
FruitVegCNN: Power- and Memory-Efficient
Classification of Fruits & Vegetables Using CNN in

Mobile MPSoC
Somdip Dey1, Suman Saha2, Amit Singh3, Klaus McDonald-Maier4

1, 3, 4University of Essex, U.K.
1, 2Nosh Technologies, India.

Corresponding email: 1somdip.dey@essex.ac.uk; 1dey@nosh.tech

Abstract—Fruit and vegetable classification using Convolu-
tional Neural Networks (CNNs) has become a popular application
in the agricultural industry, however, to the best of our knowledge
no previously recorded study has designed and evaluated such
an application on a mobile platform. In this paper, we propose
a power- and memory-efficient CNN model, FruitVegCNN, to
perform classification of fruits and vegetables in a mobile multi-
processor system-on-a-chip (MPSoC). We also evaluated the
efficacy of FruitVegCNN compared to popular state-of-the-art
CNN models in real mobile platforms (Huawei P20 Lite and
Samsung Galaxy Note 9) and experimental results show the
efficacy and power efficiency of our proposed CNN architecture.

Index Terms—convolutional neural network (CNN), multi-
processor system-on-a-chip (MPSoC), fruits, vegetables, classi-
fication, energy efficiency

I. INTRODUCTION AND MOTIVATION

In recent years, computer vision based Convolutional Neural
Networks (CNNs) [1], [2], [3] approaches have become very
popular to solve several real-life challenges such as traffic
categorization [4], [5], [6], weather forecasting [7], fruits and
vegetables’ classification [8], [9], etc due to its high pre-
diction accuracy/categorization in the aforementioned target
applications. Moreover, we can notice a steady growth in
using CNNs in agriculture, especially for use cases such as
automatic fruit harvesting, fruit sorting machines, and fruit
scanning in supermarkets. Out of several applications of using
CNNs in agriculture, classification of fruits and vegetables are
an important one due to the fact that such an application could
be used to automate and retrospectively improve productivity
in agri-food system. For example, when a shopper goes to
supermarket to buy fruits and vegetables, instead of typing all
the items manually to create an inventory, the shopper can
just take a picture of the bought fruits and vegetables and it
automatically classifies the bought items and input them in the
inventory.

On the other hand, battery operated mobile devices are
becoming more affordable due to the improvement in chip
manufacturing technology and also come equipped with mul-
tiple processing elements to cater for performance require-
ment of the executing applications [10], [11]. Such a mobile
platform, utilizing multi-processor system-on-a-chip (MPSoC)
[10], [11], [12], [13], [14], [15], [16], [17], implements dif-
ferent types of processing elements such as CPU and GPU,
capable of computing demanding computer vision applications
on the device. Given the importance of adopting CNN based
approaches in agricultural industry and the increase in popu-
larity of using mobile devices, it is very important to study,
design and implement CNN models for fruits and vegetables’

This work was supported by Nosh Technologies under Grant nosh/agri-
tech-000001 and by the U.K. Engineering and Physical Sciences Research
Council (EPSRC) under Grant EP/R02572X/1 and Grant EP/P017487/1.

classification in mobile devices. A consumer can use their
mobile device to make an inventory of their bought fruits
and vegetables using such CNNs. However, implementing
CNNs in mobile platforms come with their own challenges.
Such challenges include implementing a power-efficient CNN,
which is capable of accurately classifying fruits and vegetables
while consuming the least power and memory on the device.

In this paper, we propose a CNN model, named FruitVeg-
CNN, which can be utilized in mobile devices for fruits and
vegetables’ classification, and to the best of our knowledge
this is the first work on designing and implementing a CNN
model for the same task in a mobile platform. To this end,
this paper makes the following contributions:

1) Proposal of FruitVegCNN, a light weight CNN model,
capable of fruits and vegetables’ classification in battery
operated mobile device.

2) Comparative study between FruitVegCNN and imple-
mentation of different CNN models on real mobile
devices (Huawei P20 Lite [18] and Samsung Galaxy
Note 9 [19] mobile devices) to show the difference in
memory consumption, power consumption, CPU load
and GPU load.

3) Evaluation of FruitVegCNN on Huawei P20 Lite and
and Samsung Galaxy Note 9 mobile devices.

II. PRELIMINARIES

A. Convolutional Neural Networks and Deep Learning
A Deep Learning (DL) model [20] consists of an input layer,

several intermediate (hidden) layers stacked on top of each
other and an output layer. In the input layer, which is the first
layer of the model, the raw values of data features are fed
into it. In each of the hidden layers a mathematical operation
called convolution is applied to extract specific features, which
is then utilized to predict the label of the raw data in the last
(output) layer of the DL network. Most of the time, if a model
utilize an input layer, a hidden layer and an output layer then
the model is denoted as Convolutional Neural Network (CNN)
model or simply, CovNet. If such a model uses a lot of stacked
hidden layers only then it is denoted as a DL model or Deep
Neural Networks (DNN).

B. Pre-trained Networks and Transfer Learning
A conventional approach to enable training of DNN/CNN

on relative small datasets is to use a model pre-trained on a
very large dataset, and then use the CNN as an initialization
for the applicative task of interest. Such a method of training is
called “transfer learning” [21] and we have followed the same
principle. The chosen CNN models mentioned in Sec. IV are
pre-trained on ImageNet. For the propose of classifying fruits
and vegetables on the mobile device, we have utilized the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/356660351?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


following popular pre-trained CNN models: VGG (VGG19)
[3], ResNet (ResNet152v2) [22], MobileNet (MobileNetv2)
[23], NASNet (NASNetMobile and NASNetLarge) [24] and
Inception-ResNet[25].

III. RELATED WORK

There has been several studies to utilize CNNs and DNNs
for fruit classification [26], [27], [28], [29], [9], [8], [30] and
fruit detection [31], [32].

In [29], Lu implemented CNN models with data expansion
techniques to select images in ten-class food items from the
ImageNet to compare its method against bag-of-feature and
and support vector machine models. In [28], Zhang et al.
proposed a 13 layer CNN for fruit classification, and compared
the effects of different types of data augmentation approach
and max-pooling techniques on the prediction accuracy.

Wang et al. in [27] proposed an 8 layer CNN by using a
parametric rectified linear unit (ReLU) and placing a dropout
layer before each fully connected (FC) layer. Kausar et al.
[30] proposed another fruit classification methodology, Pure-
CNN, consisting of 7 convolutional layers. The CNN models
proposed in [27] only uses fully connected layers at the end of
the architecture, and [30] only utilizes convolutional layers in
the architecture with one fully connected layer in the last layer
of the CNN for classification purposes. Such models perform
poorly for occluded images, which is the case for real life
scenarios of fruit classification. In a CNN while using con-
volutional layer, features extracted from convolutional layer
are spatially local [33] and due to use of only convolutional
layers for occluded images some important features defining
the object in the image could be lost, hence, failing to classify
occluded images of fruits & vegetables properly during testing.
Therefore, using a mixture of fully connected layers along with
convolutional layers could resolve issues related to occlusion
in images. On the other hand, fully connected layers are
computationally expensive and consumes more power because
each neuron is connected to the other neuron of the input
and output of the layer. Therefore, in this paper we design a
CNN architecture, using a combination of convolutional layers
and fully connected layers, which overcomes the limitations
of each other.

In [26], Steinbrener et al. utilized a CNN model pre-trained
for RGB image data to classify fruits and vegetables. Whereas,
Mureşan et al. [8] introduced a new dataset of fruit images
called Fruits-360 and utilized AlexNet and GoogleNet, pre-
trained CNN models, to classify fruits’ images. In [9], Patino-
Saucedo et al. implemented AlexNet CNN to classify tropical
fruits.

In [31], Bargoti et al. proposed a framework based on CNN
model to detect and count apples and mangoes. This work was
implemented on a robotic vehicle, however, the platform was
not a low powered device such as mobile phone. In another
study, Chen et al. [32] used a blob detector based on a fully
convolutional network (FCN) to count total number of fruits
in the input image.

In none of the aforementioned studies, designing and imple-
mentation of the CNN was performed by keeping the power-
efficiency of executing the CNN in a mobile platform for clas-
sification purposes into consideration. This paper solves the
aforementioned challenge and proposes a CNN model catering
for: performance (prediction accuracy), power consumption
and memory constraint of battery operated mobile platform.

IV. FINE-TUNING PRE-TRAINED CNNS FOR FRUIT AND
VEGETABLE CLASSIFICATION ON MOBILE MPSOC

It is very common to choose a pre-trained CNN model and
fine-tune the model to train on a target application [8], [9].

TABLE I: Comparison between CNN models based on disk
size and parameters

CNN Model Size Parameters
ResNet152v2 232 MB 60,380,648
NASNetMobile 23 MB 5,326,716
NASNetLarge 343 MB 88,949,818
VGG19 549 MB 143,667,240
MobileNetv2 14 MB 3,538,984
Inception-ResNet 215 MB 55,873,736

Fine-tuning is the process of taking the weights of a pre-trained
CNN and using it as initialization for a new model being
trained on a dataset from the same domain. This approach
is used to speed up the training process while being able
to train on small dataset. Since, pre-trained models such as
VGG (VGG19) [3], ResNet (ResNet152v2) [22], MobileNet
(MobileNetv2) [23], NASNet (NASNetMobile and NASNet-
Large) [24] and Inception-ResNet[25] are initially trained on
ImageNet, which coincides with several of the fruits and
vegetables’ classes, hence, choosing these CNN models for
fine-tuning to train to classify fruits and vegetables based on
our dataset, as proposed in Sec. IV-A.

A. Dataset
For our fruits and vegetables’ classification task we have

utilized the Fruits-360 dataset introduced by Mureşan et al.
[8]. The dataset consists of a total of 90483 images (67692
images for training and 22688 images for validation) for 131
different types (class labels) of fruits and vegetables. Each
image in this dataset contains only one fruit or vegetable per
image. We have also used the dataset introduced by Patino-
Saucedo et al. [9], which consists of a total of 2633 images
of 15 different types of tropical fruits.

Since, the two dataset [8] & [9] have some common fruits,
we combined the two dataset to create our own dataset
to train the CNN for the classification task. The common
fruits/vegetables labels between the dataset are potato, peach,
apple, melon, kiwi, nectarine, onion, orange, plum, pear, lime
and watermelon, which comprised of 14 out of 15 classes in
Patino-Saucedo et al.’s dataset [9]. Therefore, we consolidated
the images of the common classes/labels between the dataset,
and the total number of class labels after consolidation became
132. Since, the [9] did not come with separate training and
validation images, we randomly selected 25% of the dataset
to be the validation set and the rest 75% as the training set. In
order to test the prediction accuracy of trained CNN models,
we also randomly chose 5 images per class label from the
validation dataset and kept it separate. Therefore, the total
number of testing images were 660.

B. Training a pre-trained CNN
For our classification task we chose the following popular

pre-trained CNNs: VGG (VGG19), ResNet (ResNet152v2),
MobileNet (MobileNetv2), NASNet (NASNetMobile and
NASNetLarge) and Inception-ResNet. Out of these CNNs
MobileNet and NASNetMobile are specifically developed for
mobile platforms. We chose these CNNs to evaluate their
performance on our experimental mobile device to deduce
which pre-trained CNN is most suitable for such classification
task. Table I shows the difference in the memory (disk) size of
the CNN models (non mobile version) along with their total
number of parameters.

We fine-tuned our pre-trained CNN models by adding our
a new randomly initialized classifier, and training the last
fully connected layer by freezing all the layers of the base
model (frozen layers represented with gray colour in Fig.



Fig. 1: Network architecture used for fine-tuning pre-trained
CNN

1) and unfreezing the last fully connected layer (unfrozen
layers represented with green colour in Fig. 1). Given the
computational constraint of mobile devices we perform the
training of our CNN model on a general purpose computer
using Tensorflow [34] backend for processing. Since, the
trained CNN models are in Tensorflow format (non mobile
version), they can not be directly implemented in mobile
devices and have to be converted to Tensorflow Lite [35]
format, which is a machine learning framework for on-device
inference, to be implemented on the mobile device.

C. Hardware and software setup for training
The training was performed on a general purpose computer

with 4 Intel(R) Xeon(R) Gold 6134 CPUs and CUDA enabled
Nvidia Tesla P100 GPU with 12GB memory, which is utilized
to significantly accelerate the training of the CNN models. The
training system was running on Ubuntu version 16.04.6 LTS.

D. Hardware and software setup on mobile platforms
1) Huawei P20 Lite: We utilized Huawei P20 Lite [18]

smart-phone, which employs the HiSilicon Kirin 659 [36]
MPSoC, to evaluate different trained CNN models. Kirin
659 MPSoC is based on ARM’s big.LITTLE technology and
contains a cluster of 4 big CPU cores and a cluster of 4 LIT-
TLE CPU cores. But the big.LITTLE implementation of this
MPSoC is unique, since it uses the same type of CPU core for
big as well as LITTLE. Kirin 659 MPSoC uses Cortex A-53 as
both big and LITTLE CPU cores, which implements ARMv8-
A ISA, supporting 64 bit instruction set and is userspace
compatible with 32-bit ARMv7-A architecture.

This MPSoC also provides dynamic voltage frequency
scaling feature per cluster, where the big core cluster has 5
frequency scaling levels ranging from 1402 MHz to 2362 MHz
(at the following frequencies: 1402 MHz, 1805 MHz, 2016
MHz, 2112 MHz, 2362 MHz), and the LITTLE core cluster
has 4 frequency scaling levels ranging from 480 MHz to
1709 MHz (at the following frequencies: 480 MHz, 807 MHz,
1306 MHz, 1709 MHz). If we consider P as the dynamic
power consumption, V as the operating voltage, f as the
operating frequency of the processing core, dynamic voltage
and frequency scaling (DVFS) [11], [10] is used to reduce
the dynamic power consumption (P ∝ V 2f ) by executing the
workload over extra time at a lower voltage and frequency,
which could be accounted for reduced power consumption
of the device. Kirin 659 MPSoC also comes equipped with
2 Mali-T830 MP2 GPUs and 4GB RAM. Huawei P20 Lite
comes with a non-removable 3000 milliamp Hour (mAh)
battery.

2) Samsung Galaxy Note 9: We also chose Samsung
Galaxy Note 9 [19] to observe the computing resource utilizing
of the trained CNNs. Note 9 is a recent powerful mobile
device from Samsung and utilizes the Exynos 9810 MPSoC
[37]. Exynos 9810 has two CPU clusters (based on ARM’s
big.LITTLE technology), one for big CPU cores consisting of

4 Mongoose 3 CPU cores, and the other cluster for LITTLE
CPU cores consisting of 4 Cortex A-55 CPU cores. The
Mongoose 3 CPU cores allow cluster wise DVFS and has
18 frequency scaling levels ranging from 650 MHz to 2704
MHz (2704 MHz, 2652 MHz, 2496 MHz, 2314 MHz, 2106
MHz, 2002 MHz, 1924 MHz, 1794 MHz, 1690 MHz, 1586
MHz, 1469 MHz, 1261 MHz, 1170 MHz, 1066 MHz, 962
MHz, 858 MHz, 741 MHz, 650 MHz). Whereas, the LITTLE
Cortex-A55 CPU cores has 10 frequency scaling levels ranging
from 455 MHz to 1794 MHz (1794 MHz, 1690 MHz, 1456
MHz, 1248 MHz, 1053 MHz, 949 MHz, 832 MHz, 715 MHz,
598 MHz, and 455 MHz). The Exynos 9810 MPSoC comes
equipped with 18 Mali-G72 MP18 GPUs and 6GB RAM.
Galaxy Note 9 comes equipped with a non-removable 4000
mAh battery.

Fig. 2: An illustration of our Flutter app implementing the
trained CNN (VGG19) model for fruits & vegetables classifi-
cation while the Profiler app [38] runs overlaying the Flutter
app in Huawei P20 Lite

3) Software setup & Profilers: Huawei P20 Lite smart-
phone has power sensors as well as 13 thermal sensors,
but due to lack of documentation from the vendor on the
positioning of the thermal sensors it is not feasible to associate
all the installed temperature sensors with specific cores/cluster.
However, we were able to track one specific thermal sensor
which is placed on the battery and in our evaluation we report
the thermal behaviour of the battery. On Samsung Galaxy Note
9 we also observe the thermal sensor on the battery. To record
different factors such as power consumption, CPU load, GPU
load, memory (RAM) consumption and battery temperature,
we used Trepn Profiler by Qualcomm (version 6.2) [39] and
the Profiler app by Tomas Chladek (version 1.5.5) [38]. Trepn
Profiler doesn’t have support for GPU load profiling and
hence, we utilize Chladek’s Profiler app to observe the GPU
load. The Kirin 659 MPSoC was running on the Android
8.0.0.168 (Oreo) [40] OS (utilizing Linux Kernel: 4.4.23+ #1



TABLE II: Comparison between trained CNN models on
validation accuracy (%)

CNN Model Validation Accuracy (%)
ResNet152v2 95.027
NASNetMobile 10.108
NASNetLarge 10.054
VGG19 98.918
MobileNetv2 97.892
Inception-ResNet 98.432

SMP). The Galaxy Note 9 was running on Android 9 (Pie)
[41] OS utilizing Linux kernel version 4.9.59.

To implement the trained CNN model (in Tensorflow Lite
format) on the mobile device we developed a mobile appli-
cation using Flutter [42], which is a cross-platform mobile
application development framework by Google. In the Flutter
app, we implemented a continuosly streaming camera module,
which inputs the image from the camera and continuously
streams the images to the trained CNN for inference. Fig.
2 shows the user-interface of our Flutter application with
an overlay of the Profiler app while profiling the computing
resources during inference (classification).

E. Evaluation of trained CNN models
After the training of the CNNs completed on our dataset,

we evaluated the validation accuracy of the respective models.
In a trained CNN, validation accuracy and testing accuracy
reflects the performance of the CNN for the target application
and hence, we observe the respective values to compare the
CNNs in Table II and Table VI. The testing accuracy and
comparison based on the same is discussed in details in Sec.
VI and in Table VI.

From Table II it could be noticed that VGG19 performed
the best for validation testing for fruits and vegetables’ clas-
sification, whereas, both the NASNet CNNs (NASNetMobile
& NASNetLarge) performed the worst. The NASNet CNN
architecture is massive, consisting of two different types of
layers (Normal cell and Reduction cell) [24] and training such
an architecture requires a lot of computational resources. Fig. 3
shows the improvement in validation accuracy achieved during
the training period (training epoch) of the respective CNNs.

Fig. 3: Validation accuracy of trained VGG, ResNet, Mo-
bileNet, NASNetLarge (NASNetlar.), NASNetMobile (NAS-
NetMob.) and Inception-ResNet (Ins.Res.) over training
epochs

F. Evaluation of trained CNN models on the mobile device
After converting the trained models to Tensorflow Lite

format, the memory (disk) size of the trained VGG (VGG19),
ResNet (ResNet152v2), MobileNet (MobileNetv2), NASNet

TABLE III: Comparison between trained CNN models in
Tensorflow Lite format based on disk size

CNN Model Size
ResNet152v2 335.5 MB
NASNetMobile 20.9 MB
NASNetLarge 352.5 MB
VGG19 182.9 MB
MobileNetv2 23.3 MB
Inception-ResNet 340.8 MB

(NASNetMobile and NASNetLarge) and Inception-ResNet
models got reduced. Table III shows the reduced disk size
of the trained CNNs in Tensorflow Lite format for mobile
implementation.

To compare the trained CNNs on mobile device we observe
the following factors: Average memory (RAM) consumption
(denoted as RAM), Loading time of the CNN model in seconds
(denoted as Ld. time), average CPU load which is normalized
across 8 CPUs of Kirin 659 & Exynos 9810 MPSoCs (denoted
as CPU%), average GPU load (denoted as GPU%), average
power consumption in milliwatt (mW) (denoted as Power)
and average battery temperature in ° centigrades (denoted
as Bat. Temp.). The Flutter application, implementing the
respective trained CNN, was executed for 60 seconds while
profiling, which includes the loading time of the model and
inference of stream images from the camera. Table IV shows
the comparative study between different CNNs in the Huawei
P20 Lite based on Ld. time (sec), RAM (GB), CPU%, GPU%,
Power (mW) & Bat. Temp. (° C), whereas, Table V shows the
comparative study between different CNNs in the Galaxy Note
9.

V. THE PROPOSED ARCHITECTURE: FRUITVEGCNN

Based on the comparative study of different trained CNNs as
shown in Tables IV and V we wanted to develop a CNN model,
which has less number of trainable parameters and utilizes less
computing resources comparatively while performing almost
similar to existing popular CNNs. In this section, we introduce
FruitVegCNN, a 10 layered network for fruit and vegetable
classification.

A. Overall architecture
The overall architecture of our proposed network, FruitVeg-

CNN, for fruits and vegetables’ classification is illustrated in
Fig. 4. FruitVegCNN consist of 10 learned layers with weights:
6 convolutional layers and 4 fully connected layers. The output
of the last fully-connected layer is fed to a 132-way softmax
which produces a distribution over the 132 class labels. The
first convolutional layer filters the 224 x 224 x 3 input image
with a kernel (neuron) of size 5 x 5 x 3 with a stride of 4
pixels. The second convolutional layer takes the output of the
first convolutional layer and filters it with a kernel of size 3
x 3 x 32. The third convolutional layer takes the response-
normalized and pooled output of the second convolutional
layer as input and filters it with a kernel of size 3 x 3 x 32. In
a CNN architecture the pooling layer summarizes the outputs
of neighboring groups of neurons in the same kernel map.
The fourth convolutional layer is connected to the first fully
connected layer, whose input is the response-normalized and
pooled output of fourth convolutional layer, and filters it with
a kernel of size 32. The fourth, fifth and sixth convolutional
layers, all has a kernel of size 3 x 3 x 32. In the learned
layers we have utilized Rectified Linear Units (ReLUs) as
the activation function of the neurons. The standard way to
model a neuron’s output (f ) as a function of its input (x) is



TABLE IV: Comparison between trained CNN models in Tensorflow Lite format based on Ld. time, RAM, CPU%, GPU%,
Power and Bat. Temp. in Huawei P20 Lite

CNN Model Ld. time (sec) RAM (GB) CPU% GPU% Power (mW) Bat. Temp. (° C)
ResNet152v2 16 0.65 64 21 2150 37
NASNetMobile 13 0.53 61 15 3302 37
NASNetLarge 14 0.69 68 11 3475 33
VGG19 17 0.78 72 22 3458 30
MobileNetv2 11 0.54 59 13 2746 36
Inception-ResNet 12 0.62 59 22 2880 38

TABLE V: Comparison between trained CNN models in Tensorflow Lite format based on Ld. time, RAM, CPU%, GPU%,
Power and Bat. Temp. in Samsung Galaxy Note 9

CNN Model Ld. time (sec) RAM (GB) CPU% GPU% Power (mW) Bat. Temp. (° C)
ResNet152v2 4 0.72 56 1 4052 35
NASNetMobile 6 0.83 56 0 3953 34
NASNetLarge 19 1.39 54 1 4026 36
VGG19 3 0.9 62 1 7952 35
MobileNetv2 2 0.73 53 0 4019 35
Inception-ResNet 5 0.74 55 1 4042 35

Fig. 4: An illustration of the architecture of our FruitVegCNN

with f(x) = max(0, x), which is the activation function using
ReLU.

B. Reducing overfitting
Our neural network architecture has 53,391 parameters and

it makes it insufficient to learn so many parameters without
overfitting. To resolve this challenge we use the following two
approaches:

TABLE VI: Comparison between trained CNN models on
testing accuracy (%)

CNN Model Testing Accuracy (%)
ResNet152v2 68.18
NASNetMobile 2.5
NASNetLarge 1.515
VGG19 72.72
MobileNetv2 70
Inception-ResNet 70.45
FruitVegCNN 71.36

1) Data augmentation: One of the popular and easy way to
reduce overfitting on the image data is to artificially enhance
the dataset using label-preserving transformations of the im-
ages. In our training period, we have utilized combination of
the following data augmentation approaches: rotation, random
width and height shift, random zoom, horizontal flip, salt
& pepper and coarse dropout. The augmentation techniques
of salt & pepper and coarse dropout are used to mimic
occlusion in images [33]. The augmentation/transformation
of the images are done during the training period and the
transformed images does not have to be stored separately on
the disk. Augmentation was performed during the time of the
training.

2) Dropout layer: To improve generalization and reduce
overfitting in a CNN model, dropout layers [43] can be used.
In a dropout layer, neurons which are dropped out, do not
contribute to the forward pass and back propagation. In a
dropout layer, the output of each hidden neuron is set to
zero with a probability of p. We used a dropout layer, which
is denoted as DROPOUT1 in Fig. 4, of 0.3 probability (p)
between the first fully connected layer (fc1 in Fig. 4) and
the second fully connected layer (fc2 in Fig. 4). DROPOUT1
is placed between fc1 and fc2 to improve learning general-
ization such that parts of the feature map produced from the
convolutional layers conv2d to conv2d 3 in Fig. 4 could be
forgotten, hence, improving learning and reducing overfitting.
We have utilized another dropout layer of 0.5 p right before
the prediction (output) layer as well.

VI. EVALUATION OF FRUITVEGCNN AND COMPARATIVE
STUDY

When we implemented FruitVegCNN on Huawei P20 Lite
& Samsung Galaxy Note 9 the disk storage of the model in
Tensorflow Lite format was 220 KB, which is a very small
fraction of the disk size of other popular CNNs as shown in
Table III. The validation accuracy achieved by FruitVegCNN



during the training was 95.081% which is comparable to other
CNNs as shown in Table II. When we evaluated FruitVeg-
CNN against other popular CNNs for the testing accuracy,
FruitVegCNN performed very close comparatively and the
evaluation results are illustrated in the Table VI. The Ld.
time (sec), RAM (GB), CPU%, GPU%, Power (mW) & Bat.
Temp. (° C) for FruitVegCNN in Huawei P20 Lite are 9,
0.34, 58, 14, 1560 and 33 respectively. In Samsung Galaxy
Note 9, the Ld. time (sec), RAM (GB), CPU%, GPU%, Power
(mW) & Bat. Temp. (° C) for FruitVegCNN are 1, 0.5, 45, 0,
3092 and 32 respectively. If we compare the respective values
for FruitVegCNN with other CNNs as specified in Table IV
and Table V, we can definitely observe that FruitVegCNN
performs most power efficiently while consuming the least
memory (disk and RAM). Compared to VGG, FruitVegCNN
consumes 54.88% less power, 56.41% less RAM memory and
loads 47.06% faster in Huawei P20 Lite. Whereas, in Samsung
Galaxy Note 9, compared to VGG, FruitVegCNN consumes
61.12% less power, 44.44% less RAM memory and loads
66.67% faster.

VII. CONCLUSIONS

In this paper, we proposed a novel CNN architecture,
FruitVegCNN, to perform fruit and vegetable classification on
Huawei P20 Lite and Samsung Galaxy Note 9 mobile devices
in a power-efficient manner. We also provided a comparative
study of FruitVegCNN with current state-of-the-art CNNs
such as VGG, ResNet, MobileNet, NASNet and Inception-
ResNet. Comparative study and experimental evaluation shows
the performance, power- and memory-efficiency of FruitVeg-
CNN. FruitVegCNN consumes 54.88% less power, 56.41%
less RAM memory and loads 47.06% faster in Huawei P20
Lite compared to VGG, whereas, in Samsung Galaxy Note
9, compared to VGG, FruitVegCNN consumes 61.12% less
power, 44.44% less RAM memory and loads 66.67% faster.

REFERENCES

[1] S. Chakradhar et al., “A dynamically configurable coprocessor for con-
volutional neural networks,” in ACM SIGARCH Computer Architecture
News, vol. 38, no. 3. ACM, 2010.

[2] X.-W. Chen et al., “Big data deep learning: challenges and perspectives,”
IEEE access, vol. 2, 2014.

[3] K. Simonyan et al., “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[4] S. Dey, G. Kalliatakis, S. Saha, A. K. Singh, S. Ehsan, and
K. McDonald-Maier, “Mat-cnn-sopc: Motionless analysis of traffic using
convolutional neural networks on system-on-a-programmable-chip,” in
2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS).
IEEE, 2018.

[5] S. Dey et al., “Temporal motionless analysis of video using cnn in
mpsoc,” in 2020 IEEE 31st International Conference on Application-
specific Systems, Architectures and Processors (ASAP). IEEE, 2020,
pp. 73–76.

[6] ——, “Iron-man: An approach to perform temporal motionless analysis
of video using cnn in mpsoc,” IEEE Access, vol. 8, 2020.

[7] G. Zhang et al., “Forecasting with artificial neural networks:: The state
of the art,” International journal of forecasting, vol. 14, no. 1, 1998.

[8] H. Mureşan et al., “Fruit recognition from images using deep learning,”
Acta Universitatis Sapientiae, Informatica, vol. 10, no. 1, 2018.

[9] A. Patino-Saucedo et al., “Tropical fruits classification using an alexnet-
type convolutional neural network and image augmentation,” in Interna-
tional Conference on Neural Information Processing. Springer, 2018.

[10] A. K. Singh et al., “Dynamic energy and thermal management of multi-
core mobile platforms: A survey,” IEEE Design & Test, 2020.

[11] S. Dey et al., “Edgecoolingmode: An agent based thermal management
mechanism for dvfs enabled heterogeneous mpsocs,” in 2019 32nd
International Conference on VLSI Design and 2019 18th International
Conference on Embedded Systems (VLSID). IEEE, 2019.

[12] ——, “Socodecnn: Program source code for visual cnn classification
using computer vision methodology,” IEEE Access, vol. 7, 2019.

[13] ——, “Deadpool: Performance deadline based frequency pooling and
thermal management agent in dvfs enabled mpsocs,” in 2019 6th IEEE
International Conference on Cyber Security and Cloud Computing
(CSCloud)/2019 5th IEEE International Conference on Edge Computing
and Scalable Cloud (EdgeCom). IEEE, 2019.

[14] S. Isuwa et al., “Teem: Online thermal-and energy-efficiency manage-
ment on cpu-gpu mpsocs,” in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2019.

[15] S. Dey et al., “Rewardprofiler: A reward based design space profiler
on dvfs enabled mpsocs,” in 2019 6th IEEE International Conference
on Cyber Security and Cloud Computing (CSCloud)/2019 5th IEEE
International Conference on Edge Computing and Scalable Cloud
(EdgeCom). IEEE, 2019.

[16] ——, “User interaction aware reinforcement learning for power and
thermal efficiency of cpu-gpu mobile mpsocs,” in 2020 DATE. IEEE,
2020.

[17] ——, “P-edgecoolingmode: an agent-based performance aware thermal
management unit for dvfs enabled heterogeneous mpsocs,” IET Com-
puters & Digital Techniques, vol. 13, no. 6, 2019.

[18] “Huawei p20 lite,” https://consumer.huawei.com/uk/phones/m/p20-lite/,
accessed: 2018-07-23.

[19] “Galaxy note9,” https://www.samsung.com/global/galaxy/galaxy-note9/,
accessed: 2018-01-27.

[20] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information processing systems,
2012.

[21] S. J. Pan et al., “A survey on transfer learning,” IEEE TKDE, vol. 22,
no. 10, 2009.

[22] K. He et al., “Deep residual learning for image recognition,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2016.

[23] A. G. Howard et al., “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv preprint arXiv:1704.04861,
2017.

[24] B. Zoph et al., “Learning transferable architectures for scalable image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018.

[25] C. Szegedy et al., “Inception-v4, inception-resnet and the impact of
residual connections on learning,” in Thirty-first AAAI conference on
artificial intelligence, 2017.

[26] J. Steinbrener et al., “Hyperspectral fruit and vegetable classification
using convolutional neural networks,” Computers and Electronics in
Agriculture, vol. 162, 2019.

[27] S.-H. Wang et al., “Fruit category classification via an eight-layer
convolutional neural network with parametric rectified linear unit and
dropout technique,” Multimedia Tools and Applications, 2018.

[28] Y.-D. Zhang et al., “Image based fruit category classification by 13-layer
deep convolutional neural network and data augmentation,” Multimedia
Tools and Applications, vol. 78, no. 3, 2019.

[29] Y. Lu, “Food image recognition by using convolutional neural networks
(cnns),” arXiv preprint arXiv:1612.00983, 2016.

[30] A. Kausar et al., “Pure-cnn: A framework for fruit images classifica-
tion,” in 2018 International Conference on Computational Science and
Computational Intelligence (CSCI). IEEE, 2018.

[31] S. Bargoti et al., “Deep fruit detection in orchards,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2017.

[32] S. W. Chen et al., “Counting apples and oranges with deep learning: A
data-driven approach,” IEEE Robotics and Automation Letters, vol. 2,
no. 2, 2017.

[33] E. Osherov et al., “Increasing cnn robustness to occlusions by reducing
filter support,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017.

[34] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in 12th {USENIX} symposium on operating systems design and
implementation ({OSDI} 16), 2016.

[35] M. S. Louis et al., “Towards deep learning using tensorflow lite on risc-
v,” in Third Workshop on Computer Architecture Research with RISC-V
(CARRV), 2019.

[36] “Hisilicon kirin 650 (659),” http://www.hisilicon.com/en/Solutions/
Kirin, accessed: 2018-07-23.

[37] “Exynos 9 series (9810),” https://www.samsung.com/semiconductor/
minisite/exynos/products/mobileprocessor/exynos-9-series-9810,
accessed: 2019-01-27.

[38] “Profiler by tomas chladek,” https://play.google.com/store/apps/details?
id=cz.chladek.profiler, accessed: 2020-06-23.

[39] “Trepn profiler by qualcomm,” https://www.apkmirror.com/apk/
qualcomm-innovation-center-inc/trepn-profiler, accessed: 2020-06-23.

[40] “Android 8 oreo,” https://www.android.com/versions/oreo-8-0/, ac-
cessed: 2018-01-31.

[41] “Android 9 pie,” https://www.android.com/versions/pie-9-0/, accessed:
2018-01-31.

[42] “Flutter: the first ui platform designed for ambient computing,” https://
developers.googleblog.com/2019/12/flutter-ui-ambient-computing.html,
accessed: 2020-06-23.

[43] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information processing systems,
2012.


