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35 Abstract 

36 Objective: The aim of this study was to evaluate the performance of using a deep learning-

37 based method for measuring systolic and diastolic BPs (SBPs and DBPs) and the effects of cuff 

38 inflation and deflation rates on the deep learning-based BP measurement (in comparison with 

39 the manual auscultatory method). 

40 Methods: Forty healthy subjects were recruited. SBP and DBP were measured under four 

41 conditions (i.e., standard deflation, fast deflation, slow inflation and fast inflation) using both 

42 our newly developed deep learning-based method and the reference manual auscultatory 

43 method. The BPs measured under each condition were compared between the two methods. 

44 The performance of using the deep learning-based method to measure BP changes was also 

45 evaluated. 

46 Results: There were no significant BP differences between the two methods (P > 0.05), except 

47 for the DBPs measured during the slow and fast inflation conditions. By applying the deep 

48 learning-based method, SBPs measured from fast deflation, slow inflation and fast inflation 

49 decreased significantly by 3.0, 3.5 and 4.7 mmHg (all P < 0.05), respectively, in comparison 

50 with the standard deflation condition. Whereas, corresponding DBPs measured from the slow 

51 and fast inflation conditions increased significantly by 5.0 and 6.8 mmHg, respectively (both 

52 P < 0.05). There were no significant differences in BP changes measured by the two methods 

53 in most cases (all P > 0.05, except for DBP change in the slow and fast inflation conditions). 

54 Conclusion: This study demonstrated that the deep learning-based method can achieve 

55 accurate BP measurement under the deflation and inflation conditions with different rates. 

56 

57 

58 

59 Keywords: Blood pressure measurement, deep learning, cuff inflation, cuff deflation 
60 
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61 Introduction 

62 The importance of accurate and reliable blood pressure (BP) measurement is without 

63 doubt.1 The most common method for non-invasive BP measurement (manual auscultatory and 

64 automated oscillometric methods) is to use a cuff, which can be inflated and deflated to provide 

65 BP readings. Several international bodies including the American Heart Association (AHA), 

66 the British Hypertension Society (BHS) and the European Society of Hypertension (ESH), 

67 recommend that BP should be measured during cuff deflation with the rate of 2-3 mmHg per 

68 second.2-6 However, in order to reduce the time of measurement and pressure required, some 

69 automatic oscillometric devices measure BPs during cuff inflation.7, 8 

70 Some researchers quantified the influence of different cuff deflation and inflation rates on 

71 BP measurement. King compared the auscultatory BPs measured by two deflation rates of 2.35 

72 and 4.7 mmHg per second, and found a significant effect.9 Zheng et al. reported the effect of 

73 cuff pressure deflation rate on both manual auscultatory and automatic oscillometric BP 

74 measurements, indicating that, by using manual technique, accurate BP measurement could be 

75 achieved only if the deflation rate is slow as recommended, whereas the deflation rate had little 

76 effect on the measurement by using automatic model-based oscillometric techniques.10 Our 

77 previous publication also compared BPs obtained from healthy volunteers during inflation with 

78 those during deflation, and found significant differences with those measured during cuff 

79 inflation.11 

80 With increasing use of automatic BP devices by the general public as well as many 

81 healthcare institutions, the inability of highly accurate BP measurement by oscillometric 

82 technique has been reported by researchers.12, 13 Recently, deep learning techniques have been 

83 14-16 applied to medical fields with impressive outcomes. Deep learning techniques have 

84 multiple layers of nonlinear processing and can automatically detect and analysis complex, 

85 high-level features from raw data sources. We have developed a new BP measurement method, 



 
 

 
 

       

    

       

  

         

    

       

   

     

  

  

  

  

    

       

         

       

          

          

      

   

       

 

5 

86 to identify Korotkoff sound (KorS) by using a deep learning technique. Its performance has 

87 been assessed under non-resting conditions (deeper breathing, talking and arm movement) 

88 during standard cuff deflation.17, 18 However, there is no comprehensive investigation of the 

89 effect on our proposed method regarding the fast cuff pressure deflation rate and cuff pressure 

90 inflation rate. As a newly developed deep learning-based BP measurement method, it is 

91 clinically important to evaluate its performance under different measurement conditions. 

92 The aim of this study is to provide quantitative evidence of the effect on the deep learning-

93 based BP measurement in terms of different cuff deflation and inflation rates17, and evaluate 

94 its performance of measuring BP changes under different cuff deflation and inflation rates in 

95 comparison with the manual auscultatory method. 

96 

97 Methods 

98 Subjects 

99 International Standards Organization (ISO) requires that the overall mean and standard 

100 deviation (SD) of the difference between a new BP measurement technique and the reference 

101 BP (from manual auscultatory method) should be within 5 and 8 mmHg, respectively.19 Sample 

102 size calculation was performed based on a paired t-test for mean difference to allow a mean 5 

103 mmHg BP difference to be detected with a typical 8 mmHg SD of BP measurement. 21 subjects 

104 were therefore enough to achieve a confidence level of 95% and a statistical power of 80%. A 

105 total of 40 normotensive subjects (30 male and 10 female) were enrolled in this study. Mean 

106 age was 43 ± 12 ranging from 23 to 65 years, mean height was 173 ± 10 cm, mean weight was 

107 73 ± 11 kg, and mean arm circumference was 28 ± 2.7 cm. The experiment was carried out 

108 according to the Declaration of Helsinki of the World Medical Association, and received ethical 
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109 permission from the Newcastle & North Tyneside Research Ethics Committee. All participants 

110 provided their written informed consent to participate in the study. 

111 

112 Manual auscultatory blood pressure measurement 

113 As shown in Figure 1(a), manual auscultatory SBP and DBP were measured with a 

114 sphygmomanometer and stethoscope by a trained operator in a quiet and temperature-

115 controlled clinical measurement room. Before the measurement, the subject was asked to rest 

116 on a chair for 10 mins. The entire procedure followed the recommendations of the European 

117 and British Hypertension Societies.20 

118 There were three repeated sessions for each subject, and an automatic and programmable 

119 air pump was used to control the cuff deflation or inflation rate. Within each session, four 

120 conditions were considered, each of which has a different cuff deflation or inflation rate (one 

121 measurement for each condition): standard linear deflation at 2-3 mmHg/s, fast linear deflation 

122 at 5-6 mmHg/s, standard linear inflation at 2-3 mmHg/s, and fast linear inflation at 5-6 mmHg/s. 

123 The order of each measurement was randomized within each session. Subjects were allowed 

124 to rest for at least 4 mins between sessions and 1 min between measurements. Totally, twelve 

125 measurements were performed for each subject. 

126 The following manual BP measurement principle was followed. During cuff deflation, 

127 manual SBP and DBP were determined at the appearance and disappearance of the Korotkoff 

128 sounds, while during cuff inflation, manual SBP and DBP were determined at the 

129 disappearance and appearance of the Korotkoff sounds. The BP measured under standard cuff 

130 deflation condition was considered as the reference BP for each subject. 

131 

132 Deep learning-based blood pressure measurement 
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133 During twelve manual measurements for each subject, as demonstrated in Figure 1(a), the 

134 KorS and cuff pressure signals were recorded synchronously to a data capture computer via a 

135 Y-tube at a sampling rate of 2000 Hz. The highest frequency of KorS signal has been reported 

136 as about 400 Hz;21 thus, our sampling rate is 5 times of this highest frequency. According to 

137 the Nyquist Sampling Theorem (the sampling rate must be at least 2 times the highest frequency 

138 of the signal to be recorded), the key information of the KorS signal is kept with the sampling 

139 rate of 2000 Hz. Figure 1(b) gives typical examples of the recorded KorS and cuff pressure 

140 corresponding to two rates of deflation and inflation. These digitally saved data were used for 

141 subsequent offline BP determination by our recently developed deep learning-based method.17 

142 Briefly, the recorded KorS was firstly segmented into beat-by-beat frames (1s window with 

143 2000 sample points per frame) centered within the oscillometric pulse (extracted from the 

144 record cuff pressure). Secondly, each frame was converted into matrix ‘images’ by short time 

145 Fourier transformation (STFT), and then sent to a trained convolutional neural network (CNN) 

146 to identify the audible KorS and non-audible KorS beats. Lastly, the SBP and DBP were 

147 respectively determined by the cuff pressure corresponding to 1) the first and last audible KorS 

148 beats during deflation; and 2) the last and first audible KorS beats during inflation. 

149 The whole process was performed using a computer with Windows Operating System with 

150 CPU (AMD Ryzen 5 2600 @ 3.4 GHz) and GPU (NVIDIA GTX 1080). The processing time 

151 mainly includes the time for preprocessing, neural network prediction and BP matching. 

152 Depending on the slow or fast inflation, the processing time was about 0.4 and 0.2 s, which 

153 was negligible. The processing time difference was caused by different number of beats used 

154 for processing during the period of inflation. The inflation time was calculated based on the 

155 inflation speed. For example, with the slow inflation speed of 2-3 mmHg/s, in order for the cuff 

156 pressure to be inflated from 20 mmHg to 200 mmHg, the time required is 66.7 s. 

157 
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158 Data and statistical analysis 

159 SPSS software package (SPSS Inc., Chicago, IL, USA) was used to analyze the 

160 measurement repeatability from each condition of the two methods. The value of P < 0.05 was 

161 considered as statistically significant difference. The manual auscultatory method is regarded 

162 as the gold standard of non-invasive BP measurement; thus it has been widely accepted and 

163 used as reference measurement. In order to investigate the measurement accuracy of our deep 

164 learning-based method, the mean and SD of BP differences between the deep learning-based 

165 method and the manual auscultatory methods (reference) were calculated separately for the 

166 four measurement conditions (standard deflation, fast deflation, standard inflation and fast 

167 inflation). 

168 Next, in order to investigate BP changes caused by different measurement conditions 

169 (inflation and deflation, and their rates), the mean and SD of BP differences between the 

170 measurements taken during standard deflation and each of the other three conditions were 

171 calculated respectively for both the manual and deep learning-based methods, and then 

172 compared between the two methods. 

173 Analysis of variance (ANOVA) with post-hoc multiple comparisons were applied to 

174 investigate the effects of cuff inflation and deflation rates on measuring BPs and the significant 

175 difference between the BPs taken during standard deflation and those obtained during each of 

176 other three conditions. 

177 

178 Results 

179 Repeatability between measurements 

180 Statistical analysis showed that, for both the deep learning-based and manual auscultatory 

181 methods, there was no significant BP difference (for both SBP and DBP) between the repeat 
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182 sessions (all P > 0.05). This indicated that in neither method were the measurements influenced 

183 by the previous session or by the sequential order. The means from the three repeats for each 

184 subject was then used for the following analysis. 

185 

186 BP differences between the two methods 

187 The overall mean and SD of BP differences between the two methods are shown in Table 

188 1, respectively for each of the four conditions. In comparison with the manual auscultatory 

189 method, DBP determined by the deep learning-based method was significantly higher by 2.56 

190 mmHg and 1.99 mmHg, respectively, from in slow and fast inflation cycles (both P < 0.05). 

191 Otherwise, there was no significant BP differences between two methods (all P > 0.05). A 

192 detailed distribution of these differences is shown in Table 2, which shows the percentage of 

193 these differences falling within 5, 10, and 15 mmHg. It can be observed that, the performance 

194 of the deep learning-based method is within the Grade A standard for BP device by BHS (i.e., 

195 60%, 85% and 95% of SBP and DBP differences are within 5, 10 and 15 mmHg, respectively) 

196 under each of the four measurement conditions. 

197 

198 Effect of cuff deflation and inflation rates on measured BP 

199 The mean paired differences between each of the three measurement conditions (i.e., fast 

200 deflation, slow inflation and fast inflation) and the standard deflation condition are given in 

201 Table 3, respectively for the two methods. The key finding is that, for the deep learning-based 

202 method, the mean SBPs measured from fast deflation, slow inflation and fast inflation 

203 decreased significantly by 3.0, 3.5 and 4.7 mmHg, respectively, in comparison with those 

204 obtained in the standard deflation condition (all P < 0.05). Whereas, the mean DBPs measured 

205 in slow inflation and fast inflation increased significantly by 5.0 and 6.8 mmHg, respectively, 
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206 when compared with standard deflation condition (both P < 0.05). It also can be observed that, 

207 DBP of fast deflation increased significantly by 0.9 mmHg (P = 0.03) using the manual method, 

208 while there was no significant difference from the deep learning-based method. Additionally, 

209 the BP differences were caused by different measurement conditions in reference to standard 

210 deflation condition. They were not measurement errors. 

211 

212 Comparison of BP changes between the two methods 

213 As shown in Figure 2, there were no significant differences in BP changes measured by 

214 the deep learning-based and manual methods (all P > 0.05, except DBP measured during slow 

215 and fast inflation). This indicated that the small BP changes caused by different cuff inflation 

216 or deflation rates can be accurately measured by the deep learning-based method. 

217 

218 Discussion 

219 The present study has quantitatively evaluated the effects of cuff inflation and deflation 

220 rates on BP measurements using the deep learning-based and manual auscultatory methods. In 

221 this study, the deep learning-based method achieved less than 1 mmHg measurement error (all 

222 SD < 4 mmHg) from the majority of measurement conditions (except the DBP from slow and 

223 fast cuff inflation). This level of accuracy was within the requirement of BP device validation 

224 from the BHS. This finding emphasized that the deep learning-based method could achieve 

225 accurate measurement under both deflation and inflation conditions with different rates. 

226 The DBPs measured by the deep learning-based method have not achieved statistically 

227 non-significant difference from slow and fast cuff inflation in comparison with manual method 

228 (with 2.56 and 1.99 mmHg statistically significantly higher DBP respectively from slow and 

229 fast cuff inflation, both P < 0.05). Figure 3 demonstrates an example of DBP identification 



 
 

 
 

          

             

        

       

        

  

     

   

        

      

         

   

  

       

        

     

           

         

          

     

       

      

    

      

    

11 

230 difference by two methods during cuff inflation. It is within the Grade A standard for BP device 

231 by BHS (see Table 2). One possible explanation for the DBP error can be caused by the small 

232 amplitude and weak audible characteristics of KorS in the DBP region, as shown in Figure 1(b). 

233 This leads to inaccurate identification of KorS in the DBP region by our deep learning-based 

234 method. In future studies, additional pre-processing algorithms may be required to enhance the 

235 small amplitude and weak audible KorS. 

236 Another finding is that, the cuff inflation and deflation rates had significant influence on 

237 measured BPs. With the BP measurement performed during cuff inflation, the deep learning-

238 based SBPs were significantly lower than those obtained during standard cuff deflation, 

239 whereas deep learning-based DBPs were significantly higher. These results are consistent with 

240 our previous study with automated oscillometric method.11 One possible explanation is due to 

241 the different mechanical behavior of the brachial artery during cuff inflation and deflation. 

242 Vychytil et al. reported different arterial mechanical response from the inflation-deflation cycle 

243 test on animal arteries.22 The transmural pressure of artery is the difference between internal 

244 blood pressure and external cuff pressure. It changes from positive to negative during cuff 

245 inflation, and from negative to positive during cuff deflation. During cuff deflation, with the 

246 external pressure above SBP, it is likely that the brachial artery above the cuff will be fully 

247 expanded, which is caused by the cardiac pressure without blood flow. During cuff inflation, 

248 the arterial pressure could be slightly lower because there is some flow for each cardiac beat 

249 preceding the SBP. Hence, the external pressure needed to collapse and open the artery during 

250 inflation and deflation, respectively. Both Zheng et al.’s and Fabian et al.’s groups have found 

251 the difference in mean arterial pressure (MAP) measured by oscillometric BP technique during 

252 cuff inflation and deflation, indicating that the response and the maximum compliance of the 

253 artery are different between cuff inflation and deflation, because the artery has the maximum 

254 compliance when external pressure is equal to the arterial MAP.11, 23 SBPs measured from fast 
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255 cuff deflation were lower than that from standard cuff deflation, which is in agreement with 

256 Zheng’s report.10 Therefore, the effect of cuff inflation and deflation rates on BP is expected to 

257 be similar with the manual auscultatory method or the oscillometric method. More importantly, 

258 this study has demonstrated that there was no significant difference in BP changes (i.e., the 

259 difference between the standard cuff deflation condition and each of the three conditions) 

260 determined by the manual and deep learning-based methods (except DBP measured during cuff 

261 inflation). Hence, one key finding of our study is that the small BP changes caused by different 

262 measurement condition can be accurately measured by the deep learning-based method in 

263 reference to the manual auscultatory method, and our proposed deep learning-based method is 

264 an effective technique for measuring small BP changes. 

265 One limitation of this study is that, although 40 subjects used in this study were sufficient 

266 for a study focusing on technology development and comparison, the total sample size and 

267 population was too small for a clinical population study or a proper clinical validation study. A 

268 future study with larger sample size including hypertensive and hypotensive participants is 

269 needed to investigate whether similar results could be achieved. It would also be interesting to 

270 explore and quantify the differences of amplitude and frequency of KorS between cuff deflation 

271 and inflation. 

272 Another limitation is that, a better comparison would have been to use the true invasive 

273 reference measurement; however, the manual auscultatory method is regarded as gold standard 

274 of non-invasive BP measurement, and used for automatic BP device validation. As shown in 

275 Table 1, differences in BP readings between the two methods were less than 0.5 mmHg under 

276 most of the measurement conditions, which is acceptable for automatic BP device validation 

277 stage. Furthermore, it is worth comparing the performance of our method with the commonly 

278 used automatic BP devices based on oscillometric technique. Nevertheless, this pilot study 

279 evaluated our newly developed deep learning-based method by analyzing the stethoscope and 
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280 cuff pressure signals from a physiological recording system. The results demonstrated that our 

281 deep learning-based method can be developed further to achieve enough accuracy from the 

282 manual auscultatory method. 

283 In summary, this study provides quantitative evidence that our newly developed deep 

284 learning-based BP measurement method can achieve accurate measurement under different 

285 deflation and inflation rates. 

286 
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365 

366 Captions 

367 

368 

369 

370 

Figure 1. (a) Demonstration of manual auscultatory blood pressure measurement and the measurement 

system for Korotkoff sound and cuff pressure recording. (b) Examples of recorded cuff pressure and 

Korotkoff sound waveform from four measurement conditions (standard cuff deflation, fast cuff deflation, 

slow cuff inflation and fast cuff inflation). 

371 

372 

373 

374 

Figure 2. Comparison of BP changes (mean ± s.e.m.) measured by the deep learning based and manual 

methods. * Significant difference between comparisons (P < 0.05). 
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Figure 3. An example of DBP determination difference between the deep learning based method and 

manual auscultatory method during cuff inflation. 

378 



      

   

 

 

 

 

 

 

     

    

     

      

   

 

Table 1 

Table 1. Overall mean differences ± SD of BP between deep learning method and manual 

auscultatory method under different measurement conditions. 

Mean differences of BPs between deep 

Condition 

learning and manual method 

SBP DBP 

(mmHg) (mmHg) 

Standard Deflation -0.22 ± 1.23 0.48 ± 2.29 

Fast Deflation -0.50 ± 1.97 -0.15 ± 1.66 

Slow Inflation 0.20 ± 3.77 2.56 ± 2.26* 

Fast Inflation 0.57 ± 2.87 1.99 ± 3.11* 

* Significantly different (P < 0.05) 



   

   

 

 

 

 

 

 

 

 

    

    

 

    

    

 

    

    

  

    

    

 

 

Table 2 

Table 2. Distribution of BP differences between the deep learning method and manual 

auscultatory method under different measurement conditions. 

Condition 

Within 5 mmHg 

(%) 

Within 10 mmHg 

(%) 

Within 15 mmHg 

(%) 

Standard Deflation 

SBP 

DBP 

96.6 

89.7 

100 

98.3 

100 

100 

Fast Deflation 

SBP 

DBP 

87.7 

93.0 

100 

99.1 

100 

100 

Slow Inflation 

SBP 

DBP 

78.6 

77.8 

90.6 

96.6 

97.4 

99.2 

Fast Inflation 

SBP 

DBP 

83.3 

70.2 

95.6 

95.6 

98.3 

100 



   

 

 

         

 

     

    

               

               

              

   

 

 

Table 3 

Table 3. Overall mean differences ± s.e.m. of BP when compared with the value for standard 

deflation condition 

Mean differences of BP referenced to the cuff standard deflation condition 

Measurement (mmHg) 

condition Deep learning Method Manual auscultatory method 

SBP DBP SBP DBP 

Fast Deflation -3.0 ± 0.5* 0.2 ± 0.5 -2.8 ± 0.4* 0.9 ± 0.5* 

Slow Inflation -3.5 ± 0.9* 5.0 ± 0.5* -3.9 ± 0.7* 2.9 ± 0.5* 

Fast Inflation -4.7 ± 0.9* 6.8 ± 0.6* -5.6 ± 0.8* 5.3 ± 0.6* 

* Significantly different (P < 0.05) in comparison with the cuff standard deflation condition. 
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