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A robust impurity detection and tracking code, able to generate large sets of dust tracks from
tokamak camera footage, is presented. This machine learning based code is tested with cameras
from the Joint European Torus, DIII-D, and Magnum-PSI, and is able to generate dust tracks with
a 65 — 100% classification accuracy. Moreover, the number dust particles detected from a single
camera shot can be up to the order 1000. Several areas of improvement for the code are highlighted,
such as generating more significant training data sets, and accounting for selection biases. Although
the code is tested with dust in single 2D camera views, it could easily be applied to multiple-camera

stereoscopic reconstruction, or non-dust impurities.

I. INTRODUCTION

Magnetic confinement fusion in deuterium-tritium
plasmas has the potential to be a clean, sustainable, and
efficient alternative to current power generation methods.
Across the globe numerous tokamaks have been built to
achieve sustained nuclear fusion, with the Joint European
Torus (JET) [2] and Doublet-III-D (DIII-D) [3] being two
of the machines. To achieve ignition in a fusion plasma,
high densities, temperatures, and confinement times are
required [4]. The central challenge of fusion energy is in
achieving these conditions, and attempts to do so have
been through a multitude of physics and engineering op-
timisations.

In every operational tokamak exists impurities, which
can either exist intrinsically or are extrinsically added for
experimental purposes. One class of intrinsic impurity
is dust, which is typically a nm-mm particulate created
from the tokamak Plasma Facing Components (PFCs).
These PFCs include the tokamak walls and divertor,
which in current experimental devices are typically com-
prised of carbon, in the form of graphite or carbon-fibre
composites, or metals such as tungsten, beryllium, and
molybdenum [5, 6]. During tokamak operation, high en-
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ergy events such as Edge Localised Modes (ELMSs), dis-
ruptions, and vertical displacement events can load these
PFCs with powers up to the order GWm™2. These events
can potentially liberate intrinsic dust, and even create
more dust via processes such as spallation, vaporisation,
and erosion of the PFC melt layer [7-9]. In addition to
these plasma interactions, mechanical machining of PFCs
can also contribute to the creation of dust.

Dust in tokamaks can pose both operational and safety
concerns. In particular, dust particles can retain tritium
fuel leading to an increase in the in-vessel tritium inven-
tory over time. This is of concern both for safety and for
the tritium fuel cycle, and as a consequence future ma-
chines have limited the tritium inventory to 700g [10]. In
addition, when dust particles composed of high mass el-
ements such as tungsten enter the plasma, this can cause
sudden cooling of the plasma by increased radiation and
a drop in the plasma fusion performance, or in extreme
cases lead to plasma disruptions [11, 12].

In an attempt to understand and mitigate the risks
posed by tokamak impurities, the physics of dust in plas-
mas become a highly researched area in recent years. At
the forefront of this research are dust in plasma sim-
ulation codes such as Mlgration of GRAINs in fusion
devices (MIGRANe) [13] Dust in TOKamaks (DTOKS)
[14], DUST-TRACKing (DUSTTRACK) [15] and DUST
Transport (DUSTT) [16]. These codes solve differen-
tial equations governing the evolution of temperature,
charge, and velocity of a dust grain in a plasma back-
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ground [17, 18]. One key use for these codes is in deter-
mining which physical forces and phenomena play impor-
tant roles in dust transport in tokamaks. In theory, one
of these codes could be run with different forces active,
to see what phenomena best replicate experiment. This,
however, requires large statistically significant dust track
datasets to compare against the models. Such datasets
are currently sparse and manually selected. Here, the
Robust Impurity Detector and Tracker (RIDAT) code is
presented, that allows for automatic generation of such
datasets from tokamak camera footage.

II. METHOD
A. RIDAT code

The code for RIDAT was developed in Python, with
aims of being able to detect statistically significant sets
of dust tracks automatically. RIDAT was also built to be
robust, such that it can be applied to various cameras and
impurities. It can be separated into image processing and
dust tracking modules. The image processing module re-
ceives a list of image frames from tokamak video footage
as an argument, and outputs a list of dust grains detected
in each frame - along with the dust grain properties. The
dust tracking module uses these isolated detected grains
as arguments, and outputs a list of connected dust tracks
spanning multiple frames [19][20].

The image processing module detects and characterises
dust grains, which can be seen as small bright ellipses
or streaks in camera footage. To achieve this, the code
works frame by frame, determining a background average
for each frame. This is done by averaging the pixel inten-
sities in temporally adjacent frames. This background
average is then subtracted from the intensity profile of
a frame, and all pixels over a user selected brightness
threshold Ts are detected. These bright spots are col-
lected into dust grains by grouping spatially adjacent
bright pixels. Two successfully detected grains can be
seen in Figure 1.

Finally, basic properties of the grains are determined,
such as position, brightness, length, and width. Position
and brightness are found by averaging the x-y pixel coor-
dinates, and normalised intensities of a grain respectively.
The length of a grain is found by taking the longest dis-
tance (px) between any two pixels on the grain. The
width is then simply the grain area (px?) divided by
length. It is important to note that - depending on cam-
era frame rate - the length of a dust grain can either
be indicative of it’s physical dimensions, or how far it
has travelled over the camera exposure period. Because
of this, a user can manually select whether RIDAT is in
Streaking or Non-Streaking mode. In the former, RIDAT
treats the length as the distance traveled, and stores two
positions of a grain: one at the start and one at the end
of its motion.

The dust tracking module takes the unordered dust
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FIG. 1: a) A still unedited image taken from the
DiMES camera in DIII-D. b) The same still, but with
RIDAT’s background subtraction applied with a Tz of
35. Detected dust grains are indicated by red circles.

grain lists of each frame outputted by the image process-
ing module as an argument. It returns an ordered list of
fully connected dust tracks spanning multiple frames. In
other words, the purpose of this module is to connect the
temporally isolated dust grains found by the image pro-
cessing module. The core of this module is a algorithm
that works frame by frame analysing all possible tracks
for a dust grain in frame N across frames N+1 and N+2.
Then, the algorithm determines which of these tracks is
the most likely real track using a Naive Bayesian machine
learning classifier. Finally, it repeats the process on the
next set of three frames (N+1, N+2, and N +3), joining
the new data to any previously detected tracks.

A Naive Bayesian classifier is a supervised machine
learning classifier that determines the probability of each
classifier C; fitting to data with features f, P(C;|f), using
Bayes’ theorem [21]. In the case of RIDAT, the classi-
fier assumes a Gaussian probability density function, and
classifies a dust track as either True (corresponding to a
likely real track) or False (corresponding to an erroneous
joining of unrelated dust grains). The features then con-
sist of the following properties of a potential dust track:



e Mean change in position, psg (px).

e Standard deviation of change in position, o5z (px).
e Mean change in brightness, psp (normalised).

e Mean change in width, us, (px).

e Mean velocity angle, pg (°).

e Mean change in velocity angle, usg (°).

This type of classifier was selected due to its simplicity,
and ability to determine not only if a track was correct
(True), but what the likelihood of correctness was. Thus,
for a given dust grain in frame N, if there are candidates
for the corresponding grain in frame N+1 and N+42, this
classifier can determine the most probable correct can-
didates with a Bayesian probability over a user defined
threshold Tp. The listed features have been chosen as
they are the physical properties intuitively thought to
discriminate dust tracks from other image features. If a
dust grain is traveling at a constant speed, for example,
then the mean change in position should be relatively
constant. It is important to note, however, that this ex-
ample of a constant speed is not assumed by the user.
In fact, even if all grains were travelling with a constant
3D speed, the projection onto a 2D camera would not
be constant. The only assumption made is that there is
some distribution of particle speed; the machine learn-
ing algorithm then determines the characteristics of this
distribution.

Creation of the training data sets was achieved by a
training function, that displays three consecutive video
frames to the user. The user can select the correct path
in frames 2 and 3 for a given grain in frame 1. The dust
track features are saved, with a classification of True. Be-
cause a given grain only takes one True path, all other
potential tracks stemming from the given frame 1 grain
are classified Fualse, which allowed the creation of large
training data sets quickly. Although this method cre-
ates a significant disparity between classifications, it is a
disparity mirrored by reality, as the number of possible
paths for a grain greatly outweighs the one True path.
An example of one True and one False dust track from a
training data set from the linear Magnum-PSI machine
is shown in Table 1.

USR |OSR |M6B |Msw |16 1456 C
9.5 2.5 0.4 0.4 0.0 0.0 True
26.6 [20.5 0.7 0.0 -52.9 |48.5 False

TABLE I: A table displaying the features of one correct
and one incorrect dust track labeled by a user using RI-
DAT for the a shot in Magnum-PSI.

To test the efficacy of the code, RIDAT was applied to
footage from three plasma machines: JET, DIII-D, and
Magnum-PSI (M-PSI). The general process of applica-
tion was first to determine parameters to be used in the

code, then to manually create a training data set for each
machine, and finally to run the tracking code on one shot
at a time. Due to the high variation in dust abundance,
computational time for tracking varied across machines.
The shortest computation time on a 4 core machine was
less than 1 minute for a 10 frame shot in JET, with ~
1 grain per frame. The most computationally expensive
run was on a single 1000 frame shot in M-PSI; taking
more than 20 hours for ~ 20 grains per frame.

B. Diagnostic Setup

Footage from the JET tokamak was captured with a
Near Infrared (NIR) Hitachi KP-M1AP protection cam-
era, with a frame rate of 50Hz. This camera was part
of a safety monitoring system, situated on the top half
of JET’s inner wall, with an angled view towards the di-
vertor [22]. Footage collected was from a 2018 campaign,
during which W dust was occasionally mobilised by the
restart of the plasma. Footage from the NIR camera is
shown in Figure 2.
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FIG. 2: a) A 3D reconstruction of JET’s NIR camera
view using the tokamak viewing software Calacam [23].
b) A still image taken from the same NIR camera.

In addition to JET, data was also collected from the
tokamak DIII-D [3]. The camera used for this experiment
was CIDTEK 3710D camera with a frame rate of 5kH z,
and a spectral width dependent upon the filter applied
[24]. The camera was part of a Divertor Material Evalu-
ation Station (DIMES), which has a vertical view of the
divertor [25]. This top-down divertor view can be seen
in Figure 3. Shots from DIII-D were captured during an
experimental campaign studying turbulent transport and
ELM control [26]. Dust grains observed in these videos
were most likely comprised of intrinsic graphite, as this
is the main material used for PFCs in DIII-D.

The final machine used for experimental data was
Magnum-PSI (M-PSI), a linear plasma generator located
in the Dutch Institute for Fundamental Energy Research.
Camera footage collected was from a Phantom visible fast

FIG. 3: a) A 3D Calcam reconstruction of the DIMES
view in DIII-D [23]. The gray tiles indicate the divertor
viewed from above. b) A still image taken from the
DiMES visible camera.

imaging camera located in one of the side camera ports of
the cylindrical housing, shown in Figure 4. Footage was
collected from over a dozen shots with a frame rate span-
ning from 400Hz — 1kH z [27]. The footage for this re-
search was captured during an experiment in which dust
was dropped vertically into the machine with varying
columns of plasma flowing through it. The dust was com-
prised of W, made monodisperse by being horizontally
shaken through a sieve with holes of radius 2.5um. The
dust was initially dropped with no plasma present, then a
cylindrical plasma column was generated with magnetic
field values of 0.1,0.2,0.3, and 0.47.

III. RESULTS & ANALYSIS

RIDAT’s machine learning algorithm was trained sepa-
rately with JET, DIII-D, and M-PSI footage. The train-
ing datasets were randomly segmented from the image
data, and the traning set sizes were 365 for JET, 597
%103 for DIII-D and 230 x103 for M-PSI. The settings
used for training and tracking were optimised in a num-
ber of preliminary runs. During these runs the change in
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FIG. 4: a) A Calcam reconstruction of the plasma
housing cylinder located in the Magnum-PSI machine
[23]. b) A still image taken by the Phantom visible fast
imaging camera in Magnum-PSI. The illuminated
section indicates where a plasma column would be.

brightness variable was removed from the machine learn-
ing feature set. This was because only the brightest and
easiest to identify grains were used in training. Thus,
a bias was created for brighter dust grains in training,
which extended to a bias in tracking when the brightness
feature was active. The settings with which RIDAT was
run for each machine are displayed in Table 2.

Machine Tgs Tp Streak |Size
JET 15 0.84 [true |363
DIII-D 30 0.97 |false [597 x 10%
M-PSI 8 0.97 |true |230 x 10°

TABLE II: A table displaying the run settings for RI-
DAT applied to each plasma machine, where Tg is the
threshold brightness, Tp is the threshold Baysian prob-
ability, Streak determines whether grains are treated as
single grains or traveling streaks, and size is the num-
ber of datapoints used for training the machine learning
classifier.

A. JET

Each of the three trained models were applied back to
their corresponding machines to detect and track dust.
For JET, over 30 dust tracks were identified over 34 dif-
ferent shots. An example track overlaid on a still image
from the divertor camera is shown in Figure 5.

From Figure 5 it is clear to see that the RIDAT pre-
dicted track follows the bright streak of the physical dust
grain well. This demonstrates RIDAT’s ability to accu-
rately and automatically track a dust grain across mul-
tiple frames in video footage. However, the track shown
in Figure 5 is also incomplete, as the code has failed to
track the first and last frames of the grain’s path. This
may be due to the significant variation in track direction
at the start (top) and tail (bottom left) end of the path.
This deviation in track features, coupled with the small
(363 track) training data set for JET could have been
sufficient to incorrectly label the tail ends of the path as
false. This issue may be resolved by using a larger, more
varied training data set, or by more carefully optimising
brightness and probability thresholds.

After the JET dust tracks were generated, the clas-
sification accuracy of the tracks was determined. This
was was done by overlaying detected tracks with camera
footage, and manually determining whether the track po-
sitions follow their real counterparts (similar to the ex-
ample in Figure 5). The classification accuracy of RIDAT
applied to JET was calculated to be 65%, which is lower
than the value predicted by the Bayesian probability cut-
off of 84%. The reason this classification accuracy is so
low is most likely due to the quality of the JET footage,
as the 35% of incorrect identifications were mostly cam-
era noise or plasma emission. Additionally, the rapid
deviation in track features mentioned earlier can be par-
tially attributed to the JET camera’s long integration
time. Thus, for footage similar to the NIR camera in
JET, RIDAT may be used as a first step in track gener-
ation; followed by more rigorous manual vetting.
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FIG. 5: The pixel positions of a RIDAT-generated dust
track from JET. Positions were overlaid onto a
combined still from JET’s NIR, camera, found by
summing the image data of every frame in this shot.

B. DIII-D

RIDAT’s application to DIII-D footage generated 925
dust tracks across two shots. Five example tracks are
shown overlaid on an image from the DIMES camera in
Figure 6.

The RIDAT generated dust tracks were again manu-
ally compared against camera data, and a classification
accuracy of 99% was found. This high classification ac-
curacy further demonstrates RIDAT’s ability to generate
high quality track data from camera footage. Moreover,
database of 925 tracks indicates RIDAT can successfully
produce statistically significant datasets automatically.
As such, it seems RIDAT is best suited to the type of data
collected from DIII-D, in which there were large quanti-
ties of separated, bright, and consistent dust grains.

C. M-PSI

When applied to M-PSI, RIDAT produced over 1,500
dust tracks across 18 shots. Five example tracks are
shown in Figure 7, overlaid on of a still image from the
phantom camera.

Upon manual inspection, the classification accuracy of
the RIDAT tracks was determined to be 74%. This clas-
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FIG. 6: The pixel positions of a random set of five
RIDAT-generated tracks from shot 167345-11198 in
DIII-D, overlaid on a still image from the same shot.
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FIG. 7: The pixel positions of a random set of five
RIDAT-generated tracks from the 0.4T Plasma data set
of Magnum-PSI, overlaid on a still image from the same

camera. To distinguish the trajectories of overlapping
tracks, a linear fit has been applied to all tracks.

sification accuracy initially appears low. However, the
majority of RIDAT’s inaccurate classifications for the
M-PSI dust grains was because RIDAT could not dis-
tinguish between two very similar dust tracks. This was
exacerbated by M-PSI’s particularly bright background
seen in Figure 7. Thus, the performance of RIDAT could
be improved by more carefully selecting image processing
parameters; parameters such as the threshold brightness,
and the number of frames over which a background is av-
eraged.

IV. CONCLUSIONS

In conclusion, the RIDAT code was applied to camera
footage from JET, DIII-D, and the linear plasma gen-



erator Magnum-PSI with varying levels of success. In
JET, RIDAT detected over 30 dust tracks across 34 cam-
era shots with a classification accuracy of 65%, and in-
correctly discounted sections of some correct tracks. In
DIII-D, 925 dust tracks were generated from two camera
shots, with an adequate classification accuracy of 99%.
For Magnum-PSI over 1,500 tracks were created with a
classification accuracy of 74%. The issues of low classifi-
cation accuracy and the discounting of correct track sec-
tions highlight the drawbacks of RIDAT. However, these
may be improved upon by creating more robust train-
ing data, accounting for biases, and by more carefully
selecting RIDAT parameters.

RIDAT could be used for a number of applications
in the future. These include grain lifetime and split-
ting analysis, as well as 3D track reconstruction using
dual stereoscopic camera systems such as those currently
employed in the Mega Ampere Spherical Tokamak and
TEXTOR [28, 29]. For effective use, however, the code
should be improved, specifically by applying more opti-
mised image processing techniques, such as those used in
particle tracking for image microscopy [30]. In addition
to significant algorithm improvements for the code, fine
tuning of the input parameters should also be performed
for each future scenario. For example, increasing the al-

gorithms rolling frame window from three to four could
result in more accurate classifications.
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