

most seasonal environments, multiple factors vary together, but might not be equally relevant 30 

as cue, making it crucial to understand their combined effects on an organism’s phenotype. 31 

Here, we study plasticity in a multivariate environment in the seasonally polyphenic butterfly 32 

Bicyclus anynana. Using a full-factorial design, we test how developmental temperature and 33 

host plant quality interact to affect life-history traits. Our results show that the cues interact: 34 

reduced food quality can act as a predictive cue at temperatures normally associated with the 35 

food-rich wet season, inducing a partial dry season phenotype. At low temperatures, normally 36 

associated with the food-poor dry season, reduced food quality had an adverse effect on life 37 

history, with decreased body mass and prolonged development time. However, metabolic 38 

rates in adults were not affected, indicating that individuals could partly compensate for 39 

stressful juvenile conditions. Thus, under certain environmental conditions, a single cue (e.g. 40 

temperature) might suffice to shape an organisms’ phenotype, while under other conditions 41 

additional cues (like plant quality) might be needed in shaping the organism’s phenotype to 42 

optimally match seasonal conditions. Our study reveals complex interactive effects of two 43 

environmental variables on seasonal plasticity, highlighting the importance of studying 44 

multivariate environmental factors to better understand the regulation of phenotypic plasticity 45 

in the wild. 46 

Keywords 47 

developmental plasticity, plant quality, seasonal polyphenism, Bicyclus anynana, reaction 48 
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Introduction 50 

Environmental seasonality is frequent in nature and can lead to the evolution of phenotypic 51 

plasticity (Tauber et al. 1986; Gotthard and Nylin 1995; Lafuente and Beldade 2019), which 52 

can help to ensure that the phenotype expressed by an organism is in sync with its 53 

environment (Nylin 1992; Flatt and Heyland 2011; Torres-Dowdall et al. 2012). Examples of 54 

such adaptive seasonal plasticity are reproductive diapause and seasonal polyphenism, both of 55 

which are widespread in insects, where they constitute an important strategy for coping with 56 

unfavourable environmental conditions (Tauber et al. 1986; Halali et al. 2020b). While 57 

phenotypic plasticity has often been examined in single traits, organismal responses to 58 

environmental variation are usually manifested via changes in multiple traits, leading to 59 

multivariate plasticity (Boggs 2009; Robinson and Beckerman 2013; Plaistow and Collin 60 

2014). Rather than independently responding to the environment, plastic responses in multiple 61 

traits are often regulated via shared genetic, developmental or/and physiological mechanisms. 62 

The resulting integrated phenotypic response manifests as trait correlations and life-history 63 

trade-offs, and is often adaptive in predictable environments (Zelditch 1988; Murren 2012; 64 

Plaistow and Collin 2014; van Bergen et al. 2017). Environmental stress can alter these 65 

underlying associations, and hence the correlation between life-history traits, leading to a 66 

potentially maladaptive reduction in plastic trait integration (Antonovics 1976; Schlichting 67 

1989; Pigliucci and Preston 2004). 68 

 69 

A common mechanism of seasonal plasticity is developmental plasticity, where phenotypic 70 

changes are induced by the environment experienced during development (Beldade et al. 71 

2011). Developmental plasticity can be adaptive in seasonal environments as it can allow 72 

organisms to adjust their life history strategy for future conditions well before the new season 73 

starts, using predictive environmental cues present during the course of development. For 74 
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example, diapause is known to be regulated by multiple factors, including abiotic factors such 75 

as photoperiod and temperature (de Wilde 1962; Tauber et al. 1986; Brodeur and McNeil 76 

1989), and biotic factors such as food quality and predation risk (Tauber et al. 1986; Hunter 77 

and Mcneil 1997; Wedell et al. 1997; Kroon et al. 2004; Liu et al. 2010). In a seasonal 78 

environment multiple environmental factors often vary together (Jackson et al. 2009; Chevin 79 

and Lande 2015), leading to key open questions about whether organisms sense their 80 

environment through one or multiple cues, whether these cues interact or act as independent 81 

predictors, and whether they induce similar phenotypic responses. 82 

 83 

In a case where multiple cues are used by an organism to respond to the environment, the 84 

responses to a single cue might be nonintuitive and misleading (Chevin and Lande 2015). For 85 

example, studies have shown that responses to temperature can be modulated by the presence 86 

of other factors, such as precipitation, predation, photoperiod or food, and these interactions 87 

not only influence an organisms physiology, e.g. diapause or melanisation, but can also affect 88 

the population dynamics and stability of ecological communities (Tauber et al. 1986; Alto and 89 

Juliano 2001; Stoehr and Wojan 2016; Sentis et al. 2017). Use of multiple cues is especially 90 

favoured in situations where one of the environmental cues has only limited predictive 91 

reliability on the pertinent timescale, such that the cues together are more dependable 92 

indicators of future conditions (Hoffman 1978; Shapiro 1978; Kingsolver and Huey 1998). 93 

On the other hand, theoretical work has shown that under certain conditions, such as when 94 

there is imperfect correlation between two cues leading to contradictory information, 95 

organisms may be favoured to ignore one of the cues, even if this cue is also predictive of 96 

future conditions (van Baalen 2014). Additionally, theoretical work suggests that when the 97 

relationship between an environmental cue and future conditions is weak, plasticity may not 98 

evolve in response to the environmental predictor (Tufto 2000; Leimar et al. 2006; Rickard 99 
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and Lummaa 2007; Reed et al. 2010; Chevin and Hoffmann 2017). Thus, there can be 100 

different predictions for how environmental factors interact to affect organismal phenotypes. 101 

 102 

Here, we investigate the effect of a multivariate environment on developmental plasticity of 103 

life history traits, using the seasonally polyphenic butterfly, Bicyclus anynana. This species 104 

exhibits two alternative seasonal forms (wet and dry) which correspond to a warm and a cool 105 

season, respectively. The wet season butterflies experience high temperatures and 106 

precipitation during development (>25°C; November to March), and adults have larger, more 107 

conspicuous eyespots on their ventral wing surfaces, shorter larval and pupal developmental 108 

periods, lower pupal and adult mass, shorter lifespan and reproduce relatively early than dry 109 

season adults (Brakefield and Reitsma 1991; Brakefield et al. 2009; Oostra et al. 2011).  110 

 111 

The transitory period from the wet to dry season (March and April) is characterised by a 112 

decline in temperature (from >25°C to <21°C) and a gradual drying out of the environment 113 

which likely affects host plant quality (Windig et al. 1994; van Bergen et al. 2016; 114 

Nokelainen et al. 2018). The larvae that develop during the early dry season (April to July) 115 

experience relatively low levels of precipitation and cooler temperatures (<21°C). Dry season 116 

individuals accumulate higher mass and fat reserves during development; have small or 117 

absent eyespots, a higher resting metabolic rate, delayed reproduction (with larger eggs) until 118 

the following wet season, and a longer lifespan (Brakefield and Reitsma 1991; Pijpe et al. 119 

2007; Geister et al. 2008; Oostra et al. 2011; Halali et al. 2020b). No recruitment occurs 120 

during the final part of the dry season (August to October) since larval host plants dry out and 121 

disappear completely (Brakefield and Reitsma 1991; van Bergen et al. 2016). In addition to 122 

above, the seasonal forms also differ in their behaviour (e.g. Bear and Monteiro 2013; van 123 
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Bergen and Beldade 2019) and investment in secondary sexual traits (e.g. Balmer et al. 2018; 124 

Huq et al. 2019). Results from field, laboratory and computational experiments have provided 125 

ample support for the adaptive advantage of these seasonal forms in their respective 126 

environments (Brakefield and Frankino 2009; van den Heuvel et al. 2013; Prudic et al. 2015). 127 

 128 

Previous studies have shown that the temperature experienced during the (late) larval and 129 

(early) pupal stages are crucial cues for plasticity in this species (Brakefield and Reitsma 130 

1991; Brakefield et al. 2007, 2009; Bear and Monteiro 2013). Interestingly, variation in 131 

temperature alone does not produce the full extent of plasticity in life-history traits as 132 

observed in the wild (Roskam and Brakefield 1999), suggesting that other predictive 133 

environmental factors may act in conjunction with temperature (Brakefield 1987; Brakefield 134 

and Reitsma 1991). Here, we hypothesise that larval host plant quality could be an important 135 

environmental cue, in addition to temperature, for developing individuals in the field as 136 

during the transition from wet to dry season in the field, the host plants on which the larvae 137 

feed tend to be older, drier and of poor quality (Brakefield and Reitsma 1991; Kooi et al. 138 

1996). A proxy for the availability and quality of the host plants is rainfall, and the latter is 139 

highly correlated with temperature in parts of range where B. anynana occurs, such as Malawi 140 

(de Jong et al. 2010; Oostra et al. 2018). Food quality has been shown to be an important 141 

environmental cue for plasticity in many species, with poor food quality leading to longer 142 

development time, higher mortality (Nylin and Gotthard 1998), decreased fecundity (Awmack 143 

and Leather 2002), reduced growth rates (Atkinson and Sibly 1997), and smaller body size 144 

(Berrigan and Charnov 1994). Moreover, earlier work in B. anynana has shown that under 145 

conditions of larval food limitation, this species is better adapted to cope with stressful 146 

conditions as an adult (Saastamoinen et al. 2010; van den Heuvel et al. 2013). Here, we 147 

hypothesise that temperature and plant quality could act together as cues to predict future 148 
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environmental conditions, in which case we would expect that variation in food quality alters 149 

phenotypic traits in the same direction as temperature, i.e. making each cohort more dry or 150 

wet season-like. Alternatively, if temperature acts as the sole cue, with the plant quality not 151 

being perceived or processed at all, or even acting as a stressor, we would predict general 152 

detrimental effects of life history traits, irrespective of seasonal conditions, and a reduction in 153 

integration of plastic responses. We also expect the sexes to differ in their response as key 154 

life-history traits such as development time, growth rate and body size can have sex-specific 155 

effects on fitness. Moreover, we can expect secondary cues like host plant quality to have a 156 

larger effect (i.e. increased sensitivity) at intermediate temperatures that are typical of the 157 

transition between the seasons in the wild. 158 

 159 

In our study, we test how larval host plant quality–in conjunction with temperature–affects a 160 

suite of life history traits: larval and pupal development time, pupal and adult mass, resting 161 

metabolic rate (RMR) and the respiratory quotient (RQ) of adults. Using old host plants that 162 

mimic the deteriorating conditions in dry season, we feed cohorts of individuals during a 163 

critical window of larval development on old (poor quality) plants, whereas control cohorts 164 

are reared on young (high quality) plants. We tested the effect of host plant quality at three 165 

different temperatures that correspond to wet, intermediate, and dry season temperatures in 166 

the field. This design allows testing of how larval host plant quality and temperature interact 167 

to affect life history traits. Earlier studies in B. anynana have shown that CO2 respiration rate 168 

varies in response to temperature (Brakefield et al. 2007; Pijpe et al. 2007), but O2 169 

consumption or RQ have so far not been examined. Analysing RQ allows us to evaluate 170 

whether adults differ in their macronutrient metabolism in response to environmental 171 

conditions (i.e. whether they burn different fuels, in particular fat, protein and carbohydrates). 172 

Finally, we tested whether the host plant quality affects the organismal integration of 173 
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phenotypic traits by examining the correlations between life-history traits across all 174 

temperatures. This allows us to analyse how the thermally induced plastic responses are 175 

integrated across traits, and if this integration is altered due to poor food quality. From earlier 176 

studies we know that the responses of different phenotypic traits to temperature are correlated 177 

(van Bergen et al. 2017), partly due to shared underlying hormone physiology (Mateus et al. 178 

2014; Oostra et al. 2014; Bear et al. 2017). However, under different environmental 179 

conditions, such as poor host plant quality, we might expect different traits to respond 180 

differently and phenotypic integration to decrease.  181 
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Materials and Methods 182 

Study organism 183 

Bicyclus anynana is a Nymphalid butterfly from East Africa and a model organism for 184 

studying seasonal and developmental plasticity (Brakefield et al. 2009). It is found in 185 

savannah grasslands and open woodlands (both seasonal ecosystems) and has probably 186 

evolved developmental plasticity as an adaptation to seasonality in the environment. The two 187 

seasons that B. anynana experiences are the warm wet season and the cool dry season, and the 188 

species expresses alternative morphs in these two alternative seasons (see Introduction). 189 

Along with differing in temperature and precipitation, the seasons also differ drastically in the 190 

availability of resources, with the cool dry season having a reduced host plant quantity and 191 

quality (Roskam and Brakefield 1999; van Bergen et al. 2016). The adults of this butterfly 192 

species feed on rotting and fermenting fruit and the larvae utilize grasses. 193 

 194 

Experimental design and rearing 195 

An outbred laboratory stock of the butterfly B. anynana was used for the experiment. The 196 

stock was established in 1988 from numerous gravid females collected in Malawi. Adults are 197 

fed on banana, and the larvae are reared on maize (Zea mays) (Brakefield et al. 2009). The 198 

larvae are oligophagous and are known to utilize a variety of Poaceae (grass) species (Kooi 199 

1992; Kooi et al. 1996). Although maize is widely cultivated in Malawi, it is a native plant of 200 

Central America and is not a natural host plant. Maize is a grass species that uses the C4 201 

photosynthetic pathway and the associated high growth rates are beneficial for rearing large 202 

laboratory stock populations. Previous experiments have shown that larval performance is 203 

high when individuals utilize this host plant  (Kooi et al. 1996; Brakefield et al. 2009), and 204 
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similar estimates of developmental time and body mass are obtained when larvae are fed more 205 

natural larval host plants, such as Oplismenus compositus (Halali et al. 2020a). 206 

 207 

We used a full-factorial design to investigate the effects of larval host plant quality, pre-adult 208 

(i.e. larval and pupal) temperature, sex, and their interactions, on a suite of life-history traits. 209 

Three temperature treatments (19, 23 and 27°C, representing dry, intermediate, and wet 210 

season conditions, respectively) and two plant quality treatments (old maize, young maize) 211 

were used. Eggs were collected from the stock population and one day after hatching, larvae 212 

were randomly allocated to cages (35cm x 44cm x 65cm) with young maize plants set up in 213 

climate rooms (2.6 x 2 x 2.5 m3) at 19°C and 27°C, and in smaller climate-cabinets 214 

(Sanyo/Panasonic MLR-350H, 0.76 x 0.7 x 1.835 m3) at 23°C (all at 75% relative humidity 215 

and a 12h:12h day:night light cycle), similar to previous experiments (de Jong et al., 2010; 216 

Oostra et al., 2011). Initially, each temperature had 280 larvae in two cages (140 larvae per 217 

cage), except at 19°C that had 390 larvae in 3 cages (110-140 larvae per cage), such that we 218 

had 950 larvae in total. Each cage had multiple (~16) plants (with <9 larvae per plant). One 219 

day after they moulted to the 4th instar, larvae were randomly distributed to new cages 220 

containing either old or fresh young plants (host plant treatment) at that temperature, while 221 

controlling for density (Supplementary Table 1). To keep the density of larvae per plant low 222 

and accommodate the large size of old plants, we used multiple cages for the old host plant 223 

treatment and for 19°C young host plant treatment (which had 250 larvae), while we only 224 

used one cage per experimental treatment for young host plants at 23°C and 27°C. The larvae 225 

were only exposed to the host plant treatment during the final two larval instars, which is the 226 

period when most growth occurs and the effect of food quality should be most prominent. 227 

Importantly, the temperature experienced during the end of the 5th instar (and early pupal 228 

stage) are known to be crucial cues for plasticity in this species and is the period when the 229 
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adult phenotype is differentiated (Kooi and Brakefield 1999; Monteiro et al. 2015). The 230 

resulting pupae were then individually placed in transparent pots, assigned an ID and kept at 231 

their temperature treatment, until they eclosed. 232 

 233 

After randomly discarding excess pupae raised at 19°C and excluding 51 adult individuals 234 

due to missing information about one or multiple life-history traits, the final sample size for 235 

examining the life-history traits was 191 individuals (35 females and 40 males on old maize, 236 

58 females and 58 males on young maize) at 19°C; 189 individuals (49 females and 43 males 237 

on old maize, 54 females and 43 males on young maize) at 23°C, and 168 individuals (41 238 

females and 31 males on old maize, 57 females and 39 males on young maize) at 27°C. 239 

 240 

Host plant quality treatments  241 

All maize plants were grown from seed and reared in a climate-controlled greenhouse in 242 

Madingley (United Kingdom), with regular watering to keep the soil moist at all times. Young 243 

maize plants were 2-3 weeks old whereas old maize plants were at least 5-7 weeks old, 244 

mimicking the deteriorating conditions in dry season. Earlier studies across a wide range of 245 

plant taxa have shown that plant quality varies with age. Older plants typically have tougher 246 

leaves (Choong 1996; Loney et al. 2006), lower nutritional values (Hikosaka et al. 1994) and 247 

different chemical/physical defences against herbivory (Barton and Koricheva 2010) than 248 

younger plants. For example, there can be differences in the composition and concentration of 249 

defensive chemical compounds depending on the age of maize plants (Cambier et al. 2000; 250 

Makleit et al. 2018). These differences in toughness, nutrition and defences can have 251 

pronounced effects on herbivory (Price et al. 1987; Loney et al. 2006), with the incidence of 252 

herbivorous invertebrates on old host plants typically being lower than on young plants 253 
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(Choong 1996; Fenner et al. 1999; Boege and Marquis 2005). Thus, older host plants are 254 

inferred to be of poor quality relative to younger host plants, and 'herbivore performance' 255 

(quantified as preference, performance, and density) is reduced on older herbs and grasses 256 

compared to younger plants of the same species (reviewed in Barton and Koricheva 2010 257 

using data from 116 studies). Moreover, host plant quality can also directly regulate 258 

phenotypic plasticity in herbivorous insects (Lin et al. 2018). 259 

 260 

In our experiment, we measured the maximum leaf width and height of each maize plant 261 

before feeding it to the larvae. For old maize plants, plant height was 92.2±33.2 (mean±sd) 262 

cm and maximum leaf-width was 4.2±0.6 cm. For young maize plants, plant height was 263 

69.6±4.5 cm and maximum leaf-width was 1.4±0.2 cm. The larvae were reared on whole 264 

plants, and ad libitum feeding was ensured by providing new plants whenever needed. When 265 

the old plants were too large to be completely accommodated inside the cage, only a part of 266 

the (whole) plant was put in, while ensuring that the larvae could not escape from the cage. 267 

 268 

Life-history traits  269 

For each individual, larval development time was recorded as the number of days between 270 

hatching of the egg and pupation of the larvae, and pupal development time was recorded as 271 

the number of days between pupation and eclosion of the butterfly. Pupae were weighed 272 

approximately 24 h after pupation. Adults were weighed and resting metabolic rate (RMR) 273 

measurements made one day after eclosion following established procedures (Pijpe et al. 274 

2007; Brakefield et al. 2009; Oostra et al. 2011). For the RMR, individual butterflies were 275 

measured in the dark –at their rearing temperature–in small cylindrical glass containers (4 cm 276 

in diameter × 9 cm in height). The RMR was measured in the dark to avoid butterfly 277 
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movement and keep them immobile, since activity during the measurement can lead to 278 

changes in respiration rate. Each RMR cycle consisted of three runs of 20 minutes during 279 

which RMR was measured as the individual rate of CO2 and O2 respiration (millilitre per 280 

minute), using stop-flow respirometry (Pijpe et al., 2007). CO2 and O2 production were 281 

measured using a LI-7000 CO2 gas analyser (Li-Cor) and an Oxzilla FC-2 Differential 282 

Oxygen Analyzer (Sable Systems), respectively, and acquired data were handled in Expedata 283 

(Sable Systems). The CO2 and O2 respiration rates were scaled to mass by dividing respiration 284 

rate by adult mass. Measurements were taken around the same time of the day (taken between 285 

0900 hrs and 1500 hrs) for all individuals, and the data from the second and third runs were 286 

averaged. The first run was excluded for each individual as this occurred during the 287 

butterfly’s acclimation phase. The respiratory quotient was calculated as the CO2 respiration 288 

rate divided by the O2 respiration rate (Richardson 1929). 289 

 290 

Statistical analyses 291 

For larval survivorship, we counted the number of larvae that survived the larval stage and 292 

pupated, which did not allow testing sex-specificity as we did not sex pupae. For pupal 293 

survivorship, we counted the number of pupae that survived the pupal stage and eclosed 294 

(Supplementary Table 1). We assessed the effects of temperature, host plant quality and their 295 

interaction on larval or pupal survivorship using a Generalized Linear Model with binomial 296 

response, followed by post hoc pairwise comparisons (Tukey's HSD; α = 0.05) using the 297 

emmeans package (Lenth et al. 2020). 298 

 299 

In addition, for each dependent variable (larval development time, pupal development time, 300 

pupal mass, adult mass, CO2 and O2 respiration rates (scaled by mass), and the respiratory 301 



15 

quotient), we constructed a linear model with temperature, host plant quality, sex, and all their 302 

interactions, as independent fixed effects. For all models, step-wise model selection based on 303 

AIC values was performed using the step() function in R. Post hoc pairwise comparisons 304 

(Tukey's HSD; α = 0.05) were performed using the emmeans package (Lenth et al. 2020). 305 

Prior to statistical analyses, the data was graphically checked for the assumptions of 306 

parametric tests, and all traits (except pupal mass) were log-transformed as this improved the 307 

normality. 308 

 309 

To assess whether host plant quality had an effect on phenotypic integration, we calculated 310 

Pearson’s correlation coefficients among the log-transformed life-history traits for individuals 311 

reared on both young and old host plants for both sexes across all temperatures. Thus, we 312 

obtained two correlation matrices per sex. We tested whether poor host plant quality disrupted 313 

the seasonal morphs by comparing the correlation matrices for each sex using matrix 314 

correlation, which measures the strength of association, with values ranging from −1 to +1, 315 

such that zero indicates no similarity between the matrix on old maize and young maize. We 316 

evaluated the statistical significance of the association between the matrices using the Mantel 317 

test (Mantel 1967) at each temperature, using the MantelCor() in evolqg function in R (Melo 318 

et al. 2015). After getting the overall association between the correlation matrices on old and 319 

young maize, we examined the specific changes by comparing the correlation coefficients 320 

between old and young host plants for each trait combination for both sexes. For this, we 321 

converted the correlation coefficient into a z-score using Fisher's r-to-z transformation (Fisher 322 

1915, 1921) and compared these z-scores using the sample size for each coefficient, using the 323 

following formula (Cohen et al. 2003): 324 

𝑧𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =
(𝑧𝑦𝑜𝑢𝑛𝑔 − 𝑧𝑜𝑙𝑑)

√
1

𝑛𝑦𝑜𝑢𝑛𝑔 − 3 +
1

𝑛𝑜𝑙𝑑 − 3

 325 
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where zyoung and zold are correlation coefficients and nyoung and nold are the sample sizes for 326 

individuals on young and old host plants, respectively. We performed 21 comparisons for 327 

each sex. We checked if the absolute value of zobserved was greater than 3.03, which is the 328 

critical value for the two-tailed α = 0.0024 significance criterion for normal distribution (α for 329 

each comparison corrected to account for multiple testing), which would imply that the 330 

difference between the correlation coefficients was statistically significant. We also 331 

performed a Chi-Square test for Independence to assess if host plant quality had a sex-specific 332 

effect on phenotypic disintegration, by examining the number of trait combinations that were 333 

disrupted for males and females. 334 

All the analyses were done in R version 3.6.1 (R Core Team 2019). 335 

  336 
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Results 337 

Limited effect of host plant quality on pre-adult survivorship 338 

Development on old maize had a temperature specific effect on larval survivorship (Figure 1, 339 

Table 1, Supplementary Table 1),with fewer larvae surviving on old host plants at 23°C 340 

(P=0.0001), while there was no significant effect at 19°C (P=0.96) and only a marginal effect 341 

at 27°C (P=0.06). For pupal survivorship, there was a significant interaction effect of 342 

temperature and host plant quality (Figure 1, Table 1, Supplementary Table 1), which 343 

signifies that the response to temperature is dependent on the host plant used by the larvae 344 

(and vice versa), although the difference in pupal survival on old and young maize was not 345 

significant at any of the temperatures (pairwise comparisons at 19°C: P=0.36, 23°C: P=0.33, 346 

and 27°C: P=0.83). 347 

 348 

Prolonged development at 23°C due to poor host plant quality 349 

Host plant quality interacted with temperature (Table 2) such that, in contrast to the 350 

treatments at both ends of the thermal gradient (19°C and 27°C), host plant quality had a 351 

significant effect on larval (pairwise comparisons at 23°C, P<0.0001, Figure 2A,B) and pupal 352 

development time (pairwise comparisons at 23°C, P=0.0004, Figure 2C,D), the intermediate 353 

temperature. At this thermal environment, the larvae took nearly 13% more time to complete 354 

development on old plants, while pupal development time was about 6% longer. Consistent 355 

with earlier studies (Pijpe et al. 2007; de Jong et al. 2010; Oostra et al. 2011; Mateus et al. 356 

2014), development time decreased with increasing temperature, and males had a shorter 357 

larval but longer pupal development time than females (Figure 2, Table 2). 358 

 359 
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Temperature-dependent effects of host plant quality on body mass 360 

Similar to development time, host plant quality had a temperature-specific effect on body 361 

mass (Table 2), with the effect of temperature on body mass being less pronounced in 362 

individuals utilizing old host plants, i.e. thermal reaction norms are flatter (Figure 3). 363 

Utilizing old maize during the final instars of development led to a greater than 5% reduction 364 

in pupal mass (in both sexes) compared to being reared on young maize at the two lower 365 

temperatures (pairwise comparisons at 19°C: P<0.0001, and 23°C: P=0.03, see Figure 3A,B). 366 

In contrast, at the higher temperature (27°C) the pupal mass of both sexes was enlarged when 367 

reared on old host plants, though the differences at this temperature were not statistically 368 

significant (pairwise comparisons at 27°C: P = 0.1641). For adult mass, host plant quality had 369 

a temperature and sex-specific effect (Figure 3C,D). Adult mass of females was about 17% 370 

higher at 27°C (pairwise comparison:  P=0.0001) and 11% lower at 23°C (pairwise 371 

comparisons, P=0.005), when they fed on old plants instead of younger ones. For males the 372 

effect of poor host quality led to a 10% reduction in adult mass at 19°C (pairwise comparison 373 

at 19°C: P=0.04). In general, both pupal and adult mass decreased with increasing 374 

temperature, and both size estimates were higher in females across all experimental treatments 375 

(Table 2, Figure 3). 376 

 377 

No effect of host plant quality on mass-scaled respiration rates and respiratory quotient 378 

Similar to earlier studies on CO2 respiration rates in this species (Brakefield et al. 2007; Pijpe 379 

et al. 2007), both the CO2 and O2 respiration rate increased with temperature (temperature; P 380 

< 0.0001 for both variables, with 27°C > 23°C > 19°C for CO2, see Table 3 and Figure 4) and 381 

males having higher mass-scaled respiration rates than females (sex; P < 0.0001 for both 382 

variables). Host plant quality did not significantly affect the CO2 and O2 respiration rates (but 383 
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note that the 3-way interaction term was significant for CO2 respiration rate, Table 3). The 384 

respiratory quotient was not affected by the sex of the individual, the thermal environment nor 385 

the food quality (P > 0.05 for all factors, see Table 3 and Supplementary Figure 1). 386 

 387 

Poor host plant quality affects phenotypic integration  388 

The mantel test showed that the host plant quality caused little overall change in the 389 

correlation matrix for life-history traits for both sexes (correlation between matrix for young 390 

maize vs old maize, females: r=0.94, P=0.0009, and for males: r=0.90, P=0.0009), indicating 391 

similar matrix structures. Examining pairwise combinations, we found that males were more 392 

severely affected (χ²=6.85, df=1, P=0.008), with 11 out of 21 correlation coefficients being 393 

significantly different between young and old host plants, while for females only 3 out of 21 394 

correlation coefficients were significantly affected (Figure 5, for details see Supplementary 395 

Table 4). In general, except for 3 cases each for males and females, the sign of the correlation 396 

remained the same, but the absolute correlation became weaker (closer to 0) or stronger 397 

(closer to 1). Amongst the significant changes, for males, all 11 correlation coefficients 398 

decreased (mean decrease ~56%) on old host plants while for females 2 correlation 399 

coefficients decreased (mean decrease ~72%) and 1 correlation coefficients increased (~44% 400 

increase) on old host plants. 401 

  402 
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Discussion 403 

In order to optimally time life cycle events with the seasons, organisms in seasonal 404 

environments exploit environmental cues that predict seasonal transitions. As environments 405 

are complex, there is often more than one cue that is relevant, and relevance of these cues may 406 

depend on other cues. Temperature and food quality are known to be some of the most 407 

important environmental factors affecting the growth and development of insects. Here, we 408 

tested whether food quality acts as a cue in an Afrotropical butterfly, which is known to rely 409 

on temperature as predictor of transitions between wet and dry seasons. We found that the 410 

cues interact: reduced food quality can act as a predictive cue at temperatures normally 411 

associated with the food-rich wet season, inducing a more dry season-like phenotype. At low 412 

temperatures, normally associated with the food-poor dry season, rather than inducing a more 413 

extreme dry season phenotype, reduced food quality had an adverse effect on life history. 414 

Thus, reduced food quality may only be a relevant cue under some conditions, as we discuss 415 

in detail below. 416 

 417 

Food quality or nutrition is known to play a vital role in shaping animal behaviour and 418 

physiology, with studies showing that alteration in nutrient availability can influence diapause 419 

propensity, foraging behaviour, fecundity, life-history strategy, oviposition behaviour, and 420 

sexual selection dynamics in butterflies (Wedell et al. 1997; McKay et al. 2016; Espeset et al. 421 

2019; Jaumann and Snell-Rood 2019; Mitchell et al. 2019). Specifically, food limitation 422 

experienced during development can have enduring effects on adult physiology and life-423 

history, particularly in holometabolous insects where the resources assimilated during larval 424 

stage are reallocated during metamorphosis to form the adult (Monaghan 2008; Boggs 2009). 425 

While food limitation usually has a negative effect on an organisms physiology and 426 

survivorship, it sometimes leads to compensatory growth during periods of increased food 427 
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availability, which in turn can shape adult life history, for instance via altered metabolic rate 428 

(Wilson and Osbourn 1960; Metcalfe and Monaghan 2001). Earlier studies testing the effect 429 

of developmental food deprivation in B. anynana , showed that food-stressed individuals have 430 

a reduced body mass and prolonged developmental time, but can under some conditions 431 

reallocate resources adaptively (Bauerfeind and Fischer 2005; Saastamoinen et al. 2010, 432 

2013). In our study, the effect of host plant quality on different life-history traits was 433 

temperature-dependent, indicating that the effect depended on the physiological state of the 434 

organism. 435 

 436 

When exposed to the thermal conditions of the wet-season (27°C), poor host plant quality 437 

induced an increase in body mass, which was significant for female adult mass. This partial 438 

dry-season-like phenotype could indicate an adaptive response to within-season fluctuations 439 

in food quality, allowing them to better compensate as adults for reduced food (Monaghan 440 

2008). In insects, body size is a key determinant of female fecundity (egg 441 

provisioning)(Honěk 1993; Boggs and Freeman 2005), whereas for males fecundity is more 442 

related to flight capability (as they need to find and court females). Therefore, the increased 443 

adult mass we observed in females may be suggestive of a terminal reproductive investment 444 

(Clutton-Brock 1984; cf. Oostra et al. 2018). Moreover, food quality can vary independently 445 

of temperature (van den Heuvel et al. 2013), making it a potentially important cue under 446 

conditions when the thermal information is inconclusive, and in such situations the use of 447 

multiple cues might be favoured (Hoffman 1978; Shapiro 1978; Kingsolver and Huey 1998). 448 

 449 

In contrast to the pattern observed at high, wet season-like temperatures, at temperatures that 450 

mimic the dry season (19°C) and the transition temperature (23°C), poor host plant quality did 451 
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not act as a seasonal cue inducing a more dry-season like form. Instead, the treatment resulted 452 

in lower body mass and longer development times (significant only at 23°C), indicating a 453 

stress response. However, there was no change in RMR, suggesting that in some aspects they 454 

could compensate for the adverse earlier conditions. A possible explanation for the lack of a 455 

role of host plant quality as a cue for seasonal progression, at least at 19°C, is that they cannot 456 

become more dry season-like, as they are already maximally in dry season mode. 457 

Alternatively, in thermal conditions of the dry season (19°C), temperature may suffice as a 458 

cue. 459 

 460 

Interestingly, for larval survivorship and development time, we observed a significant effect 461 

of host plant quality only at 23°C, which is the average temperature during the transition from 462 

the wet (27°C) to the dry (19°C) season (Windig et al. 1994; van Bergen et al. 2016). This 463 

may suggest that there is increased sensitivity at this temperature, potentially because 464 

distinguishing the transition between the seasons may require additional environmental 465 

information in order to induce the expression of the appropriate phenotype. The prolonged 466 

development time at this transitional temperature is likely due to the old maize being of a 467 

poorer quality, prolonging the period necessary to reach the critical mass needed for 468 

undergoing hormonal changes and pupation (Coley et al. 2006). In addition, the effect of host 469 

plant quality on body mass was more evident than on survivorship and development time. 470 

This may be related to the fact that the larvae were only exposed to the poor host plant quality 471 

during the final two larval instars. The latter represents the period when most growth occurs, 472 

but it is only a short period of the total development time. 473 

 474 
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Our results are consistent with findings in other organisms, where it has been shown that 475 

temperature and food quality generally have interactive effects on the phenotype of an 476 

organism, leading to complex reaction norms (Stamp and Bowers 1990; Gresens 1997; Sultan 477 

et al. 1998; Petersen et al. 2000; Sultan 2001; Ris et al. 2004; Relyea and Auld 2005; Stillwell 478 

et al. 2007). For example, temperature can influence an organisms foraging and performance 479 

(Lindroth et al. 1997; Petersen et al. 2000; Kingsolver et al. 2006; Stillwell et al. 2007; Lee 480 

and Roh 2010; Jang et al. 2015), alter nutritional requirements of an organism and its 481 

sensitivity to plant secondary compounds and hence, host plant usage patterns (Stamp 1993; 482 

Stamp and Yang 1996; Lemoine et al. 2013). Similarly, while decrease in body size with 483 

increase in temperature is a widely observed phenomenon in ectotherms, this effect can be 484 

modulated or even reversed by host plant quality (Diamond and Kingsolver 2010). The 485 

temperature-specific effect of food quality is similar to what is observed for diapause, where 486 

there are thermal limits within which insects respond to photoperiod, such that the 487 

temperature influences whether photoperiod acts to induce diapause or to prevent diapause 488 

(Tauber et al. 1986). 489 

 490 

We also examined, for the first time in this species, the respiratory quotient (RQ) in resting 491 

metabolic rate. This is the ratio between CO2 and O2 respiration rate at rest, which reflects 492 

which macronutrients are metabolized for energy, with values of 0.7, 0.8 or 1.0 indicating fat, 493 

protein or carbohydrate metabolism, respectively (Nunes et al. 1997). We found that the RQ 494 

was not influenced by either temperature, sex, host plant quality, or their interactions. Across 495 

all experimental treatments, RQ stayed constant around 0.9, intermediate between protein and 496 

carbohydrate metabolism, indicating that adult macronutrient metabolism was unaffected by 497 

thermal environment or larval food quality. This is surprising, as earlier studies in both field 498 

and laboratory showed that dry season form butterflies have a higher fat content (Brakefield 499 



24 

and Reitsma 1991; de Jong et al. 2010; Oostra et al. 2011). However, we measured the 500 

metabolic rates of newly eclosed adults under benign conditions in the laboratory where fat 501 

reserves are likely under-used compared to the wild, where adults often face prolonged 502 

periods of desiccation and/or starvation. Restricted food intake is often associated with 503 

reduced metabolic rates (DeLany et al. 1999; Ramsey et al. 2000; Even et al. 2001; Blanc et 504 

al. 2003; Roark and Bjorndal 2009), and studies have shown that under starvation, animals 505 

usually have a lower respiratory rate (Porter et al. 1982). For example, Daphnia magna 506 

metabolizes fat under reduced food conditions, while during favourable food conditions it 507 

synthesises lipids (Lampert and Bohrer 1984). 508 

 509 

Overall, phenotypic integration of traits was structurally similar between individuals reared on 510 

control and old maize. However, pairwise comparisons showed a change in multiple 511 

correlations between life history traits, with most correlation coefficients decreasing on poor 512 

quality host plants, suggesting reduced phenotypic integration, especially in males. This is 513 

consistent with several studies in other organisms, which have reported that stressful 514 

conditions can modify phenotypic variance (usually increase) and phenotypic integration 515 

(usually decrease) (Pigliucci 2002; Pigliucci and Kolodynska 2002, 2006; Badyaev 2005). We 516 

observed the reduction in phenotypic integration mainly in males, not females, likely as a 517 

result of sex-specific regulation and selective pressures. The hormone signalling pathway 518 

responsible for phenotypic integration (Oostra et al. 2011), often plays a sex-specific- 519 

regulatory role (Stillwell et al. 2010; Bhardwaj et al. 2018), thus permitting sex-specific 520 

differences in plastic responses. These are common in insects, for instance, responses to larval 521 

food stress in the Glanville fritillary butterfly, Melitaea cinxia (Rosa and Saastamoinen 2017) 522 

are the result of sex-specific selection on different life-history traits (Tarka et al. 2018). 523 

 524 
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Our lab population of B. anynana originates from a location in Malawi where temperature is a 525 

highly reliable predictor of seasonal transitions (Oostra et al. 2018), which in this population 526 

may override the necessity for additional cues under most conditions. An open question then 527 

is whether food quality may be a more important cue in other parts of the species’ range, 528 

where the relevance and reliability of temperature as a cue is lower (Roskam and Brakefield 529 

1996; van Bergen et al. 2017), as seen for different populations of Colias butterflies which 530 

vary in their dependence on photoperiod or temperature for wing melanisation depending on 531 

the ecological conditions in their local environment (Hoffman 1978). Moreover, B. anynana 532 

larvae might utilize a variety of different grass species in the wild (Kooi 1992; Kooi et al. 533 

1996) and for longer periods than exposed in our study (Brakefield et al. 2009; van Bergen et 534 

al. 2016), which may trigger more pronounced phenotypic effects (Braby and Jones 1994; 535 

Kooi et al. 1996; Jang et al. 2015). Taken together, our study shows that plant quality affects 536 

life history traits in a temperature- and sex-specific manner, indicating that under certain 537 

environmental condition a single cue (e.g. temperature) might suffice to shape an organisms’ 538 

phenotype, while under other conditions additional cues (like plant quality) might be needed 539 

in shaping the organism’s phenotype to optimally match seasonal conditions. Lastly, being 540 

able to exploit multiple cues and knowing when to use which cue is likely an important 541 

adaptation for organisms living in complex, seasonal environments. 542 
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Tables 898 

Table 1. Generalized Linear Model with binomial response for the effect of developmental temperature, sex (used only for pupal survivorship), 899 

host plant quality and all interaction terms on larval and pupal survivorship.  900 

Dependent variable Fixed effects df χ² P 

Larval survivorship Temperature 2 15.85 0.0003 

Host plant quality 1 21.95 <0.0001 

Temperature x Host plant quality 2 17.04 0.0002 

Pupal survivorship Temperature 2 18.01 0.0002 

Host plant quality 1 0.09 0.77 

Temperature x Host plant quality 2 10.63 0.005 

 901 

 902 
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Table 2. Minimum adequate models for the effect of developmental temperature, sex and host plant quality on developmental time and body 903 

mass, related to Figures 1-2. See Supplementary Table 1 for minimum adequate model derivation and Supplementary Table 2 for full models of 904 

all traits. The standardised effect size of the fixed effects is measured by the partial eta-squared (partial η2). All dependent variables (except pupal 905 

mass) were log-transformed (natural logarithms). 906 

Dependent variable Fixed effects df partial η2 F P 
Larval development time Temperature 2 0.95 5458.1 < 0.0001 

Sex 1 0.14 86.9 < 0.0001 
Host plant quality 1 0.12 75.7 < 0.0001 
Temperature x Host plant quality 2 0.09 26.5 < 0.0001 
Residuals 541    

Pupal development time Temperature 2 0.96 6030 < 0.0001 
Sex 1 0.19 127.8 < 0.0001 
Host plant quality 1 0.02 14.2 0.0002 
Temperature x Sex 2 0.01 2.5 0.08 
Temperature x Host plant quality 2 0.02 4.3 0.01 
Residuals 539    

Pupal mass Temperature 2 0.22 77.3 < 0.0001 
Sex 1 0.47 473.6 < 0.0001 
Host plant quality 1 0.02 12.1 0.0006 
Temperature x Sex 2 0.02 6.8 0.001 
Temperature x Host plant quality 2 0.06 17.1 < 0.0001 
Residuals 539    

Adult mass Temperature 2 0.18 60 < 0.0001 
Sex 1 0.67 1102.9 < 0.0001 
Host plant quality 1 0.003 1.5 0.23 
Temperature x Sex 2 0.003 0.8 0.43 
Temperature x Host plant quality 2 0.08 24.4 < 0.0001 
Sex x Host plant quality 1 0.0002 0.1 0.69 
Temperature x Sex x Host plant quality 2 0.02 5.1 0.006 
Residuals 536    



 

Table 3. Minimum adequate models of the effect of developmental temperature and sex on mass-scaled metabolic rates, related to Figures 3-4. 907 

See Supplementary Table 1 for minimum adequate model derivation and Supplementary Table 2 for full models of all traits. The standardised 908 

effect size of the fixed effects is measured by the partial eta-squared (partial η2). All dependent variables were log-transformed.  909 

Dependent variable Fixed effects df partial η2 F P 

CO2 respiration rate (scaled for mass) Temperature 2 0.59 378.1 < 0.0001 

Sex 1 0.38 322.5 < 0.0001 

Host plant quality 1 0.0004 0.23 0.63 

Temperature x Sex 2 0.0003 0.07 0.93 

Temperature x Host plant quality 2 0.003 0.8 0.45 

Sex x Host plant quality 1 0.00001 0.007 0.93 

Temperature x Sex x Host plant quality 2 0.01 3.2 0.04 

Residuals 536    

O2 respiration rate (scaled for mass) Temperature 2 0.36 151.6 < 0.0001 

Sex 1 0.19 128.9 < 0.0001 

Host plant quality 1 0.0007 0.4 0.53 

Temperature x Sex 2 0.001 0.3 0.75 

Temperature x Host plant quality 2 0.006 1.5 0.22 

Sex x Host plant quality 1 0.002 1.2 0.28 

Temperature x Sex x Host plant quality 2 0.01 2.8 0.06 

Residuals 536    

Respiratory Quotient Temperature 2 0.002 0.5 0.61 

Sex 1 0.00001 0.003 0.95 

Host plant quality 1 0.003 1.8 0.18 

Residuals 543    

 910 

 911 
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Figure legends 912 

Figure 1. Effect of host plant quality on proportion of larval and sex-specific pupal 913 

survivorship at all temperatures. Statistically significant effects of host plant quality (Tukey's 914 

HSD, α = 0.05) are indicated for each temperature with an asterisk. 915 

Figure 2. Slower development due to poor host plant quality at 23°C: Effect of host plant 916 

quality and temperature on larval development time (top row) and pupal development time 917 

(bottom row) is shown for females (left) and males (right), with data for young and old maize 918 

indicated by black and red, respectively. Typical wet season morphs develop faster compared 919 

to dry season morphs. Plots show estimated marginal means and upper and lower confidence 920 

limits of data. Statistically significant effects of host plant quality (Tukey's HSD, α = 0.05) are 921 

indicated for each temperature with an asterisk. 922 

Figure 3. Temperature and sex-dependent effects of host plant quality on body mass: Effect of 923 

host plant quality and temperature on pupal mass (top row) and adult mass (bottom row). 924 

Typical wet season morphs have lower body mass compared to dry season morphs. See 925 

legend to Figure 1. 926 

Figure 4. No effect of host plant quality on mass-scaled CO2 (top row) and O2 (bottom row) 927 

respiration rates (ml hr-1 mg-1). Typical wet season morphs have higher respiration rates 928 

compared to dry season morphs. See legend to Figure 1. 929 

Figure 5. Poor host plant quality has an effect on some trait correlations, particularly in males: 930 

Pearson correlation coefficients (r) between trait values for a) females and, b) males on young 931 

(high quality) or old (poor quality) host plants. Each line represents the correlation coefficient 932 

between one pair of traits. Correlation coefficients that changed significantly (21 tests for 933 

each sex) due to poor host plant quality are highlighted in red. Sample sizes for calculating 934 

each correlation coefficient are given at the bottom. 935 
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