
Under-sampling and Classification of P300
Single-Trials using Self-Organized Maps and Deep

Neural Networks for a Speller BCI
Sergio A. Cortez

Dept. of Electrical Engineering
Universidad de Ingenierı́a y Tecnologı́a

Lima, Peru
sergio.cortez@utec.edu.pe

Christian Flores
Dept. of Electrical Engineering

Universidad de Ingenierı́a y Tecnologı́a
Lima, Peru

cflores@utec.edu.pe

Javier Andreu-Perez
Dept. of Electronic Engineering

University of Essex
Essex, United Kingdom

javier.andreu@essex.ac.uk

Abstract—A Brain-Computer Interface (BCI) allows its user
to control machines or other devices by translating its brain
activity and using it as commands. This kind of technology
has as potential users people with motor disabilities since it
would allow them to interact with their environment without
using their peripheral nerves, helping them to regain their lost
autonomy. One of the most successful BCI applications is the
P300-based Speller. Its operation depends entirely on its capacity
to identify and discriminate the presence of the P300 potentials
from electroencephalographic (EEG) signals. For the system to do
this correctly, it is necessary to choose an adequate classifier and
train it with a balanced data-set. However, due to the use of an
oddball paradigm to elicit the P300 potential, only unbalanced
data-sets can be obtained. This paper focuses on the training
stage of two classifiers, a deep feedforward network (DFN) and
a deep belief network (DBN), to be used in a P300-based BCI. The
data-sets obtained from healthy subjects and post-stroke victims
were pre-processed and then balanced using a Self-Organizing
Maps-based under-sampling approach prior training looking to
increase the accuracy of the classifiers. We compared the results
with our previous works and observed an increase of 7% in
classification accuracy for the most critical subject. The DFN
achieved a maximum classification accuracy of 93.29% for a
post-stroke subject and 93.60% for a healthy one.

Index Terms—brain-computer interface, neural networks, self-
organizing maps, post-stroke, EEG

I. INTRODUCTION

A brain-computer interface (BCI) is a technology that uses
people’s brain signals to grant them control over machines [1].
The brain activity is recorded using different brain imaging
techniques, such as electroencephalography (EEG) and mag-
netic resonance imaging (MRI). EEG is usually employed
in many applications due to its non-invasive character and
low cost compared to other techniques. Paradigms such as
oddball and motor imagery (MI) are used to elicit well defined
physiological responses that can be recorded through EEG and
then interpreted by the BCI system for a specific application
[2]. Motor-impaired people would benefit tremendously from
the BCI technology since it would provide them with new
means to interact with their surroundings, improving their
lifestyle [3].

The Speller is a well-known BCI application first proposed
by [4] that uses the P300 waveform, which is an endogenous
event-related potential (ERP) triggered by visual stimuli and
recorded using EEG. This BCI acts as an alternative com-
munication tool in which the users can write characters in
a computer using their induced P300 responses. An oddball
paradigm is commonly used to elicit the P300 waveform
and it consists of presenting the user target stimuli blended
among irrelevant stimuli. 300ms after the target stimulus was
presented, a positive potential (taking the name P300) can
be spotted in the user’s EEG signals. The simplicity of this
paradigm makes the BCI’s classifier require fewer samples
for training in comparison with others, making it useful for
developing quick solutions [5].

However, the main drawback of using this paradigm is
that it provides unbalanced data-sets. Unbalanced distributions
affect negatively the classifier’s training because the resulting
model would tend to classify only the majority class. There
have been several works focused on how to deal with this
kind of data-sets and also on how to balance them. The
work of [6] presented methods for balancing two-class data-
sets looking to improve the classification accuracy for the
minority class using an under-sampling approach (discarding
samples from the majority class). The authors used the k-
means algorithm to cluster both the majority and minority
classes and selected the clusters that best represent the data-
set under a specific criterion. They compared their approaches
with other methods and showed an increase in classification
accuracy when using a neural network for the classification of
different data-sets. In [7], the authors used Self-Organizing
Maps (SOMs) also for under-sampling. Using two SOMs,
they projected all the samples in the data-set into a 2-D
space expecting two regions to be defined for each class.
The samples that lay in-between these regions were removed
until the set was balanced. They also reported an increase
in classification accuracy in comparison with random under-
sampling methods.

Machine learning algorithms have been successfully used
for developing classifiers that identify and discriminate user’s

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/356660343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


commands automatically. These classifiers are of special im-
portance since their performance will determine the BCI’s
correct functioning. The work of Hoffmann [5] used Bayesian
Linear Discriminant Analysis (BLDA) and Fisher’s Linear
Discriminant Analysis (FLDA) to classify the P300 potential
of five disable subjects and four healthy subjects. They were
able to achieve a classification accuracy of 100% for all
the subjects using multiple blocks for classification instead
of single-trials. The main disadvantage of classical machine
learning algorithms, like Support Vector Machines (SVM), is
that they often require feature reduction pre-processing stages
to achieve a good classification accuracy [8] [9]. These stages
are usually computationally expensive and have an impact on
the system’s response time. Deep learning algorithms have
the advantage of not requiring complex pre-processing stages,
which means raw data can be fed to them directly. This is
possible because its learning scheme allows them to identify
important features automatically. Regarding deep learning
techniques for BCI applications, in [10] the authors used a
convolutional neural network (CNN) for P300 classification
with which they were able to achieve an accuracy of 95.5%
using target by block. In [11] the authors used instead a deep
belief network (DBN) and reported a classification accuracy
86.4%. In the work of [12], a deep feedforward network
(DFN) was used to classify MI data obtained with EEG and
functional near-infrared spectroscopy (fNIRS). They reported
a maximum classification accuracy of 94.6%. These last two
neural networks have the advantage of having a shorter training
period in comparison with the CNN, making them suitable to
test different configurations and analyze their results faster.

In this paper, we propose an approach to train a classifier
to be used in a P300-based BCI for stroke victims. We
deal with the data-set unbalanced distribution using a Self-
Organizing Map-based under-sampling approach. Two deep
neural network architectures are proposed for P300 single-
trial classification and their performance is compared using
data obtained from healthy subjects and post-stroke patients.
This work is organized as follows: in section II the materials
and methods used for the training process of the classifiers are
described. In section III the results are analyzed and compared
with our previous works. Finally, we present the conclusions
and future work in section IV.

II. MATERIALS AND METHODS

A. Participants and EEG Acquisition

Nine subjects volunteered to participate in this study. Table
I shows the age, gender, and medical diagnosis of each partic-
ipant. The healthy participants acted as the control group for
the three stroke victims. Subject S07 presented hemiplegia and
severe aphasia. Subjects S08 and S09 exhibited mild aphasia,
but only subject S09 showed moderate apraxia limited to his
lower extremities. The ethics committee of the Universidad
Peruana Cayetano Heredia issued the ethical approval for
the experiment and informed written consent. All participants
were also informed about the academic objectives pursued in
this work and ensured the preservation of their anonymity.

0
Time (s)

0.1 0.4

Visual stimulus White background

Trial begins

Fig. 1: Protocol’s time scheme. One of the six images (visual
cues) was randomly selected and displayed on the screen for
100ms followed by a white background for 300ms. After
displaying all the six images once, the process repeats itself
between 20 and 25 times.

The EEG signals were recorded using sixteen bipolar elec-
trodes and a g.USBamp amplifier (g.tec medical engineering
GmbH, Austria) at 2400 Hz. The electrodes were placed
following the 10-20 system on positions: Fz, FC1, FC2, C3,
Cz, C4, CP1, CP2, P7, P3, Pz, P4, P8, O1, O2, and Oz. The
ground electrode was placed at the subject’s right mastoid and,
the reference electrode, on its left earlobe.

TABLE I: Participants information

Subject Age Gender Diagnosis

S01 33 Male Healthy
S02 21 Male Healthy
S03 20 Male Healthy
S04 21 Male Healthy
S05 24 Male Healthy
S06 29 Male Healthy
S07 20 Male Hemorrhagic post-stroke
S08 52 Female Ischemic post-stroke
S09 55 Male Ischemic post-stroke

B. Experimental Setup

The protocol used in this study was based on Hoffmann’s
work [5]. Six different images, each one representing an action
the subject would like to carry out, were randomly flashed on
a screen continuously. The Fig. 1 shows the timing scheme
of the experiment. The time interval in which the six images
are flashed once is called a block. Between 20 and 25 blocks
make up a run and, six of these form a session. Four sessions,
recorded over two days, were obtained from the nine subjects.
Through all the experiment, the participants were asked to
count how many times the image they were told to pay
attention to appeared on the screen.

C. Signal Pre-processing

The EEG signals were downsampled by a factor of 20 and
any spurious spectral components were removed using notch
filters. Signals then passed through a sixth order Butterworth
filter with cut-off frequencies in 1 and 15 Hz. For each
electrode, the data points recorded in one second right after
an image was presented on the screen were extracted and
stored in a 16-by-120 array, defining a trial. Fig. 1 shows
the beginning of a trial. Artifacts and outliers in trials were
eliminated by winsorization [5]. Finally, signals on each trial
were standardized.



-1 0 1 2 3 4 5 6

-1

0

1

2

3

4

5

(a)

-1 0 1 2 3 4 5 6

-1

0

1

2

3

4

5

123 25 83 62 54 80

24 21 41 25 41 99

65 22 67 39 40 48

38 24 57 45 41 117

75 24 8 67 16 57

94 50 108 85 50 205

(b)

Fig. 2: Self-organized map of the subject S01 non-target trials. Fig. 2a shows the neurons (blue hexagons) and the distances
(red lines) between each in the hexagonal grid. The darker colors indicate a larger distance while the lighter ones, the opposite.
A band of dark segments can be spotted from the lower center region to the left center region, separating the non-target
trials in two groups. Fig. 2b shows the number of hits for each neuron. The neurons on the right upper corner were selected
since the distance between these was small (indicating same characteristics) and their hits added up to the correct amount of
observations needed.

D. Feature Vectors and Balancing Process
Feature vectors were constructed rearranging the subject’s

trials. The sample points of each channel were first demeaned
and then concatenated forming a row vector such as:

I =
[
S1
1 S2

1 S3
1 . . . S16

1 S1
2 S2

2 . . . S16
120

]
,

wherein for a single data point Sik, i indicates the channel it
belongs and k its position with respect of time. Each trial and
thus, each feature vector, has a label which indicates whether
or not its related visual stimulus triggered a P300 response. If
that is the case, the trials are called target, and when not, non-
target. However, since consecutive trials overlap, the adjacent
non-target trials to the target ones will also present the P300
waveform at some degree. These kind of trials were removed
before applying the balancing process.

The uneven amount of classes in the subject’s data due to the
experiment protocol was balanced using Self-Organizing Maps
(SOMs). Proposed by Kohonen [13], SOMs are unsupervised
machine learning algorithms focused mainly on clustering
and pattern recognition tasks. Basically, these shallow neural
networks perform a topological mapping of high dimensional
inputs onto a discreet 2-D space for easier characteristics
analysis and visualization. The neurons that make up the
topological space compete against each other for possession
of the inputs the SOMs receive and thus, strengthen its
relationship with certain data characteristics [14]. The learning
principle of SOMs is briefly presented below.

Let us define a set U whose members are the indexes of
N output neurons arranged in an hexagonal grid. Also, let
wi(t) be the weight vector associated to the ith output neuron
(ranging from 1 to N ) at a given time and ri its location vector
on the grid. The weight vectors have the same dimension as

the SOM input and their values are initialized with small
random numbers. The training process is divided into two
parts, which are repeated a defined amount of times or until
convergence. First, a winning neuron is selected by comparing
the euclidean distance between all weight vectors and a given
certain observation x(t):

c(t) = arg min
j∈U

‖wj(t)− x(t)‖ . (1)

A weight vector wc(t), associated to the winning neuron,
solves Eq. 1 and makes c(t) = ‖wc(t)− x(t)‖. The second
part of the training process updates all weight vectors by
applying the following rule:

wj(t+ 1) = wj(t) + α(t)ρ(c, j, t)[x(t)−wc(t)], (2)

where α(t) is the so-called learning rate parameter and
ρ(c, j, t) is the neighborhood function which simulates the
lateral interconnections between the winning neuron and its
neighbors. The learning rate is usually defined as a monotoni-
cally decreasing linear function whose values are greater than
0 and less than 1. The neighborhood function is the Gaussian
ρ(c, j, t) = exp (−‖rc−rj‖2

2σ2(t) ), where σ is the neighborhood
radius and depends on how the neurons are arranged (rect-
angular or hexagonal grid). The Eq. 2 essentially shift the
weight vectors of the surrounding neurons towards the winning
one in a proportional manner, making them more likely to
recognize similar patterns and thus, fostering competition.
After a determined amount of epochs, the distance between
neurons in the grid (norm between weight vectors) and the
number of times they won (hits) can be analyzed searching
for data patterns.



Only the non-target trials were fed into a SOM network
with the purpose of choosing those with the most alike
characteristics. The SOM had a 6-by-6 hexagonal grid and
its training process was fixed for 50 epochs. The trials were
chosen following the steps shown in Algorithm 1. Essentially,
this algorithm group neurons highly related (small distance
between them) trying to match their hits with the number
of target trials (Fig. 2b). The parameters de and β were
empirically tuned for each subject considering the results of its
trained SOM. Ideally, the distance between all neurons in the
grid should be small since the inputs are all same class trials;
but, as shown in Fig. 2a, separations can be spotted suggesting
differences in the information each trial carries. The resulting
vectors were stacked together with the target ones in a random
order, shaping the training and testing matrices.

Algorithm 1 Clusters selection

1. Compute the k euclidean distances, k ranging from 1 to
85, between each adjacent pair of neurons (ny, nz) in the
grid graph: ∥∥wny

−wnz

∥∥ = dk

2. Link and group the neurons that are close to each other
by comparing their distances with a threshold de(t). For
each k, if dk ≤ de(t), then its neurons associated are
joined.

3. The total number of hits in each group (or subset) GrF
is extracted and compared with the total number of target
trials. ∑

h∈GrF

hits(nh) ≈ targets.

4. Considering a maximum error of 4 trials, if one group
match, then it is selected for training. If there is more
than one group satisfying that rule, then the one with
the smallest distances on average between its neurons is
selected. Any overflow in hits is trimmed if needed.

5. If there are no groups or the group’s hits are not enough,
the threshold is updated following

de(t+ 1) = β + de(t),

and the process is repeated from 2. until a GrF match.

E. Classification
Two deep neural networks, a deep feed-forward network

(DFN) and a deep belief network (DBN), were used separately
to classify the subject’s trials by their class. Neural networks
can be seen as a function approximators [15], in which their
internal parameters are tuned trying to minimize the error
between actual outputs and desired outputs for specific inputs.
Each neuron in the network is able to learn data patterns on
different levels of abstraction (each layer), making the overall
model capable of recognizing and classifying new inputs with
similar characteristics to the samples used in its training. A
DFN typically has multiple hidden layers and it is trained us-
ing back-propagation. Considering fully connected layers and

...
...

...
...

...
...

v1 h1 v2 h2 v3 h3

RBM 1

w1

RBM 2

w2

RBM 3

w3

Unsupervised training

. . .

Tr
ai

ni
ng

sa
m

pl
es

Fig. 3: DBN pretraining. The RBMs are trained in order, the
hidden layers will serve as visible layers for the adjacent
RBMs. When the pre-training is done, a classification layer
is added and is fine-tuned in a supervised way.

differentiable transfer functions, the DFN training consists on
minimizing a performance function using a gradient method.
That is, taking the performance derivative with respect to the
network’s weights and bias terms and following the gradient
(gradient descent) [16]. The network is updated with each one
of the training samples until optimal performance is achieved
or a specific number of epochs has passed.

A DBN is made of two or more restricted Boltzmann
machines (RBMs) stacked on top of each other [17]. A RBM
is a simple neural net with an input (or visible) layer fully
connected to a single hidden layer. The DBN training is
divided in two stages: the first one is the unsupervised training
(or pretraining) of each RBM and the second stage is the
supervised training of the whole network. The pretraining
stage is motivated by the problems regular training by back-
progation has. Specifically, the highly non-linear character
of the network makes the minimization of its performance
function by the gradient descent method troublesome due to
been non-convex. The unsupervised greedy layer-wise training
initialize the network’s parameters to reduce the possibilities of
the gradient getting stuck in local maxima (or minima) when
the supervised training stage takes place. In the unsupervised
training stage, each RBM identify the most relevant character-
istics of their respective inputs using the contrastive divergence
(CD) algorithm [18]. A RBM’s hidden layer will act as the
input layer for the next RBM once its training is complete,
Fig. 3 shows an schematic of this training process and how
the RBMs are stacked forming the DBN. Once all the RBMs
have been trained, the whole network can be fine-tuned using
error back-propagation. The simplified unsupervised training
algorithm is briefly presented below.

Let us assume a binary RBM for simplicity, which then
can be used to generalize a model for real value inputs [19].
Let v and h be the state vectors of the visible and hidden
neurons of the RBM. Also, let w be the weight matrix which
represents the interaction between the ith visible neuron and



the jth hidden neuron whilst bi and cj are their bias terms.
The energy of a joint configuration (v,h), is defined as:

E(v,h) = −
V∑
i=1

H∑
j=1

vihjwij −
V∑
i=1

bivi −
H∑
j=1

cjhj ,

where V and H are the total number of visible and hidden
neurons respectively. The probability distribution for every
possible joint configuration using the energy function is

p(v,h) =
1

Z
e−E(v,h).

where Z =
∑

v

∑
h e
−E(v,h) is the partition function. The

probability the neural net assigns to an input v is computed
by summing all its hidden vectors, resulting in

p(v) =
1

Z

∑
h

e−E(v,h).

A RBM can be assigned to a specific input by modifying its
parameters. The derivative of the log probability of an input
vector with respect to the RBM’s weights can be used to define
the learning rule

∂ log p(v)

∂wij
∝ ∆wij = η(〈vihj〉data − 〈vihj〉reconst),

where η is the learning rate (or step) and the terms in the angle
brackets are the expectations under the distributions of the
training set and its reconstruction respectively. The 〈vihj〉data
term can be calculated, for a v input, using the conditional
probability

p(hj = 1|v) = f(cj +

V∑
i=1

viwij) (3)

where f(x) = 1
1+e−x (logistic sigmoid). The second term

〈vihj〉reconst can be calculated using Eq. 3 with the recon-
structions after these are computed applying

p(vi = 1|h) = f(bi +

H∑
j=1

hjwij), (4)

to the hidden states obtained when calculating 〈vihj〉data. To
summarize, the training goal is to reconstruct, as similar as
possible on each epoch, the inputs using only the hidden layer
states by adjusting the net’s parameters. Real input values
are processed using a Gaussian–Bernoulli RBM, which has a
variation in its energy function and the conditional distribution
described in Eq. 4 is modeled with a Gaussian instead [20].

The architecture proposed here for the two networks used
is shown in Fig. 4. Both have four fully connected hidden
layers of 60, 40, 30 and, 20 neurons on each respectively
but different output/classification layers. For the DFN: each
neuron’s activation function was modeled using a hyperbolic
tangent (tanh) sigmoid except for the single output neuron
used for classification, which used a logistic sigmoid function.
Any feature vector entering the network was first re-normalize

...

... ...
...

...

C
la

ss
ifi

ca
tio

n
la

ye
r

I1

I2

I3

I4

I5

I6

I7

I1918

I1919

I1920 60 N. 40 N. 30 N. 20 N.

Fig. 4: Architecture of the neural networks proposed for P300
classification. The classification layer for the DFN is a single
neuron and, for the DBN, are two.

from -1 to 1 automatically. The DFN was trained using the
scaled conjugate gradient algorithm. The training was fixed for
600 epochs to ensure full convergence for all subjects and had
an initial learning rate of 0.2. The training of each subject’s
DFN took approximately four minutes using a GPU.

For the DBN: four RBMs were trained and then stacked,
making up the input and hidden layers of the network. The first
RBM was type Gaussian - Bernoulli, and the rest, Bernoulli
- Bernoulli ones. The activation function of each neuron was
modeled using a logistic sigmoid. The feature vectors entering
the network were re-normalize from 0 to 1 automatically. The
RBMs were trained using CD, the learning step was set to
0.01 with an initial momentum of 0.5 and a final moment
of 0.9, following the work of [21]. The training was fixed for
100 iterations and took approximately ten minutes per subject.
Two neurons with a softmax activation function were used
for classification. The DBN supervised training process was
similar to the DFN one. A Nvidia GTX 1050 GPU and an
Intel core i7 CPU were used for the calculations on MATLAB
R2019a.

III. RESULTS AND DISCUSSION

For each model, Table II shows the cross-validated clas-
sification accuracy and its standard deviation using 5-folds.
The DFN achieved a classification accuracy higher than 91%
for the subjects S01, S03, and S08. Only for subject S02,
the DBN obtained better results than the DFN. It seemed the
activation functions were important factors that determined the
differences in accuracy between the two models. According to
the analysis of [22], the hyperbolic tangent (tanh) function
converges faster than the logistic sigmoid, thus optimizing
the training stage. Specifically, the tanh function provides
stronger gradients because its derivative ranges from 0 to 1,
in comparison to the logistic sigmoid, which ranges from 0
to 0.25. The tanh function also produces outputs that are on
average zero (since its range goes from -1 to 1), making the



training process by a gradient method efficient and less biased.
Even with the pre-training stage, the DBN was not able to
match the DFN, although the difference was not massive.

In both classifiers, the performance for each subject was
above 80%, except for subject S07. The critical medical
condition of that subject may have negatively affected the
classifiers’ training and testing process, resulting in lower
performance with respect to the others. Even though the P300
is an endogenous brain response that can be elicited without
problems in post-stroke victims, the subject’s concentration
plays a fundamental role that will determine overall if the
P300 potential is evoked or not. The results suggest subject
S07 concentration decreased over time possibly due to fatigue.
The subjects S08 and S09, both post-stroke patients, obtained
even a better performance than most of the healthy subjects,
which clearly indicates that a p300-based BCI for ischemic
stroke victims using this classifier will work correctly.

Table III shows the results of our previous works [23] [24].
The classification models: a multi-layer perceptron (MLP), a
support vector machine (SVM) and, an ANFIS ensemble were
also validated using a 5-fold cross-validation method. Their
training process used a balanced data-set obtained through a
random under-sampling method. The ANFIS classifier was not
tested with subject S05 because, for that moment, he was still
in the process of having its EEG signals recorded. The DFN
outperformed all these classifiers for each subject, especially
with subject S07. Although the MLP had similar architecture
to the DFN, for some subjects, their results were not even
close. This reckons how the trial selection in the balancing
process can heavily influence the classifier’s training stage
and performance. We stated the trials were recorded under
same circumstances, however differences between them due to
artifacts generated by subject’s fatigue or external events are
likely to happen. The cluster-based balancing process using
SOMs proposed here aimed to select non-target trials that
contained less artifacts and were more alike in terms of their
characteristics. Such trials should represent the majority of
their class, assuming the subject’s concentration was somewhat
maintained and there were few external disturbances. We
hypothesized the larger and closer clusters in the SOM map
after its training would contain these kind of trials while
the rest would scatter around them. With strong differences

TABLE II: Cross-validated model accuracy

Subject
Classification models

SOM + DFN SOM + DBN

S01 93.60 (0.7) 90.13 (1.6)
S02 81.38 (2.3) 83.48 (1.5)
S03 92.09 (1.6) 86.28 (3.2)
S04 83.24 (2.4) 81.00 (0.9)
S05 90.09 (2.0) 84.20 (3.7)
S06 84.80 (2.2) 81.44 (2.2)
S07 77.70 (3.8) 72.04 (1.6)
S08 93.29 (1.4) 88.40 (1.5)
S09 86.60 (2.7) 84.00 (2.3)

between the two classes, the classifier would have less trouble
discriminating them. There is a possibility the clusters in the
SOM cannot be easily separated or differentiated, indicating
overall similar trials, in which a random selection would yield
similar results. However, this would usually happen in healthy
subjects and in very good conditions. Let us not forget this BCI
was designed targeting post-stroke victims which, due to their
health condition, may present problems and require special
measures that are not usually contemplated. The improvement
in the performance of subjects S07 an S08 supports the
importance of a balancing process under certain criteria rather
than randomly.

The two models presented here were designed ultimately
to classify trials by block, as in the BCI systems proposed
by [5] [10]. Their single-trial classification accuracy would
allow the system to reduce dramatically the number of blocks
needed to be certain about the user’s commands, resulting in
a 100% classification accuracy in less time. This is of special
importance since the BCI will eventually help its user to take
actions that depend on quick responses, like answering its
phone.

TABLE III: Previous classification results

Subject MLP [24] SVM [24] ANFIS [23]

S01 91.8 91.5 85.3
S02 80.3 79.1 77.4
S03 85.3 83.9 79.3
S04 75.7 78.9 79.5
S05 84.9 83.4 -
S06 83.0 81.7 72.4
S07 68.6 69.2 70.1
S08 89.6 85.5 74.9
S09 86.9 87.4 78.4

IV. CONCLUSIONS

Two P300 single-trial classifiers were presented and tested
on six healthy subjects and three post-stroke patients. Both
classifiers can be used for the design of a P300-based BCI
targeted at stroke victims. However, subjects with severe
medical conditions may require variations in the paradigm
used to record their EEG signals to prevent fatigue from
diminishing their performance. An alternative approach would
be to reduce the number of runs in each session, making the
daily recording periods shorter at the expense of taking more
days to obtain the necessary samples from the subject.

Both networks not required computing-intensive pre-
processing stages. Their deep architecture allowed them to
learn and form decision rules efficiently basically from raw
data. Small variations in their architecture, specifically clas-
sification layers and activation functions, determined overall
the differences in their performances. The balancing process
based on SOMs to which the subject’s data was put through
was a crucial stage that enabled the classifiers to achieve a
higher classification accuracy. The SOMs clustered the non-
target trials and made possible their selection under a certain
criterion. The results obtained here outperformed our previous



works. The most critical subject (S07) in the patient cohort
improved its performance by 7%.

As future work, we intend to include amyotrophic lateral
sclerosis (ALS) patients and also test different machine learn-
ing algorithms.

ACKNOWLEDGMENT

This work was supported by the Programa Nacional de
Innovacion para la Competitividad y Productividad of Peru,
under the grant PIAP-3-P-483-14 and a seed fund of the
Universidad de Ingenierı́a y Tecnologı́a.

REFERENCES

[1] H.-J. Hwang, S. Kim, S. Choi, and C.-H. Im, “Eeg-based brain-
computer interfaces: a thorough literature survey,” International Journal
of Human-Computer Interaction, vol. 29, no. 12, pp. 814–826, 2013.

[2] F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rako-
tomamonjy, and F. Yger, “A review of classification algorithms for eeg-
based brain–computer interfaces: a 10 year update,” Journal of neural
engineering, vol. 15, no. 3, p. 031005, 2018.

[3] E. W. Sellers and E. Donchin, “A p300-based brain–computer interface:
initial tests by als patients,” Clinical neurophysiology, vol. 117, no. 3,
pp. 538–548, 2006.

[4] L. A. Farwell and E. Donchin, “Talking off the top of your head:
toward a mental prosthesis utilizing event-related brain potentials,”
Electroencephalography and clinical Neurophysiology, vol. 70, no. 6,
pp. 510–523, 1988.

[5] U. Hoffmann, J.-M. Vesin, T. Ebrahimi, and K. Diserens, “An efficient
p300-based brain–computer interface for disabled subjects,” Journal of
Neuroscience methods, vol. 167, no. 1, pp. 115–125, 2008.

[6] S.-J. Yen and Y.-S. Lee, “Cluster-based under-sampling approaches
for imbalanced data distributions,” Expert Systems with Applications,
vol. 36, no. 3, pp. 5718–5727, 2009.

[7] M. Vannucci and V. Colla, “Self–organizing–maps based undersampling
for the classification of unbalanced datasets,” in 2018 International Joint
Conference on Neural Networks (IJCNN), pp. 1–6, IEEE, 2018.

[8] S. Kundu and S. Ari, “P300 detection with brain–computer interface
application using pca and ensemble of weighted svms,” IETE Journal
of Research, vol. 64, no. 3, pp. 406–414, 2018.

[9] X. Li, X. Chen, Y. Yan, W. Wei, and Z. J. Wang, “Classification of
eeg signals using a multiple kernel learning support vector machine,”
Sensors, vol. 14, no. 7, pp. 12784–12802, 2014.

[10] H. Cecotti and A. Graser, “Convolutional neural networks for p300 de-
tection with application to brain-computer interfaces,” IEEE transactions
on pattern analysis and machine intelligence, vol. 33, no. 3, pp. 433–
445, 2010.

[11] Z. Lu, N. Gao, Y. Liu, and Q. Li, “The detection of p300 potential
based on deep belief network,” in 2018 11th International Congress on
Image and Signal Processing, BioMedical Engineering and Informatics
(CISP-BMEI), pp. 1–5, 2018.

[12] A. M. Chiarelli, P. Croce, A. Merla, and F. Zappasodi, “Deep learning for
hybrid eeg-fnirs brain–computer interface: application to motor imagery
classification,” Journal of neural engineering, vol. 15, no. 3, p. 036028,
2018.

[13] T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biological cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[14] H. Yin, “The self-organizing maps: background, theories, extensions and
applications,” in Computational intelligence: A compendium, pp. 715–
762, Springer, 2008.

[15] P. H. Winston, Artificial Intelligence (3rd Ed.). Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1992.

[16] M. F. Møller, A scaled conjugate gradient algorithm for fast supervised
learning. Aarhus University, Computer Science Department, 1990.

[17] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” science, vol. 313, no. 5786, pp. 504–507,
2006.

[18] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[19] G. E. Hinton, “A practical guide to training restricted boltzmann ma-
chines,” in Neural networks: Tricks of the trade, pp. 599–619, Springer,
2012.

[20] A.-r. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic modeling using
deep belief networks,” IEEE transactions on audio, speech, and lan-
guage processing, vol. 20, no. 1, pp. 14–22, 2011.

[21] M. Tanaka and M. Okutomi, “A novel inference of a restricted boltzmann
machine,” in 2014 22nd International Conference on Pattern Recogni-
tion, pp. 1526–1531, IEEE, 2014.

[22] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient
backprop,” in Neural networks: Tricks of the trade, pp. 9–48, Springer,
2012.

[23] D. Achanccaray, C. Flores, C. Fonseca, and J. Andreu-Perez, “A p300-
based brain computer interface for smart home interaction through
an anfis ensemble,” in 2017 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), pp. 1–5, IEEE, 2017.

[24] S. A. Cortez, C. Flores, and J. Andreu-Perez, “A smart home control
prototype using a p300-based brain-computer interface for post-stroke
patients,” in Smart Innovation, Systems and Technologies, p. to appear,
Springer Nature, 2020.


